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Abstract

Nowadays, there are growing amounts of graph-structured data emerging from a broad variety

of information industrial applications, such as social networks, financial networks, biomedical

networks, traffic networks, and so on. The complex topological information among those

graph nodes, along with their content-rich node attributes, pose a great challenge for data

mining and analysis. Recently, Graph neural networks (GNNs) have been proposed as a

novel learning paradigm to deal with graph-structured data, and have achieved a great success

on a variety of graph-based tasks, especially on the node classification task. However, its

success highly relies on the sufficient number of high-quality labels, which is often difficult

to attain in the real world. On the one hand, acquiring node annotations is labour-intensive,

time-consuming, and usually costs a lot of expenses for recruiting or paying annotators. This

results in the label sparsity problem for GNNs learning. On the other hand, wrong labeling is

almost inevitable while annotating nodes due to inter-observer variability, human annotator

error, or errors in crowdsourced annotations[60]. Under this situation, GNNs are prone to

overfitting to these corrupted labels, thereby leading to poor generalization abilities.

Considering these label-associated challenges, this thesis is developed to handle the label

sparsity and label noise problem on graphs. Confronting the label sparsity problem on graphs,

I first resort to Active Learning (AL) to improve the model performance. Within the limited

labeling budget, AL can selectively construct the most informative label set for model training

by querying labels for the most valuable nodes in the graph. Then I focus on the research

of Pseudo-Labeling (PL) to relieve the label sparsity problem. It explores to fully exploit

the unlabeled nodes to complement the severe lack of label information, and apply label

augmentation techniques to enhance information propagation among graph nodes. Finally,
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to cope with the label noise problem, I turn to the research of label-noise representation

learning in GNNs, expecting to establish a robust GNN model that can effectively detect

suspicious labels and minimize their influence on model training. Therefore, in this thesis, I

would specialize in the three specific research topics and make efforts to effective solutions

for them correspondingly.

In terms of Active learning, it aims to boost the labeling efficiency by selecting the most

informative nodes for querying their labels, such that the selected nodes can maximize the

model performance. Although AL has been widely studied for alleviating label sparsity

issues with the conventional independent and identically distributed (IID) data, how to

make it effective over attributed graphs remains an open research question. In Chapter 4, a

SEmi-supervised Adversarial active Learning (SEAL) framework is proposed on attributed

graphs, which fully leverages the representation power of GNNs and designs a novel AL

query strategy in an adversarial way for node classification. Extensive experiments on real-

world networks validate the effectiveness of the SEAL framework with superior performance

improvements to state-of-the-art baselines on node classification tasks.

Pseudo-Labeling has been proposed to explicitly address the label scarcity problem. It

aims to augment the training set with pseudo-labeled nodes so as to re-train a supervised

model in a self-training cycle. However, the existing pseudo-labeling approaches often suffer

from two major drawbacks. First, they tend to conservatively expand the label set by selecting

only high-confidence unlabeled nodes without assessing their informativeness. Unfortunately,

those high-confidence nodes often convey overlapping information with given labels, leading

to minor improvements for model re-training. Second, these methods incorporate pseudo-

labels into the same loss function with genuine labels, ignoring their distinct contributions

to the classification task. In Chapter 5, a novel informative pseudo-labeling framework is

proposed to facilitate learning GNNs with extremely few labels taking both informativeness

and reliability of pseudo labels into consideration. Extensive experiments on six real-world

graph datasets demonstrate that the proposed approach remarkably outperforms state-of-the-

art pseudo-labeling and self-supervised baseline methods on graphs.
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Label-noise representation learning has also been primarily studied on the tasks with IID

data, such as the image classification task, but very little research effort has been on how

to improve the robustness of GNNs in the presence of label noise. Furthermore, the graph

topological information poses unique challenges when dealing with label noise - label sparsity

and label dependency. To tackle these challenges, a unified framework is proposed to robustly

train GNN models against label noise under the semi-supervised setting in Chapter 6. The

key idea is to perform label aggregation to estimate node-level class probability distributions,

and then use them to guide sample reweighting and label correction simultaneously, so as to

reduce model sensitivity towards noisy labels. Experimental results on real-world datasets

have been conducted to demonstrate the effectiveness of proposed algorithm with regard to

different levels and types of label noise.
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Chapter 1

Introduction

1.1 Background and Motivation

Recent years have witnessed an enormous growth of content-rich networked data generated

from various domains, in forms of social networks, citation networks, financial networks,

etc.. These networked data are often represented to be graphs, where nodes denote instances

(e.g., users or documents) that are often characterized by rich content features, and edges

denote relationships or interactions between nodes (e.g., friendship or citation relationships).

Ingesting useful information lying in the graph-structured data has shed light on various

applications across different disciplines, such as the traffic forecasting [44, 145], recom-

mendation systems [27, 138, 142], protein interface predictions [30, 140], and many other

applications [157]. To enable effective knowledge discovery from graph-structured data,

graph representation learning has received increasing attention, which aims to encode graphs

into compact, low-dimensional graph node, edge or subgraph embeddings that can preserve

both the graph topology information and node content information. In the past decades, there

has emerged a large amount of graph representation learning approaches, but they tend to rely

on the traditional machine learning approaches, such as summary graph statistics[12], kernel

methods[132], or hand-engineered features[76], which suffer from significant restrictions

because of their inflexibility and expensive costs. In contrast, inspired by the skipgram

method [90], the recently proposed DeepWalk-based graph embedding methods [39, 99, 126]
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has attained a significant improvement. They propose to learn the node embedding by

predicting its local neighborhood, which can well preserve the structure proximity into node

embeddings. However, these methods tend to purely rely on network structure information

but ignore node features, thus resulting in suboptimal performances.

More recently, motivated by the great success of deep learning in the domain of computer

vision (CV) and natural language processing (NLP), massive efforts have been dedicated to

investigate how to extend deep learning models to graph representation learning. Under this

circumstance, the classic Deep Neural Network (DNN) models, such as convolutional neural

network (CNN), recurrent neural network (RNN) etc., are extensively explored to adapt to

graph-structured data, which has gradually developed and evolved into a variety of Graph

Neural Networks (GNNs).

Graph Convolutional Neural Networks (GCNNs) are the most representative GNN

models, which can be roughly grouped into two categories according to the definition of

convolution operation: spectral GCNNs and spatial GCNNs. To adapt CNNs to learning

hierarchical representations, spectral GCNNs define the convolution operation via the Graph

Fourier Transform. They generally transform graph signals into the Fourier domain for

conducting convolution by means of specific spectral graph filters, and then revert them back

to the spatial domain to obtain node representations. Following this convolution paradigm,

abundant spectral graph filters have been designed to instantiate GCNNs. Bruna et al. [16] and

Henaff et al. [50] defined a learnable matrix as the filter, which, however, was non-spatially

localized and incurred huge computational costs. To address this problem, Defferrard et

al. [24] proposed a K-localized graph filter based on the Chebyshev polynomials. Kipf et

al. [63] put it forward a further step and proposed the Graph Concolution Network (GCN)

method using the first-order Cheybyshev polynomial and the renormalization trick. GCN

significantly reduced the computational complexity and made it more applicable for the

deployment of GCNNs on various graph tasks in the real world.

In terms of the spatial GCNNs, whose major challenge lies in defining the convolutional

operation on the size-varied neighborhood and maintaining the local invariance of CNNs,

it directly performs convolution on graphs by propagating node information along with
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the spatial connections. The principle of Spatial GCNNs is to learn node embeddings by

recursively aggregating and transforming continuous feature vectors from local neighbor-

hoods [20, 21, 33, 135]. For example, Atwood et al. [7] designed a diffusion-based graph

convolution network for feature aggregation which assumed that the information propagation

along with the graph structure via the transition matrix can reach a stationary distribution.

Monti et al. [91] utilized a parameterized kernel function to learn the relative weights of

neighboring nodes for feature aggregation. Gilmer et al. [36] extracted the universality

among the existing spatial GCNNs frameworks, and came up with a general framework with

the differentiable message-passing functions and vertex updating functions. Hamilton et

al. [46] proposed an inductive graph representation learning framework, called GraphSage,

which can generalize to unseen nodes by sampling and aggregating feature information

from their local neighborhoods. This approach paved the way for deploying GCNNs on

large-scale graphs in many real-world applications [142]. Velivckovic et al. [130] proposed

an inductive graph attention network (GAT) that learned a specific weight for each connected

node to perform feature aggregation. This relieved the potential information missing problem

caused by neighborhood sampling in GraphSage [46]. Following GAT, the gated attention

network (GAAN)[152] and GeniePath [79] were successively proposed to further improve

the attentive feature aggregation strategy of GAT based on the gating mechanism. Overall,

compared with the spectral GCNNs, the spatial GCNNs are generally more flexible in the

computing paradigm, and can easier accommodate inductive tasks.

Apart from GCNNs, many other deep learning models have also been studied to generalize

to graphs. In [45, 57, 106, 147], the idea of RNNs was generalized to capture recursive

and sequential patterns from complex graphs by converting graph nodes into sequences.

[3, 66, 114] incorporated Deep Reinforcement Learning (DRL) into GNNs to extract graph-

structure information and generate graph representations. In addition, Chami et al. [18]

proposed to transform the Euclidean features into hyperbolic embeddings, and carried out

graph convolution in the hyperbolic spaces. In [62, 96], the variational autoencoder was

proposed to learn node representaions by integrating the variational inferencing model with
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GNNs. All these explorations have made great contributions to improving GNNs’ learning

ability from different perspectives and resulted in impressive performances.

Empowered by these GNNs, graph representation learning has attained substantial ad-

vancements. The learned graph representations are usually taken as inputs for various

downstream graph analytical tasks, of which node classification is one of the most im-

portant tasks in graph analytics. It is aimed at predicting node labels with a partially

labeled network. Based on the foundation laid by the aforementioned GNNs, there de-

rive abundant GNN variants in dealing with the node classification task in the end-to-end

manner[21, 22, 29, 33, 64, 113, 129, 135, 136, 139, 148]. For example, Xu et al. [139]

proposed a jumping knowledge network by flexibly adjust the local neighborhood range for

feature aggregation. Qu et al. [101] proposed a graph Markov neural network based on GCN,

which applied the variational EM algorithm to model label dependency. Abu-El-Haija et al.

[1] proposed to learn more expressive node representations by linearly mixing neighborhood

information at various hop distances. Wang et al. [133] proposed to combine Label propaga-

tion (LP) and GCN to boost classification accuracy. Verma et al. [131] proposed a GraphMix

framework based on GCN, which employed parameter sharing and interpolation-based reg-

ularization to further improve model performance. All these methods have achieved great

success on node classification tasks.

However, these GNN-based methods highly depend on a sufficient number of high-

quality label set to guarantee the desirable classification performance, which is usually

difficult to attain in the real world. Generally, acquiring a large quantity of node labels is

extravagant owing to the fact that it usually requires expert efforts, and is very costly and

time-consuming. Furthermore, graphs with inter-connected nodes are arguably harder to

label than individual images. Thus, very often, the graph can be only sparsely labeled, with a

very small number of labels available for training. Under this situation, GNNs are unable

to propagate the limited label information to entire unlabeled nodes at large distances, thus

failing to learn expressive representations targeting specific tasks. Besides, wrong labeling

usually happens due to inter-observer variability, human annotator’s error, and errors in

crowdsourced annotations[60]. Therefore, in the presence of noisy labels, since Deep Neural
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Network (DNN) based methods are able to fit and memorize the whole dataset, it can lead to

dramatic performance degeneracy and poor generalization ability on test sets [154].

The sparse and noisy label problems become the main obstacle that significantly limits

the true success of GNNs [19, 122]. Considering this, I focus my research on alleviating the

GNNs’ high dependency on the amount and quality of label information. In order to address

the label sparsity problem on graphs, I resort to Active Learning and Pseudo-Labeling in the

context of GNNs. Active learning (AL) has been proposed to maximize the learning ability

of classification models while remaining sensitive to data acquisition costs. By selectively

querying the most informative node labels, AL targets at bring the most information gain to

the model. Pseudo-labeling has been also proposed to explicitly address the label scarcity

problem, which aims to augment the training set with pseudo-labeled nodes so as to re-train

a supervised model in a self-training cycle. Moreover, to combat the label noise problem, I

investigate the label-noise representation learning on graphs to improve the model robustness

against the corrupted label set. Next, I will give a detailed research description on the three

specific topics.

1.2 Research Descriptions

This thesis aims to relieve the pressure of demanding large amounts of high-quality labels

during model training, so that the performance of graph representation learning could be

driven to a higher level with imperfect label sets. I address this problem by developing

machine learning methods from the following three respective topics: active learning, pseudo-

labeling, and label-noise representation learning in the context of GNNs. The detailed

research descriptions and challenges of the three research problems would be described in

the following part.

1. Active learning (AL) on graphs: Given a fixed labeling budget, AL aims to selectively

pick up the most informative instances for labeling so that the model could reach its

best performance. An AL framework typically consists of two primary components: a

query engine which selects an instance from the unlabeled data pool to query its label
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and an oracle which provides a label to the queried instance. Therefore, the key is to

design appropriate query strategies based on the current classifier and existing labels,

according to which the most critical nodes are selected for annotation.

Existing AL algorithms on graph node classification attempt to reuse the classic

AL query strategies designed for IID data. However, they suffer from two major

limitations. First, different AL query strategies calculated in distinct scoring spaces

are often naively combined to determine which nodes to be labeled. Second, the AL

query engine and the learning of the classifier are treated as two separate processes,

resulting in unsatisfactory performance.

2. Pseudo-labeling on graphs: Given an undirected graph, together with a small subset of

labeled nodes, the pseudo-labeling method aims to design: i) a strategy for expanding

the label set from unlabeled nodes, ii) a method for generating reliable pseudo labels,

and iii) an exclusive loss function for pseudo labels, such that they can be combined to

maximize the classification performance of GNNs.

However, the existing pseudo-labeling approaches often suffer from two major draw-

backs. First, they tend to conservatively expand the label set by selecting only high-

confidence unlabeled nodes without assessing their informativeness. Unfortunately,

those high-confidence nodes often convey overlapping information with given labels,

leading to minor improvements for model re-training. Second, these methods incorpo-

rate pseudo-labels to the same loss function as genuine labels, ignoring their distinct

contributions to the classification task.

3. Label-noise representational learning on graphs: When class labels in the training

set are corrupted with wrong labels, GNNs are vulnerable to overfittng noisy labels,

thereby leading to degraded classification performance and poor generalization ability

on the test data. To address this problem, this work aims to train a robust GNN model

against label noise, such that the model is less sensitive to the corrupted labels. Since

the training of GNNs usually suffers from the label sparsity problem, this work further

considers the label noise problem under the semi-supervised setting for graph node
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classification, where only a small fraction of node labels are given accompanied with a

certain rate of incorrect labels.

Classification with label noise has primarily focused on image classification but cannot

be directly applied to graph data, which poses unique challenges when dealing with

label noise. (1) Label sparsity: graphs with inter-connected nodes are arguably harder

to label than individual images. Very often, graphs are sparsely labeled, with only a

small set of labeled nodes provided for training. Hence, we cannot simply drop “bad

nodes” with corrupted labels like previous methods using “small-loss trick” [47, 56].

