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Abstract: 

The task of classification and localization with detecting abnormalities in medical images is considered very 

challenging. Computer-aided systems have been widely employed to address this issue, and the proliferation of deep 

learning network architectures is proof of the outstanding performance reported in the literature. However, localizing 

abnormalities in regions of images that can support the confidence of classification continues to attract research 

interest. The difficulty of using digital histopathology images for this task is another drawback, which needs high-

level deep learning models to address the situation. Successful pathology localisation automation will support 
automatic acquisition planning and post-imaging analysis. In this paper, we address issues related to the combination 

of classification with image localization and detection through a dual branch deep learning framework that uses two 

different configurations of convolutional neural networks (CNN) architectures. Whole-image based CNN (WCNN) 

and region-based CNN (RCNN) architectures are systematically combined to classify and localize abnormalities in 

samples. A multi-class classification and localization of abnormalities are achieved using the method with no 

annotation-dependent images. In addition, seamless confidence and explanation mechanism is provided so that 

outcomes from WCNN and RCNN are mapped together for further analysis. Using images from both BACH and 

BreakHis databases, an exhaustive set of experiments was carried out to validate the performance of the proposed 

method in achieving classification and localization simultaneously. Obtained results showed that the system achieved 

a classification accuracy of 97.08%, a localization accuracy of 94%, and an area under the curve (AUC) of 0.10 for 

classification. Further findings from this study revealed that a multi-neural network approach could provide a suitable 

method for addressing the combinatorial problem of classification and localization anomalies in digital medical 
images. Lastly, the study's outcome offers means for automating the annotation of histopathology images and the 

support for human pathologists in locating abnormalities.  
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1. Introduction 

The use of computer-aided systems for the diagnosis of diseases gave the possibility of huge advances in research in 

the medical field. Recently, there has been a shift in the trend in the medical imaging area, from diagnosis to 

classification, which has motivated the design of novel techniques for image classification. Interestingly, the use of 

deep learning has attracted a lot of research efforts, which led to the re-emergence of several neural network 

architectures. This has demonstrated state-of-the-art performance in classifying image samples [1], [2], [3], [4], [5], 
[6], and other computer-aided diagnostic methods [7] [8]. Considering the progress made in the classification research, 

the need for detection and localization in images has also seen advances with significant achievements [9]. The 

procedure for localization of objects or abnormalities within an image often requires performing a classification 

process as well, hence increasing computational cost. The same is observed with detection, which aims to classify and 

detect all objects in any given image. Both localization and detection discriminate objects within an image using a 
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bounding box, thereby isolating the object for identification. Advances in deep learning have been providing support 

in addressing the challenge of image classification, localization, and detection, to achieve a great research momentum. 

Localization of abnormalities in medical imaging is a significant innovation to boost confidence in the classification 

output. It is even more interesting when both processes are automated and jointly reported using a system. While we 

recognize the performance of convolutional neural networks (CNN) on image classification to have reached human 
performance [10], gaps still exist in blending the task of classification with localization to revolutionize medical image 

analysis [11]. Widening research efforts have addressed the challenge of both localization and detection of objects 

and anomalies in images, which is motivated by the high cost of generating expert annotations on medical images. It 

is well known that the unavailability of expert annotated images poses a strong limitation for supervised machine 

learning methods in medical imaging [9]. As a result, the need to automate the detection and localization of 

abnormality is increasing the research in object detection and image localization, which benefit image classification 

[12]. Localization of an object in an image often follows either of two major algorithm categories that are based on 

deep learning models: the one-stage and the two-stage algorithms. The one-stage algorithms are represented in YOLO 

model [13], while models such as R-CNN, Faster R-CNN, Mask R-CNN, and Cascade R-CNN [14], [15], [16], [17] 

represent the application of the two-staged algorithms, which often select regions within an image for the object 

detection process. Some of these models have been proposed as replacements for image augmentation, a task that has 

been sufficiently handled in previous research, using generative adversarial networks (GANs) as seen in [18], [19],  
[20] 

 

A significant number of publicly available datasets were labeled by human experts, which is a costly procedure and 

often laced with errors resulting in weakly annotated datasets [21].  Although medical experts that perform complex 

visual and perceptual tasks have reported they can categorize an image as normal or abnormal in a single glance and 

even detect lesions in chest radiographs and mammograms with only a quarter of a second look at the image [22], this 

is only a self-sale as several deep learning models deflated human experts [23]. To support this claim is the state-of-

the-art performance reported of deep learning models in image annotation, analysis, acquisition, feature extraction 

and interpretation. For instance, it is reported that subtle textual abnormalities that present difficulty for human 

physicians to isolate have been accurately detected and classified using deep learning models [24]. Another 

justification for this claim is the difficulty associated with massive data from pathology and radiology images, genomic 
data, and other text-based medical data, which often overwhelm humans, leading to increased true and false positive 

rates [25]. Therefore, this establishes the difficulty of relying only on human experts in curating annotated samples 

and as well for image classification, localization, and detection. Considering this limitation, deferring the task to 

machines is not a non-trivial problem from the design perspective of models. A more problematic task lies in designing 

deep learning models capable of solving classification and detection in a combinatorial approach. Doing these 

simultaneously with the hope of identifying abnormal regions in medical images can be simultaneously crucial and 

difficult [26]. Detection is an important problem in image analysis that still does not have a satisfactory solution. 

Anomaly localization is an important problem in computer vision, which involves localizing anomalous regions within 

images with applications in industrial inspection, surveillance, and medical imaging [27]. However, several challenges 

still blight the performance of deep learning models as it relates to classification and localization. For instance, a CNN 

trained with weakly annotated datasets presents a non-trivial problem for the following reasons:  

 

• overfitting may occur with those CNNs trained with small but strongly annotated datasets [28] 

• increasing complexity of object detection framework and CNNs; the need to incorporate localization of 

abnormalities in medical images as part of the confidence mechanism for classification to ascertain its 

uncertainty or certainty or explanation remains a challenge [29] 

• availability of not sufficient ground truth and annotated samples, which are often wrongly annotated due to 

high intra-person and inter-person variations [30] 

• small pixel coverage of the location of the abnormality for medical images in real-world scenarios [27] 

• localization techniques fail to focus on the relevant image region that fully contains the anomaly [31] 

 

A considerable number of studies have been focused on addressing some of the problems listed earlier. In addition to 
those of YOLO, R-CNN, Faster R-CNN, Mask R-CNN and Cascade R-CNN models [13] [14] [15] [16] [17], we 

found other works which have reported localization and detection models based on deep learning models. The study 

in [32] applied a deep convolutional network (DCN) architecture and ensemble models that successfully localize 

abnormalities on chest X-Ray. In a related work, authors in [33] explored the performance of different saliency map 

techniques on the RSNA Pneumonia dataset, discovering that the GradCAM was the most sensitive and accurate for 

localization of abnormalities. Similarly, the authors in [34] proposed a deep learning model for the detection and 
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diagnosis in weakly supervised learning, based on multiple instance learning (MIL) for the classification and 

localization of abnormalities in the image. A study has reported the localization of mass abnormalities by using a 

weakly and semi-supervised framework that detected the presence of breast cancer [28]. The use of a dual branch deep 

learning architecture for the classification and localization in mammograms, including the presence and severity of 

abnormalities, has been proposed in [9]. A convolutional latent variable to localize abnormalities in images based on 
a convolutional adversarial variational autoencoder with Guided Attention (CAVGA) has also been leveraged to 

address a similar problem [27]. Besides, the work in [35] explored the capability of the global average pooling layer 

to achieve localization. Although a significant problem associated with localization and object detection has been 

addressed in these studies, we found that most studies largely rely on human-aided annotated samples and anomalous 

training images to classify and localize anomalies. Some other approaches have coupled both weakly and semi-

supervised methods to achieve the localization of abnormities or detection of objects, a method that suffers from 

inconsistency in performance.  

 

To address these challenges, this study proposes a novel dual branch, whole-image and region-based deep learning 

framework for improved classification and localization of multiple abnormalities in digital histopathology images 

retrieved from samples obtained from the pathologist. We combined the task of classification and localization of 

abnormalities using the whole image and region-based patches for whole-image convolutional neural network 
(WCNN) and region-based convolutional neural network (RCNN) architectures.  Localization in the WCNN follows 

the method of sensitivity of the classifier to image occlusion, whereas localization with the RCNN finds anomalies in 

several regions of an image using the region and image-level class-label variation method to identify the existence of 

abnormalities. Meanwhile, the proposed framework in this study provides a mechanism for mapping probability maps 

and localizations achieved with WCNN and RCNN to provide further confidence to the classification tasks. The 

proposed method was tested using the digital histopathology image samples, presenting a comprehensive and 

comparative analysis of the method with other state-of-the-art solutions. The following highlights the contribution of 

the study: 

i. The design of a new dual-branch deep learning model based on CNN architectures for solving the 

combinatorial problem of classification and localization. 

ii. Proposal of a novel probability map comparator mechanism to compare the output from the WCNN and 
RCNN models. 

iii. Image-level and region-level abnormality classification methods are investigated using image occlusion and 

region-to-label classifier methods. 

 

The remaining part of the paper is organized as follows: Section 2 presents a summary of all the recent studies related 

to the domain of interest of this paper, where both an overview of what has been achieved so far and the gap that this 

study intends to fill are presented. In Section 3, a detailed presentation of the proposed architecture that combines 

WCNN and RCNN is presented and discussed. Dataset preparation and system configuration details are presented in 

Section 4, and detailed results are presented with a discussion of findings in Section 5. The paper is concluded in 

Section 6. 

