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Abstract 
Optimal power flow (OPF) has always been one of the most crucial tools for power system 

operations. OPF problem formulation involves non-linear alternative current (AC) power flow 

equations, and a wide range of challenges occur as a result. This is because the resulting non-convex 

optimization problems are not only complex and time-consuming, but also difficult to find a global 

optimum as many local optimums are present. So far, different relaxations have been provided to 

address these issues. One of the most effective strategies for convexifying such formulations is 

second-order cone programming (SOCP). Although SOCP is an efficient instrument for convexifying 

AC OPF equations, it is unable to reach the global optimal solution compared to other methods. The 

aim of this paper is therefore to provide a new method to approach the global optimum of AC OPF 

relaxed by SOCP. This method is obtained with the aid of a new linrear tranfsormation called semi-

Lorentz transformation as it similar to the Lorentz transformation in the special relativity theory. In 

this method second-order cone AC OPF equations are mapped to a new model via semi-Lorentz 

transformation. In addition, an approximation approach is also presented to reach the best semi-

Lorentz factor, the main driver in semi-Lorentz transformation, for each particular problem based on 

the network parameters. From the comparative analysis in case studies, the proposed OPF solution 

method has robust precision and higher efficiency while consuming less computing time.  

Keywords: Optimal Power Flow, Second-Order Cone Programming, Linear mapping, Tightened Second-Order Cone 

Programming relaxation. 



 

 

 

1. Introduction 
Optimal power flow (OPF) is an important method to optimize power system operations. The 

objective of OPF is to minimize an objective function comprising generation cost, power loss, etc., 

subject to equality and inequality system constraints. Considering the non-linear and non-convex 

functions involved in the OPF formulation, this OPF is an NP-hard problem [1]. Thus it has attracted 

continuing research interest for decades in finding more effective solution methods. As an example 

of recent approaches to OPF, population-based algorithms were widely utilized to solve OPF. In this 

case, researchers in [2] got an invasive weed optimization algorithm improved by chaos to solve non-

convex OPF. Modified imperialist competitive algorithm was also used to solve multi-objective OPF 

in [3]. Similarly, Ref. [4] presents a solution method on the basis of adaptive grasshopper 

optimization algorithm to solve the OPF problem. Although OPF can be solved in [2]–[4], it has a 

significant computational burden, and the global optimal result is not guaranteed [5], [6]. 

Despite the aforementioned techniques in [2]–[4], there are relaxation-based methods which can 

convert a non-convex OPF into a convex optimization problem to easily obtain the global optima 

while taking the advantages of powerful optimization solvers like CPLEX, and GUROBI.  

There are several strategies associated with the aforementioned relaxation methods. Semi-definite 

programming (SDP) is one of the techniques that can be used in convexifying OPF [7], [8]. However, 

authors in [9] have identified its limitations in dealing with large-scale systems. Furthermore, SDP is 

quite time-consuming and merely presents accurate results for a few problems [10]–[12]. SDP is not 

an appropriate tool for OPF because it even failed to present accurate results for a two-node one-

generator test network [13]. Another method for relaxation is quadratic convex programming (QCP) 

which has been utilized in some studies. For instance, Ref. [14] uses branch-and-cut algorithm to 

solve the OPF problem, where valid inequalities and bound tightening strategies [15] are incorporated 



 

 

into the formulas. The mentioned valid inequalities are obtained on the basis of the convex hull 

definition of 2×2 rank-one positive semidefinite Hermitian matrices. Additionally, complex per unit 

normalization is presented for tightening QCP-based OPF in [16]. Despite the advantage of QCP in 

terms of large-scale problems, it requires more computation time and may not be suitable for real-

time operations [17]. Second-order cone programming (SOCP) is a more promising technique for 

OPF. For example, the cutting plane method is employed to enhance the strength of SOCP to cope 

with OPF problems [18]. It has been found that QCP has provided better results in some cases 

compared to SOCP [19], but it is not computation-friendly. 

According to the aforementioned review, both QCP and SOCP are appropriate for relaxing OPF 

problems. The main difference between them is that QCP can approach the global optimum better 

while SOCP  is easier to implement and can compute faster [18]. Some studies show that it is possible 

to improve the accuracy of SOCP to approach the global optimum while keeping its fast computing 

feature. For example, a relaxed SOCP-based AC OPF using power loss relaxation is introduced in 

[19] to improve accuracy, and a cutting plane alternative is integrated into SOCP to better 

approximate the global optimum of OPF [20]. 

Following the above ideas, this paper aims to improve the accuracy of SOCP by the linear mapping 

approach [21]. After evaluating various linear mappings including shear mapping, rotation mapping, 

etc., a new linear transformation called semi-Lorentz transformation, which is similar to the Lorentz 

transformation in the special relativity theory, is eventually selected due to its positive influence in 

this regard. It is notable that the optimization results for the mapped OPF problem are obtained based 

on all linear transformations (including; rotation, shear, squeeze, reflection, and scaling), among 

which semi-Lorentz transformation has a better effect on transforming OPF equations and 

expression, leading to a lower optimality gap. To be more specific, linear semi-Lorentz 

transformation is performed on the SOCP-AC OPF equations, which will reduce the gap to the global 



 

 

minimum and thus increase the accuracy of SCOP. 

The contributions of the proposed approach are as follows: 

• Two different transformations based on semi-Lorentz mapping for SOCP-AC OPF are presented. 

In the first model (model-A), both network variables and parameters are transformed. It clearly 

shows that the semi-Lorentz transformation directly affects the convex SOC constraint and 

provides more space for transformed variables to assign values that are more close to the values 

in AC OPF. In the second model (model-B), the network information (power demands and line 

impedances) is changed after transformation, and it provides input data (changed network 

information) to estimate the best value for the semi-Lorentz factor (which plays the main role in 

the semi-Lorentz transformation) for each case to reach the minimum optimality gap. 

• Three different equations for three operation conditions (such as typical, congested conditions 

and small-angle difference) are presented to estimate the semi-Lorentz factor accurately based 

on network information (power demands and line impedances). The Pearson correlation [22] is 

also used to verify that the best value of semi-Lorentz factor (M) obtained by estimation methods 

is close enough to the values obtained empirically. 