(2) Label dependency: there exist strong dependency relationships between graph

topology, node features and sparse node labels. Therefore, graph topology and sparse

node labels should be fully exploited when training a robust GNN model against label

noise.

1.3 Thesis Contributions

To address the limitations that sparse and noisy labels bring to GNN training, I have made

comprehensive investigations on the acknowledged challenges, and proposed the solutions

targeting the tasks of active learning, pseudo-labeling, and label-noise representation learning

on graphs. The contributions of this thesis are summarized below:

Active learning on graphs: I propose a novel semi-supervised adversarial active learning

framework to select the most informative nodes to the label on attributed graphs. The

proposed framework explicitly asserts the usefulness of unlabeled nodes with regard to the

existing labeled data. Inspired by adversarial learning, an informativeness measure is defined

based on the intuition that the unlabeled nodes differing the most with the labeled ones carry

the most auxiliary information on what the classifier desires the most. The main contribution

of this approach is threefold:

• I propose a novel adversarial AL framework that seamlessly incorporates active learn-

ing into GNNs. Unlike previous methods that simply combine AL strategies residing at
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different scoring spaces, SEAL generates a unified informativeness score in a common

latent space to enable instance selection, rendering the most desirable performance

gains.

• To the best of our knowledge, this is the first work to propose a Semi-supervised

Adversarial Learning (SAL) structure with multiple outputs for AL on attributed graphs.

This offers an advantage that the graph embedding network and the discriminator can

collaborate with each other to mutually strengthen their performance.

• I validate the SEAL framework through extensive experiments and ablation studies on

four real-world networks, demonstrating its superior performance to state-of-the-art

baselines on node classification tasks.

Pseudo-labeling on graphs: I propose a novel informative pseudo-labeling framework

called InfoGNN for semi-supervised node classification with few labels. It can fully harness

the power of self-training by incorporating more pseudo labels that are likely to bring more

information gains. And at the same time, it can alleviate the possible negative impact caused

by noisy (i.e. incorrect) pseudo labels. The main contributions can be summarized as follows,

• This study analyzes the ineffectiveness of existing pseudo-labeling strategies and

proposes a novel informative pseudo-labeling method for semi-supervised node classi-

fication task with few labels;

• This approach has unique advantages to incorporate an mutual information (MI)-based

informativeness measure for pseudo-label candidate selection, and to alleviate the

negative impact of noisy pseudo labels via a generalized cross entropy loss.

• I validate the proposed approach on six real-world graph datasets of different types,

showing its superior performance to the state-of-the-art baselines.

Label-noise representation learning on graphs: I propose a novel approach for robustly

learning GNN models against noisy labels under semi-supervised settings. This approach



1.4 Thesis Overview 9

Fig. 1.1 Thesis overview

provides a unified robust training framework for GNNs (UnionNET) based on label aggre-

gation, which performs sample reweighting and label correction simultaneously to improve

robustness of the model. The main contributions of this work are threefold:

• This is the first work to study the problem of learning with noisy labels on node

classification under a semi-supervised setting.

• I propose a unified learning framework to robustly train a GNN model by performing

sample reweighting and label correction simultaneously.

• Experiments and ablation studies verify the robustness of the proposed approach

against label noise and its superior performance over strong baselines.

1.4 Thesis Overview

My thesis is organized as depicted in Figure 1.1. Besides Chapter 1 (Introduction), it consists

of four main parts, i.e. Literature Review, Preliminary, Technical Part, Conclusion and

Future Work, of which the Technical Part is composed of three chapters specializing in three

different research tasks. The detailed content of each chapter is summarized as follows:

• Chapter 2: This chapter presents the comprehensive literature review about the semi-

supervised node classification and three specific research topics, i.e. active learning,

pseudo-labeling and label-noise representation learning on graphs. It provides a
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summarization of existing related works on their main ideas, and offers inspirations

for developing my works.

• Chapter 3: This chapter gives detailed definitions of some important terminologies

and notations, and introduces the fundamental GNN architecture in the mathematical

way. Summarization of the benchmark data sets is also presented in this chapter.

• Chapter 4: In this chapter, details of the proposed semi-supervised adversarial active

learning framework are discussed to release the potential of active learning in the

context of GNNs.

• Chapter 5: This chapter presents the investigation on learning GNNs with few labels.

An informative pseudo-labeling framework is proposed to explicitly address the label

scarcity problem by augmenting the training set with informative pseudo labels.

• Chapter 6: In this chapter, I study how label noise influences the model training as

partially-observed label information propagates along with the graph structure. And a

unified robust training framework has been proposed to combat corrupted label sets.

• Chapter 7: Finally, I conclude this thesis and outline a few directions for my future

research.

1.5 Publications

Journal Publications:

1. Yayong Li, Jie Yin, Ling Chen. SEAL: Semi-supervised Adversarial Active Learning

on Attributed Graphs. IEEE Transactions on Neural Networks and Learning Systems,

32(7): 3136-3147, 2021. [73]

2. Yayong Li, Jie Yin, Ling Chen. Informative Pseudo-Labeling for Graph Neural

Networks with Few Labels. Data Mining and Knowledge Discovery, Accepted. [75]
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Conference Publications:

1. Yayong Li, Jie Yin, Ling Chen. Unified Robust Training for Graph Neural Networks

Against Label Noise. Pacific-Asia Conference on Knowledge Discovery and Data

Mining: pages 528-540. Springer, 2021. [74]

2. Wei Huang*, Yayong Li*1, Weitao Du, Richard Yi Da Xu, Jie Yin, Ling Chen. To-

wards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective.

International Conference on Learning Representations, 2022. [54]

1* Equal contribution





Chapter 2

Literature Review

According to the research objectives, this chapter presents a comprehensive literature review

of the existing related works. I would first introduce the related works on the semi-supervised

node classification, which provides a context for my specific research objectives. Then

I would successively present the related works on active learning, pseudo-labeling, and

label-noise representation learning. To have a more comprehensive view of the current

development of the research topics, my literature review spans the works from the domains

of computer vision, natural language processing and graphs, which deepens my insights and

allows me to obtain valuable inspirations for my own work. I would elaborate on them as

follows.

2.1 Semi-supervised Node Classification

Semi-supervised node classification has been extensively studied in the last decades, and the

existing methods can be roughly grouped into four different lines. The first line is Graph

Laplacian regularization based methods [9, 156, 160]. They assume that nearby nodes tend

to share the same label, and impose constrains to encourage the label consistency among the

connected nodes. For example, Zhou et al. [156] proposed to iteratively spread node label

information to the neighboring nodes until it converged to a stationary state. And Talukdar
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et al. [124] proposed an improved variant of label propagation method that incorporated

variance and uncertainty into the label predictions.

The second line is the collective classification methods, which typically perform an

iterative training paradigm by repeating two interactive processes, i.e. the relational feature

computing and the collective inference . Generally, they first learn the relational features by

training a predictive model with the given labels and node contents, and then perform the

collective inference using the learned relational features and node contents. The two training

processes alternate until model convergence [87, 88, 93, 108]. But this kind of method

tends to separately learn the dependencies between node contents and graph structure, which

ignores their interplay.

The third line is the graph embedding based methods. This kind of method often learns

to embed network structure information into latent continuous node representations, and

then employs them to perform model training on the predicting tasks with some specific ma-

chine learning methods. For instance, DeepWalk[99], drawing inspirations from Skip-gram

model[90], proposed to learn node embeddings by predicting the node local neighborhood

generated by random walks. Following DeepWalk, LINE[126] proposed to encode both the

first and the second-order proximity into node representations by means of the shared local

neighborhood between different nodes. And node2vec[39] devised a biased random walk

procedure via interpolating between the breath-first and depth-first sampling, which enabled

more diverse neighborhood exploration. However, these methods purely rely on network

structure information but ignore the node features.

The last line is GNN-based methods which have achieved the most remarkable success

in the field of node classification in the past few years. GNN-based methods[46, 63, 130]

often rely on the message exchanging among connected nodes to embed both node features

and structure information into vectors, and then transform them into the low-dimensional

discriminating space for node classification using deep learning techniques. Massive amounts

of excellent methods have been proposed from different perspectives, which have pushed the

node classification performance to advance constantly. For instance, Abu-El-Haija et al. [1]

proposed to learn more expressive node representations by linearly mixing neighborhood
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information at various hop distances. Zhang et al. [153] proposed a Bayesian graph neural

network to incorporate the graph uncertainty information via a parameterized random graph

model. Wang et al. [133] proposed to combine Label propagation (LP) and GCN to boost

classification accuracy. Verma et al. [131] proposed a GraphMix framework based on GCN,

which employed parameter sharing and interpolation-based regularization to further improve

model performance. Wu et al. [135] decoupled the process of convolution operation and

feature transformation to improve computational efficiency. Zeng et al. [148] proposed a

graph sampling based inductive learning framework that were more computationally efficient

and scalable. Chami et al. [18] extended GCNNs to hyperbolic geometry space so as to

reduce the distortion caused by transforming graphs into Euclidean space during convolution

operation. Furthermore, [21, 64, 69, 70, 103, 158] explored to deepen GNNs to capture the

long-range node dependencies serving for the node classification. [100, 123, 129, 143, 144,

163] applied self-supervised learning to enable the learned node representations to be more

expressive for label prediction.

Although GNN-based models have achieved great success on the semi-supervised node

classification task, they suffer strict restrictions from the amount and quality of label set, i.e.

the label sparsity and label noise problem. In this thesis, I will engage in active learning,

pseudo-labeling, and label-noise representation learning to mitigate the two problems and

further release the potential of GNN models on node classification tasks.

2.2 Active Learning

I have reviewed related works on active learning from two main branches of research studies,

namely classic active learning strategies and active learning on graphs.

2.2.1 Classic Active Learning Strategies

Active learning is a machine learning framework that aims to reduce the labeling cost when

learning a prediction model by selecting the most informative instances to label. In the past

decade, a variety of AL algorithms have been proposed to optimize the training performance
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Table 2.1 Comparison of different classic AL Strategies

Categories Core idea Advantages Disadvantages

Uncertainty sam-
pling [67, 68]

Query the instances whose la-
bels are predicted with the
least confidence based on the
current labeled set

Simple and fast
Prone to selecting noisy or
unrepresentative instances

Query-by-
Committee
(QBC) [86, 112]

Query the instances with
which multiple classifiers
most disagree

Expected
Model Change
(EMC) [111]

Query the instances which
would result in the most
change to the current model
parameters in the gradient of
objective function

Directly optimize the
model performance

Applicable only to
gradient-based training
methods, and incur huge
computational cost when
the feature or label space
are large

Expected Error Re-
duction (EER) [59,
105]

Query the instances which
most likely reduce the largest
generalization error on the un-
labeled pool

Minimize generalization
errors by considering the
entire input space,
eliminating the disturbance
of outliers

High computational
complexity

Expected Vari-
ance Reduction
(EVR) [35, 83]

Query the instances which
minimize model variance

Density-Weighted
Methods
(DWM) [32, 110]

Query the instances that are
representative of the under-
lying distribution of training
data

Able to avoid selecting
noisy instances

Not informative enough,
and often combined with
other strategies

given a fixed labelling budget. These algorithms differ mostly in the query strategy that

they use to specify the informativeness criterion when selecting the best instances to label.

Depending on what query strategies are used, classic AL strategies can be grouped into

six categories [2, 109]: uncertainty sampling [67, 68], query-by-committee (QBC) [86,

112], expected model change (EMC) [111], expected error reduction (EER) [59, 105],

expected variance reduction (EVR) [35, 83], and density-weighted methods (DWM) [32, 110].

The core ideas and detailed comparisons of these algorithms are summarized in Table 2.1.

In general, these classic AL strategies can be instrumented with different classification

algorithms. Among others, expected error/variance reduction strategies tend to render the

better empirical results because they iterate over the entire unlabeled pool to directly optimize

model performance. However, they suffer from high computational overhead.

These methods have been shown to achieve good performance on i.i.d. data. However,

they are not sufficiently effective for graph-structured data, where data dependency needs to

be incorporated into the AL process.
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2.2.2 Active Learning on Graphs

In recent years, active learning on graphs has attracted significant attention to alleviate the

label sparsity issues on graphs. Early research has focused on using graph-based metrics

(e.g., centrality, impact, etc.) to calculate the AL query scores when selecting the nodes

to label [116]. Other attempts have been made to directly optimize an objective function

over graphs, where graph structure is utilized to train a classifier, such as graph cut-based

method [41, 42], Gaussian Field and Harmonic Function (GFHF) [55], Learning with Local

and Global Consistency (LLGC) [40], and Label Propagation (LP) [80]. These methods aim

to minimize the expected generalization error or variance of the classifier built using graph

structure. However, they often suffer from high computational complexity and are difficult

to scale up. To improve efficiency, Zhao et al. [155] proposed to narrow the search space

by sampling structurally important nodes in advance, and Zhu et al. [161] uses uncertainty

and graph centrality to prune the candidate set. However, these methods have assessed the

informativeness of unlabeled nodes using only graph structure, while rich node features have

not been fully explored to best inform the design of AL query strategies.

Another line of research formulates AL query strategies by integrating node features

with graph topological structure [10, 11, 13, 28, 115]. Most methods design an iterative

classification algorithm (ICA) classifier by combining graph structure with node-specific

features, and then use various AL query strategies for instance selection. For example,

ALFNET [13] adopts clustering techniques to form an initial labeled set. At each iteration,

ALFNET aggregates neighboring labels with original node features to train three classifiers

and computes a local disagreement score for each node. The scores are then aggregated for

each cluster and the clusters with the highest scores are chosen, from which a set of nodes are

selected to label. These methods, however, have focused on improving the classifiers built in

the original feature space, thus leading to suboptimal prediction accuracy as compared with

counterparts built in latent feature spaces by deep learning models.

Only recently, researchers have proposed to exploit deep learning to empower AL on

graphs. In virtue of great representation power of GNN, AGE [17] and ANRMAB [34]

propose to incorporate a GCN into traditional AL strategies, which achieves a significant
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improvement compared with the previous methods. Both methods combine three traditional

query strategies, graph centrality, information density, and uncertainty sampling. AGE

uses a naive linear combination of the three strategies, while ANRMAB further adopts the

multi-armed bandit (MAB) based mechanism to adaptively adjust the weights for different

strategies.

However, the combined AL query engine and the learning of graph embedding still work

as two separate and independent processes, resulting in limited AL performance gains. To fill

the gap, my work is proposed to fully integrate the learning of graph embedding with a novel

AL query strategy via a semi-supervised discriminator. The learning of graph embedding

and discriminator function as two adversarial components, which collaborate with each

other to mutually strengthen their performance towards better AL performance. The detailed

explanations on this method are presented in Chapter 4.

2.3 Pseudo-Labeling

To fully understand the pseudo-labeling problem on graphs, I have reviewed the related works

on a few distinct but associated topics, including pseudo-labeling on graphs, graph few-shot

learning, and graph self-supervised learning. Besides, I have also made an investigation on

the related works of the mutual information maximization technique.