 

2. Related Works 

In the literature, several research efforts have been focused on the application of deep learning models to the task of 

classifying abnormalities in digital medical images. Interestingly, the use of digital mammography in the detection of 

cancerous lesions leading to breast cancer has been widely researched. However, recent studies are now emphasizing 

and looking at the need to include also the localization of lesions in the image samples. In this section, we focus the 

review on recent studies using different methods to achieve localization of abnormalities in medical images, with 

emphasis on digital mammography and histopathology images. 

 

Bilen et al., proposed the use of a weakly supervised learning method to tackle the challenge of detecting objects in 

images using deep CNNs, pre-trained on a large-scale image level [35]. The study compared their approach with 

similar methods, which have applied Pascal visual object classes (VOC) data to the classification of region-level 

objects in an entire image. The outcome of the comparison showed that their deep learning region-level classification 
in whole images outperformed standard data augmentation and fine-tuning techniques. In a related study, Wang et al. 

investigated the performance of a deep learning system for the detection of the presence of metastatic breast cancer in 

whole slide images [36]. The method successfully localized the presence of the tumor in image samples that yielded 

an area under the receiver operating curve (AUC) of 0.925 and 0.7051 for classification and tumor localization tasks, 

respectively. This method demonstrated an 85% reduction in the human error rate compared with human experts. 
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Abnormality localization in chest X-rays was the focus of the study presented by Islam et al., which adapted a shallow 

DCN architecture with ensemble models for this task. The method successfully localized spatially spread-out 

abnormalities like cardiomegaly and pulmonary edema that yield the highest accuracy on chest X-Ray abnormality 

detection at an improvement of 17% [32]. The use of a shallow network as seen in the works of [32] cast aspersion on 

the performance of the model, while those of [37] and [36] reported a low performance in the classification accuracy. 
 

The use of attention maps, saliency maps and other mapping techniques have shown to produce a good performance 

in the localization of abnormalities, tumors, and objects in images; although these techniques have also been applied 

to non-medical images, Arun et al., investigated the performance and effectiveness of these techniques in medical 

images [33]. The study particularly explored different saliency map techniques on the RSNA Pneumonia dataset to 

establish how credible the methods are in addressing the challenge of localizing an abnormality. The study's outcome 

showed that GradCAM was the most sensitive to the model parameter and label randomization, and highly agnostic 

model architecture. Choukroun et al., advanced on the challenge of localizing abnormality in medical images using 

digital mammography [34]. This was achieved using a novel deep learning model for the detection and diagnosis in 

weakly supervised learning, with local annotation of the sample images. The deep learning model is based on the 

multiple instance learning (MIL) paradigm, so the severity score and localization of abnormalities in the image are 

made possible. Using multi-center mammography cohort and INbreast datasets, the proposed method discriminated 
and localized patches in the mammograms which contain abnormalities. Using the same INbreast dataset, Ribli et al., 

proposed an object detection framework based on Faster R-CNN to localize abnormalities [10]. Achieving an AUC 

of 0.85, the method performed well in the classification of the image samples and yielded high sensitivity in the 

localization of abnormalities. Shin et al. used a weakly and semi-supervised framework for the task of classification 

and localization of mass abnormalities in medical images to detect the presence of breast cancer [28]. Considering the 

availability of weakly annotated image samples, the authors investigated the effectiveness of their approach to 

successfully localize and classify masses. These combined only a few strongly annotated images with more weakly 

annotated images to give a 95% confidence interval. 

 

Bakalo et al., proposed the use of a dual branch deep learning architecture for the classification and localization of 

mammograms to identify the presence and severity of abnormalities [9]. A distinguishable feature in the proposed 
method is the ability to allow localization of the different types of findings. The proposed method combined both 

region-level classification and region ranking in the process of localization of abnormalities in image samples. An 

evaluation of their approach showed that it has more advantages of the proposed method over a previous weakly-

supervised strategy. In another study, Bakalo et al. applied two deep learning branches to multi-class classification 

and localization of abnormalities in digital mammogram images [21]. While the first branch was applied to the region 

classification, the other branch was only applied to region detection and ranking regions relative to one another. Using 

an objective function supporting the use of local annotations, the study showed that much time and effort is reduced 

through the weakly supervised method that relies on only a subset of locally annotated data. Venkataramanan et al., 

proposed a convolutional latent variable to localize abnormalities in images based on a convolutional adversarial 

variational autoencoder with guided attention (CAVGA) [27]. The aim of the proposed approach is to support the 

preservation of spatial information and to focus the model on normal regions in the image through an attention 

expansion loss mechanism. The weakly supervised component of their proposed model uses a complimentary guided 
attention loss to guide the attention map to focus on all normal regions. The proposed CAVGA was experimented 

with using the MNIST, CIFAR-10, Fashion-MNIST, and MVTec Anomaly Detection (MVTAD), modified 

ShanghaiTech Campus (mSTC) and Large-scale Attention-based Glaucoma (LAG) datasets.  

 

Object localization has also been researched in other domains other than medical images. Zhou et al., for instance, 

explored the capability of the global average pooling layer in conventional CNN to achieve localization.  The proposed 

concept can produce a generic localizable deep representation, even when using image-level labels. The authors 

claimed the use of the method for localization in images other than medical images achieves a 37.1% top-5 error for 

object localization and discriminates image regions on a variety of image samples [35]. Image localization and object 

detection has also proven relevant in pedestrian detection. For example, Liu et al. argued that the need to discriminate 

false positive objects from hard negative is necessitating the use of high-level semantic vision cues. To address this, 
the authors proposed the use of a Faster R-CNN detection framework as a region-based method for the localization of 

pedestrians within the vehicular traffic space. Integration of a branch of the network for semantic image segmentation 

was made into the proposed framework to combine both the semantic features with convolutional features for 

achieving good detection accuracy for pedestrians at different scales [38]. Comprehensive reviews on deep learning 

and image analysis in medical fields can be respectively found in the recent studies of [39] and [40]. 
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In another study, the need to investigate the use of deep learning models over machine learning models was advocated 

in handling cancer detection. The study aimed to overcome the difficulty associated with handcrafted feature 

extraction by adapting the deep learning model to automate the same task to improve classification accuracy. Using a 

hybrid of AlexNet-gated recurrent unit (AlexNet-GRU) model, the study was able to detect cases of breast cancer that 
has spread to the lymph node and using the extracted features, classification of the disease was accomplished.  The 

performance of the hybrid model was investigated with similar hybrids such as CNN-GRU and CNN long short-term 

memory (CNN-LSTM. The results showed that their proposed model outperformed other methods to confirm the 

relevance of deep learning in feature extraction [41]. The outcome reported in the existing study aligns well with the 

argument considered in the current study as relating to the use of the deep learning model in feature extraction. 

However, the current study advocates for localization rather than simply doing classification alone. In a related work, 

Belay et al., applied the hybrid model of CNN-LSTM to chickpea disease detection in crop production through feature 

extraction and then disease classification. Using well-known image pre-processing techniques such as Gaussian filter 

(GF), median filter (MF), and softmax as the classifier, the study revealed that the deep learning-based approach 

yielded outstanding classification performance when compared with other methods. Interestingly, we find the issue of 

using deep learning models for classification to be replete in literature and that further procedure might be required to 

explain the classification process [42]. Still, on the plant disease classification issue, Alshammari et al. study, which 
used a deep learning model to diagnose olive leaf disease, showed a good classification accuracy. The study applied 

an adaptive genetic algorithm to optimize the selection and combination of hyperparameters to obtain optimal 

combinations for improved performance. The outcome of their approach also confirmed the relevance of using a deep 

learning model for feature extraction leading to classification [43]. Another application of deep learning to plant 

disease detection has been reported in [44].  Using three variants of the popular Inception-v3 architecture, the study 

successfully classified cases of abnormal maize plant infection. 

 

Among several disease detection and classification studies reported using deep learning, it appears that cancer disease 

classification has received much research attention. Saber et al., reported how deep learning and transfer learning have 

been used to improve the procedure for feature extraction and classification of breast cancer. Using the popular 

mammographic image analysis-society (MIAS) dataset, the study investigated some pre-trained models: Inception 
V3, ResNet50, Visual Geometry Group networks (VGG)-19, VGG-16, and Inception-V2 ResNet to extract features 

from the image samples. However, the study was only scoped to the task of feature classification leading to breast 

cancer disease diagnosis [45]. We suggest that new research contributions must be advanced beyond classification 

alone as there are other clinical and pathological procedures often carried out in disease isolation and can also be 

automated using deep learning algorithms. To further support our observation on the need to advance research beyond 

the classification task alone, we reported Arooj et al.'s work, which focused on the classification of benign and 

malignant breast cancer cases. Using a combination of deep learning and transfer learning, the study applied both 

ultrasound and histopathology images samples to the task of breast cancer classification on the benchmarked CNN-

AlexNet model [46]. Remarkably, transfer learning has already been widely reported in the literature to benefit 

research efforts in classification. Therefore, we advocate for a combinatorial solution in addressing combinatorial 

problems relating to disease diagnosis. In related work, a study has also demonstrated the relevance of deep learning 

models, particularly CNN models, to address the problem of feature extraction from image samples leading to tongue 
cancer diagnosis. Using a privately reconstructed dataset, the study successfully applied the CNN model to detect and 

classify malignant cases from the image samples. Results obtained from the study showed that both classification and 

sensitivity were improved using their method, leading to acceptable performance for tongue cancer diagnosis [47]. 