The rest of this paper is organized as follows. Section 2 presents the non-linear mathematical 

equations of the OPF, convexifying and tightened OPF. Numerical results under different case studies 

are provided in Section 3. The conclusion and future works are given in Section 4. 

2. Problem formulation 

2.1. A brief review of non-linear AC OPF 

A brief review of the non-linear polar AC OPF is described here before portraying the proposed 

SOCP-AC OPF model. Like all other optimization problems, it has an objective function (1a) which 

is subject to a set of equality and inequality constraints (1b)-(1l). The objective function (1a) 

minimizes the generation cost. Constraints (1b) and (1c) guarantee the active and reactive power 



 

 

balance at each node, respectively. The active and reactive power flows between branches are shown 

in constraints (1d)-(1g), respectively. Constraints (1h) and (1i) represent the real and reactive power 

boundary of the generative units, respectively. Constraint (1j) maintains the system voltage between 

acceptable ranges. The apparent power of each branch is controlled by means of constraints (1k) and 

(1l). To further elaborate the model, the specifications used in (1a)-(1l) are seen in Fig. 1. 

 

 

 

Fig. 1: Illustration of a transmission network 

𝑀𝑖𝑛∀𝑡[ẞ𝐶𝑜𝑠𝑡] 

ẞ𝐶𝑜𝑠𝑡 = ∑ (𝑎𝑛𝑃𝐺,𝑛
2 + 𝑏𝑛𝑃𝐺,𝑛 + 𝑐𝑛)

𝑛∈Ω𝑏𝑢𝑠

 

(1a) 

𝑠. 𝑡. ∀𝑛, 𝑚 ∈ Ω𝑏𝑢𝑠  , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ 
 

 𝑃𝐺,𝑛 − 𝑃𝐷,𝑛 = 𝑔𝑠ℎ,𝑛𝑉𝑛
2 + ∑ 𝑃𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(1b) 

 𝑄𝐺,𝑛 − 𝑄𝐷,𝑛 = −𝑏𝑠ℎ,𝑛𝑉𝑛
2 + ∑ 𝑄𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(1c) 



 

 

 𝑃𝑛,𝑚 = 𝐺𝑛,𝑚𝑉𝑛
2 − 𝐺𝑛,𝑚𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚 − 𝐵𝑛,𝑚𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚 

(1d) 

 
𝑄𝑛,𝑚 = − (𝐵𝑛,𝑚 +

𝑏𝑐,𝑛𝑚

2
) 𝑉𝑛

2 + 𝐵𝑛,𝑚𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚

− 𝐺𝑛,𝑚𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚 
(1e) 

 𝑃𝑚,𝑛 = 𝐺𝑛,𝑚𝑉𝑚
2 − 𝐺𝑛,𝑚𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚 + 𝐵𝑛,𝑚𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚 (1f) 

 
𝑄𝑚,𝑛 = − (𝐵𝑛,𝑚 +

𝑏𝑐,𝑛𝑚

2
) 𝑉𝑚

2 + 𝐵𝑛,𝑚𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚

+ 𝐺𝑛,𝑚𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚 (1g) 

 𝑃𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝑃𝐺,𝑛 ≤ 𝑃𝐺,𝑛

𝑚𝑎𝑥  (1h) 

 𝑄𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝑄𝐺,𝑛 ≤ 𝑄𝐺,𝑛

𝑚𝑎𝑥 (1i) 

 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑛 ≤ 𝑉𝑚𝑎𝑥 (1j) 

 𝑃𝑛,𝑚
2 + 𝑄𝑛,𝑚

2 ≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (1k) 

 𝑃𝑚,𝑛
2 + 𝑄𝑚,𝑛

2 ≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (1l) 

 

In the above model, Ω𝑏𝑢𝑠 and Ω𝑏𝑟𝑐ℎ are the set of nodes and branches, respectively; 𝑃𝐺,𝑛 and 𝑃𝐷,𝑛 

represent the active generation and demand at node 𝑛, respectively; 𝑄𝐺,𝑛 and 𝑄𝐷,𝑛 denote the reactive 

generation and demand at node 𝑛; 𝐺𝑛,𝑚 and 𝐵𝑛,𝑚 are conductance and susceptance of the branch 

between nodes 𝑛 and 𝑚, respectively; 𝑏𝑐,𝑛𝑚 is the shunt admittance of the branch between nodes 𝑛 

and 𝑚;  𝑔𝑠ℎ,𝑛 and 𝑏𝑠ℎ,𝑛 are shunt conductance and susceptance of node, respectively; 𝑃𝑛,𝑚 and 𝑄𝑛,𝑚 

are active and reactive power flows between nodes 𝑛 and 𝑚, respectively; 𝑉𝑛 represents the voltage 

at node 𝑛; 𝛿𝑛,𝑚 is phase angle between nodes 𝑛 and 𝑚; 𝑃𝐺,𝑛
𝑚𝑖𝑛 and 𝑃𝐺,𝑛

𝑚𝑎𝑥 are the active power lower 

and upper bounds of generation unit 𝑛, respectively; 𝑄𝐺,𝑛
𝑚𝑖𝑛 and 𝑄𝐺,𝑛

𝑚𝑎𝑥 show the reactive power bounds 

of generator 𝑛; 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 demonstrate the boundary of voltage magnitude; and 𝑆𝑛,𝑚
𝑚𝑎𝑥 is the 

maximum  apparent  power capacity of branch (𝑛, 𝑚). 

 

https://en.wikipedia.org/wiki/Electrical_conductance
https://en.wikipedia.org/wiki/Susceptance
https://en.wikipedia.org/wiki/Electrical_conductance
https://en.wikipedia.org/wiki/Susceptance


 

 

 

 

 

 

 

 

Fig. 2: SOCP relaxation of AC-OPF (upper), and transformation of SOCP-OPF and AC-OPF via linear mapping 

(Lower) 

 



 

 

 

 

2.2. SOCP Relaxation of AC OPF 

There are some non-linear terms in AC OPF equations in the previous section, such as  𝑉𝑛
2 , 

𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚 , and 𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚. To linearize these non-linear terms, three new variables are 

introduced as follows; 

𝙺𝑛     = 𝑉𝑛
2                         , ∀𝑛 (2a) 

𝚃𝑛,𝑚 = 𝑉𝑛𝑉𝑚 cos 𝛿𝑛,𝑚     , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ (2b) 

𝙻𝑛,𝑚 = 𝑉𝑛𝑉𝑚 sin 𝛿𝑛,𝑚      , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ (2c) 

𝚃𝑛,𝑚
2 + 𝙻𝑛,𝑚

2 = 𝙺𝑛𝙺𝑚     , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ (2d) 

 

where 𝙺𝑛, 𝚃𝑛,𝑚 and 𝙻𝑛,𝑚 are the newly introduced variables. The correlation between these three 

new variables is presented in (2d). 