2.3.1 Graph Learning with Few Labels

GNNs have emerged as a new class of deep learning models on graphs [63, 130]. The

principle of GNNs is to learn node embeddings by recursively aggregating and transforming

continuous feature vectors from local neighborhoods [20, 21, 33, 135]. The generated node

embeddings can then be used as input to any differentiable prediction layer, for example, a

softmax layer for node classification. Recently, a series of semi-supervised GNNs such as

GCNs and their variants have been proposed for node classification. The success of these

models relies on a sufficient number of labeled nodes for training. How to train GNNs with a

very small set of labeled nodes has remained a challenging task.
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Pseudo-Labeling on Graphs. To tackle label scarcity, pseudo-labeling has been proposed

as one of the prevalent semi-supervised methods. It refers to a specific training regime, where

the model is bootstrapped with additional labeled data obtained by using a confidence-based

thresholding method [65, 104]. Recently, pseudo-labeling has shown promising results on

semi-supervised node classification. Li et al. [71] proposed a self-trained GCN that enlarges

the training set by assigning a pseudo label to top K confidence unlabeled nodes, and then

re-trains the model using both given labels and pseudo labels. A co-training method was

also proposed that utilizes two models to complement each other. The pseudo labels are

given by another random walk model rather than the GNN classifier itself. A similar method

was also proposed in [149]. Sun et al. [121] showed that a shallow GCN is ineffective in

propagating label information under few-label settings, and proposed a multi-stage self-

training framework that relies on a deep clustering model to assign pseudo labels. Zhou et

al. [159] proposed a dynamic pseudo-labeling approach called DSGCN that selects unlabeled

nodes with prediction probabilities higher than a pre-specified threshold for pseudo-labeling,

and assigns soft label confidence to them as label weight.

I argue that all of the existing pseudo-labeling methods on GNNs share two major

problems: information redundancy and noisy pseudo labels. my work is proposed to explicitly

overcome these limitations, with a focus on developing a robust pseudo-labeling framework

that allows to expand the pseudo label set with more informative nodes, and to mitigate the

negative impact of noisy pseudo labels simultaneously.

Graph Few-shot Learning. Originally designed for image classification, few-shot learning

primarily focuses on the tasks where a classifier is adapted to accommodate new classes

unseen during training, given only a few labeled examples for each class [119]. Several

recent studies [26, 53, 134] have attempted to generalize few-shot learning to graph domains.

For example, Ding et al. [26] proposed a graph prototypical network for node classification,

which learns a transferable metric space via meta-learning, such that the model can extract

meta-knowledge to achieve good generalization ability on target few-shot classification task.
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Huang et al. [53] proposed to transfer subgraph-specific information and learn transferable

knowledge via meta gradients.

Despite the fact that few-shot learning and this work both tackle the label scarcity

problem, their problem settings and learning objectives are fundamentally different: in

few-shot learning, the training and test sets typically reside in different class spaces. Hence,

few-shot learning aims to learn transferable knowledge to enable rapid generalization to new

tasks. On the contrary, this work follows the transductive GNN setting where the training

and test sets share the same class space. my objective is to improve model training in face of

very few labels.

2.3.2 Graph Self-supervised Learning

Our work is related to self-supervised learning on graphs [129], which also investigates how

to best leverage the unlabeled data. However, there is a clear distinction in the objectives: the

primary aim of self-supervised learning is to learn node/graph representations by designing

pretext tasks without label-related supervision, such that the generated representations could

facilitate specific classification tasks [78]. For example, You et al. [143] demonstrated that

self-supervised learning can provide regularization for graph-related classification tasks.

This work proposed three pretext tasks (i.e., node clustering, graph partitioning, and graph

completion) based on graph properties. Other research works attempted to learn better

node/graph representations through creating contrastive views, such as local node vs. global

graph view in [129], or performing graph augmentation [162].

In contrast, my work resorts to explicitly augmenting label-specific supervision for node

classification. This is achieved by expanding the existing label set with reliable pseudo

labels to best boost model performance in a semi-supervised manner. I will elaborate more

explanations on this work in Chapter 5.
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2.3.3 Mutual Information Maximization

The Infomax principal was first proposed to encourage an encoder to learn effective represen-

tations that share maximized Mutual Information (MI) with the input [8, 51, 77]. Recently,

this MI maximization idea has been applied to improve graph representations. Velickovic et

al. [129] applied MI maximization to learn node embeddings by contrasting local subgraphs

and the high-level, global graph representations. Qiu et al. [100] proposed to learn intrinsic

and transferable structural representations by contrasting subgraphs from different graphs via

a discriminator. Hassani et al. [49] contrasted node representations from a local view with

graph representations from a global view to learn more informative node embeddings. In

the context of this work, the idea of contrastive learning is leveraged to maximize the MI

between each node and its neighboring context. The estimated MI enables to select more

representative unlabeled nodes in local neighborhoods for pseudo-labeling so as to further

advance model performance.

2.4 Label-noise Representation Learning

In terms of the label noise problem, since there are rare works specializing in label-noise

learning tasks in the graph domain, I would first make a detailed review on the related works

with independent and identically distributed (IID) data, such as the image classification and

text classification task. Then I would turn to the review of works relating to learning GNNs

with label noise.

2.4.1 Learning with Noisy Labels

In the past decade, learning with label noise have been extensively studied in the domain of

both computer vision and natural language processing, such as the image classification and

test classification tasks. Those methods can be categorized into three different lines. The

first line of research focuses on correcting the loss function. The loss correction methods

can be categorized in two types. The first type focuses on estimating the noise transition
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matrix between noisy labels and ground true labels. Patrini et al. [97] introduced the noise

transition matrix to the loss function, and proposed a two-level estimation approach when the

matrix is not known a priori. Other methods [127, 137] used a graphical model to capture

the relationship between noise labels and ground-truth labels. An EM-like algorithm was

proposed to infer the true labels. Both methods yet require the access to a set of clean

samples. The second type proposed to add an extra softmax layer to estimate the probability

of the ground-truth label flapping to noisy labels [37, 120]. However, the noise transition

matrix is difficult to be accurately estimated, in particular, when there exist a large number

of classes. Ardehaly et al. [5] utilized an intermediate model to fit noisy labels, and then

applied the learned model to adjust the label proportion for social media text classification.

Jindal et al. [58] introduced a specialized layer to incorporate statistics of the label noise into

a CNN architecture to prevent overfitting to noisy labels on text classification. Zhang et

al. [154] proposed to use the negative Box-Cox transformation as the loss function, which

improves the robustness of standard cross entropy loss but with worse converging capability.

The second line of studies focus on separating clean samples from noisy samples, and

using only most likely clean samples to update the network. MentorNet [56] pre-trains an

extra network on a clean set to select clean samples to guide the network training based on

their training losses. When the clean set is unavailable, MentorNet has to reply on a predifined

curriculum (e.g., self-paced curriculum), which would yield suboptimal results. Guo et al.[43]

proposed a curriculum learning network, which designs a distance density-based curriculum

to prioritize low-complexity samples. The curriculum, however, is designed using features

extracted from a pre-trained network trained on all noisy samples. Thus, the results become

unreliable when noise rates are high. Malik et al. [85] proposed to automatically validate

and correct the noisy labels according to the confidence of class predictions for the text

classification. Co-teaching [47] trains two networks to select small-loss samples within each

mini-batch to train each other. Yu et al. [146] improve Co-teaching by updating the network

only with small-loss samples that two networks disagree with. Both methods heavily rely on

the estimated noise rate to choose the threshold for selecting small-loss samples. Decoupling

[84] updates the two networks only using samples with which two networks disagree. In our



2.4 Label-noise Representation Learning 23

setting with very few labeled nodes, we should not simply drop "bad nodes" with corrupted

labels, which can still be informative to infer labels of nearby nodes.

The third line of research takes a reweighting approach based on model prediction

probabilities. Arazo et al. [4] utilized a two-component Beta Mixture Model to estimate

the probability of a sample being mislabelled, based on which the loss function is modified

by reweighting these samples in the gradient update. This method is further improved by

combining with mixup augmentation method [151]. Ren et al. [102] proposed a meta-

learning algorithm which allows the network to put more emphasis on the samples that have

the closest gradient directions with the clean data. Unlike these reweighting methods that

reply on the predicted probabilities by the trained model, the proposed reweighting scheme

assigns weights to each node by leveraging topology structure in its neighborhood, which is

less prone to label noise.

There are some other methods concerned with the problem of label correction. Han et

al. [48] chose class prototypes based on sample distance density in a feature space, which

afterwards, is used for label correction. However, it incurs extra computational overhead to the

training process. Tanaka et al. [125] proposed a self-training approach to correct the labels by

alternatively updating the network parameters and labeling towards the gradient descending

direction of the training loss. However, this method is completely dependent on predicted

labels, discarding the original given labels. This may result in degraded performance with a

high noise rate. Similarly, Yi et al. [141] modeled the true labels as a probability distribution

and update it together with network parameters. This method faces the same problem with

Tanaka et al. [125], and moreover, it needs to fine-tune its hyper-parameters for different

noise rates. This work, in contrast, proposes a unified solution for seamlessly integrating

robust training with label correction in an end-to-end framework, thereby yielding remarkable

gains even with high noise rates.

2.4.2 Graph Neural Networks with Noisy Labels

GNNs have emerged as a new type of deep learning models on graphs [63, 130]. The principle

of GNNs is to learn node representations by recursively aggregating and compressing the
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continuous feature vectors from local neighborhoods. The generated node representations

can then be used as input to any differentiable prediction layer, for example, a softmax

layer for node classification. Various types of GNN models, such as GCN [63], GAT [130],

GraphSAGE [46] and their variants, have been proposed in recent year. These models differ

mainly in the way how features are aggregated in local neighborhood. It has been shown

that these models have achieved competitive results on graph related tasks, such as node

classification, on the assumption that genuine node labels are always provided for training.

So far, very little attention has been put on robustly training a GNN model in the presence of

label noise. NT et al. [95] introduced the problem of learning GNNs with symmetric label

noise. Their method first estimates the noise transition matrix on the noisy data and then uses

it to correct the standard cross entropy loss for graph classification. Thus, it shares the same

limitation with similar methods on image data that the noise transition matrix is not easy to

be accurately estimated.

Following [63], in this work, I investigate node classification with both symmetric and

asymmetric label noise under the semi-supervised setting. The proposed method provides a

unified solution to robust training and label correction for GNNs, which required no extra

clean supervision nor explicit estimation of the noise transition matrix. More details about

this work are provided in Chapter 6.

2.5 Conclusion

This chapter provides a comprehensive review of the related works regarding handling the

label sparsity and label noise problems with an emphasis on that in the context of GNNs.

Particularly, the related works on semi-supervised node classification are firstly presented as

the elementary background for the specific label-associated tasks. Then, the related works

on active learning, pseudo-labeling and label-noise representation learning are successively

presented. These related works well demonstrate the key knowledge in the specific areas, and

give a summary of the current methods in terms of both their advantages and disadvantages.

In the next chapter, I will further describe the associated preliminaries that are commonly
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shared throughout the thesis to help the understanding of specific proposed methods in the

technical chapters.





Chapter 3

Preliminary

In order to facilitate formulating the specific research problem in the technical chapters, I

would provide some preliminary knowledge and concepts in this chapter with three subsec-

tions, including definitions and notions, fundamental architectures, and benchmark datasets.

These concepts are shared by the whole thesis and they will provide the technical context for

the latter chapters.

3.1 Definitions and Notations

Definition 1 (Attributed Graph) An undirected attributed graph is presented as G =

{V ,E ,X}, where V denotes the node set, E ⊆V ×V denotes the edge set, X= [x1,x2, . . . ,xN ]
T ∈

R
N×M denotes the node feature matrix, and xi ∈ R

M is the M-dimensional feature vector of

node vi ∈ V . ei j = (vi,v j) ∈ E denotes the edge between node vi and v j. I use the adjacent

matrix A ∈R
N×N to denote the connections among nodes, where Ai j = 1 if ei j ∈ E otherwise

Ai j = 0.

Definition 2 (Transductive Learning on Attributed Graphs) Given an undirected at-

tributed graph G = {V ,E ,X} with its adjacent matrix A ∈ R
N×N. Let L = {(xl,yl)}|L|l=1

denote a set of labeled nodes, where yl is the one-hot encoding of node vl’s class label. The

rest of nodes belong to the unlabeled set U = {xl+u}|U |
u=1. The goal is to find among an
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admissible set class labels Y = {yl+u}|U |
u=1 determined by the indicator functions f (G ;θ), the

one that has smallest classification errors on the unlabeled set U = {xl+u}|U |
u=1.

Transductive learning is a particular setting of semi-supervised learning. It generally

assumes that all the data contents, including both training and test data, can be observed in

advance and exploited at the same time, but only labels of the training data are available

for model updating. Therefore, under the setting of transductive learning on graphs, we can

usually access the train set features and their supervision information in conjunction with

the whole graph topology information and test node features to facilitate model training, and

then minimize the suitable loss to generate label predictions for the test data.

Notations Table 3.1 summarizes a list of frequently used symbols and notations throughout

this paper.

Table 3.1 Table of Symbols

Symbol Description

G = {V ,E ,X} an undirected graph G with node set V , edge set E and node feature matrix X
xi feature vector of node vi
ei j the edge between vi and v j
L , U the label set and unlabeled set
Y the class set
yi the one-hot label of node vi
hk

v the embedding of node v at k-th layer’s propagation
A,Ã the adjacent matrix and the adjacent matrix with added self-connection
D, D̃ the degree matrix of A, Ã
Nv the neighbors of node v
HNv the neighboring node embedding matrix of node v

3.2 Fundamental Architectures

Graph Convolutional Network (GCN) GCN[63] is one of the most representative and in-

fluential GNN models for graph representation learning, which has also achieved remarkable

performances on the node classification task under the semi-supervised setting. From the

methodological point of view, it dramatically reduces the computational complexity to be
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deployment-friendly on the large scale graph datasets by simplifying the spectral graph filter

to be the first-order Chebyshev polynomial with the renormalization technique. This allows

GCN to bridge the gap between the spectral GCNNs and spatial GCNNs. Specifically, the

layer-wise propagation rule of GCN is defined as Eq.3.1:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l)) (3.1)

where Ã = A+ IN is the adjacent matrix with added self-connections. IN is the identity matrix

and D̃ = ∑ j Ãi j. H(l) is the node representation matrix of l-th layer. When l is 0, H(0) is the

input feature matrix X . W (l) is the layer-specific trainable weight matrix in l-th layer. σ(·) is

the activation function.

Under the semi-supervised node classification setting, a few propagation layers would

be stacked together with the softmax function appended in the last layer to obtain the final

predicting probability distribution. Generally, for example, a widely-used two-layer GCN

can be represented as Eq.3.2:

Z = f (A,X) =so f tmax(Âσ(ÂXW (0))W (1)),

with Â = D̃− 1
2 ÃD̃− 1

2

(3.2)

Finally, the cross-entropy loss over the labeled nodes is usually utilized for model parameters

updating as Eq. 3.3:

J =−
|L|
∑
l=1

K

∑
k=1

ylklogzlk (3.3)

where zl = {zl1,zl2, ...,zlK} ∈ Z is the class predictions of node vl , and K is the number of

classes.