 

Image segmentation has also received substantial research interest in the area of deep learning. Shuai et al., have 

reported successful use of deep leering models to locate and extract lesion presence from endoscopy image samples 

intelligently. The lesion segmentation aims to enable them to diagnose the presence of gastrointestinal tract diseases 

through image classification. The study was motivated by the need to improve the regular handcrafted feature 

extraction and representation method.  The approach, an end-to-end lesion segmentation using a multi-scale context-

guided deep network (MCNet), aimed to fully identify features from image samples covering local and global spatial 

space against down-sampling operations. The MCNet combined models which extract global structure and high-level 
semantic context from samples. This method can help localize abnormality and as well collect global information. 

The output from the model is feature maps which are combined to achieve the task of lesion segmentation [48]. Yu et 

al., applied a back-propagation (BP) neural network to the task of image segmentation for the retinal vessel. Using 

four different image enhancement methods: Hessian matrix filtering, adaptive histogram equalization (AHE), 

Gaussian matched filtering, and morphological processing, image samples from the DRIVE and STARE datasets were 
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applied to the hybrid model to achieve complete retinal blood vessel segmentation. In addition, the proposed neural 

network model successfully segmented connected vessel stems and terminals [49]. The approach demonstrates a high 

level of characterization and localization of abnormality through the lesion segmentation procedure. This is similar to 

what is proposed in the current study, which combines classification with localization for improved disease diagnoses.  

 
The use of deep learning-based attention or localization mechanism for the detection of suggestive features has also 

received focus in domains outside medicine. For instance, Qing et al. demonstrated the possibility of applying a pre-

trained CNN-based model, namely XM-CNN, for extracting semantic relations in the information extraction process. 

The deep learning model was combined with word-embedding and position embedding methods. The authors argued 

that the deep learning-based method proved relevant in addressing the problem of entity-aware attention mechanisms 

[50]. The novel coronavirus disease has been widely investigated using the computer-aided diagnostic systems 

(CADs) approach. The deep learning method has been proven to have outperformed most of the CADs systems 

reported in the literature. Su et al., combined Multi-Verse Optimizer (MVO) and multilevel thresholding image 

segmentation (MTIS) approaches for the segmentation of chest x-ray. The performance of the hybrid model was 

compared with other optimization algorithms to investigate the enhancement received on the MTIS method [51]. In a 

different study, the authors proposed multiple visual fields cascaded convolutional neural network MVF-CasCNN to 

identify the features leading to the classification of breast cancer. Combining both whole-image-level and region-level 
classification, the study applied the CNN model to localize the presence of tumor from the input dataset Camelyon16 

[52]. 

 

Meanwhile, in our recent studies, we have also investigated the use of deep learning in the classification of breast 

cancer using different datasets. In [20], we proposed a new CNN architecture for detecting breast cancer using 

DDSM+CBIS datasets with a data augmentation technique. We demonstrated that image augmentation and 

preprocessing techniques are relevant in reducing false positive errors. In another related study [1] which we carried 

out, we showed that using a hybrid random-grid model will support selecting optimal hyperparameters of CNN model, 

thereby improving classification performance. To further improve the model's performance in [1], we investigated the 

capability of metaheuristic algorithms in guiding the process of selecting optimal hyperparameters for a combinatorial 

optimization problem [3]. Considering the outstanding performance of five optimization algorithms when used with 
the CNN model, we improved the classification accuracy of diagnosing breast cancer in digital mammography. More 

so, in a recent study, we investigated the use of a novel optimization algorithm [5] in evolving a new CNN model 

capable of solving the classification problem in histopathology images for the detection of breast cancer [53]. The 

outstanding performance demonstrated by the neural architectural search (NAS) model showed that new neural 

architecture can be auto-designed using metaheuristic algorithms. In another study [6], we showed that the use of a 

wavelet-based activation function as a replacement for the popular RELU function is suitable for supporting feature 

detection and extraction procedure in convolutional-pooling operations. Results obtained in the study confirmed that 

our proposed wavelet function outperformed RELU in yielding better extraction of discriminant features of breast 

cancer in digital mammography. Meanwhile, we have also investigated the applicability of deep learning models, 

CNN, in classification tasks on the novel COVID-19 disease [4].    

 
Based on the review in this current section, many studies have proposed different methods using deep learning models 

to address the challenge of classifying and detecting objects or localization abnormalities in the images. However, 

considerate was shown that while the methods reported in the literature have demonstrated good performance on 

medical images, there is a need for an improved method capable of localizing abnormalities in histopathology images 

with anomalies suggestive of breast cancer. This is motivated by the view that this class of medical image presents a 

difficult task of image analysis for the purpose of classification and detection of abnormalities. In addition, the multi-

location and multi-abnormalities existing in a single image also demand a high-level model for localizing the presence 
of such abnormalities. As a result, this study aims to further close the gap in image localization by addressing some 

of these unresolved challenges through a novel method.     

 

3. Methodology  

The overview of the approach proposed in this study is described in this section. First, the pipeline of the flow of the 

process in the system is presented.  Following this architectural design of the pipelining that shows the flow of the 

processes, there is a discussion on each component in the system. Furthermore, we present an algorithmic design of 

the system to support the implementation process. Meanwhile, a detailed description of the architectures of the CNNs 

that were applied for training in the proposed system is also presented.  
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3.1 Overview of the Approach 

The architecture shown in Figure 1 summarizes the approach that is proposed in this study. The two-level medical 

image abnormality detection, classification and localization features that are included in the proposed system consist 

of the following major components: 

i. The WCNN architecture for feature extraction in the whole image 

ii. The classification-occlusion subsystem 

iii. The probability map comparator 

iv. Whole-image-to-region-based image extractor 

v. The RCNN architecture for feature extraction in region-based images 

vi. Fully connected layers  

vii. Multiclass classifier of classification purpose 

viii. Multiclass classifier for detection of abnormalities 

ix. Region-to-label-probability mapper  

The subsystems listed above are discussed in detail in the following paragraphs.  The procedure for executing figure 

1 follows the approach of parallel feature extraction, classification and localization. The implication is that the upper 

branch of the model is not dependent on the lower branch since both the WCNN and RCNN models consequently 

apply their computational procedure to the inputs supplied to the complete architecture. 
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Figure 1: An architectural layout of the WCNN-RCNN for image-level and region-level characterization and localization of abnormalities in digital 

histopathology images. The approach combines the method of image occlusion and region-based detection for the localization of abnormalities. 
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A. The WCNN architecture for feature extraction in the whole image 

Image inputs are passed into a WCNN, which applies the combination of convolution and pooling operations for the 

task of feature extraction. Image samples are first applied to some preprocessing techniques to support and enhance 

the feature extraction process. The resulting pre-processed image samples are then passed into the WCNN. Consider 

that a batch size 𝒃 of image samples 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑏} were passed as input to the WCNN for the feature extraction 
procedure. The convolutional-pooling operation follows in Equation (1), the convolutional operation is represented 

based on filter specification and the outcome on all filter count for the convolutional layer is computed in Equation 

(2). In Equation (3), a pooling operation is applied to reduce the dimensionality of the previous output. The implication 

of using the convolution-pool operations over all the convolutional layers in WCNN is shown in Equation (4).  

 

𝑥 = 𝑎𝑐𝑡𝐹𝑢𝑛𝑐(∑ ∑ (𝑓 ∗ 𝑥𝑖,𝑗  . 𝑤𝑖,𝑗) + 𝑏𝑚
𝑗=0

𝑛
𝑖=0  )               (1) 

 

𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝 = 𝑓(𝑥; 𝜔1 … 𝜔ℎ)                              (2) 

 

𝑝𝑜𝑜𝑙𝑥 = 𝑎𝑝𝑜𝑜𝑙([max |𝑎𝑣𝑔], xfeaturemap)               (3) 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑊𝐶𝑁𝑁[𝑙𝑎𝑦𝑒𝑟𝑛(… 𝑙𝑎𝑦𝑒𝑟2(𝑙𝑎𝑦𝑒𝑟1(𝑝𝑜𝑜𝑙𝑥)))]          (4) 

 

where 𝒇  denotes the filter, 𝒉 is the filter count, max |𝑎𝑣𝑔 indicate that either the max-pooling or average-pooling 

operation is chosen, 𝜔1 … 𝜔ℎ denotes filter 1 𝑡𝑜 𝒉, and 𝒙  is an instance of an image sample in 𝑿.  

 

Note also that 𝑎𝑐𝑡𝐹𝑢𝑛𝑐() represent the activation function (e.g RELU) used to achieve non-linearity. We defer the 

design and architectural composition of the WCNN to sub-section 3.2 for discussion. 

 

B. The classification-occlusion subsystem 

Localization of the presence and position of abnormality in image samples at the image level was achieved using the 

occlusion technique. The technique relies on the sensitivity of the classifier (in this case, the softmax function) to 
respond to the outcome of image classification, which is based on the image region covered during the feature 

detection procedure. The implication of this is that a section of the image is masked in a manner to overwrite the actual 

pixel representation in that region. Therefore, this renders that region of the whole image unresponsive to the classifier. 

Consequently, to find the region of an image where abnormality exists, the occlusion operator is applied on patches 

of the image, which is repeated until the image is covered. Meanwhile, the occlusion operator is supported by a feature 

extractor which allows for obtaining features for a given section of the image from the entire feature obtained from 

𝑭𝟏 and 𝑭𝟐 layers. We describe the procedure for occlusion in Equation (5) and the application of the softmax function 

on the occluded image in Equation (6). 