After defining the aforementioned variables, the technical constraints of the system are convexified 

and reformulated in the following manner: 

𝑀𝑖𝑛∀𝑡[ẞ𝐶𝑜𝑠𝑡] 

ẞ𝐶𝑜𝑠𝑡 = ∑ (𝑎𝑛𝑃𝐺,𝑛
2 + 𝑏𝑛𝑃𝐺,𝑛 + 𝑐𝑛)

𝑛∈Ω𝑏𝑢𝑠

 

(3a) 

𝑠. 𝑡. ∀𝑛, 𝑚 ∈ Ω𝑏𝑢𝑠  , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ  

𝑃𝐺,𝑛 − 𝑃𝐷,𝑛 = 𝑔𝑠ℎ,𝑛𝙺𝑛 + ∑ 𝑃𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(3b) 

𝑄𝐺,𝑛 − 𝑄𝐷,𝑛 = −𝑏𝑠ℎ,𝑛𝙺𝑛 + ∑ 𝑄𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(3c) 

𝑃𝑛,𝑚 = 𝐺𝑛,𝑚𝙺𝑛 − 𝐺𝑛,𝑚𝚃𝑛,𝑚 − 𝐵𝑛,𝑚𝙻𝑛,𝑚 (3d) 

𝑄𝑛,𝑚 = − (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
) 𝙺𝑛 + 𝐵𝑛,𝑚𝚃𝑛,𝑚 − 𝐺𝑛,𝑚𝙻𝑛,𝑚 

(3e) 



 

 

𝑃𝑚,𝑛 = 𝐺𝑛,𝑚𝙺𝑚 − 𝐺𝑛,𝑚𝚃𝑛,𝑚 + 𝐵𝑛,𝑚𝙻𝑛,𝑚 (3f) 

𝑄𝑚,𝑛 = − (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
) 𝙺𝑚 + 𝐵𝑛,𝑚𝚃𝑛,𝑚 + 𝐺𝑛,𝑚𝙻𝑛,𝑚 

(3g) 

𝑃𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝑃𝐺,𝑛 ≤ 𝑃𝐺,𝑛

𝑚𝑎𝑥  (3h) 

𝑄𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝑄𝐺,𝑛 ≤ 𝑄𝐺,𝑛

𝑚𝑎𝑥 (3i) 

(𝑉𝑚𝑖𝑛)
2

≤ 𝙺𝑛 ≤ (𝑉𝑚𝑎𝑥)2 (3j) 

𝑃𝑛,𝑚
2 + 𝑄𝑛,𝑚

2 ≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (3k) 

𝑃𝑚,𝑛
2 + 𝑄𝑚,𝑛

2 ≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (3l) 

𝚃𝑛,𝑚
2 + 𝙻𝑛,𝑚

2 ≤ 𝙺𝑛𝙺𝑚 (3m) 

 

The equation (2d) related to the correlation between new variables is relaxed to (3m) for 

convexification. This convexification was presented in [22] for the first time. 

This model now brings an opportunity to take advantage of commercial solvers. However, it is still 

not able to guarantee a solution that is close to the global optimum. Next section describes this 

problem, and then some alternative techniques are taken to tackle this inherited problem of relaxed 

AC OPF. 

2.3. Implementing Linear Transformation on OPF Equations 

Fig. 2 illustrates the optimality gap and the intent of this analysis, where optimality gap here means 

the difference between the best-known solution (as determined by AC OPF) and the best-found 

solution (the result of SOCP-AC OPF). This is an indicator for measuring the precision of relaxed 

methods [23]. Fig. 2 (upper) shows that the feasible domain of non-linear AC OPF is convexified to 

the feasible domain of the SOCP-OPF. As shown in Fig. 2 (lower), the hat ( ̂ ) sign is used to 

represent the mapped P-Q coordination and the mapped OPF problem under the linear mapping, and 

Fig.2 (upper) shows the original P-Q coordination and the original OPF problem. However, there is 

an optimality gap due to convexification. In other words, the optimal solution obtained by SOCP-



 

 

OPF is slightly different from the solution obtained by the AC OPF. To solve this problem, this paper 

will apply the linear semi-Lorentz transformation to the SOCP-OPF equations so that they are 

converted into new forms with smaller optimality gaps. The reason for applying linear transformation 

is to keep the feasible domain convex after transformation. Fig. 2 (lower) illustrates this idea, where 

the optimality gap turns smaller when the SOCP-OPF is transformed.  

This linear transformation is defined by the following equations: 

 

[
𝑃̂
𝑄̂

] = 𝛾 [
1 −𝑀

−𝑀 1
] [

𝑃
𝑄

] 

(4a) 

𝛾 =
1

√1 − 𝑀2
 

(4b) 
 

where, −1 < 𝑀 < 1 is semi-Lorentz factor.   

In the following, two different models are considered to apply the above linear transformation. In the 

first model, both variables and network parameters are mapped. Then according to the transformed 

version of the relaxed SOC constraint, it can be seen how the proposed linear transformation can 

reduce the relaxation error and consequently reduce the optimality gap (more details of the relaxation 

error and optimality gap are provided in Section 3.1). The question is: what is the best value of semi-

Lorentz factor (M) to reach the minimum optimality gap for each system? The easiest way is to find 

it empirically and solve the transformed SOC-OPF for different values of M, which is very time-

consuming. The other way is to estimate it based on the network information (known parameters 

such as power consumption and branch impedance). To this end, the second model is provided in 

which only the network parameters are changed based on the proposed linear transformation. The 

mapped parameters in this model are used to estimate the best value for M for each system separately. 