3.3 Benchmark Datasets

In this section, I summarize the statistics of datasets used in my thesis as listed in Table 3.2.

On the whole, I adopt three types of graph datasets that are collected and constructed from
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various domains, including citation networks, webpage networks and coauthor networks.

The detailed dataset information is introduced below.

Table 3.2 Details of Datasets

Dataset Nodes Edges Classes Features
Citeseer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500

Dblp 17,716 105,734 4 1,639
Wikics 11,701 216,123 10 300

Coauthor-CS 18,333 81,894 15 6,805
Coauthor-Phy 34,493 247,962 5 8,415

Citation networks: Cora, Citeseer, Pubmed1 [63] and Dblp2[14]. The four networks are

constructed based on the citation relationships among papers, which are collected from four

different digital libraries for scientific papers. In these datasets, each node represents a paper,

and they are classified into different classes according to their subjects. The node feature

is the bag-of-words vector of the paper, which is formed with a 0/1-valued word vector

indicating the absence/presence of the corresponding word from the dictionary. Furthermore,

each edge represents the citation links between two papers.

• Cora: The Cora dataset consists of 2,708 scientific publications pertaining to seven

different research topics in machine learning. Each node has a 1,433-dimensional

feature vector, and there exist 5,429 citation links among these nodes.

• Citeseer: The CiteSeer dataset contains 3,312 scientific publications pertaining to

six different research topics in machine learning. Each node has a 3,703-dimensional

feature vector, and there exist 4,732 citation links among these nodes.

• Pubmed: The Pubmed dataset contains 19,717 papers from PubMed database w.r.t.

diabetes, which can be categorized into three classes. Each node has a 500-dimensional

feature vector, and there exist 44,338 citation links among those publications.

1https://linqs.soe.ucsc.edu/data
2https://github.com/abojchevski/graph2gauss
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• Dblp3: The Dblp dataset contains 17,716 scientific publication pertaining to four

different research topics in machine learning. Each node has a 1,639-dimensional

feature vector, and there exist 105,734 citation links among those nodes.

Webpage networks: Wikics4[89] is a computer science related webpage network in

Wikipedia. Nodes represent articles about computer science, and edges represent hyperlinks

between articles. The features of nodes are mean vectors of GloVe word embeddings of

articles. It contains 11701 articles in 10 different classes. Each article is represented by a

300-dimensional feature vector, and those articles are connected with 216123 edges.

Coauthor networks: Coauthor-CS and Coauthor-Phy5[113]. They are coauthor networks

in the domain of computer science and Physics based on the Microsoft Academic Graph from

the KDD Cup 2016 challenge6. Nodes represent authors, and the keywords from authors’

papers are regarded as node features. Edges indicate coauthor relationships among these

authors. According to the most active research fields, authors are categorized into different

classes.

• Coauthor-CS: The Coauthor_CS dataset consists of 18,333 authors from 15 different

research fields in the domain of Computer Science. 81,894 links are built up among

these authors by co-authoring papers. Each author has a 6,805-dimensional feature

vector extracted from paper keywords.

• Coauthor-Phy: The Coauthor_Phy dataset consists of 34,493 authors from 5 different

research fields in the domain of Physics. Those authors build up 347,962 links among

them by co-authoring papers. Each author has an 8,415-dimensional feature vector

extracted from paper keywords.

3https://github.com/abojchevski/graph2gauss
4https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
5https://github.com/shchur/gnn-benchmark
6https://kddcup2016.azurewebsites.net/
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3.4 Conclusion

In this chapter, I have provided some basic knowledge and concepts as the preparation for

the technical chapters. Detailed definitions of some important terminologies and notations

are firstly introduced. Then, a fundamental GNN architecture, i.e. GCN, is introduced in a

mathematical manner, which provides the technical context for the three specific research

problems in the latter chapters. After that, the details and summarization of benchmark data

sets are presented to offer reference convenience. In the next chapter, I will introduce the pro-

posed semi-supervised adversarial active learning method, and demonstrate its effectiveness

through extensive experiments on real-world datasets.



Chapter 4

SEAL: Semi-supervised Adversarial

Active Learning on Attributed Graphs
1

In recent years, the GNN classification models have made remarkable achievements on the

node classification task. However, their success exhibits a high dependency on the abundant

training data, which poses great burdens due to the expensive consumption of acquiring

labels. To cope with this problem, a semi-supervised adversarial active learning framework

(SEAL) is proposed on attributed graphs in this chapter. The SEAL framework is able to

selectively query labels for the nodes that are most likely leading to performance gains to

the model. Extensive experiments demonstrate its effectiveness on four real-world datasets.

Next, I would give the detailed description on the proposed SEAL framework.

4.1 Introduction

Recent years have witnessed a great success of Graph Neural Networks (GNNs) in dealing

with networked data over various tasks. Node classification is one of the most important

tasks in analyzing such content-rich networks, which aims to predict the labels of unlabeled

nodes given a partially labeled network. Although GNNs[63] have been demonstrated to be

1Yayong Li, Jie Yin, Ling Chen. SEAL: Semi-supervised Adversarial Active Learning on Attributed Graphs.
IEEE Transactions on Neural Networks and Learning Systems, 32(7): 3136-3147, 2021. [73]
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effective in classifying many real-world networks, they rely on a sufficient number of labeled

nodes provided to ensure desirable classification accuracy. Very often, however, acquiring a

large quantity of node labels requires expert efforts, and is very costly and time-consuming,

which significantly limits the true success of these algorithms [19, 122].

In response, active learning (AL) has been proposed to alleviate the label sparsity issue

in classifying sparsely labeled networks. It aims at maximizing the learning ability of

classification models with the least labeling costs. An AL framework consists of two primary

components: a query engine which selects an instance from the unlabeled pool to query its

label and an oracle which provides a label to the queried instance. Different AL algorithms

have been proposed in the last decade, which measure the informativeness of instances with

certain criteria, and selectively label instances that most potentially lead to performance

improvements. For example, Lewis et al. [67] chose to label the instances for which the

classifier predicts with the least confidence, and Roy et al. [105] proposed to label the

instances which are most likely to bring the model error reduction on the unlabeled pool.

These active instance selection strategies allow to construct a more accurate model with

fewer labels. However, when AL meets graph-structured data, these classic AL strategies that

are effective for non-relational data, such as query-by-committee [86, 112] or uncertainty

sampling [67, 68], fail to achieve satisfactory results because of their inability to exploit

topological structure of graphs. Accordingly, a series of graph-aware AL strategies have been

proposed [40, 55, 82]. These methods directly minimize the expected generalization error or

variance of the classifiers and often incur high computational costs. They are designed based

on graph structure only, and thus lack the ability to exert the already labeled nodes and rich

node features that indeed provide leverage to node classification. By contrast, ICA based

algorithms [10, 13, 28] leverage label dependency among neighboring nodes to choose the

most informative nodes that can best improve the classifier built on the original node feature

space, and thus have limited classification performance.

Recently, graph neural networks (GNNs) [52, 63, 130] have achieved remarkable success

by exploiting the power of deep learning in dealing with graph-structured data. Compared

with traditional methods like Iterative Classification Algorithm (ICA) [81, 93] or DeepWalk



4.1 Introduction 35

based embedding methods [99], GNN offers its notable advantages through representation

learning in terms of capturing graph structure and aggregating neighboring information.

Thus, GNN and its variants have achieved state-of-the-art results on both node and graph

classification tasks. Therefore, it is of great potential to further advance AL performances on

attributed graphs by leveraging the great representation learning ability of GNNs to empower

AL, which, however, is largely unexplored yet. AGE [17] and ANRMAB [34] are two

AL algorithms that attempt to integrate graph convolutional networks (GCNs) with three

AL query strategies, namely graph centrality, information density, and information entropy.

While the former uses a linear combination of these strategies, the latter utilizes a multi-armed

bandit (MAB) mechanism to dynamically adjust the weights on the respective strategies

according to the MAB reward. However, the two algorithms share common weaknesses.

First, they use a naive combination of three AL criteria as the informativeness measure. The

AL criteria combined still operate separately on different scoring spaces, failing to capture

interaction and inter-relatedness between different factors. Second, they use the output of

a GCN in a post-processing way to determine the AL query strategy. This means that the

AL query engine and the learning of graph embedding still work as two separating pieces;

although the newly labeled node can improve the learning of GCN, the capacity of the query

engine remains unchanged, leading to unsatisfactory performance improvements.

In this chapter, I propose a novel SEmi-supervised Adversarial active Learning (SEAL)

framework that seamlessly integrates active learning with deep neural networks to select the

most informative nodes to label on attributed graphs. The proposed framework explicitly

asserts the usefulness of unlabeled nodes with regard to the existing labeled data. Inspired

by adversarial learning, I define an informativeness measure based on the intuition that the

unlabeled nodes differing the most with the labeled ones carry the most auxiliary information

on what the classifier desires the most. Our SEAL framework comprises two adversarial

components, a graph embedding network and a semi-supervised discriminator network,

which form a closed loop to actively collaborate with each other. The graph embedding

network is trained to embed both the labeled and unlabeled nodes into the same latent space

that encodes both graph structure and node features, expecting to fool the discriminator
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to regard all nodes as already labeled. The discriminator learns how to differentiate the

unlabeled from the already labeled nodes. Instead of using a binary discriminator, we

design a semi-supervised discriminator with multiple outputs. The outputs, on the one hand

receiving supervision from the existing labels, serve as class predictions, and on the other

hand, produce a unified informativeness score in a common latent space. This score measures

the divergence between the unlabeled and already labeled nodes. The unlabeled node with the

highest score is selected to query its label. At the same time, the loss of the discriminator is

backpropagated to the graph embedding network. The two adversarial components mutually

reinforce each other in an iterative way to boost the AL performance.

4.2 Problem Statement and Preliminaries

This section gives a formal problem definition and reviews the preliminaries of GCN and

adversarial learning.

4.2.1 Problem Statement

Given an undirected attributed graph G = {V ,E ,X} with its adjacent matrix A ∈ R
N×N . We

assume there are a small label set L = {(xi,yi)}|L|i=1 and an unlabeled set U in the initial

stage, where the number of labeled nodes |L| is far less that the unlabeled set|U |. This work

focuses on pool-based active learning for node classification. Given a pool of unlabeled

nodes, it works sequentially to select one unlabeled node to label at a time while retraining

the classifier at each iteration.

Given a fixed labeling budget B and an initial labeled set L , our active learning problem

aims to design a good query strategy Q(vi;Θ) parameterized with Θ that specifies which

unlabeled node should be selected to label at each iteration. Q(vi;Θ) can also be considered

as a utility function that assigns a score to each unlabeled node indicating its informativeness

to the current classifier. The unlabeled node that maximizes Q(vi;Θ) is selected to label, so

that the retrained classifier can achieve the maximum accuracy [31]. Formally, this can be
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expressed as follows:

v∗ = argmax
vi∈U

Q(vi;Θ), (4.1)

where v∗ represents the most informative node that is selected to query its label at each

iteration, and Θ represents the parameters of the learned query strategy.

4.2.2 Preliminaries on Adversarial Learning

Generative Adversarial Networks (GANs) [38] have emerged as a powerful framework for

learning deep representations of arbitrarily complex data distributions via an adversarial

process. A regular GAN sets up an adversarial platform for a generator gθ (·) and a discrim-

inator dφ (·), where gθ (·) intends to produce samples as close to the real data as possible,

while dφ (·) tries to tell apart samples either from the real data (x ∼ Pdata(x)), or from the

generator (s ∼ Pg(s)) as accurately as possible. This adversarial process is formulated as a

min-max game with the following loss function:

min
θ

max
φ

Ex∼Pdata(x)logdφ (x)+Es∼Pg(s)log(1−dφ (gθ (s))) (4.2)

The conventional GAN framework finally converges at the state where gθ (·) recovers the

training data perfectly and dφ (·) predicts 0.5 everywhere. Recently, this adversarial idea is

adopted to solve active learning problems on sequence and image classification. Deng et

al. [25] designed a sequence-based AL algorithm that utilizes a binary adversarial network

to shrink the search space of candidate samples, while an uncertainty strategy has to be

applied to determine which sample should be chosen. Sinha et al. [118] used a similar

adversarial active learning method to discriminate labeled and unlabeled images. However,

both methods use a fully supervised binary discriminator and ignore the original class

probability distribution. Our work was developed independently from these works, which

yet focuses on graph-structured data where graph topological structure needs to be properly

exploited. Our adversarial discriminator works in a semi-supervised manner, which allows to

distinguish labeled from unlabeled nodes and to model the class probability distribution.



38 SEAL: Semi-supervised Adversarial Active Learning on Attributed Graphs

Fig. 4.1 The SEAL Framework is composed of three main components: a graph embedding
network, a pool tuning (PT), and a semi-supervised discriminator network.

4.3 The SEAL Framework

This section presents the overview of the SEAL framework, followed by detailed description

of the main components.

4.3.1 Framework Overview

Our active learning objective is to select the nodes differing the most with the existing

labeled nodes so as to improve the node classification performance with the minimal labeling

cost. To measure the discrepancy between the unlabeled and labeled nodes, we incorporate

the adversarial learning method into active learning, and formulate it to be a GAN-like

framework with one graph embedding network G(·) with a semi-supervised discriminator

network D(·). G(·) embeds both the labeled and unlabeled nodes into a common latent space

with the uniform distribution to maximally confuse the discriminator, whereas D(·) intends

to distinguish the unlabeled from labeled data as much as possible. The discriminator D(·) is

iteratively reinforced through this competitive process, which provides a unified quantitative

criterion to measure the divergence of the unlabeled nodes with respect to the existing labeled
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nodes. This criterion ideally enables the selection of the most informative unlabeled node to

be labeled by an oracle.

Our SEAL framework comprises three main components, namely a graph embedding

network G(·), a pool tuning (PT), and a discriminator network D(·). As illustrated in Fig. 4.1,

its workflow operates as follows:

1) Taking graph G as input, the graph embedding network G(·) encodes both the labeled

and unlabeled nodes into low-dimensional, latent node representations, HL and HU ,

respectively, with the aim to characterize their class attributes and fool the discriminator

D(·), simultaneously.

2) The latent node representations and their prediction probabilities are then passed to

pool tuning (PT). PT picks a portion of nodes with high prediction certainty from the

unlabeled pool U and moves them to the labeled pool L . The two tuned pools are

named pseudo labeled (p-labeled) pool L +, and pseudo unlabeled (p-unlabeled) pool

U −, respectively. Correspondingly, their latent representations are denoted as HL+

and HU− .

3) The discriminator network D(·) takes HL+ and HU− as input and maps them into a latent

space to generate multiple outputs. These outputs not only produce the probabilities

of nodes belonging to K classes, but also generate a scoring function to quantify the

informativeness of unlabeled nodes with respect to the existing labeled data. The

unlabeled node with the highest score from the p-unlabeled pool U − is selected to be

labeled. After that, the original labeled pool L and unlabeled pool U are updated and

re-input to G(·).