 

𝑥 = 𝑜𝑐𝑐𝑙𝑢𝑑𝑒(𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒, (𝑤 ∗ ℎ, 0))                                  (5) 
 

𝜎(𝑥)𝑖 =
ℯ 𝑥⃗⃗⃗𝒾

∑ ℯ
𝑥⃗⃗⃗𝒿𝑛

𝒿=1

                                        (6) 

 

where 𝑥𝑓𝑒𝑎𝑡𝑢𝑟𝑒 represents the vector representation of feature from 𝐹2, tuple (𝑤 ∗ ℎ, 0) represents the width and 

height of the occlusion region which is being cascaded over the image and 0 is an indication that a black mask is used 

for the occluding region in the whole image. The output 𝑥⃗ is the vector representation of occluded (or covered away) 

which is passed to the softmax function. ℯ𝑥𝒾   is the standard exponential function applied to each element of the input 

vector, and 𝑛 is the number of classes in the multi-class classifier. 

 

The output from the occlusion mechanism results in three objects: the image-level classification indicating the 

predicted class of abnormality or class of normal that the image belongs to in Equations (7) and (8); the probability 

map generated for the image, and image-level localization of abnormality detected in it. 

 

𝑎𝑟𝑔𝑚𝑎𝑥(𝜎(𝑥)) = 𝑎𝑟𝑔𝑚𝑎𝑥 ([
𝑝𝑟𝑜𝑏1

⋮
𝑝𝑟𝑜𝑏𝑛

]) =  [
1|0

⋮
1|0

]               (7) 
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𝑐𝑙𝑎𝑠𝑠(𝑥) = {𝑐[𝑖] |𝑎𝑟𝑔𝑚𝑎𝑥(𝜎(𝑥𝑖)) = 1 ⋀  𝑖 ∈ 1,2, … 𝑛}               (8) 
 

where 𝑝𝑟𝑜𝑏1  … 𝑝𝑟𝑜𝑏𝑛 represents the probabilities of prediction on image sample(s) supplied as input, and the 

𝑎𝑟𝑔𝑚𝑎𝑥() translates the output into a format to support mapping the class listing in 𝑐[𝑖]. 
 

C. The probability map comparator 

The localization obtained from both WCNN and RCNN are compared using the probability map comparator to boost 

the confidence level on the outcome of the system. To achieve this, the probability map from the two CNN models is 

compared to investigate if the error rate is below a threshold. When the condition is satisfied, we consider that the 

localization achieved from both models and the final classification is correct. The probability value 𝑝𝑟𝑏𝑑(𝑥)𝑖 from 

the probability distribution 𝑝𝑟𝑏𝑑(𝑥), which corresponds to the classification result that matches the original label of 

𝑥, is used to compute the probability similarity (𝑝𝑠)  in Equation (9). For those in 𝑝𝑟𝑏𝑑(𝑥), which does not match 

with the original label of 𝑥, we apply Equation (10) to compute (𝑝𝑠).  

 

𝑝𝑠 =
𝑝𝑟𝑏𝑑(𝑥)𝑖

1  +  𝑝𝑟𝑏𝑑(𝑥)𝑖
                    (9) 

 

𝑝𝑠 =  
max (𝑝𝑟𝑏𝑑(𝑥))

1 −  𝑝𝑟𝑏𝑑(𝑥)𝑖
                              (10) 

 

where 𝑝𝑠 < 0.5, tally and count, then compare the number of counts of WCNN with RCNN. The (𝑝𝑠) for all 𝑥 

instances in all images 𝑋 used in WCNN and RCNN are compared.  

 

D. Whole image to region-based image extractor 

In the case of WCNN, we use the whole image for the feature extraction process whereas, in the RCNN, we applied 

regions extracted from the image for the feature extraction process leading to classification. For every image sample 

𝑥, regions 𝑟𝑖  ∈ 𝑅 are extracted, so that Equation (11) follows: 

 

𝑅 =  𝛿(𝑥, (w ∗ h)) yields { 𝑟1 , 𝑟2 … 𝑟𝑚}                          (11) 
 

where 𝛿 is the extractor function, contrary to the method used in [21], our regions do not overlap, being evenly 

extracted from 𝑥.  These regions are passed into the RCNN for feature extraction and classification. Note that this 

means that each 𝑟𝑖 is operated on as 𝑥 in WCNN.  

 

E. The RCNN architecture for feature extraction in region-based images 

The operation of RCNN on the samples passed into it as input is comparable to that described in WCNN. We detail 

the design and discussion of RCNN in section 3.2. Whereas WCNN uses an occlusion mechanism on the whole image, 
the RCNN is appended with a dual-stream mechanism for detection of features leading to localization of region and 

the other stream for classification purposes.  

 

F. Fully connected layers  

The WCNN and RCNN architectures are followed by two fully connected layers namely F1 and F2. This allows for 

applying linear functions to the outcome of the convolution-pooling blocks to obtain a flattened output. This is 

achieved by mapping from ℝm to ℝn to return an output of the form   𝑦𝑖 =  ∅ (𝑤1𝑥1 x1 +  ⋯ +  𝑤𝑚𝑥𝑚). The duo F1 

and F2 output are passed to the corresponding fully connected layers in the following dual branches.  

 

G. Multiclass classifier of classification  

The upper stream in the dual branch from RCNN describes the classification process of the regions that are extracted 

from each image. First, the features extracted at the region-level (𝑓𝑖 , 𝑟𝑖) are passed to a multiclass classifier, namely 

softmax in Equation (12). The application of 𝜎(𝑓
𝑖 
, 𝑟𝑖) yields a region-based classification 𝑐(𝑐𝑖 , 𝑟𝑖) where each 

𝑐𝑖 belongs to a class of all abnormalities obtainable in the dataset. 

 

𝜎𝑐𝑙𝑠(𝑟)𝑖 = 𝑐[max (
ℯ 𝑟⃗⃗⃗𝒾

∑ ℯ
𝑟⃗⃗⃗𝒿𝑚

𝒿=1

) , 𝑟𝑖]                            (12) 
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← 
← 
← 

← 

̸ ∅ 

̸ ∅ 

 

H. Multiclass classifier for detection and localization of abnormalities 

Region-level localization is achieved using the lower branch of the RCNN architecture. The chosen method is the one 

that detects the presence of abnormalities in the regions to determine what number of abnormalities (or abnormities) 

exist at the image-level through agglomeration of region-level abnormality. It should be noted that for this study, 
abnormality detection is not restricted to only malignant or only benign, rather, we narrow down the class of 

abnormalities to include: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubular adenona (TA) as benign; 

and carcinoma (DC), lobular carcinoma (LC), mucinous carcinoma (MC) and papillary carcinoma (PC) as malignant. 

We also note that since almost all 𝑟𝑖, as seen in Equation (13) will belong to the normal class. We ignore the processes 

such as 𝑟𝑖 further from this level to reduce the computational cost, and focus on those abnormalities in the benign and 

malignant categories.  

 

𝜎𝑝𝑟𝑜𝑏(𝑟)𝑖 =
ℯ 𝑟⃗⃗⃗𝒾

∑ ℯ
𝑟⃗⃗⃗𝒿𝑚

𝒿=1

                       (13) 

 

where 𝑟𝑖 represents an arbitrary region in position 𝑖. 
 

I. Region-to-label-probability mapper 

The probability distribution of each region 𝑟𝑖 extracted from image 𝑥 is mapped to the class label as obtained 

by the upper branch of the architecture. To map a region to its class and localize the abnormality accordingly, we 

apply the map function in Equation (14). The function accepts the probability distribution of each 𝑟𝑖, obtain the 

highest probability value and then obtain the corresponding class label for the region 𝑟𝑖 . Furthermore, all 

𝑟𝑖 in 𝑅 are sorted in a manner as to compute the most suggestive overall class label for the image. 

Meanwhile, all 𝑟𝑖 are agglomerated to recover the image while maintaining the local region-level 

localization obtained so far. We note that the localization of each 𝑟𝑖 is categorically restricted to 

abnormalities in the categories of benign and malignant.  

 
𝜕𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑(𝑟)𝑖 = 𝜕(𝜎𝑝𝑟𝑜𝑏(𝑟)𝑖 →  𝜎𝑐𝑙𝑠(𝑟)𝑖),       𝑥𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑚𝑎𝑝(𝜕𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑(𝑟)𝑖 , 𝑟)             (14) 

 

where 𝜕𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 (𝑟)𝑖 represents region-level localization and 𝑥𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑  represents the agglomeration to the 

outcome of region-level to image-level agglomeration localization.     

 

Algorithm 1: WCNN and RCNN image classification and localization 

Result:  classification and localization on image samples 
Input: WCNN, RCNN, dataset, (w, h) 
Output: imgloc, imgcls, pmap, confidence 

1   traindx, evaldx, testdx = load(dataset, (75, 15, 10); 
2 trainr, evalr,  testr = extractor(traindx, evaldx, testdx); 
3 wcnnmdl=train(traindx, evaldx, WCNN); 
4 i=0; 
5  while testdx =  do 
6 occludx = Eq5(testdx[i], w, h) 
7 imgloc,  imgcls,  pmap predict(wcnnmdl, occludx) 
8 ++i 

9 end 
10 rcnnmdel=train(trainr, evalr, RCNN); 
11 i=0; 
12  while testr =  do 
13 regiondx = Eq11(testr[i], w, h) 
14 imgcls2,  pmap2  Eq12(rcnnmdl, regiondx) 
15 pmap2  Eq13(rcnnmdl, regiondx) 
16 for r  rg in regiondx do 
17 imgloc2  Eq14(imgcls2, pmap2, r) 
18 end 
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← 

19 ++i 

20 end 
21  confidence,   pmap  Eq9(pmap, pmap2) 
22 return imgloc,  imgcls,  confidence,  pmap 
 

In Algorithm 1, the summary of the procedure previously described is presented. The algorithm is expected to return 

the image localization of abnormalities at the image- and region-levels for comparison. To boost the confidence in the 

acceptability of the classification and localization tasks, the algorithm also compares the probability map of image 

samples that were obtained from the WCNN and RCNN, and the confidence value is the output. Also, the image 

classification results are returned to confirm what abnormality exists in the input samples. Meanwhile, the algorithm 

accepts as input the design of the WCNN and RCNN architectures, the dataset and a tuple representing the region 

extraction size. The computational analysis of the algorithm is computed, and the derived notation of 𝑂(𝑛) was 

achieved. The following subsection presents a detailed design of the two convolutional neural networks. 