2.3.1. Model-A: transforming both variables and network parameters 

The target of transformation in this model is both variables and network parameters. The branch 

parameters (shunt and mutual impedances), the bus parameters (shunt impedance),  and the variables 



 

 

consisting of (𝚃𝑛,𝑚 , ∀(𝑛, 𝑚)∈Ω𝑏𝑟𝑐ℎ) & (𝙻𝑛,𝑚 , ∀(𝑛, 𝑚)∈Ω𝑏𝑟𝑐ℎ) are mapped. Then, the OPF 

equations are reformulated as follows when the variables are transformed. 

𝑀𝑖𝑛∀𝑡[ẞ𝐶𝑜𝑠𝑡] 

ẞ𝐶𝑜𝑠𝑡 = ∑ 𝑎𝑛 (𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛))
2

+ 𝑏𝑛 (𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛)) + 𝑐𝑛

𝑛∈Ω𝑏𝑢𝑠

 

(5a) 

𝑠. 𝑡. ∀𝑛, 𝑚 ∈ Ω𝑏𝑢𝑠  , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ  

𝑃̂𝐺,𝑛 − 𝑃̂𝐷,𝑛 = 𝛾(𝑔𝑠ℎ,𝑛 + 𝑀𝑏𝑠ℎ,𝑛)𝐾𝑛 + ∑ 𝛾(𝑃𝑛,𝑚 − 𝑀𝑄𝑛,𝑚)

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

= 𝑔̆𝑠ℎ,𝑛𝐾𝑛 + ∑ 𝑃̂𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(5b) 

𝑄̂𝐺,𝑛 − 𝑄̂𝐷,𝑛 = −𝛾(𝑏𝑠ℎ,𝑛 + 𝑀𝑔𝑠ℎ,𝑛)𝐾𝑛 + ∑ 𝛾(𝑄𝑛,𝑚 − 𝑀𝑃𝑛,𝑚)

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

= −𝑏̆𝑠ℎ,𝑛𝐾𝑛 + ∑ 𝑄̂𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(5c) 

𝑃̂𝑛,𝑚 = 𝛾 ((𝐺𝑛,𝑚 + 𝑀 (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
)) 𝙺𝑛 − 𝐺𝑛,𝑚(𝚃𝑛,𝑚 − 𝑀𝙻𝑛,𝑚)

− 𝐵𝑛,𝑚(𝙻𝑛,𝑚 + 𝑀𝚃𝑛,𝑚))

= (𝐺̆𝑛,𝑚 +
𝑔̆𝑐,𝑛𝑚

2
) 𝙺𝑛 − 𝐺𝑛,𝑚𝑇̂𝑛,𝑚 − 𝐵𝑛,𝑚𝐿̂𝑛,𝑚 

(5d) 

𝑄̂𝑛,𝑚 = 𝛾 (− (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
+ 𝑀𝐺𝑛,𝑚) 𝙺𝑛 + 𝐵𝑛,𝑚(𝚃𝑛,𝑚 + 𝑀𝙻𝑛,𝑚)

− 𝐺𝑛,𝑚(𝙻𝑛,𝑚 − 𝑀𝚃𝑛,𝑚))

= − (𝐵̆𝑛,𝑚 +
𝑏̆𝑐,𝑛𝑚

2
) 𝙺𝑛 + 𝐵𝑛,𝑚𝑇̆𝑛,𝑚 − 𝐺𝑛,𝑚𝐿̆𝑛,𝑚 

(5e) 



 

 

𝑃̂𝑚,𝑛 = 𝛾 ((𝐺𝑛,𝑚 + 𝑀 (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
)) 𝙺𝑚 − 𝐺𝑛,𝑚(𝚃𝑛,𝑚 + 𝑀𝙻𝑛,𝑚)

+ 𝐵𝑛,𝑚(𝙻𝑛,𝑚 − 𝑀𝚃𝑛,𝑚))

= (𝐺̆𝑛,𝑚 +
𝑔̆𝑐,𝑛𝑚

2
) 𝙺𝑚 − 𝐺𝑛,𝑚𝑇̆𝑛,𝑚 + 𝐵𝑛,𝑚𝐿̆𝑛,𝑚 

(5f) 

𝑄̂𝑚,𝑛 = 𝛾 (− (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
+ 𝑀𝐺𝑛,𝑚) 𝙺𝑚 + 𝐵𝑛,𝑚(𝚃𝑛,𝑚 − 𝑀𝙻𝑛,𝑚)

+ 𝐺𝑛,𝑚(𝙻𝑛,𝑚 + 𝑀𝚃𝑛,𝑚))

= − (𝐵̆𝑛,𝑚 +
𝑏̆𝑐,𝑛𝑚

2
) 𝙺𝑚 + 𝐵𝑛,𝑚𝑇̂𝑛,𝑚 + 𝐺𝑛,𝑚𝐿̂𝑛,𝑚 

(5g) 

𝑃𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛) ≤ 𝑃𝐺,𝑛

𝑚𝑎𝑥 (5h) 

𝑄𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝛾(𝑄̂𝐺,𝑛 + 𝑀𝑃̂𝐺,𝑛) ≤ 𝑄𝐺,𝑛

𝑚𝑎𝑥 (5i) 

(𝑉𝑚𝑖𝑛)
2

≤ 𝙺𝑛 ≤ (𝑉𝑚𝑎𝑥)2 (5j) 

𝛾2(𝑃̂𝑛,𝑚+𝑀𝑄̂𝑛,𝑚)
2
+𝛾2(𝑄̂𝑛,𝑚+𝑀𝑃̂𝑛,𝑚)

2
≤ (𝑆𝑛,𝑚

𝑚𝑎𝑥)
2
 (5k) 

𝛾2(𝑃̂𝑚,𝑛+𝑀𝑄̂𝑚,𝑛)
2
+𝛾2(𝑄̂𝑚,𝑛+𝑀𝑃̂𝑚,𝑛)

2
≤ (𝑆𝑛,𝑚

𝑚𝑎𝑥)
2
 (5l) 

 

In (5a)-(5l), the transformed notations have been marked by adding (.̂ ) and (.̆ ), and they satisfy the 

following relations: 

[
𝑔̆𝑠ℎ,𝑛

𝑏̆𝑠ℎ,𝑛
] = 𝛾 [

1 𝑀
𝑀 1

] [
𝑔𝑠ℎ,𝑛

𝑏𝑠ℎ,𝑛
] 

(6a) 