Using this adversarial learning approach, the graph embedding network and the discrimi-

nator network form a closed loop to collaborate and reinforce each other.

4.3.2 Graph Embedding Network

Our graph embedding network G(·) encodes all nodes into a low-dimensional, latent embed-

ding space with better representation and discrimination power for learning an AL classifier.
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For this purpose, we use a specifically modified GCN as the classifier and the representation

learner in the SEAL framework, which is actually generic in nature and can be directly

replaced by any other graph embedding algorithms. On the one hand, G(·) takes the same

responsibility as GCN to learn the latent feature representations of both labeled and unlabeled

nodes by using both graph structure and node attributes. The latent node representations

are used to learn a classifier for prediction in a latent space. Thus, the cross entropy loss as

Eq.(4.3) is incorporated into our loss function for predicting the labels of graph nodes:

JGCN =−
|L|
∑
l=1

K

∑
k=1

ylklogzlk (4.3)

where zl = {zl1,zl2, ...,zlK} ∈ Z is the node vl’s class predictions generated by G(·), and K is

the number of classes.

On the other hand, G(·) is expected to provide guidance for the downstream discriminator

to improve its capability of measuring the divergence of unlabeled nodes w.r.t. the existing

labeled nodes. Inspired by the adversarial idea of GAN, the loss derived from distinguishing

the labeled and unlabeled nodes by the discriminator D(·), is backpropagated to G(·) to

subsequently reinforce the generalization and discrimination capability of the discriminator.

In this way, G(·) intends to fool the discriminator D(·) to believe all nodes are from the

labeled pool, while the discriminator tries to learn how to differentiate the unlabeled from

the existing labeled nodes. Concretely, instead of having the discriminator D(·) output a

score “1" for both labeled and unlabeled nodes as the cross-entropy loss does, we employ

feature matching method to rectify their feature distributions, which was empirically proved

to be more effective in situations where traditional cross-entropy based supervised methods

are volatile [107]. This method is aimed at minimizing the mean discrepancy of feature

distributions between p-labeled and p-unlabeled data obtained from the intermediate layer

of the discriminator, so that the p-unlabeled data can match the statistics of p-labeled data.

We assume that G(m) and D(n) represent the hidden representation of the m-layer of graph

embedding network and n-layer of the discriminator, respectively.
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Finally, the loss function of our graph embedding network is formulated as:

JG = ‖Ex∼L +D(n)(G(m)(x))−Ex∼U −D(n)(G(m)(x))‖2 + JGCN , (4.4)

where the first term measures the mean feature discrepancies of nodes in the p-labeled pool

L + and the p-unlabeled pool U −, backpropagated from the discriminator, and the second

term is the cross-entropy loss that is calculated using the existing labeled data as Eq. (4.3).

By minimizing this loss function, G(·) tries to not only minimize the classification loss

of predicting the labels of nodes, but also to force the distribution x ∼ PU− to approximate

the distribution of x ∼ PL+ . As the training proceeds, by descending mean feature discrep-

ancies sent from the discriminator, G(·) is able to push the two distributions closer. The

indistinguishable distributions, reversely, drives D(·) to improve its classification ability by

descending its labeled-unlabeled classification errors. Thus, G(·) and D(·) form a GAN-like

framework, where G(·) embeds both the labeled and unlabeled nodes into a common latent

space with the uniform distribution to fool the discriminator, while D(·) intends to distinguish

the unlabeled nodes from the labeled pool as accurately as possible. By appropriately param-

eterizing and optimizing G(·) and D(·), the adversarial process can iteratively strengthen the

discriminator with high generalization and discrimination capability.

4.3.3 Pool Tuning

Our objective is to select unlabeled nodes that can provide auxiliary information that has not

been captured by the classifier from the labeled data yet. After several epoches of training, it

can be assumed that the information of labeled data has been sufficiently acquired by GCN.

As for the unlabeled data, many unlabeled nodes, especially those for which the current

classifier can predict with high certainty, carry similar information that the current classifier

has already captured, due to local dependencies between neighboring nodes. Thus, we tune

the distribution of the labeled and unlabeled data according to the uncertainty predicted by

the current classifier.
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According to the GCN’s estimated probability distribution, we re-annotate a portion of

unlabeled nodes with high predicting confidence as the pseudo labeled data, and exclude

them from the unlabeled pool. The tuned labeled and unlabeled pool are denoted as L +

and U −, respectively. We use a threshold δ , whose value will be empirically determined, to

decide which unlabeled nodes should be moved to the labeled pool. Specifically, for any node

whose predicting probability on any class exceeds the threshold δ , it would be re-annotated

and put into the labeled pool L +, using Eq.(4.5) and Eq.(4.6).

L + = L ∪{xi ∈ U |P(ŷ|xi)> δ}, (4.5)

U − = {xi ∈ U |P(ŷ|xi)<= δ}, (4.6)

where ŷ denotes the most probable class that xi belongs to. L + and U − are then fed to our

discriminator that decides the most informative node to be selected from U −.

4.3.4 Semi-supervised Adversarial Learning

Following pool tuning, we design a discriminator network D(·) that approximates a di-

vergence measure to gauge the discrepancy between the p-unlabeled and p-labeled data

distribution. In other words, the discriminator tries to tell apart p-labeled nodes from

p-unlabeled nodes by minimizing an appropriate loss function.

Instead of using a simple cross-entropy based binary discriminator, we design a semi-

supervised discriminator D(·) that outputs K +1 probabilities, where K probabilities corre-

spond to probabilities of the node belonging to the K specific classes, and one probability

corresponds to the probability of the node be from the unlabeled pool [107]. It has the

advantage of being able to distinguish the p-unlabeled from p-labeled nodes, but also being

capable to predict the probabilities of nodes belonging to specific classes. Generally speak-

ing, the appropriately trained discriminator could lie its decision boundary between data
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manifolds of different classes, which would in turn improves the generalization performance

of the discriminator [72]. Thus, in our AL problem, this objective naturally achieves a

good trade-off between the exploitation that finds the most informative nodes to improve the

prediction task, and the exploration in the latent feature space.

For a K-class problem, we assume that D(·) takes G(m)(x) as input and outputs (K +1)-

dimensional logits l1(x), l2(x), · · · , lK+1(x). These logits, by applying a softmax function, are

then turned into class probabilities P(y = j | x)( j ∈ 1,2, ..,K+1) , of which P(y = K+1 | x)

represents the probability of x being unlabeled. Thus, the loss function of this discriminator

can be formulated as follows:

JD = α · Jsup + Junsup, (4.7)

Jsup =−Ex∼L logP(y | x,y < K +1), (4.8)

Junsup =−{Ex∼L +log(D(G(m)(x)))+Ex∼U −log(1−D(G(m)(x)))}, (4.9)

D(G(m)(x)) = 1−P(y = K +1 | x), (4.10)

where Jsup and Junsup denote the supervised loss and unsupervised loss, respectively. The

two components are balanced by a hyper-parameter α . Jsup is calculated with only the

original labeled data L using cross entropy, while Junsup is calculated using both p-labeled

nodes L + and p-unlabeled nodes U − via the adversarial training method. D(G(m)(x))

represents the likelihood of node x being p-labeled. The optimal solution to minimizing Jsup

and Junsup is to have el j(x) = c(x)p(y = j,x),∀ j < K +1 and elK+1(x) = c(x)p(y = K +1,x)

for some undetermined scaling function c(x). In other words, that means a perfect solution

to minimizing Junsup is also perfect to minimizing Jsup. Thus, the consistence of Jsup and

Junsup could guarantee that the optimization of Junsup also helps improve the supervised
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performance [6]. As such, we expect to better estimate the optimal solution by minimizing

the two loss functions jointly.

Furthermore, because (K +1)-output classification tends to have the over-parameterized

problem, we adopt the following strategy: Given that subtracting a term f (x) would not

change the softmax distribution, we fix the last output logit lK+1(x) as zero by operating

Eq. (4.11):

l̂ j(x) = l j(x)− f (x), ∀ j ≤ K +1, (4.11)

Therefore Jsup is recast into a standard supervised loss function with K classes. The probabil-

ity of nodes being labeled is thus given by:

D(x) =
∑K

k=1 el̂k(x)

∑K
k=1 el̂k(x) +1

. (4.12)

4.3.5 Active Scoring

For active learning, we define an informativeness measure based on the divergence between

the p-labeled nodes and p-unlabeled nodes. Intuitively, the more divergent an unlabeled node

is from the existing labeled data, the more likely it would contribute useful information to the

current classifier. As described in Section 4.3.4, the output of the discriminator can provide a

divergence measure. Thus, we devise an active scoring function as

div(xU− ,L +) = 1−D(xU−). (4.13)

Intuitively, the higher the score is, the more informative the p-unlabeled node is with respect

to the existing labeled data. Consequently, we select node x∗ from the p-unlabeled pool U −

such that div(x∗,L +) is maximized and query its label.

4.3.6 Model Training and Complexity Analysis

The model training of SEAL is given in Algorithm 1. In the main training loop, we iteratively

train the graph embedding network G(·) and the discriminator D(·) (lines 3-7) and then
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proceed with the instance selection process (lines 8-11). The major computational cost

of Algorithm 1 lies in training G(·) and D(·). The computational complexity of a two-

layer GCN is linear with the number of edges |E |, i.e., O(|E |HKM), where M denotes

the dimension of node features, H denotes number of hidden layer units, and K denotes

number of classes. The computational complexity of the three-layer discriminator is linear

with the number of nodes, i.e., O(NKH1H2|M′|), where |M′| denotes the dimension of

the input node representations, H1,H2 denote the number of the two hidden layer units,

respectively. Therefore, in the training process, the overall computational complexity of

SEAL is O(|E |HKM+NKH1H2|M′|), which is linear with number of edges |E | and number

of nodes N.

Algorithm 1 SEAL Model Training

Input: Graph G (V ,E ,X), node sets L ,U , labeling budget B, pre-training epoches np,
training epoches nG and nD for G(·) and D(·)

Output: a set of selected nodes Lt Initialize the parameter of G(·) and D(·) network
1: while not converged do

2: for tG = 0; tG < nG; tG = tG +1 do

3: Update G(·) by descending gradients of Eq.(4.4)
4: end for

5: Tune and generate the candidate pools L +
t and U−

t based on Eq.(4.5) and Eq.(4.6)
6: for tD = 0; tD < nD; tD = tD +1 do

7: Update D(·) by descending gradients of Eq.(4.7)
8: end for

9: if t > np and |Lt |− |L|< B then

10: Calculate scores for nodes in U −
t using Eq.(4.13)

11: Select node x∗ ← argmaxdiv(xU−
t
,L +

t )

12: Update pools: Lt ← Lt ∪x∗, Ut ← Ut \x∗
13: end if

14: end while

15: return a set of selected nodes Lt

4.3.7 Discussion: Differences from GAN

Our SEAL framework is designed as a GAN-like architecture. However, its training objective

is essentially different from a regular GAN. As mentioned in Section 4.2.2, a regular GAN

generally aims to obtain a perfect generator, and it finally converges at the state where
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the generator exactly recovers the training data distribution while predicting probability

of the discriminator equals to 0.5 everywhere. In contrast, our objective is to obtain a

strong discriminator that can measure the divergence between the labeled and unlabeled data

distribution with high confidence to enable active instance selection.

If the G(·) achieves the exact match between the distribution of x ∼ PU− and x ∼ PL+ ,

for any optimal solution S to the supervised loss Jsup, there exists an optimal solution

S ∗ to the semi-supervised (K +1)-class objective JD such that S and S ∗ share the same

generalization error. Therefore, under the semi-supervised setting in SEAL, a perfect G(·)
that can exactly matches the two distribution of x ∼ PL+ and x ∼ PU− would not be able

to improve the generalization capability of the discriminator over the supervised setting.

Consequently, a weaker G(·) would be necessary to guarantee a stronger discriminator. Thus,

it is required to appropriately optimize Eq.(4.4) and Eq.(4.7) using an alternating optimization

switching between updates to the G(·) and D(·). While this optimization is not guaranteed to

converge, empirically it provides us a strong discriminator if G(·) and D(·) are well balanced.

This is consistent with existing findings in [23].

4.4 Experimental Analysis

To validate the effectiveness of our SEAL framework, a series of experiments are conducted

on node classification tasks under a transductive, pool-based AL setting: Given the initial

labeled nodes and a certain labeling budget, unlabeled nodes are iteratively selected to label

and train a classifier, whose performance is tested from different perspectives.

4.4.1 Datasets

Four benchmark citation networks, including Citeseer2, Cora2, Pubmed2 [108], and DBLP3 [150],

are used in our experiments. In these networks, each node represents a document with a

certain label and each edge represents the citation links between two documents. We treat

2https://linqs.soe.ucsc.edu/data
3https://aminer.org/citation
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Table 4.1 Statistics of Data Sets

Dataset Nodes Edges Classes Features |Linit |/|Lmax|
Citeseer 3327 4732 6 3703 24 / 120

Cora 2708 5429 7 1433 28 / 140
DBLP 18447 91052 4 2476 16 / 80

Pubmed 19717 44338 3 500 12 / 60

Table 4.2 The Micro-F1 and Macro-F1 performance comparison with Lmax labeled nodes for
training

Method Citeseer Cora DBLP
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN-Random 0.685 0.615 0.812 0.794 0.720 0.702
AGE 0.717 0.666 0.813 0.800 0.772 0.719

ANRMAB 0.721• 0.672• 0.819• 0.807• 0.778• 0.739•
ALFNET 0.650 0.613 0.765 0.750 0.656 0.628

SEAL-ad 0.712 0.660 0.819 0.809 0.757 0.706
SEAL-fm 0.721 0.665 0.825 0.816 0.760 0.705
SEAL-sal 0.717 0.662 0.817 0.806 0.762 0.716
SEAL-pt 0.733 0.675 0.829 0.815 0.782 0.711

SEAL 0.734 0.676 0.831 0.822 0.802 0.747

these networks as undirected and unweighted graphs, and each node is characterized by a

sparse bag-of-words feature vector according to word occurrence. DBLP is a subgraph of the

DBLP bibliographic network, including publications from four research areas. Cora, Citeseer

and DBLP are used to evaluate the classification-related performance, and Pubmed is used to

test the computational complexity. Details of the four datasets are summarized in Table 4.1.

At the beginning of the training process, only |Linit | labels are accessible, and as AL

algorithms proceed, one unlabeled node is selected to label at each iteration. A maximum

number of |Lmax| labels can be queried. In our implementation, for each dataset, we start

with 4 labeled nodes per class |Linit | = 4×K, as the initial state, and the labeling budget

B = 20×K −|Linit |, where K denotes the number of classes.