 

3.2 Design of CNN architectures 

The architectural composition of both WCNN and the RCNN convolutional networks are presented in detail following 

the outcome of our recent study [53]. We build on the result of the study, which auto-designed the CNN network, 

which demonstrated, through experimentation, to be the optimal architecture to have learnt the classification problem 
in the histopathology datasets in [54] and BreakHis [55], [56]. The top-performing network is adopted for use as the 

WCNN, while the minimal top-performing network is adopted for the RCNN in this study. These designs of the 

networks for WCNN and RCNN are illustrated in Figures 2 and 3.  

 

 
Figure 2: CNN architecture for the WCNN which was applied for the feature extraction and classification with 

focus on image-level localization  
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Figure 3: Convolutional neural network architecture for the RCNN which was applied for the feature extraction, 

detection, and classification of extracted regions with a focus on region-level localization 

 

 
The architectural design of the WCNN consists of five blocks of convolutional-pooling layers. The first block 

comprises two convolutional layers with a 3×3 filter size and 32×32 filter count with a RELU activation function. 

These two convolutional layers were followed by the max-pooling layer. The second convolutional block has two 

convolutional layers using the same RELU function, followed by an average-pooling layer. Each of the convolutional 

layers uses a 64×64 filter count and a 3×3 filter size. In the third block of convolutional-pooling layers, the network 

is composed of two convolutional layers with a 128×128 filter count and 3×3 filter size with each layer, followed by 

the L1 regularization technique. This pattern is repeated for blocks four and five with 256×256 and 512×512 filter 

counts, respectively. Average-pooling layers follow the convolutional layers. The design of the feature extraction 

layers is followed by two fully connected layers. In the dense layer, a dropout layer was added with a drop rate of 

0.45. The second neural network, RCNN, applied for the task of region-based detection and classification, consists of 

three blocks of convolution-pooling layers, with the first block having only two convolutional layers. The 
convolutional layers use the RELU activation function, a 32×32 filter count and a 3×3 filter size. The regularization 

technique was used in the convolution layer, and the layer is followed by an average-pooling layer with a filter size 

of 2×2. The second block consists of two convolutional layers that use the same RELU function and apply a 64×64 

filter count with the same L1 regularization technique. Similarly, the third block follows the same pattern though, 

using 128×128 filter counts. Like the WCNN, the convolution layer is followed by a max-pooling layer. We 

experimented with these two networks and tweaked their configurations to achieve the best performance in both 

architectures. In the following section, we describe parameter and hyperparameter settings used in training both 

networks. 

 

4. Experiments 

The description of the implementation of the approach designed in the previous section and parameter configuration 

for experimentation of the architecture is presented in this section. In addition, a discussion on the datasets and related 
metadata on the datasets used for experimentation are presented in this section.  

 

4.1 Implementation 

The complete architecture of the design of the approach proposed in this study was implemented in Python, with the 

implementation of the two CNN architectures being achieved using Python 3.7.3 and all supporting libraries such as 

Tensorflow, Keras, and other dependent libraries. A personal computer with the following configuration was used for 

the implementation: Intel (R) Core i5-4200, CPU 1.70GHz, 2.40GHz; RAM of 8 GB; 64-bit Windows 10 OS. This 

same system with the indicated configuration was used for testing the trained model. Complete training and 

evaluation of the WCNN and RCNN architectures were achieved on Google’s Colab environment with the following 

configurations: 2-core Intel(R) Xeon(R) CPU @ 2.30GHz, 13GB memory and 33GB hard drive; and GPU Tesla P100-

PCIE-16GB. Trained models were stored for prediction or testing and used subsequently.  
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The chosen hyperparameters for training the WCNN use the learning rate of 0.005, though further experimentation 

was carried out using the values of 0.00001 and 0.0001. The Adam optimizer was used for the training while keeping 

parameter values for beta = 0.5, beta2 = 0.999, and epsilon = 1e-08. The network was experimented with using a batch 

size of 32. Meanwhile, the adopted network for WCNN was initially trained using a learning rate of 0.005, Adagrad 

optimizer with initial accumulator value = 0.1, epsilon = 1e-07. We experimented with both the initial configuration 
and the configuration described at the beginning of this paragraph. For the RCNN architecture, the adopted network 

uses the learning rate of 0.05, and RMSprop optimizer with rho = 0.9, momentum, epsilon = 1e-07, centered = False. 

However, we also experimented with RCNN using an Adam optimizer with a learning rate of 0.0001. the batch size 

of 32 was also used for the RCNN architecture. 

 

4.2 Datasets 

Two sets of datasets were combined to obtain a larger collection of samples for training the WCNN and RCNN 

architectures. The publicly available benchmark datasets, namely BACH [54] in Figure 4 and BreakHis [55], [56] in 

Figure 5 were sourced, preprocessed and applied for the experimentation phase. The image samples obtained from the 

BACH and BreakHis datasets were further resized to sizes 224 × 224 to allow for input to the WCNN architecture. 

The same preprocessed and resized samples were used for region extraction to train the RCNN architecture. About 

400 samples from the BACH database are originally of 2048 × 1536 pixels. Over 7900 samples were obtained from 
the BreakHis dataset with an image size of 700X460 pixels. Combining these samples from the two sources provided 

over 8500 samples were used for the experimentation. The class labels reported with the BACH samples are normal, 

benign, malignant in situ, and malignant invasive carcinoma. On the other hand, the BreakHis samples were reported 

with the following class labels: benign adenosis (A), benign fibroadenoma (F), benign phyllodes tumor (PT), benign 

tubular adenona (TA), malignant carcinoma (DC), malignant lobular carcinoma (LC), malignant mucinous carcinoma 

(MC) and malignant papillary carcinoma (PC). The following outlines the distribution of samples per class category: 

100 samples with normal label, 2580 samples with benign label, 100 samples with in situ carcinoma label, and 100 

samples with invasive carcinoma label, and 5429 samples with other malignant types. 

 
Figure 4: Sample images from the BACH datasets showing (a) normal (b) benign (c) malignant in 

situ carcinoma and (d) malignant invasive carcinoma [54] 

 

 
Figure 5: Samples from BreakHis datasets with 40X magnifications and containing Hematoxylin (dark purple) and 

Eosin (light pink) stain in the nuclei with and showing (a) benign adenosis, (b) malignant ductal carcinoma, (c) 

malignant mucinous carcinoma, and (d) malignant papillary carcinoma [55], [56]. 

The image samples were preprocessed using the image normalization operations based on Reinhard [57] and Macenku 

[58] methods. The magnification of BACH and BreakHis datasets as used for experimentation are datasets is 200X 

and 40X, respectively. We, however, preprocessed the images to allow for resizing and eliminating potential errors 

arising from stains on the raw inputs. We applied the basic operations of reduction of background noise and image 

enhancement. The outcome of applying these datasets to the implementation described earlier is discussed in the next 

section, which outlines the results and discussion on the findings of the study. 
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4.3 Image occlusion and region extraction 

The implementation of occlusion of image samples for use in localization of samples using WCNN and the region 

extraction from RCNN are described in this section. We experimented with different tuple specifications for both 

occlusion and region extraction from an image sample. For instance, consider that we have an image sample say 𝑖𝑚𝑔 

and a tuple say A. Then when 𝑖𝑚𝑔 and A are passed to the occlusion processor 𝛿(𝑖𝑚𝑔 𝐴) and the image extractor 

𝜗(𝑖𝑚𝑔 𝐴) so that we obtain 𝑖𝑚𝑔 with an occluded region or an extracted region from 𝑖𝑚𝑔 as seen in Equation (14).  

 

𝑖𝑚𝑔𝑟𝑒𝑔𝑖𝑜𝑛 = {
𝛿(𝑖𝑚𝑔, 𝐴)      𝑖𝑓 𝑤𝑐𝑛𝑛 

 𝜗(𝑖𝑚𝑔, 𝐴)      𝑖𝑓 𝑟𝑐𝑛𝑛
                             (14) 

 

where 𝐴 represents the tuple (𝑤, ℎ) which describes the region of interest in 𝑖𝑚𝑔.  

 

Interestingly, this notation allowed us to vary the region of interest (ROIs) size. For instance, the tuples (40,40)  and 

(80,80) could be used to perform different experiments on WCNN and RCNN to investigate the effect of focusing 

the models on different regions. Meanwhile, the outcome of applying both processor 𝛿(𝑖𝑚𝑔 𝐴) and 𝜗(𝑖𝑚𝑔 𝐴) can be 

seen in Figures 6 (a-c). 

 

 
  

(a) (b) (c) 

Figure 6: An illustration of occluding and extracting regions in an image sample where (a) is the original image 

sample, (b) is the outcome of 𝛿(𝑖𝑚𝑔) on img (c) is the outcome of  𝜗(𝑖𝑚𝑔) on img, using a tuple of A = (80,80). 