[
𝑔̆𝑐,𝑛𝑚

𝑏̆𝑐,𝑛𝑚
] = 𝛾 [

1 𝑀
𝑀 1

] [
0

𝑏𝑐,𝑛𝑚
] 

(6b) 

[
𝐺̆𝑛,𝑚

𝐵̆𝑛,𝑚

] = 𝛾 [
1 𝑀
𝑀 1

] [
𝐺𝑛,𝑚

𝐵𝑛,𝑚
] 

(6c) 



 

 

[
𝑇̂𝑛,𝑚

𝐿̂𝑛,𝑚

] = 𝛾 [
1 −𝑀
𝑀 1

] [
𝚃𝑛,𝑚

𝙻𝑛,𝑚
] 

(6d) 

[
𝑇̆𝑛,𝑚

𝐿̆𝑛,𝑚

] = 𝛾 [
1 𝑀

−𝑀 1
] [

𝚃𝑛,𝑚

𝙻𝑛,𝑚
] 

(6e) 

 

According to the formulation (5)-(6), the relaxed SOCP constraints 𝚃𝑛,𝑚
2 + 𝙻𝑛,𝑚

2 ≤ 𝙺𝑛𝙺𝑚 can be 

reformulated based on 𝑇̂𝑛,𝑚 and 𝐿̂𝑛,𝑚 (and 𝑇̆𝑛,𝑚 and 𝐿̆𝑛,𝑚) as follows: 

(𝑇̂𝑛,𝑚)
2

+ (𝐿̂𝑛,𝑚)
2

≤ (
1 + 𝑀2

1 − 𝑀2) 𝙺𝑛𝙺𝑚 
(7a) 

and 

(𝑇̆𝑛,𝑚)
2

+ (𝐿̆𝑛,𝑚)
2

≤ (
1 + 𝑀2

1 − 𝑀2) 𝙺𝑛𝙺𝑚 
(7b) 

It is obvious that (
1+𝑀2

1−𝑀2) is greater than or equal to one. Therefore, the transformed relaxed SOCP 

constraint provides more space for 𝑇̂𝑛,𝑚 and 𝐿̂𝑛,𝑚 (or 𝑇̆𝑛,𝑚 and 𝐿̆𝑛,𝑚) to assign larger values. 

Consequently, the relaxation error (it will be discussed later) reaches its minimum value for a specific 

value for M. 

2.3.2. Model-B: Changing only network parameters 

This model attempts to apply the proposed linear transformation on the network data and change the 

active and reactive demands as well as conductance and susceptance of the branches. The privilege 

of model-B is that it can be used for estimating the best value for the semi-Lorentz factor for each 

case according to the network data, and there is no need to find the best semi-Lorentz factor 

empirically. Therefore, the transformed SOCP- AC OPF can be rewritten as follows. 

𝑀𝑖𝑛∀𝑡[ẞ𝐶𝑜𝑠𝑡] 

ẞ𝐶𝑜𝑠𝑡 = ∑ (𝑎𝑛 (𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛))
2

+ 𝑏𝑛 (𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛)) + 𝑐𝑛)

𝑛∈Ω𝑏𝑢𝑠

 

(8a) 

𝑠. 𝑡. ∀𝑛, 𝑚 ∈ Ω𝑏𝑢𝑠  , ∀(𝑛, 𝑚) ∈ Ω𝑏𝑟𝑐ℎ  



 

 

𝑃̂𝐺,𝑛 − 𝑃̂𝐷,𝑛 = 𝑔̆𝑠ℎ,𝑛𝙺𝑛 + ∑ 𝑃̂𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(8b) 

𝑄̂𝐺,𝑛 − 𝑄̂𝐷,𝑛 = −𝑏̆𝑠ℎ,𝑛𝙺𝑛 + ∑ 𝑄̂𝑛,𝑚

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(8c) 

𝑃̂𝑛,𝑚 = 𝛾 ((𝐺𝑛,𝑚 + 𝑀 (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
)) 𝐾𝑛 − (𝐺𝑛,𝑚 + 𝑀𝐵𝑛,𝑚)𝑇𝑛,𝑚

− (𝐵𝑛,𝑚 − 𝑀𝐺𝑛,𝑚)𝐿𝑛,𝑚)

= (𝐺̆𝑛,𝑚 +
𝑔̆𝑐,𝑛𝑚

2
) 𝙺𝑛 − 𝐺̆𝑛,𝑚𝚃𝑛,𝑚 − 𝐵̂𝑛,𝑚𝙻𝑛,𝑚 

(8d) 

𝑄̂𝑛,𝑚 = 𝛾 (− (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
+ 𝑀𝐺𝑛,𝑚) 𝐾𝑛 + (𝐵𝑛,𝑚 + 𝑀𝐺𝑛,𝑚)𝑇𝑛,𝑚

− (𝐺𝑛,𝑚 − 𝑀𝐵𝑛,𝑚)𝐿𝑛,𝑚)

= − (𝐵̆𝑛,𝑚 +
𝑏̆𝑐,𝑛𝑚

2
) 𝙺𝑛 + 𝐵̆𝑛,𝑚𝚃𝑛,𝑚 − 𝐺𝑛,𝑚𝙻𝑛,𝑚 

(8e) 

𝑃̂𝑚,𝑛 = 𝛾 ((𝐺𝑛,𝑚 + 𝑀 (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
)) 𝙺𝑚 − (𝐺𝑛,𝑚 + 𝑀𝐵𝑛,𝑚)𝚃𝑛,𝑚

+ (𝐵𝑛,𝑚 − 𝑀𝐺𝑛,𝑚)𝙻𝑛,𝑚)

= (𝐺̆𝑛,𝑚 +
𝑔̆𝑐,𝑛𝑚

2
) 𝙺𝑚 − 𝐺̆𝑛,𝑚𝚃𝑛,𝑚 + 𝐵̂𝑛,𝑚𝙻𝑛,𝑚 

(8f) 

𝑄̂𝑚,𝑛 = 𝛾 (− (𝐵𝑛,𝑚 +
𝑏𝑐,𝑛𝑚

2
+ 𝑀𝐺𝑛,𝑚) 𝙺𝑚 + (𝐵𝑛,𝑚 + 𝑀𝐺𝑛,𝑚)𝚃𝑛,𝑚

+ (𝐺𝑛,𝑚 − 𝑀𝐵𝑛,𝑚)𝙻𝑛,𝑚)