4.4.2 Experimental Set-up

Our experiments closely follow the settings as in [17, 63]. For each dataset, we randomly

choose 1000 nodes for testing, 500 nodes for validation. To quantify the performance
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difference induced only by different AL query strategies, instead of randomly sampling 500

nodes as the validation set for each run of experiments, we generate 10 different validation

sets by randomly sampling from the non-testing unlabeled pool and repeat experiments for

10 times on each validation set. This setting is designed to ensure that the same unlabeled

pool is used when running different AL query strategies. Finally, the reported results are

averaged over 10 (validation sets) ×10 (initial labeled sets).

We utilize a two-layer GCN network, and its hidden layer has 16 units. ReLU and L2

regularization (5× 10−4) are applied for the first layer only. It is optimized using Adam,

where the learning rate is 0.005 for the instance selection period, and 0.01 for the subsequent

node prediction period, and the dropout rate is 0.5. The discriminator is a three-layer fully-

connected neural network with (128,128,K) units, respectively, and each layer is followed

by Leaky ReLU activation. It is also optimized using Adam, where the learning rate is

0.01, and the dropout rate is 0.5. Before the AL query process starts, the whole network is

pre-trained for 300 epoches, i.e. np = 300 in Algorithm 1, to ensure that G(·) has adequate

representation learning capacity and D(·) has adequate discrimination ability.

4.4.3 Baselines

We compare our SEAL framework against four state-of-the-art active learning methods, with

details as follows:

• AGE [17] and ANRMAB [34]: They are two state-of-the-art methods that combine

GCN with classic AL strategies, via a linear combination of three AL query strategies

(graph centrality, information density, and uncertainty sampling). ANRMAB improves

AGE by dynamically adjusting the weights of different strategies based on the MAB

reward. They differ from SEAL in terms of different AL query strategies designed,

which are used to validate the efficacy of SEAL’s unified AL query strategy.

• ALFNET [13]: It is a traditional AL strategy that uses ICA and QBC ensemble to

make instance selection. This method is used to evaluate the advantages of GNN-based

AL methods over traditional graph-based AL methods. In our settings, we adapt it as
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a transductive semi-supervised version and allow it to select only one node at each

iteration for fair comparison.

• GCN-Random [63]: It uses GCN as the classifier but randomly chooses one unlabeled

node to querty its label.

To assess the importance of different aspects of SEAL, we also compare with four variants

of SEAL via ablation studies:

• SEAL-ad: It is a variant of SEAL with adversarial learning obliterated. Specifically, it

changes G(·)’s loss function in Eq.(4.4) as JG = JGCN . D(·) is still used to discriminate

unlabeled from labeled nodes with loss function JD as Eq.(4.7), but loss of D(·) is

not back propagated to G(·). It is designed to validate effectiveness of the adversarial

learning mechanism.

• SEAL-fm: This method is a variant of SEAL to test the effectiveness of feature

matching loss for generator G(·). Instead of minimizing feature matching loss as

Eq.(4.4), it maximizes the log-likelihood of both labeled and unlabeled nodes to

confuse D(·), given by

JG =−Ex∼L
⋃

U D(G(m)(x))+ JGCN . (4.14)

• SEAL-sal: This method is another variant of SEAL that uses a cross-entropy based

binary p-labeled/p-unlabeled discriminator. It is equivalent to setting α as 0 in Eq.(4.7),

while other parameters remain the same as with SEAL.

• SEAL-pt: This method differs from SEAL in that it removes the operation of PT, and

the generated nodes representations are directly sent to D(·). This is equivalent to

setting δ to 1 in Eq.(4.5) and (4.6). Other parameters remain the same with SEAL.

For classification, ALFNET uses the ICA with logistic regression as the base classifier.

All other algorithms use GCN as the classifier for fair comparison.
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4.4.4 Overall Performance Comparison

We use Micro-F1 and Macro-F1 scores as the evaluation criteria to validate node classification

performance. Table 4.2 compares the performance of different algorithms on Citeseer, Cora,

and DBLP. For SEAL, we set parameters α and δ to 0.6 for this experiment. The best

performer is highlighted by bold, and the second best performer is highlighted by underline

on each setting. Overall, as can be seen, SEAL exhibits evident advantages over other

baselines by designing a new AL query strategy on a unified scoring space. In terms of

Micro-F1 score, SEAL improves upon ANRMAB by a margin of 1.3%, 1.2% and 2.4%,

respectively, on the three datasets. Similar results can also be seen on the Macro-F1 score

results. Moreover, we have also performed paired t-test between the Micro-F1 scores achieved

by SEAL and the best baseline methods, where we use •(◦) to indicate that the SEAL is

significantly better (worse) than the compared baseline methods at 95% significance level.

This significance test further verify the advantage of our SEAL. This is in accordance with our

expectation that the discriminator allows to further exploit the GNN-generated representations

in a new latent space, where dependencies among these latent representations can be better

captured to support instance selection. Furthermore, our mechanism could select nodes with

least redundant information. The two reasons lead to superior classification performance

to weighted combination methods like AGE and ANRMAB. It is also worth noting that

ALFNET performs consistently worse than any other GNN-based method, including GCN-

Random. This proves the advantageous representation power of GNN over traditional

ICA-based methods.

4.4.5 Ablation Study

We also conduct a ablation study to assess the importance of different components of SEAL.

Our analysis is reported in the bottom section of Table 4.2.

Overall, SEAL has stable performance gains over its degraded counterparts, owing to

the contributions of different components. The adversarial leaning mechanism (SEAL-ad)

allows G(·) and D(·) to reinforce each other and thus boost the classification ability of D(·).
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(a) Micro-F1 (b) Macro-F1

Fig. 4.2 Performance comparison with respect to different labeling budgets on Citeseer

This enables to select the most informative samples for improving the overall performance.

Feature matching (SEAL-fm), as a method for alleviating overfitting and mode collapse

problems in GAN [107], effectively stabilizes the training of SEAL. Pool tuning (SEAL-pt),

redistributing labeled and unlabeled nodes, enables D(·) to better distinguish unlabeled nodes

and to reduce the search space of unlabeled candidates. Semi-supervised adversarial learning

mechanism (SEAL-sal) allows D(·) to measure the divergence between labeled and unlabeled

nodes. Effectiveness of pool tuning and semi-supervised adversarial learning mechanism

will be further analyzed carefully in Section 4.4.7 and 4.4.8.

4.4.6 Performance Comparison on Different Labeling Budgets

Figures 4.2-4.4 compare classification performance of different methods with respect to

different labeling budgets on Citeseer, Cora, and DBLP. Although all methods have an

overall upward trend as the number of labeled nodes increases, SEAL offers the steepest

improvement slopes with remarkable gains over other baselines. Taking Figure 4.2(a) as an

example, SEAL reaches 72.0% of classification accuracy with only 66 labeled nodes, while

ANRMAB reaches the similar accuracy until obtaining 120 labeled nodes. This indicates

that SEAL achieves similar classification accuracy with much fewer nodes labeled, which

again proves the effectiveness of our AL strategy.
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(a) Micro-F1 (b) Macro-F1

Fig. 4.3 Performance comparison with respect to different labeling budgets on Cora.

(a) Micro-F1 (b) Macro-F1

Fig. 4.4 Performance comparison with respect to different labeling budgets on DBLP

4.4.7 Effectiveness Study on PT

Figure 4.5 shows performance changes with varying thresholds δ for pool tuning, where a

similar trend can be observed on Citeseer, Cora and DBLP. As can be seen, SEAL achieves

the best performance when δ is equal to 0.6, and degrades with varying speeds as δ further

increases. The standard variances are plotted as a vertical line at each point, which are

calculated over 100 repeating tests on each threshold. The longer the vertical line is, the

larger the standard variance is. Pool tuning picks a bunch of unlabeled nodes carrying similar

information with already labeled nodes as pseudo labeled nodes. The redistributed node sets

make it easier for D(·) to find the most distinct unlabeled nodes. Moreover, it helps avoid
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(a) Citeseer (b) Cora (c) DBLP

Fig. 4.5 Comparison of Micro-F1 with respect to varying δ values on Citeseer, Cora, and
DBLP.

(a) Citeseer (b) Cora (c) DBLP

Fig. 4.6 Comparison of Micro-F1 scores with respect to varying α values on Citeseer, Cora,
and DBLP.

the potential overfitting caused by extremely imbalanced labeled/unlabeled samples, thus

leading to more stable performance.

4.4.8 Effectiveness Study on the SAL

Figure 4.6 illustrates the sensitivity of SEAL with respect to α that balances the trade-off

between Jsup and Junsup in Eq.(4.7). Taking DBLP in Figure. 4.6(c) as an example, when α

is zero, JD degrades as an unsupervised loss function (i.e. JD = Junsup), where only 76.2%

of predictions are correctly made. Then, the performance fluctuates with the increase of

α , during which it reaches the peak at the point around α=0.6. An appropriate α allows

D(·) to be aware of differentiation between different classes when measuring the similarity

between p-unlabeled and p-labeled nodes. This awareness alleviates the risk of selecting

abnormal nodes as it often occurs in uncertainty sampling methods, thereby resulting in

better classification accuracy.
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(a) Comparison of Training Time (b) Convergence of Training Loss

Fig. 4.7 Training Time and Convergence Analysis on Pubmed

4.4.9 Training Time Comparison and Convergence Rate

We also conduct experiments to compare the training time (in seconds) of three GCN-based

AL methods, SEAL, AGE, and ANRMAB. All methods are implemented in tensorflow on a

Linux system with Inter(R) Xeon CPU E5-2690 @3.4GHz*8 and 32G memory. We compare

their training time on Pubmed, where the number of nodes increases from 1000 to 19000

with an increment of 2000. We record the total training time for selecting 48 unlabeled

nodes for labeling, and the results are shown in Figure 4.7(a). As we can see, ANRMAB

and AGE take almost the same amount of training time, which is less than SEAL at the

beginning, when network size is small. However, as network size increases, the training

time of ANRMAB/AGE rapidly grows at a non-linear rate, which is several times more than

that of SEAL. This is because the frequent sorting operation in ANRMAB/AGE incurs a

computational overhead of O(N2), whereas SEAL maintains a linear growth rate with respect

to number of nodes N. This indicates that SEAL’s computational overhead for instance

selection is acceptable and it is reasonably efficient on large graphs.

Figure 4.7(b) shows changes in training loss JG as the training proceeds. At the beginning,

as new unlabeled nodes start to be added into the labeled set, the training loss exhibits some

fluctuations. This is probably due to that conspicuously distinct information carried by the

newly added nodes disturbs parameter updates of the classifier trained by existing labeled
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data. As more nodes are labeled, the training loss quickly decreases and stabilizes at a lower

level. The overall trend of loss JG exhibits good convergence.

4.5 Conclusion

In this chapter, I address the active learning problem on attributed graphs. I argued that,

the existing AL frameworks are ineffective in (1) they use a naive weighted combination of

different AL strategies to select the nodes to label, and (2) they treat the learning of graph

embedding and the AL query engine as two separate and independent processes, leading to

limited AL performance gains. To fill the research gap, I propose a novel semi-supervised

AL framework called SEAL, which fully exploits the representation power of GNNs and

devises a novel AL query strategy for graphs. SEAL comprises two adversarial components;

a graph embedding network is trained to embed both the labeled and unlabeled nodes into a

common latent space, and to trick the discriminator to believe all nodes are from the labeled

pool, while a discriminator network learns how to tell them apart using a semi-supervised

structure with multiple outputs. The divergence score, produced by the discriminator, serves

as the informativeness measure to select the most useful node to be labeled by the oracle.

The two adversarial components form a closed loop to mutually and simultaneously reinforce

each other towards enhancing the active learning performance. Extensive experiments and

ablation studies prove that the SEAL renders remarkable performance gains compared with

state-of-the-art AL methods on node classification tasks.

In conclusion, the proposed SEAL framework can effectively relieve the label sparsity

problem by selectively constructing the train set with the most informative nodes. In the next

chapter, I will investigate the graph pseudo labeling scenario to further mitigate the stress

from inadequate label supervision, where it mainly focuses on fully exploiting the unlabeled

data using the pseudo labeling technique.





Chapter 5

Informative Pseudo-Labeling for Graph

Neural Networks with Few Labels
1

In this chapter, I would introduce the proposed informative pseudo-labeling framework

for learning GNNs with few labels. Being aware of the neglected problem of information

redundancy and noisy pseudo-labeling in the existing related works, the proposed framework

is designed to be able to robustly pseudo-label, instead of the most confident nodes, the most

informative nodes while mitigating the negative effect caused by unreliable pseudo labels.

This allows the model to intake more useful information and achieve better performances.

Next, I will elaborate on the details of this informative pseudo-labeling framework.

5.1 Introduction

Graph neural networks have emerged as state-of-the-art models for undertaking semi-

supervised node classification tasks on graphs [99], [63], [130], [135], [46]. However,

under extreme cases where very few labels are available (e.g., only a handful of labeled nodes

per class), popular GNN models, which rely on iteratively aggregating and transforming the

neighboring node features to learn node embeddings, are ineffective in propagating the lim-

1Yayong Li, Jie Yin, Ling Chen. Informative Pseudo-Labeling for Graph Neural Networks with Few Labels.
Data Mining and Knowledge Discovery, Accepted. [75]
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ited label information to learn discriminative node embeddings within a shadow architecture.

This tends to result in inferior classification performance. Recently, a central theme of latest

studies has attempted to improve classification accuracy by designing deeper GNNs or new

network architectures [101, 131]. However, the challenge of how to effectively learn GNNs

with few labels is still under-explored.

Recently, pseudo-labeling, also called self-training, has been proposed as one prevalent

semi-supervised method to explicitly tackle the label scarcity problem on graphs. Pseudo-

labeling expands the label set by assigning a pseudo label to high-confidence unlabeled nodes,

and iteratively re-trains the model with both given labels and pseudo labels. Li et al. [71]

first proposed a self-trained GCN that chooses top-K high-confidence unlabeled nodes to

enlarge the training set for model re-training. Sun et al. [121] pointed out a shallow GCN’s

ineffectivenss in propagating label information under few-label settings. A multi-stage

approach was then proposed, which applies deep clustering techniques to assign pseudo

labels to unlabeled nodes with high prediction confidence. Zhou et al. [159] proposed a

dynamic self-training framework, which assigns a soft label confidence on the pseudo label

loss to control their contribution to gradient update.

Despite offering promising results, the existing pseudo-labeling approaches on GNNs

have not fully explored the power of self-training, due to two major limitations. First,

these methods impose strict constraints that only unlabeled nodes with high prediction

probabilities are selected for pseudo labeling. However, these selected nodes often convey

similar information with given labels, causing information redundancy in the expanded label

set. On the contrary, if unlabeled nodes with lower prediction probabilities are allowed to

enlarge the label set, more pseudo label noise would be incurred to significantly degrade

the classification accuracy. This creates a dilemma for pseudo-labeling strategies to achieve

desirable performance improvements. Second, the existing methods all treat pseudo labels

and genuine labels equally important. They are incorporated into the same loss function,

such as the standard cross entropy loss, for node classification, neglecting their distinct

contributions to the classification task. In the presence of unreliable or noisy pseudo labels,

model performance might deteriorate during re-training.
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Motivated by the above observations, we propose a novel informative pseudo-labeling

framework called InfoGNN for semi-supervised node classification with few labels. Our

aim is to fully harness the power of self-training by incorporating more pseudo labels, but

at the same time, alleviate possible negative impact caused by noisy (i.e. incorrect) pseudo

labels. To address information redundancy, we define node representativeness via neural

estimation of mutual information between a node and its local context subgraph in the

embedding space. This method offers two advantages: 1) It provides an informativeness

measure to select unlabeled nodes for pseudo labeling, such that the added pseudo labels can

bring in more information gain. 2) It implicitly encourages each node to approximate its own

local neighborhood and depart away from other neighborhoods. The intuition behind is that an

unlabeled node is considered informative when it can maximally reflect its local neighborhood.