 

A large number of image samples were extracted from both the BACH and BreakHis data sources to ensure that 

sufficient data is made available for training the models, thereby eliminating the possibility of overfitting. In the 

following section, we report the sensitivity of both WCNN and RCNN to the variation of A in determining 
classification accuracy and localization.  

 

5. Result and Discussion 

The performance of the WCNN and RCNN architectures are investigated and reported based on rigorous experiments 

carried out. WCNN and RCNN were trained for 1000 epochs to allow full training while the trained models were 

saved for use.  The datasets were partitioned into three sets, namely the training, validation and testing datasets using 

the approach of 0.70, 0.25, and 0.05, respectively. This data partitioning allows for sufficient data during training and 

validation stages to overcome the overfitting of the model and further support the model's generalisation. The 

localization result at the image-level and region –level is also reported, and the corresponding probability map obtained 

from the two networks is presented and discussed.  We evaluated the performance of WCNN and RCNN, while under 

training, using the metrics of accuracy and loss values obtained for the number of epochs. We compared the outcome 
of different methods resulting from the variation of parameters and hyperparameters in this study.   

 

The WCNN model was first trained and evaluated based on the datasets discussed in the last section. The fully trained 

model was then used for prediction and localization. Interestingly, we found that the WCNN architecture has elegantly 

learnt the classification problem, as can be seen in Figure 7(a-b). The accuracy of the training and evaluation datasets 

on the model showed a progressive rise in value to an impressive range above 90%. Similarly, the loss values obtained 
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for both training and evaluation demonstrated unbiased learning with the model since it could generalize well. The 

loss values dropped significantly for both the training and evaluation curve to signify the classification problem as 

obtained in samples in the datasets learnt by the WCNN model. The implication of this outcome suggests that 

discriminant features pointing to each abnormality represented by the samples have been correctly patterned by the 

model. This, therefore, allows for a better prediction when new samples are supplied. Much more to this is the ability 
of the model to localize the abnormalities in the sample, as indicated by the learning curve. This confirms that the 

classification problem shadows the localization problem, and the latter can be efficiently handled when the former is 

addressed. Considering the outcome of the classification of the model, which is significant, we proceed to investigate 

the performance of the WCNN on prediction and, most interestingly, localization. 

 

 
Figure 7(a): Plot of the accuracy for the training of the WCNN architecture. Training of WCNN using the Adam 

optimization configuration and learning rate of 0.00001 
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Figure 7(b): Plot of the loss values for the training of the WCNN architecture. Training of WCNN using the Adam 

optimization configuration and learning rate of 0.00001  

 

The RCNN first proved difficult to train effectively but was stabilised through skilful parameter tuning. As observed 

in the performance of the WCNN, we found that the RCNN also has yielded a good learning curve. The pattern of the 
curve for both accuracy and loss values, as seen in Figures 8 (a-b), confirmed that results for both training and 

evaluation are relevant. Recall that, unlike the WCNN that is fed with a complete image sample, RCNN is attenuated 

to accept regions of the sample as input. The learning of both WCNN and RCNN is necessary to achieve a good 

localization of both the image and region levels. Although it can be considered the classification problem is now 

addressed in a relevant manner, both from image to region levels, using WCNN and RCNN, respectively, since it is 

important for the different employees, and this localization remains a matter of study.  
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Figure 8(a): Plot of the accuracy for the training of the RCNN architecture. Training of RCNN using the Adam 

optimization configuration and learning rate of 0.00001 

 

 
Figure 8(b): Plot of the loss values for the training of the RCNN architecture. Training of RCNN using the Adam 

optimization configuration and learning rate of 0.00001 

 

In Tables 1 and 2, the outcome of evaluating the performances of WCNN and RCNN with respect to metrics is listed. 



 

19 
 

This evaluation became necessary, considering there is the need to assess multi-label classification problems using 

different performance measures to authenticate the model. Hence, test samples were applied to the fully trained 

models, being evaluated using the classification accuracy, specificity, sensitivity, precision, Cohen's Kappa (CK), 

Matthew’s coefficient (MCC), Jaccard score (JS), F1-score, recall, and prediction time. Traditionally, most studies 

consider classification accuracy for assessing the validity of their model. Following this convention, we evaluated 
both WCNN and RCNN and found their classification accuracy to have yielded 97.08% and 52.57%, respectively, as 

listed in Tables 1 and 2, respectively.  These values demonstrate the high performance of the models in understanding 

and learning the classification problem of abnormalities in histopathology images. Evaluation for the precision of 

WCNN in Table 1 and RCNN in Table 2 returned 97.08% and 52.57%, respectively, to show that the proportion of 

positive samples identified by both models was correct to that degree. Similarly, Tables 1 and 2 listed the number of 

actual positive cases that WCNN and RCNN were able to identify correctly. We evaluated the metric on recall in both 

Tables 1 and 2, which returned 97.08% and 52.57%, respectively. A striking balance between the performance of 

WCNN and RCNN was achieved using the F1 score, which showed 97.077% and 52.57%, respectively, which reveals 

that the performance is based on precision and recall.  

 

Table 1: Performances comparison of the prediction in the classification of abnormalities on fully trained WCNN on 

samples at their respective image-level and region-level on some selected metrics 

CNN 

Model 

Classific

ation 

Accurac

y 

Specifici

ty 

Sensiti

vity 

F1 Recall Precisi

on 

CK MCC JS Predict  

time 

WCNN 0.9708 1.0 1.0 0.9708 0.9708 0.9708 0.9622 0.9625 0.9432 162.22 
 

Table 2: Performances comparison of the prediction in the classification of abnormalities on fully trained RCNN on 

samples at their respective image-level and region-level on some selected metrics 

CNN 

Model 

Classific

ation 

Accurac

y 

Specifici

ty 

Sensiti

vity 

F1 Recall Precisi

on 

CK MCC JS Predict  

time 

RCNN 0.5257 0.6545 0.4607 0.5257 0.5257 0.5257 0.3172 0.3383 0.3566 41.57 

 

During experimentation, samples were distributed equally based on class labels into training, evaluation, and test 

datasets. This, however, cannot eliminate class imbalance which exists in most publicly accessibly datasets and often 

biases classification accuracy. As a result, more metrics were evaluated on WCNN and RCNN for further performance 
measures. Cohen’s Kappa (CK) and Matthew’s correlation coefficient (MCC) metrics have shown to be robust in 

handling imbalanced class problems. The values of 0.9622 and 0.3172 were obtained for WCNN and RCNN, 

respectively, for CK showed a wider view of the performance of the classification models compared to accuracy. 

Similarly, the values of 0.7426 and 0.3383 obtained for WCNN and RCNN, respectively, for MCC demonstrate the 

wellness and quality of the models in prediction performance on new samples. Jaccard similarity or score (JS) 

describes the magnitude of intersection between predicted and true labels divided by the size of their union. This 

metric implies that it can show how relevant the model's prediction on the test dataset is. In Table 1, the value of 

0.9432 was obtained for WCNN; in Table 2, the value of 0.3566 was obtained for RCNN. The values demonstrate 

how good the model's prediction is on the test dataset. The value of 0.94 showed a very high degree of good 

performance of the WCNN model during the prediction task, while the value of 0.3566 demonstrates an average 

performance by the RCNN in prediction with the trained model. Meanwhile, the sensitivity of the models to detecting 
true positive samples and their specificity in determining true negative samples were evaluated. Interestingly, we 

found both WCNN and RCNN to have proven effective in isolating samples with malignant from those with normal 

or benign. This is revealed from the results of specificity and sensitivity, which gave 1.0 and 1.0 for WCNN and 

0.6545 and 0.4607 for RCNN. This study looked at the time taken to predict both image-level and region-level, 

discovering that WCNN took approximately 162.22x60 seconds while RCNN took approximately 41.57x60 to predict 

the same samples at the region-level. 

 

The performance of the classification models was further investigated to understand what abnormalities were 

adequately learnt by the deep learning models. Considering the difficulty associated with the classification problem 

using stained histopathology images, it became necessary to know how the WCNN and RCNN were able to navigate 

solutions to this problem on a class-level classification task. In Table 3, precision, recall and F1-score were adapted 
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to this task, and the obtained results are listed. Twelve (12) classes were applied for the experimentation, six (6) 

different types of malignant cases, five (5) types of benign cases, and one (1) normal category. Computed result for 

the precision, recall and F1-score shows that normal samples, on row 1, were correctly identified; benign samples, on 

rows 2-6, were more differentiated compared with normal samples; results for malignant samples, as seen on rows 7-

12, were more discriminant considering that more samples were used. A number of samples used for prediction by 
WCNN at the class-level are seen in the Support column correspondingly with each class label.   

 

Table 3: Class-based performance evaluation for precision, recall and F1-score using WCNN 

Class label Precision Recall F1-score Support 

Normal (N) 0.99 0.99 0.99 72 

Benign (B 1.00 0.91 0.95 75 

Adenosis (A) 1.00 1.00 1.00 342 

Fibroadenoma (F) 1.00 1.00 1.00 845 

Phyllodes tumor (PT) 1.00 1.00 1.00 351 

Tubular adenona (TA) 1.00 1.00 1.00 472 

In situ carcinoma (IS) 0.95 0.99 0.97 75 

Invasive carcinoma (IV) 0.95 0.99 0.97 75 

Carcinoma (DC) 0.95 0.99 0.97 2313 

Lobular carcinoma (LC) 0.88 0.72 0.79 319 
Mucinous carcinoma (MC) 0.99 0.92 0.96 378 

Papillary carcinoma (PC) 1.00 0.97 0.98 261 

Macro average 0.98 0.96 0.96 5578 

Weighted average 0.97 0.97 0.97 5578 

 

Similar to class-level computation carried out for WCNN, the same was evaluated for RCNN as seen in Table 4. Since 

the number of samples used for prediction with RCNN corresponds to region extraction from those used in WCNN, 

we expect the number of samples reported in the Support column to be higher. The performance evaluation for 

precision, recall and F1-score showed that the trained model significantly learnt discriminant features at the region 

level to help it classify samples accordingly. For malignant samples, seen on rows 7-12, the values obtained for 

precision, recall and F1-score were supportive of a good classification performance since most values rose above 

average. Those benign samples, listed on rows 2-6, were also significantly classified at the region level with values 

for precision, recall and F1-score clocking above 0.70. Meanwhile, the classification of normal samples is sustained 

as reported in the case of WCNN.  