= − (𝐵̆𝑛,𝑚 +
𝑏̆𝑐,𝑛𝑚

2
) 𝙺𝑚+𝐵̆𝑛,𝑚𝚃𝑛,𝑚 + 𝐺𝑛,𝑚𝙻𝑛,𝑚 

(8g) 

𝑃𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝛾(𝑃̂𝐺,𝑛 + 𝑀𝑄̂𝐺,𝑛) ≤ 𝑃𝐺,𝑛

𝑚𝑎𝑥    (8h) 

𝑄𝐺,𝑛
𝑚𝑖𝑛 ≤ 𝛾(𝑄̂𝐺,𝑛 + 𝑀𝑃̂𝐺,𝑛) ≤ 𝑄𝐺,𝑛

𝑚𝑎𝑥 (8i) 



 

 

(𝑉𝑚𝑖𝑛)
2

≤ 𝙺𝑛 ≤ (𝑉𝑚𝑎𝑥)2 (8j) 

𝛾2(𝑃̂𝑛,𝑚+𝑀𝑄̂𝑛,𝑚)
2

+𝛾2(𝑄̂𝑛,𝑚+𝑀𝑃̂𝑛,𝑚)
2

≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (8k) 

𝛾2(𝑃̂𝑚,𝑛+𝑀𝑄̂𝑚,𝑛)
2

+𝛾2(𝑄̂𝑚,𝑛+𝑀𝑃̂𝑚,𝑛)
2

≤ (𝑆𝑛,𝑚
𝑚𝑎𝑥)

2
 (8l) 

𝚃𝑛,𝑚
2 + 𝙻𝑛,𝑚

2 ≤ 𝙺𝑛𝙺𝑚 (8m) 

Similarly, in addition to (6a-6c), the mapped network parameters are presented as follows: 

[
𝐺𝑛,𝑚

𝐵̂𝑛,𝑚

] = 𝛾 [
1 −𝑀

−𝑀 1
] [

𝐺𝑛,𝑚

𝐵𝑛,𝑚
] 

(9) 

As can be seen, the problem variables (𝙺𝑛 , ∀𝑛, 𝚃𝑛,𝑚 , ∀(𝑛, 𝑚)∈Ω𝑏𝑟𝑐ℎ, and 𝙻𝑛,𝑚 , ∀(𝑛, 𝑚)∈Ω𝑏𝑟𝑐ℎ) 

remain unchanged, and semi-Lorentz factor (M) plays the main role in changing the network 

parameters. As already mentioned, the changed parameters are used to estimate the best semi-Lorentz 

factor for each case separately. This matter will be discussed in more detail in Section 3.3. 

3. Experimental results 

3.1. The indications for comparison 

The error of SOCP relaxation and optimality gap is presented as indications for having a fair 

comparison with other published works as well as distinguishing what relations are between the 

optimality gap of transformed SOCP (TSOCP) and SOCP. In more detail, Eq. (10a) is used for 

finding the error of SOCP relaxation of AC OPF, while the optimality gap between AC OPF and 

SOCP-AC OPF is calculated by (10b). 

𝐸𝑟𝑟𝑜𝑟𝑆𝑂𝐶 = ∑ |𝙺𝑛𝙺𝑚 − (𝚃𝑛,𝑚
2 + 𝙻𝑛,𝑚

2 )|

∀(𝑛,𝑚)∈Ω𝑏𝑟𝑐ℎ

 

(10a) 

𝑂𝐺 = 100 × (
𝑂𝑆𝐴𝐶 − 𝑂𝑆𝑆𝑂𝐶𝑃

𝑂𝑆𝐴𝐶

) 
(10b) 



 

 

where, 𝑶𝑮 is the abbreviation of optimality gap; 𝑶𝑺𝑨𝑪 and 𝑶𝑺𝑺𝑶𝑪𝑷 are the optimal solution of non-

convex AC OPF and SOCP-AC OPF, respectively. 

3.2. Simulation results 

The effectiveness of the proposed approach is assessed by implementing it in various case studies in 

this section. This concept has been simulated in CPLEX software on a laptop with a Core (TM) i7 

CPU (2.80 GHz) and 8GB of RAM. Table 1 includes the findings of the optimality gap for all case 

studies, which are compared to several other methods. These methods are quadratic constraint (QC) 

and standard SOCP method without transformation. In addition, For the purpose of validating the 

suggested approach, it is evaluated under three different conditions comprising “typical operating 

conditions” (TYP), “congested operating conditions” (API), and “small angle difference conditions” 

(SAD). 

When systems are operated under typical conditions, the proposed approach (TSOCP) is ranked as 

the best one. In more detail, TSOCP witnessed a sharp decline in the optimality gap in case3_lmbd, 

at 0.1%. The optimality gaps derived from QC and SOCP, on the other hand, are 1.22 and 1.32, 

respectively. In case5_pjm, the optimality gap for QC, SOCP, and TSOCP is 14.55, 14.55, and 0.086, 

respectively, suggesting that TSOCP is a better method for decreasing the optimality gap. For 

case118_ieee, the optimality gap is 0.79, 0.91 and 0 for QC, SOCP, and TSOCP, respectively, 

meaning that TSOCP is able to find the global optimum precisely. In comparison to other approaches, 

the proposed solution has the smallest optimality difference for large-scale systems in the normal 

state, at, 0.97, 1.04, and 0.02 percent, respectively, for QC, SOCP, and TSOCP in case2383wp_k. 

This comparison reveals that the suggested approach has a good effect on narrowing the optimality 

gap for small, medium, and large-scale applications, while other measures are exquisitely sensitive 

to the system size.  

Despite the normal condition provided above, all techniques are used to solve the problem when the 



 

 

systems have a small angle difference. Taking case118_ieee__sad as an example, the proportion of 

optimality gap for QC, SOCP and TSOCP accounts for 6.84, 8.22 and 0.19 respectively. In this 

situation, it can be concluded that the suggested method is a very efficient method for solving 

problems far more efficiently, resulting in outcomes with the smallest optimality gap.  