By integrating this informativeness measure with model prediction probabilities, our approach

enables to selectively pseudo label nodes with maximum performance gains. To mitigate

negative impact of noisy pseudo labels, we also propose a generalized cross entropy loss on

pseudo labels to improve model robustness against noise. This loss allows us to maximize the

pseudo-labeling capacity while minimizing the model collapsing risk. In addition, to cope

with the potential class-imbalance problem caused by pseudo labeling under extremely

few-label settings, we propose a class-balanced regularization that regularizes the number of

pseudo labels to keep relative equilibrium in each class.

5.2 Problem Statement

Given an undirected graph G = {V ,E ,X} with the graph adjacent matrix A ∈ R
n×n. We

assume that only a small fraction of nodes are labeled in the node set, where L = {(xi,yi)}|L|i=1

denotes the set of labeled nodes, and U denotes the set of unlabeled nodes. We consider the

semi-supervised node classification problem [63, 130] under a pseudo-labeling paradigm,

which is formally defined as follows:

Problem 1 Given an undirected graph G = {V ,E ,X} together with a small subset of

labeled nodes L = {(xi,yi)}|L|i=1, we aim to design a strategy 1(·) for expanding the label set
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from unlabeled nodes, a method Y(·) for generating reliable pseudo labels, and an exclusive

loss function �U(·) for pseudo labels, such that 1(·), Y(·) and �U(·) can be combined together

with the task-specific loss �L(·) to maximize the classification performance of graph neural

network fθ (·). This problem can be formally formulated as Eq.(5.1).

min
θ

J = ∑
xi∈L

�L(yi, fθ (xi))+ ∑
xi∈U

�U(Y(xi), fθ (xi)) ·1(xi). (5.1)

5.3 Methodology

5.3.1 Framework Overview

The primary aim of our work is to develop a robust pseudo-labeling framework for GNN

training with few labels. As shown in Fig. 5.1, our proposed InfoGNN framework comprises

of three key modules: 1) a GNN encoder; 2) informativeness estimator; 3) pseudo label

selector. Taking a graph as input, the GNN encoder is first utilized to learn node embeddings

as well as estimate class predictions and confidence scores. Then, the informativeness

estimator closely follows to produce node informativeness scores for unlabeled nodes. Finally,

according to informativeness and confidence scores, informative nodes are selected for pseudo

labeling and model retraining. During GNN retraining phase, besides the standard cross

entropy (SCE) loss applied on given labels, a generalized cross entropy loss (GCE) loss is

applied on pseudo labels to improve model robustness against potentially noisy pseudo labels.

A class-balanced regularization (CBR) is used to mitigate the potential class-imbalanced

problem arising during pseudo labeling.

5.3.2 The GNN Encoder

The GNN encoder is the backbone for our framework. It mainly serves for generating node

embeddings and giving class prediction probabilities that reflect model confidence in terms of

predictions. Any GNN that focuses on node classification can be utilized here for embedding

learning and classification. A GNN encoder generally learns node embeddings by recursively
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GNN encoder

MLP

Node embeddings

Negative pairs
Discriminator

Subgraph encoder 

Informativeness
scores

Contrastiveloss

Pseudo labelsSoftmax

Predicted labels

Positive pairs

GCE loss

Positive

Negative

…

Confidencescores

II. Informativeness Estimator

CBR loss

I. GNN Encoder

III. Pseudo Label Selector

SCE loss

Fig. 5.1 Overview of the proposed InfoGNN framework, comprising of three main modules:
GNN encoder, informativeness estimator and pseudo label selector. The GNN encoder is
responsible for generating node embeddings and estimating confidence scores. Then, the
informativeness estimator closely follows, in charge of measuring node informativeness and
producing quantitative scores. Finally, according to both confidence and informativeness
scores, informative nodes are selected for pseudo labeling and model retraining.

aggregating and transforming node features from topological neighborhoods. In our work,

we utilize GCN [63] as our GNN encoder fθ (·). For v ∈ V , the node embedding at k-th

layer’s prorogation can be obtained by:

hk
v = σ( ∑

v′∈Nv

(D̃−1/2ÃD̃−1/2)v,v′W
k−1hk−1

v′ ), (5.2)

σ(·) is the activation function, Ã = A+ I is the adjacency matrix of G with added self-

connections. D̃ii = ∑ j Ãi j, and W k is a layer-specific trainable weight matrix. We use the

SCE loss to optimize GCN for node classification:

�L(y, fθ (x)) =− ∑
i∈L

yilog( fθ (xi)). (5.3)

Finally, according to the class prediction probabilities, we can obtain the confidence score

for each node v:

sc(v) = max
j

fθ (xv) j, (5.4)
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The confidence score sc(v) is utilized for node selection in combination with the representa-

tiveness score, which is detailed below.

5.3.3 Candidate Selection for Pseudo Labelling

Most existing pseudo-labeling methods typically select unlabeled nodes accounting for only

model confidence or uncertainty [71, 92, 159]. These methods are in favor of selecting the

nodes with high prediction probabilities, expecting to bring in less noisy pseudo labels for

model re-training. However, these high-confidence nodes tend to carry redundant information

with given labels, resulting in limited capacity to improve model performance. Therefore,

besides model confidence, we propose to take node informativeness into account for node

selection so as to maximally boost model performance. To this end, the key problem lies in

how to measure node informativeness.

Informativeness Measure by MI Maximization We define the node informativeness as the

representativeness of a node in relation to its contextual neighborhood. The intuition behind

is that a node is informative when it could maximally represent its surrounding neighborhood

while minimally reflect other arbitrary neighborhoods. Hence, the representativeness of a

node can be measured by the mutual information between the node and its neighborhood

with positive correlation. On account of this, we employ MI maximization techniques [8] to

estimate the MI by measuring how much one node can represent its surrounding neighborhood

and discriminate an arbitrary neighborhood. This thus provides a score to quantify the

representativeness for each node. We achieve this by formulating it to be a subgraph-based

contrastive learning task, which contrasts each node with its positive and negative context

subgraphs.

Given a graph G = {V ,E ,X} with learned node embeddings H, for each node v ∈ V ,

we define its local r-hop subgraph Nv as the positive sample, and an arbitrary r-hop subgraph

Nu from node u as the negative sample. The mutual information IG (v) between node v and

its neighborhood can then be measured by a GAN-like divergence [94]:
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IG � ÎG = max
ω

1
|V | ∑

v∈V

[MIω(hv,HNv)+MIω(hv,HNu)] (5.5)

where hv is node v’s embedding generated from the GNN encoder, HNv and HNu are the

embedding sets of subgraphs centered at node v and u. MIω is the trainable neural network

parameterized by ω . MIω(hv,HNv) indicates the affinity between positive pairs, while

MIω(hv,HNu) indicates the discrepancy between negative pairs. Our objective is to estimate

IG by maximizing MIω(hv,HNv) while minimizing MIω(hv,HNu), which is in essence a

contrastive objective.

This contrastive objective is further achieved by employing a discriminator as illustrated

in Figure 5.1. At each iteration, after obtaining the learned node embeddings H, both positive

and negative subgraphs for each node are firstly sampled and paired. Then those nodes and

their corresponding paired subgraphs are delivered to a discriminator network MIω(hv,HNv),

which is in charge of producing a representativeness score for each node by contrasting the

node with its paired subgraphs. Formally, we specify MIω(hv,HNv) = D(ϕ(hv),φ(HNv)).

Here, φ(·) is a subgraph encoder that aggregates embeddings of all nodes in the subgraph

to generate a unified subgraph embedding. Here, I apply a one-layer GCN as the subgraph

encoder, which can also be replaced by other alternative GNN models, such as GAT [130] or

GraphSage [46]. The propagation principle of the GCN encoder on a r-hop subgraph is as

follows:

φ(HNv) = σ( ∑
v′∈Nv

(D−1/2
r ArD

−1/2
r )v,v′hv′W ),

Ar = Bin(A∗Ar−1 +Ar−1)

(5.6)

where W is the learnable parameters, and σ is the activation function. A is the original

graph adjacent matrix, and Bin(·) is a binary function that guarantees Ar(i, j) ∈ {0,1}. Dr

is the corresponding degree matrix of Ar. What we need to notice is that we use a r-hop

adjacent matrix Ar, instead of the original adjacent matrix A for feature aggregation, and the

aggregated embedding of the centre node in the subgraph will be the subgraph embedding.
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ϕ(·) is an MLP encoder, which is tasked to transform the node embedding to the same space

with the subgraph embedding φ(HNv). With regard to the discriminator D(·), we implement

it using a bilinear layer:

D(ϕ(hv),φ(HNv)) = σ(ϕ(hv)Bφ(HNv)
T ) (5.7)

where B is the learnable parameter. To enable the discriminator D(ϕ(hv),φ(HNv)) to measure

the affinity between node v and its corresponding local subgraph Nv, we minimize the binary

cross entropy loss between positive and negative pairs, which is formulated as the contrastive

loss:

�I =− 1
|V | ∑

v∈V

[logD(ϕ(hv),φ(HNv))+ log(1−D(ϕ(hv),φ(HNu)))], (5.8)

By minimizing �I , the discriminator could maximally distinguish a node from any arbi-

trary subgraphs that it does not belong to in the embedding space. This process is equivalent

to maximizing their MI in the sense of Eq.(5.5).

Pseudo-Labeling. The discriminator D(·) measures the affinity between each node and its

local subgraph. We utilize this affinity to define the informativeness score for each node:

sr(v) = D(ϕ(hv),φ(HNv)), (5.9)

where sr(v) indicates to what extent a node could reflect its neighborhood, and a higher

score means that the node is more informativeness. Therefore, by considering both the

informativeness score and model prediction confidence, we derive the selection criterion to

construct the pseudo-label set Up:

Up = {v ∈ U |(sr(v)+ sc(v))/2 > k,s.t.sc(v)> k}. (5.10)

where sc(v) is the confidence score as in Eq.(5.4), and k is a hyperparameter whose value can

be empirically determined (See Fig. 5.4(b) in Section 5.4.6). We then produce the pseudo
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labels for Up utilizing the GNN encoder fθ (·):

ŷv = argmax
j

fθ (xv) j;v ∈ Up (5.11)

Where the pseudo label ŷv is actually the predicted label by the GNN encoder.

5.3.4 Mitigating Noisy Pseudo Labels

During the re-training phase, existing pseudo-labeling methods regard given labels and

pseudo labels equally important, so an identical loss function, e.g., the SCE loss, is applied.

However, with more nodes added in, it is inevitable to introduce unreliable or noisy (i.e.,

incorrect) pseudo labels. If the same SCE loss is still applied on unreliable pseudo labels, it

would degrade model performance. This is because, the SCE loss implicitly weighs more

on the difficult nodes whose predictions deviate away from the supervised labels during

gradient update [128, 154]. This is beneficial for training with clean labels and ensures faster

convergence. However, when there exist noisy pseudo labels in the label set, more emphasis

would be put on noisy pseudo labels as they are harder to fit than correct ones. This would

ultimately cause the model to overfit incorrect labels, thereby degrading model performance.

To address this issue, we propose to apply the negative Box-Cox transformation [15]

to the loss function �U(·) on pseudo label set Up, inspired by [154]. The transformed loss

function is given as follows:

�U(ŷi, fθ (xi)) =
1− fθ (xi)

q
j

q
,xi ∈ Up,

ŷi = argmax
j

fθ (xi) j

(5.12)

where q ∈ (0,1], ŷi is the pseudo label. To further elaborate how this loss impacts parameter

update, we have its gradient as follows:

∂�U(ŷi, fθ (xi))

∂θ
= fθ (xi)

q
j(−

1
fθ (xi) j

∇θ fθ (xi) j), (5.13)
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where fθ (xi) j ∈ (0,1] for ∀i. Compared with the SCE loss, it actually weighs each gradient

by an additional fθ (xi)
q
j , which reduces the gradient descending on those unreliable pseudo

labels with lower prediction probabilities. Actually, �U(ŷi, fθ (xi)) can be regarded as the

generalization of the SCE loss and the unhinged loss. It is equivalent to SCE when q

approaches zero, and becomes the unhinged loss when q is equal to one. Thus, this loss

allows the network to collect more additional information from a larger amount of pseudo

labels while alleviating their potential negative effect.

In practice, we apply a truncated version of �U(·) to filter out potential impact from

unlabeled nodes with low prediction probabilities, given by:

�T (ŷi, fθ (xi)) =

⎧⎨
⎩

�U(k), fθ (xi) j ≤ k

�U(ŷi, fθ (xi)), fθ (xi) j > k
(5.14)

where k ∈ (0,1), and �U(k) = (1− kq)/q. Formally, the truncated loss version is derived as:

�T (ŷ, fθ (x)) = ∑
i∈U

λi�U(ŷi, fθ (xi))+(1−λi)�U(k), (5.15)

where λi = 1 if i ∈ Up, otherwise λi = 0. Intuitively, when the prediction probability of one

node is lower than k, the corresponding truncated loss would be a constant. As the gradient

of a constant loss is zero, this node would have no contribution to gradient update, thus

eliminating negative effect of pseudo labels with low confidence.