Table 4: Class-based performance evaluation for precision, recall and F1-score using RCNN 

Class label Precision Recall F1-score Support 

Normal (N) 0.26 0.16 0.20 684 

Benign (B 0.31 0.14 0.19 684 

Adenosis (A) 0.43 0.15 0.22 3240 

Fibroadenoma (F) 0.33 0.48 0.39 8100 

Phyllodes tumor (PT) 0.12 0.00 0.00 3348 

Tubular adenona (TA) 0.44 0.23 0.30 4464 

In situ carcinoma (IS) 0.29 0.20 0.24 648 

Invasive carcinoma (IV) 0.49 0.71 0.58 720 

Carcinoma (DC) 0.61 0.93 0.74 22248 

Lobular carcinoma (LC) 0.55 0.35 0.43 3096 
Mucinous carcinoma (MC) 0.23 0.01 0.01 3636 

Papillary carcinoma (PC) 0.00 0.00 0.00 2520 

Macro average 0.34 0.28 0.28 53388 

Weighted average 0.44 053 045 53388 

 
Visualization of the performance of the WCNN and RCNN models in prediction-based on the twelve classes are 

presented using confusion matrix. Here, we utilized two variants of confusion matrix to allow for appreciation of the 

values obtained for each class distribution. In Figure 9 (a-b) the confusion matrix demonstrating the performance of 
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WCNN on the N, B, IS, IV, A, F, PT, TA, DC, LC, MC, and PC class labels obtained in samples, are presented. The 

values 71, 68, 74, 74, 342, 845, 351, 472, 2287, 230, 349, and 252 were obtained for N, B, IS, IV, A, F, PT, TA, DC, 

LC, MC, and PC, respectively, showed the number of true positives. The implication of these values as it relates to 

the classification problem interprets that WCNN correctly classified a significant number of samples as distributed in 

their respective classes. This is further confirmed by the values obtained for false positives (class-label rows) and false 
negatives (class label columns) which often returned zero for all classes as can be seen in Figure 9(a) and outlined in 

Figure 9(b) through dimly colored cells and brightly colored diagonal cells.  The values obtained for the true negative, 

represented by contiguous blocks of cells which are adjacent to the corresponding class-label in the diagonal cell, are 

also closely correlated with what is obtainable in the dataset. In the same vein, we investigated the performance of 

RCNN, since it relates to the specification of the confusion matrix and found that the values 108, 94, 131, 513, 4841, 

905, 982, 1025, 69, 5090, 21, and 0 were obtained for N, B, IS, IV, A, F, PT, TA, DC, LC, MC, and PC, respectively. 

This result can be confirmed in Figures 10 (a-b), where Figure 10(a) shows these images in the diagonal cells and 

Figure 10(b) confirms the values through the variation of the colors (bright) of the diagonal cells. The outcome seen 

in the confusion matrix of both WCNN and RCNN as it relates to their performance in addressing the classification 

problem of breast cancer in histopathology images supports the viability of the models in addressing the localization 

problem.  

 
 

 
(a)                      (b) 

Figure 9: Confusion matrix showing the classification performance of the fully trained model of WCNN when 
applied to test datasets for prediction. (a) shows the values obtained for true positives and (b) illustrate the values 

using cell-color variation for all class-labels using WCNN model 
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(a)                                                                      (b) 

Figure 10: Confusion matrix showing the classification performance of the fully trained model of RCNN when 

applied to test datasets for prediction. (a) shows the values obtained for true positives and (b) illustrate the values 

using cell-color variation for all class-labels using the RCNN model 
 

 

Receiver operating characteristic (ROC) represents a graphical approach for illustrating the classification accuracy of 

a model so that all classification thresholds are considered. Therefore, we subject the evaluation of WCNN and RCNN 

to the use of ROC to also observe how these models can effectively address the classification problem leading to the 

localization problem. This graphing is obtained through the computation of True Positive Rate (TPR) and False 

Positive Rate (FPR) values so that the summary of the performances of the models is seen over all possible thresholds. 

Another interpretation of the use of TPR and FPR would put sensitivity and (1−specificity) on the y-axis and x-axis, 

respectively. Figures 11(a-b) graph the results returned by WCNN and RCNN for the ROC plot so that each 

abnormality or class-label is accounted for. To analyze the curves, it is traditionally expected to have the diagonal line 

from (0,0) to (1,1) corresponding to a ROC curve of random chance, and a perfect ROC curve should run through the 
point (0,0) to (0,1) and (0,1) to (1,1). However, since all classification models are expected to run below this perfect 

ROC curve, we present the analysis of our curve using this gold standard. Figure 11(a) shows the distribution of AUC 

values for all class-labels and the ROC curves corresponding to each label. This figure shows that the overall 

performance of WCNN as seen in the ROC is nearly perfect, as the general classification curve (dotted-black-coloured) 

runs close to the gold standard. At the class level, ROC curves for the abnormalities PT, TA, DC, LC, MC, and PC 

are impressive since the curves rose above the random chance curve. Similarly, we observed that distinguishing 

malignant from benign is a problem well addressed by WCNN as the ROC curves for B, IS, IV, A, and F were 

distinctly drawn towering above the random chance curve as well. The performance of RCNN has also been observed 

here to note how the classification problem is being successfully addressed at the general and class-based levels. Like 

what is reported for WCNN, RCNN showed that the general performance classification performance is significant, as 

seen in the dotted-black-coloured ROC curve in Figure 11(b). It is also interesting to note that the region-level 

abnormality characterization was good in terms of classification performance.  
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Figure 11(a): ROC curve for WCNN demonstrating the AUC value and curve obtained on an abnormality-based 

computation for all classes reported in the datasets 

 

 
Figure 11(b): ROC curve for RCNN demonstrating the AUC value and curve obtained on an abnormality-based 

computation for all classes reported in the datasets 
 

In addition to the evaluation of the models based on ROC curves, we observe the reported AUC values for the general 

classification problem and the class-based classification, as seen in Figures 11(a-b). The values correspond to the 

relevance of the entire two-dimensional area under the entire ROC curve. So, for instance, the AUC value is 1.00, 

which was reported for the general classification task in Figure 11(a), estimating the entire two-dimension area 

underneath the ROC curve represented by a dotted-black-coloured line. A good value for AUC is expected to range 
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between 0.5-1.0, with the upper bound corresponding to a perfect solution while the lower bound is the random chance 

solution. Also, the AUC reported for RCNN, which follows a similar performance, showed a result of 0.91. These all 

imply that classification problem is effectively addressed at both image- and region-levels. 

 

Now that the CNN models have successfully learned the classification problem, which led to the identification of 
features suggesting abnormalities in histopathology images, we proceed to examine the performance of the models in 

achieving localization of the detected abnormalities. This represents a combinatorial problem that requires both 

classification and localization problems to be solved, so it could be able to annotate the samples correctly. To present 

the achievement of this task, we represent the outcome of localization leading annotation of samples using heatmaps, 

boundary boxes and inverted masked samples. The aim is to allow for the presentation of the localized abnormalities 

in an elegant and reinforced manner.  

 

Recalling the localization strategy adopted in WCNN, it follows the occlusion of segments of samples to leverage the 

sensitivity of the softmax function used as a classifier. Hence, the visualization of the localization task performed by 

WCNN as described here follows the approach of occlusion. We focus on localization abnormalities in malignant 

samples, with little emphasis on benign samples, since the aim is to design deep learning models’ similitude to human 

physicians with the improved performance desired here.  Figures 12 (a-c) are presented in the localization of some 
selected samples. The bounding box localization of the abnormalities is represented in Figures 13(a-c). In Figures 

14(a-c), a heatmap is applied to further analyze and present the localization outcome from the WCNN model.  