Under congested conditions, the proposed approach is really efficient in terms of reducing the 

optimality gap. As an example, in case300_ieee__api, QC and SOCP have more optimality gap, 

accounting for 0.84 and 0.89 percent, respectively, while TSOCP reaches the least optimality gap at 

0.043 percent, even comparable to the normal condition. This distinction explicitly indicates that the 

congested condition does not have a specific impact on the performance of the proposed approach 

which performs properly. 

The proposed methods are also compared with several recently published works shown in Table 1. 

These are tightened rotated QC (TRQC) (𝜓 = 80°) [16], TRQC (𝜓∗) [16], and improved QC (IQC) 

[24]. It is clear that the proposed methods are much more precise than other mentioned investigations 

due to the fact that they have the least optimality gap. As an illustration, the optimality gap for the 

proposed approach in case118_ieee__api is 0.56%. However, it is 27.11%, 26.38% and 13.61% for 

TRQC (𝜓 = 80°), TRQC (𝜓∗), and IQC, respectively.  

Although transforming OPF equations improves the accuracy of results, it does not increase the 

complexity of the underlying problem. For more information, the time of running OPF under different 

situations for different case studies is tabulated in Table 2. From this, it can be seen that the TSOCP 

takes the time which is similar to SOCP. It takes less time compared to the QC method. It can be seen 

the TSOCP has more accuracy with less computation time. 

 

 

 



 

 

Table 1: Optimality gap obtained from different methods 

Test Case 

AC QC  SOCP TSOCP ETSOCP 
TRQC(𝜓 =

80°) [16] 

TRQC(𝜓∗) 

[16] 

IQC [24] 

Objective 
function ($/h) 

Gap 
(%) 

Gap 
(%) 

Gap 
(%) 

M 
Gap 
(%) 

M 
Gap  

(%) 

Gap  

(%) 

Gap  

(%) 

Case 1 case3_lmbd 5812.64 1.22 1.32 0.1 -0.03 0.1 -0.03 0.84 0.63 0.17 

Case 2 case5_pjm 17551.89 14.55 14.55 0.086 -0.36 3.34 -0.41 NA NA 11.57 

Case 3 case39_epri 138415.56 0.55 0.56 0.15 -0.01 0.41 -0.004 NA NA NA 

Case 4 case89_pegase 107285.67 0.75 0.75 0.17 -0.01 0.56 -0.003 NA NA NA 

Case 5 case118_ieee 97213.61 0.79 0.91 0 -0.14 0.07 -0.13 0.64 0.62 0.35 

Case 6 case2383wp_k 1868170.49 0.97 1.04 0.02 -0.01 0.12 -0.008 NA NA NA 

Case 7 case3_lmbd__sad 5959.31 1.42 3.75 0.04 -0.08 1.062 -0.06 NA NA 0.03 

Case 8 case14_ieee__sad 2776.79 21.5 21.54 0.31 -0.41 0.31 -0.41 15.82 15.39 NA 

Case 9 case30_ieee__sad 8208.52 5.93 9.7 5.05 -0.26 6.29 -0.29 4.56 2.12 NA 

Case 10 case89_pegase__sad 107285.67 0.71 0.73 0.1 -0.01 0.43 -0.005 NA NA NA 

Case 11 case118_ieee__sad 105155.06 6.84 8.22 0.19 -0.45 1.3 -0.48 5.45 5.07 0.67 

Case 12 case2383wp_k__sad 1911232.27 1.98 2.93 0.69 -0.43 1.33 -0.35 NA NA NA 

Case 13 case3_lmbd__api 11235.68 5.63 9.32 0.3 -0.2 2.08 -0.16 4.17 3.93 NA 

Case 14 case5_pjm__api 76377.42 4.09 4.09 0.109 -0.27 2.09 -0.18 NA NA NA 

Case 15 case14_ieee__api 5999.36 5.13 5.13 0.09 -0.12 1.67 -0.16 NA NA NA 

Case 16 case30_ieee__api 18043.92 5.46 5.46 0 -0.24 2.52 -0.32 NA NA NA 

Case 17 case39_epri__api 249672.34 1.72 1.74 0.054 -0.04 0.054 -0.04 1.32 1.32 NA 

Case 18 case118_ieee__api 242236.8 28.7 28.81 0.56 -0.84 2.78 -0.83 27.11 26.38 13.61 

Case 19 case300_ieee__api 684985.5 0.84 0.89 0.043 -0.02 0.572 -0.07 NA NA NA 

TRQC: tightened rotated QC, 𝜓∗: best value for rotation, IQC: improved QC. 

3.3. An Analysis for determining the best semi-Lorentz factor 

If we take a look at Table 1, it can be seen that the semi-Lorentz factor (M) has a significant effect 

on transforming SOCP-AC OPF, and its value is altered with changing the system size and structure. 

To obtain the best value of M for each case, the problem was solved by considering different values 

of M from -0.99 to 0.99, in steps of 0.01. However, this is really time-consuming, not practical and 

curbs operators from using it in real-time/emergency operations. As a result, three approximations 

for estimating the best value for M for systems in various circumstances are suggested. The proposed 

estimation equations are obtained via fitting strategies, in which M is a function of transformed R/X 



 

 

and Q/P ratios. It means the best value for the semi-Lorentz factor for each power system category 

can be estimated by solving the following equations. 

• For Typical Operating Conditions (TYP) cases: 

𝑀 = −4 (
𝐺

𝐵̂
) (

𝑄̂

𝑃̂
)

3

= 4 (
𝐺 − 𝑀𝐵

𝑀𝐺 − 𝐵
) (

𝑀𝑃 − 𝑄

𝑃 − 𝑀𝑄
)

3

 (11a) 

• For Congested Operating Conditions (API): 

𝑀 = −1.7 (
𝐺

𝐵̂
) (

𝑄̂

𝑃̂
)

2

= 1.7 (
𝐺 − 𝑀𝐵

𝑀𝐺 − 𝐵
) (

𝑀𝑃 − 𝑄

𝑃 − 𝑀𝑄
)

2

 (11b) 

• For Small Angle Difference Conditions (SAD): 

𝑀 = − (
𝐺

𝐵̂
) (

𝑄̂

𝑃̂
)

0.7

=  (
𝐺 − 𝑀𝐵

𝑀𝐺 − 𝐵
) (

𝑀𝑃 − 𝑄

𝑃 − 𝑀𝑄
)

0.7

 
(11c

) 

where, G (𝐺̂) and B (𝐵̂) are the average of network’s conductance (transformed conductance in the 

Model-B) and susceptance (transformed susceptance in the Model-B), respectively. Also, 𝑃 (𝑃̂) and 

𝑄 (𝑄̂) are the average of active power (transformed active power) and reactive power (transformed 

reactive power) consumption, respectively.  