Furthermore, an investigation into the performance of the model with respect to localization accuracy and some other 

related metrics are listed in Figure 15, where each radar plot demonstrates a comparison of the distribution of values 

per abnormality for metrics such as accuracy, recall, precision, sensitivity, specificity, F1-score, Cohen Kappa, 

Mathew’s coefficient, and Jaccard index.   We observed that the localization accuracy for all abnormalities 

investigated through localization showed an impressive performance. A similar trend is reported for other metrics 

across the selected abnormalities. 
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Figure 12: The localization using an inverted mask for fibroadenoma (F) shows all occluded regions that returned negative with the classifier and the missing 

region that returned positive with the classifier. 
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Figure 13: The localization using bounding box for mask for fibroadenoma (F) showing all occluded regions which returned negative with the classifier, and the 

missing region showing positive with the classifier 
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(f) 

 
 

 
(g) 

Figure 14: The localization using heatmaps for (a) benign [B] (b) malignant invasive carcinoma [IV] and (c) tubular adenona [TA], (d) mucinous carcinoma as 

malignant (MC), (e) phyllodes tumor as benign (PT), (f) fibroadenoma as benign (F), (g) in situ carcinoma (IS). The localized area is highlighted around the 

yellow-cloudy coverage of the histopathology images. 
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Figure 15: A radar plot for WCNN showing the distribution of performance of WCNN in localization tasks based on accuracy, recall, precision, F1-score, 

sensitivity, specificity, Jaccard index, Cohen Kappa, and Matthew’s coefficient.
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We summarize the findings of this study through a comparative analysis of the obtained performance for both 

WCNN and RCNN, with related studies which have used similar approaches or deep learning datasets to 

address the same problem. The outcome of the comparative analysis is presented in Table 5. This proposed 

approach presented the following average values of AUC: 1.00, accuracy: 0.9708, specificity: 1.00, 

sensitivity: 1.00, recall: 0.9708, precision: 0.9622, F-score: 0.9708, CK: 0.9622, MCC: 0.9625, and JS: 0.9432 

were obtained. These values are then further compared with those obtained from other related works. For 

instance, the work of Nejad et al. [59] reported a detection rate of 0.775, whereas this study can achieve 0.93 

and 0.91 for classification accuracy and localization accuracy, respectively. Compared with the work of 

Araújo et al. [60], which demonstrated the values of 0.778 and 0.956 for accuracy and sensitivity, this study 

reported 0.9708 and 1.00 and 0.94, 0.50 for classification accuracy, specificity, and localization accuracy and 
specificity, respectively. The works of Han et al. [61], Zhu et al. [62], and Xie et al. [63] returned classification 

accuracy of  0.932, 0.875, and 0.968, respectively, as compared with the 0.9708 and 0.94 obtained in this 

study for classification and localization. Furthermore, the values for precision, recall, F-score and AUC 

reported by the works of Saha et al. [64] and Hägele et al. [65] trail what was obtained in this study, where 

the values of 0.9622, 0.9708, 0.9708, and 1.00 were reported for the same metrics accordingly.  

 

Table 5: Comparison of the performance of combined WCNN and RCNN models for classification and 

localization tasks as compared with other similar state-of-the-art CNN models addressing the same problems 

using histopathology images with breast cancer abnormalities. 

Authors and 

References 

Methods Performance Dataset 

Nejad et al  [59] CNN + Data 

augmentation 

Detection rate 77.5% BreakHis database 

Han et al [61],  Structured Deep 

Learning Model+ Data 
augmentation 

93.2% accuracy BreakHis database 

Zhu et al [62] Squeeze-Excitation-

Pruning (SEP)+CNN 

Accuracy of 87.5% BreaKHis and BACH dataset 

Xie et al [63], Inception_V3 and 

Inception_ResNet_V2 

Accuracy 96.84% BreaKHis 

This Study WCNN and RCNN AUC: 1.00 

Accuracy: 0.9708 

Specificity: 1.00 

Sensitivity: 1.00 

Recall: 0.9708 

Precision: 0.9622 

F-score: 0.9708 

CK: 0.9622 

MCC: 0.9625 
JS: 0.9432 

BreakHis and BACH 

databases 

 

This performance obtained for the approach in this study confirms that deep learning models are sufficient 

and capable of addressing the combined challenge of classification and localization of abnormalities in 

medical images. This further indicates the need for a careful selection of CNN models suitable for the medical 

images, which should be analyzed to achieve the best performance. The study's outcome also indicates that 

achieving an acceptable localization of abnormalities in digital histopathology images must precede a 

successful classification of the same abnormalities in the image datasets.  Whereas most studies using deep 

learning methods on digital medical images for detecting the presence of breast cancer often scope their work 

around classification, the result of this study is a compelling approach to motivate improved localization in 

both digital mammography and histopathology images with abnormalities leading to breast cancer. This is 

reinforced by the fact that radiologists leverage their skill to localize abnormalities, so their acceptance can 
get a boost, or otherwise, their conclusion would remain a guess. The proposed method and achieved results 

demonstrate the advancement of research in the use of histopathology images for the classification and 

localization of abnormalities in breast cancer. Therefore, this does not limit the applicability of the method to 

the problem represented by the selected dataset but allows for the generalization of the method to other 

datasets for different medical images. 

 

This study has been demonstrated to have overcome some major drawbacks associated with using deep 

learning models in image analysis in the medical domain. The first is the challenge of overfitting the model, 

which was addressed by applying sufficient image samples for the model's training to achieve generalization. 

Moreover, the images were first preprocessed, and all traces of stain seen in the image samples were 

eliminated to ensure that the annotations and discriminant features were not rendered blurred during the 
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feature extraction process. Secondly, the core objective of this study is to achieve localization of abnormalities 

in addition to the classification task. From the results obtained through a rigorous experimental stage, we have 

reported that the proposed model achieves impressive classification and localization accuracy performance. 

We showed that the combinatorial approach adopted in this study could boost confidence in accepting the 

classification result.  Thirdly, to overcome the challenge of a wrongly annotated dataset, this study utilized 

two major histopathology benchmarked datasets which have been widely used and reported in most 

experimental work reported in the literature. Fourthly, the dual-branch deep learning model, which uses both 

image-level and region-level inputs, enables the model to locate abnormalities with a small-pixel coverage 

adequately. Fifthly, we noted that the outcome of the localization process, as shown by the result obtained in 

this section, the model adequately isolated the region where the abnormality exists. These, therefore, showed 
that the result of this study has been able to address the drawbacks existing in literature which were previously 

outlined in the introduction section. 

 

6. Conclusion 

This study is focused on solving the combinatorial problem of classification and localization using 

histopathological images. Using a dual-branch CNN framework, we proposed the use of image- and region-

level models, which are represented by WCNN and RCNN, respectively, so that the combined efforts of the 

two models are used to address the problem. WCNN leverages the sensitivity of the classifier to occlude 

samples in detecting the location where features suggesting the presence of abnormality exist. On the other 

hand, RCNN applied a unique probability function to map the regions of specific samples to agglomerate their 

classification output for decision at the image level. The dual-branch deep learning model was applied to well-

preprocessed samples sourced from BreakHis and BACH datasets for training, evaluation, and testing. The 
trained models were exhaustively evaluated using different measures, which include classification accuracy 

and the progress of loss values obtained during training. Furthermore, the fully trained model was applied for 

prediction on some samples and performance was reported to have yielded impressive performance. 

Furthermore, the localization problem was addressed using the trained models to annotate the samples. 

Visualization for the localized abnormalities was demonstrated using an inverted mask, bounding boxes, and 

heatmaps with exemplification done with selected abnormalities containing malignancy. Also, the localization 

accuracy, precision, recall, sensitivity, and specificity of the localization task were reported. Finally, a 

comparative analysis of the approach reported in this study was carried out in other similar studies. The 

outcome of the comparison showed that the method demonstrated in this study yielded good performance. 

This, therefore, shows that the combinatorial problem of classification and localization in medical images can 

be effectively handled using a deep learning model. the concept may be leveraged in addressing similar 
problems across fields of medicine having to do with disease classification in digital images. In future, the 

research should focus on some interesting region selection models for the improvement of the RCNN so that 

suggestive regions with discriminant features are selected. In addition, the localization achieved by WCNN 

and that of RCNN can be compared further to corroborate the relevance of their underlying techniques. 

Furthermore, evolutionary computation and swarm intelligence algorithms are proposed for optimizing the 

two deep learning models for improved classification and localization performances.  
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List of abbreviations 

Acronym Description 

A Adenosis 

AUC Area under the curve 

B Benign 

BACH BreAst Cancer Histology 

BreakHis Breast Cancer Histopathological Image Classification 

Cascade R-CNN Cascade region-based convolutional neural network 

CAVGA Convolutional adversarial variational autoencoder with Guided Attention 

CIFAR-10 Canadian Institute For Advanced Research 10 

CK Cohen’s Kappa 

CNN Convolutional neural networks 

CPU Central processing unit 

DC Carcinoma 

DCN Deep convolutional network 

F Fibroadenoma 
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Faster R-CNN Faster region-based convolutional neural network 

FPR False Positive Rate 

GANs Generative adversarial networks 

GB Gigabyte  

GHz Giga Hertz 

GPU Graphic processing unit 

GradCAM Gradient-weighted Class Activation Mapping 

InceptionV3 Inception version 3 

IS In situ carcinoma 

IV Invasive carcinoma 

JS Jaccard similarity or score 

L1 Lasso regression 

LAG Large-scale Attention-based Glaucoma 

LC Lobular Carcinoma 

Mask R-CNN Mask region-based convolutional neural network 

MC Mucinous carcinoma 

MCC Matthew’s correlation coefficient 

MIL Multiple instance learning 

MITOS-ATYPIA-14 Mitos and Atypa 2014 contest 

MNIST Modified National Institute of Standards and Technology 

mSTC modified ShanghaiTech Campus 

MVTAD Machine vision technology Anomaly Detection 

MVTec Machine vision technology 

N Normal 

OS Operating system 
PC Papillary carcinoma 

PCIE Peripheral component interconnect express 

PT Phyllodes tumor 

RAM Random access memory 

RCNN Region-based CNN 

R-CNN Region-based convolutional neural network 

RELU Rectified linear unit 

ResNet_V2 Residual network version 2 

RMSProp Root Mean Squared Propagation 

ROC Receiver operating characteristic 

ROIs Region of interest 
RSNA Radiological Society of North America 

SEP Squeeze-Excitation-Pruning 
TA Tubular adenona 

TPR True Positive Rate 

VOC Visual object classes 

WCNN Whole-image based CNN 

YOLO You only look once 
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