Column 6 of Table 1 represents the results of the optimality gap for transformed SOCP-OPF via 

estimated Lorentz factor (ETSOCP) obtained by (11a)-(11c). The results reveal an improvement in 

the optimality gap of all cases, and the estimated semi-Lorentz factor is merely close to the best semi-

Lorentz factor from column 5. To have a better comparison, semi-Lorentz factors for different 

conditions are depicted in Fig. 3. As can be shown, the proposed estimation method is highly accurate 

under varying circumstances. In addition, the Pearson correlation coefficient [25] is also used to 

verify the similarity of estimated semi-Lorentz factors (11a)-(11c) and its best values obtained by 

empirical analysis (Table 1, column 5). The results show that the Pearson correlation coefficients are 

99.46%, 94.7%, and 97.51% for typical operating conditions, congested operating conditions, and 

https://en.wikipedia.org/wiki/Electrical_conductance
https://en.wikipedia.org/wiki/Electrical_conductance
https://en.wikipedia.org/wiki/Susceptance
https://en.wikipedia.org/wiki/Susceptance
https://en.wikipedia.org/wiki/Electrical_conductance
https://en.wikipedia.org/wiki/Electrical_conductance


 

 

small-angle difference conditions, respectively, which is a great similarity verifying the accuracy of 

(11a)-(11c). 

The relaxation error is also reduced for TSOCP and ETSOCP compared to the normal SOCP. Table 

2 represents the percentage of relaxation error reduction of TSOCP and ETSOCP compared to the 

normal SOCP. Apparently, there are significant improvements in both TSOCP and ETSOCP in terms 

of relaxation error, which leads to a reduction in the optimality gap (as we can see from Table 1). In 

other words, there is a direct correlation between the relaxation error and the optimality gap, and the 

optimality gap changes with respect to the changes in the relaxation error. 

In terms of computational time, it is obvious that there is no major difference between typical SOCP, 

TSOCP, and ETSOCP. In contrast, all these approaches are much faster compared to the QC-OPF.  

 

Fig. 3: Comparison of the estimation of semi-Lorentz factor and their best values for different case studies 

 

 

 

 

 

 



 

 

Table 2: A comparison between transformed and estimated methods 

Test Case 
*Relaxation Error Reduction (%) Time (sec.) 

TSOCP ETSOCP QC SOCP TSOCP ETSOCP 

Case 1 case3_lmbd 64.32 1.3 1.3 0.6 0.61 0.6 

Case 2 case5_pjm 88.64 1.31 1.31 0.61 0.59 0.59 

Case 3 case39_epri 99.77 2.01 2.01 1.24 1.25 1.24 

Case 4 case89_pegase 91.1 4.38 4.38 3.69 3.21 3.37 

Case 5 case118_ieee 100 5.21 5.21 3.47 3.45 3.44 

Case 6 case2383wp_k 67.7 51.78 51.78 34.68 34.41 34.59 

Case 7 case3_lmbd__sad 86.31 1.29 1.29 0.59 0.6 0.6 

Case 8 case14_ieee__sad 99.76 1.39 1.39 0.71 0.69 0.68 

Case 9 case30_ieee__sad 94.62 1.84 1.84 1.18 1.19 1.17 

Case 10 case89_pegase__sad 74.34 4.26 4.26 3.74 3.51 3.67 

Case 11 case118_ieee__sad 99.96 5.19 5.19 3.46 3.47 3.39 

Case 12 case2383wp_k__sad 86.24 52.09 52.09 34.9 33.98 33.99 

Case 13 case3_lmbd__api 66.66 1.27 1.27 0.59 0.6 0.6 

Case 14 case5_pjm__api 99.49 1.32 1.32 0.63 0.61 0.62 

Case 15 case14_ieee__api 93.53 1.54 1.54 0.68 0.68 0.68 

Case 16 case30_ieee__api 99.31 2.09 2.09 1.15 1.16 1.13 

Case 17 case39_epri__api 90.93 2.57 2.57 1.23 1.19 1.21 

Case 18 case118_ieee__api 99.85 5.28 5.28 3.41 3.29 3.27 

Case 19 case300_ieee__api 23.1 11.92 11.92 7.67 7.59 7.64 

∗ Relaxation Error Reduction for TSOCP = 100 ×
(𝐸𝑟𝑟𝑜𝑟𝑆𝑂𝐶 − 𝐸𝑟𝑟𝑜𝑟𝑇𝑆𝑂𝐶)

𝐸𝑟𝑟𝑜𝑟𝑆𝑂𝐶

 , and Relaxation Error Reduction for ETSOCP

= 100 ×
(𝐸𝑟𝑟𝑜𝑟𝑆𝑂𝐶 − 𝐸𝑟𝑟𝑜𝑟𝐸𝑇𝑆𝑂𝐶)

𝐸𝑟𝑟𝑜𝑟𝑆𝑂𝐶
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4. Conclusion 

Optimal operation of power systems subject to non-linear and non-convex constraints 

entails an efficient, accurate, and reliable tool. This investigation proposes two different 

SOCP relaxation mappings of the AC-OPF problem via a new linear transformation (called 

semi-Lorentz transformation) to enhance the accuracy of SOCP relaxation of AC-OPF. In 

more detail, two models of transformed SOCP-OPF are presented, including the 

transformation of network parameters and variables of the problem. The proposed 

transformation is linear and does not affect the convexity of the SOCP-OPF problem. An 

empirical analysis is done to obtain a good value for the semi-Lorentz factor (M). Then 

three equations (obtained by fitting strategies) are developed to suggest a good estimation 

for the best value for M. Compared to the typical SOCP and QC relaxation of AC-OPF, the 

results reveal a significant improvement in both optimality gap and relaxation error. Our 

ongoing work is to develop a dynamic approximation for linear-OPF to enhance the result 

accuracy as much as possible. For future work, we will also consider the proposed linear 

transformation for mapping the quadratic constrained OPF (QC-OPF). 
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