5.3.5 Class-balanced Regularization

Under extreme cases where only very few labels are available for training, severe class-

imbalance problem would occur during pseudo labeling. That means, one or two particular

classes might dominate the whole pseudo label set, thus conversely impacting model retrain-

ing. To mitigate this, we propose to apply a Kullback–Leibler (KL) divergence between the
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pseudo label distribution and a default label distribution for class-balanced regularization:

�KL =
c

∑
j=1

p jlog
p j

f (X) j

, (5.16)

where p j is the default probability of class j. Since the real label distribution is unknown, we

apply the uniform distribution for this regularization. That is, we set the probability of each

class as p j = 1/c in our situation. f (X) j is the mean value of class prediction probability

distribution over pseudo labels, which is calculated as follows:

f (X) j =
1

|Up| ∑
xi∈Up

f (xi) j (5.17)

It is worth noting that, under the uniform distribution assumption, we do not attempt to

approximate the real label distribution, which is unknown a priori during training. Instead,

we expect to regularize the class distribution in the pseudo label set to be more uniformly

distributed, preventing only one or two classes dominating the selected pseudo labels. Ac-

cordingly, hyperparamter β is employed to control the impact of �KL as in Eq.(5.19). More

empirical analysis on the impact of class-balanced regularization will be provided in Sec-

tion 5.4.6

5.3.6 Model Training and Computational Complexity

Our proposed InfoGNN framework is given by Algorithm 2, which consists of one pre-

training phase and one formal training phase. The pre-training phase (Step 2-4) is used to

train a parameterized GNN with given labels. Accordingly, network parameters are updated

by:

�pre = �L +α�I (5.18)

At the beginning of the formal training phase, the pre-trained GNN is applied to generate

prediction probabilities and informativeness score for each node, which are then used to

produce pseudo labels (Step 6-8). Finally, both given labels and pseudo labels are used to
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re-train the GNN by minimizing the following loss function (Step 9):

�= �L + �T +α�I +β�KL (5.19)

Algorithm 2 Training InfoGNN with few labels

Input: Graph G = {V ,E ,X}, α , β , r,q and k
Output: Label predictions

1: Initialize network parameters
2: for t = 0; t < epoches; t = t +1 do

3: if t < start_epoch then

4: pre-train the network according to Eq.(5.18);
5: else

6: Generate node prediction probabilities fθ (xi)
7: Generate informativeness scores based on Eq.(5.9);
8: Construct pseudo label set based on Eq.(5.10);
9: Update network parameters based on Eq.(5.19);

10: end if

11: end for

12: return Label predictions

In terms of computational complexity, by comparison with GNN models based on the

SCE loss, InfoGNN incurs slightly extra computational overhead in its attempt to mitigate

label noise. The is mainly due to the calculation of the contrastive loss �I with subgraph

encoder. Since we utilize a one-layer GCN as subgraph encoder on a r-hop subgraph, its

computational complexity is linear with the number of edges O(|Er|), where Er is the number

of edges in the r-hop subgraph, i.e. |Er|= sum(Ar). This is reasonably acceptable.

5.4 Experiments

To validate the effectiveness of the proposed pseudo-labeling framework, we carry out

extensive experiments on six real-world graph datasets to compare against state-of-the-art

baselines. We also conduct ablation study and sensitivity analysis to better understand key

ingredients of our approach.
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5.4.1 Datasets

Our experiments use six benchmark graph datasets in three different domains: 1) Citation

networks: Cora, Citeseer[63] and Dblp[14]; 2) Webpage networks: Wikics[89]; 3) Coau-

ther networks: Coauther-CS and Coauther-Phy[113]. Detailed dataset statistics are listed in

Table 5.1 below.

Table 5.1 Details of Five Benchmark Datasets

Dataset Nodes Edges Classes Features

Citeseer 3327 4732 6 3703
Cora 2708 5429 7 1433
Dblp 17716 105734 4 1639

Wikics 11701 216123 10 300
Coauthor_CS 18333 81894 15 6805
Coauthor_Phy 34493 247962 5 8415

5.4.2 Baselines

For comparison, we use 12 representative methods as our baselines. Since all methods are

based on the original GCN, GCN [63] is selected as the benchmark. A total of 11 recently

proposed methods on graphs are used as strong competitors, which can be categorized into

two groups:

• Pseudo-labeling methods: M3S [121], Self-training [71], Co-training [71], Union [71],

Intersection [71], and DSGCN [159];

• Self-supervised methods: Super-GCN [61], GMI [98], SSGCN-clu [144], SSGCN-

comp [144], SSGCN-par [144].

We run all experiments for 10 times with different random seeds, and report the mean Micro-

F1 scores over 10 times. Due to algorithmic design, the number of selected pseudo labels

might vary among different methods. Thus, we report the best performance of each baseline

method with its optimized hyperparameter.
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Table 5.2 Details of hyperparameters

Given labels (per class) α β k

{1,3,5} 1.0 1.0 0.55
{10,15,20,30,40,50} 0.2 0.2 0.55

5.4.3 Experimental setup

Model Specification. For fair comparison, all baselines are adapted to use a two-layer

GCN with 16 units of hidden layer. The hyper-parameters are the same with the GCN

in [63], with L2 regularization of 5∗10−4, learning rate of 0.01, dropout rate of 0.5. As for

subgraph encoder φ(·), we utilize a one-layer GCN with c outputs, where c is the number of

classes. Both positive and negative subgraphs share the same subgraph encoder. ϕ(·) is also

a one-layer MLP with 16-dimension output. The discriminator D(·) is a one-layer bilinear

network with sigmoid activation.

Following the setup of self-training methods [159], we split each dataset into training

and test sets. To be specific, we randomly choose {1,3,5,10,15,20,30,40,50} nodes per

class for training as different settings, and the remaining nodes are used for testing. The

performance of different methods is assessed on the test set for comparison.

Hyperparameter Specification. We specify hyperparameters conforming to the following

rules: Generally, a larger α and β value would be beneficial to model training when the given

labels are scarce, while smaller α and β values are more likely to achieve better performance

as the number of given labels increases. For k, we fix its value to 0.55 for all settings. The

specification of the three hyperparameters are summarized in Table 5.2. In terms of q, we

empirically find that our model has relatively lower sensitivity to q with the regularization of

loss �I , so its value is fixed under most of the settings. Specifically, we set q = 1.0 when one

label per class is given, and q = 0.1 for all other label rates. The best r value for subgraph

embedding in loss �I depends on the edge density of the input graph. Particularly, we apply

r = 3 for edge-sparse graphs (Cora, Citeseer, Dblp, Coauther_cs), r = 2 for Wikics, and

r = 1 for Coauther_phy.
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Implementation Details. When training InfoGNN, we first pre-train the network to gen-

erate reliable predictions using Eq.(5.18) for 200 epoches, and then proceed with formal

training using the full loss function Eq.(5.19) for another 200 epoches. During formal train-

ing, in order to get a steady model, we allow the model to update pseudo-label set every

5 epoches using Eq.(5.10). When updating the pseudo-label set, we use the mean score

of unlabeled nodes in its last 10 training epoches, rather than the current prediction and

informativeness score. Our framework is implemented using Pytorch. All experiments are

run on a machine powered by Intel(R) Xeon(R) Gold 6126 @ 2.60GHz CPU and 2 Nvidia

Tesla V100 32GB Memory Cards with Cuda version 10.2.

Table 5.3 The Micro-F1 performance comparison with various given labels on Cora and
Citeseer.

Method Cora Citeseer
1 3 5 10 15 20 1 3 5 10 15 20

GCN 0.418 0.616 0.685 0.742 0.784 0.797 0.381 0.504 0.569 0.602 0.660 0.682
Super-GCN 0.522 0.673 0.720 0.760 0.788 0.799 0.499• 0.610 0.665• 0.700• 0.706• 0.712

GMI 0.502 0.672 0.715 0.757 0.783 0.797 0.497 0.568 0.621 0.632 0.670 0.683
SSGCN-clu 0.407 0.684 0.739 0.776 0.797• 0.810• 0.267 0.388 0.507 0.616 0.634 0.647

SSGCN-comp 0.451 0.609 0.676 0.741 0.772 0.794 0.433 0.547 0.638 0.682 0.692 0.709
SSGCN-par 0.444 0.649 0.692 0.734 0.757 0.770 0.457 0.578 0.643 0.693 0.705 0.716•
Cotraining 0.533 0.661 0.689 0.741 0.764 0.774 0.383 0.469 0.563 0.601 0.640 0.649
Selftraining 0.399 0.608 0.693 0.761 0.789 0.793 0.324 0.463 0.526 0.647 0.683 0.685

Union 0.505 0.663 0.713 0.764 0.792 0.797 0.366 0.491 0.560 0.631 0.663 0.667
Intersection 0.408 0.596 0.674 0.736 0.770 0.775 0.337 0.497 0.582 0.671 0.694 0.699

M3S 0.439 0.651 0.688 0.754 0.763 0.789 0.307 0.515 0.635 0.674 0.683 0.695
DSGCN 0.596• 0.712• 0.745• 0.777• 0.792 0.795 0.463 0.613• 0.652 0.674 0.681 0.684
InfoGNN 0.601 0.735 0.776 0.792 0.813 0.828 0.540 0.652 0.717 0.721 0.725 0.733

5.4.4 Comparison with State-of-the-art Baselines

Table 5.3-5.5 reports the mean Micro-F1 scores of our method and all baselines with respect

to various label rates. The best performer is highlighted by bold, and the second best

performer is highlighted by underline on each setting. We also perform significance test

between the Micro-F1 scores achieved by InfoGNN and the best baseline methods, where we

use •(◦) to indicate that InfoGNN is significantly better (worse) than the compared baseline

methods at 95% significance level.

On the whole, our proposed InfoGNN algorithm outperforms other baseline methods

by a large margin over almost all the settings. Compared with GCN, we averagely achieve
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Table 5.4 The Micro-F1 performance comparison with various given labels on Dblp and
Wikics.

Method Dblp Wikics
1 3 5 10 15 20 1 3 5 10 15 20

GCN 0.472 0.583 0.627 0.652 0.688 0.718 0.384 0.550 0.638 0.682 0.712 0.720
Super-GCN 0.472 0.583 0.685 0.708 0.729 0.738 0.399 0.552 0.599 0.683 0.712 0.721

GMI 0.544 0.597 0.656 0.728 0.739 0.754 0.325 0.484 0.546 0.654 0.683 0.700
SSGCN-clu 0.369 0.528 0.649 0.692 0.721 0.744 0.335 0.579 0.627 0.694 0.714 0.725

SSGCN-comp 0.458 0.525 0.598 0.634 0.674 0.707 0.224 0.261 0.358 0.381 0.343 0.356
SSGCN-par 0.418 0.545 0.639 0.683 0.708 0.733 0.332 0.593 0.659 0.706 0.732 0.740
Cotraining 0.545 0.646 0.634 0.674 0.703 0.701 0.367 0.584 0.645 0.692 0.724 0.737
Selftraining 0.437 0.580 0.634 0.707 0.738 0.759 0.350 0.602 0.655◦ 0.701 0.725 0.738

Union 0.485 0.618 0.652 0.712 0.737 0.746 0.351 0.584 0.646 0.694 0.723 0.740•
Intersection 0.458 0.581 0.566 0.665 0.715 0.734 0.359 0.599 0.654 0.706• 0.726• 0.740•

M3S 0.547 0.635 0.672 0.733 0.749• 0.752 0.401 0.593 0.621 0.685 0.711 0.734
DSGCN 0.587• 0.671◦ 0.720• 0.738• 0.744 0.764• 0.414• 0.607• 0.635 0.705 0.716 0.728
InfoGNN 0.596 0.669 0.746 0.765 0.773 0.787 0.460 0.610 0.650 0.723 0.740 0.742

Table 5.5 The Micro-F1 performance comparison with various given labels on Coauthor_cs
and Coauthor_phy. OOM indicates Out-Of-Memory on a 32GB GPU

Method Coauthor_cs Coauthor_phy
1 3 5 10 15 20 1 3 5 10 15 20

GCN 0.640 0.799 0.847 0.893 0.901 0.909 0.700 0.849 0.868 0.901 0.912 0.918
Super-GCN 0.668 0.841 0.869 0.895 0.897 0.897 0.688 0.848 0.891 0.908 0.923 0.923

GMI OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
SSGCN-clu 0.770◦ 0.886◦ 0.890• 0.905• 0.908 0.911 0.889◦ 0.923• 0.930• 0.935• 0.936• 0.936•

SSGCN-comp 0.711 0.858 0.888 0.904 0.907 0.909 0.798 0.892 0.904 0.927 0.921 0.928
SSGCN-par 0.737 0.860 0.881 0.898 0.901 0.903 0.824 0.915 0.919 0.925 0.931 0.931
Cotraining 0.643 0.745 0.810 0.849 0.864 0.885 0.758 0.842 0.850 0.898 0.891 0.917
Selftraining 0.592 0.770 0.828 0.873 0.892 0.895 0.744 0.865 0.890 0.908 0.914 0.921

Union 0.621 0.772 0.812 0.856 0.864 0.885 0.750 0.855 0.870 0.908 0.902 0.910
Intersection 0.650 0.775 0.851 0.887 0.893 0.898 0.612 0.763 0.854 0.901 0.904 0.926

M3S 0.648 0.818 0.879 0.897 0.909• 0.912• 0.828 0.868 0.895 0.914 0.922 0.930
DSGCN 0.743◦ 0.829 0.863 0.879 0.883 0.892 0.781 0.812 0.862 0.896 0.908 0.916
InfoGNN 0.683 0.865 0.892 0.906 0.913 0.918 0.842 0.924 0.934 0.938 0.942 0.942

12.1%,9.2%,8.0%,6.3%,4.1%,3.5% of performance improvement on the six datasets when

1,3,5,10,15,20 nodes per class are labeled, respectively. In particular, InfoGNN achieves

better classification results with lower label rates. With less than 10 nodes per class, InfoGNN

succeeds in achieving similar Micro-F1 scores as GCN uses 20 nodes per class over all

datasets. As for self-supervised baselines, their performance is inconsistent across different

datasets. For example, SSGCN-clu obtains advantageous results on Coauthor-cs/phy, but

achieves undesirable results on other four datasets. SSGCN-Comp performs poorly on Wikics.

This is due to the fact that specific pretext tasks designed by SSGCN do not generalize well

on graphs with different properties.
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Table 5.6 further compares the performance of all methods w.r.t. higher label rates, with

30, 40, and 50 given labels per class. As can be seen, as the number of given labels per

class increases beyond 20, Micro-F1 scores of all methods continue to increase but with

a declining growth rate. It is expected that when the supervision information is relatively

sufficient, a further increase in given labels can lead to only limited performance gains.

Moreover, with more abundant labels provided for training, the advantages of pseudo labeling

methods gradually diminish as compared to the original GCN. However, our InfoGNN still

outperform other baselines in most cases, especially on Cora and Citeseer. For example,

when 50 labels per class are given on Cora, our InfoGNN achieves an Micro-F1 score of

85.3%, markedly outperforming the second best performer (SSGCN-clu) and GCN by 1.6%

and 2.4%, respectively. This proves that our InfoGNN is able to effectively alleviate the

information redundancy problem when label information is relatively sufficient.

5.4.5 Ablation Study

To further analyze how different components of the proposed method take effect, we conduct

a series of ablation experiments. Due to space limit, we only report experimental results

on the settings where 3 and 10 nodes are labeled per class. The ablations are designed as

follows:

• InfoGNN-I: only �I is applied based on GCN, which is used to evaluate the role of the

contrastive loss;

• InfoGNN-IT: both �I and �T are applied, which is utilized to evaluate the impact of

the GCE loss by comparing with InfoGNN-I. Note that only prediction score is applied

here for �T , i.e. Up = {v ∈ U | f (xv) j > k};

• InfoGNN-ITS: on the basis of InfoGNN-IT, the informativeness score, i.e., Eq.(5.10),

is also applied for �T , which is to test the efficacy of the informativeness score by

comparing with InfoGNN-IT. The impact of the �KL loss can be revealed by comparing

with InfoGNN.
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Table 5.6 The Micro-F1 performance comparison over six datasets with {30,40,50} given
labels per class. OOM indicates Out-Of-Memory on a 32GB GPU

Method Cora Citeseer Dblp
30 40 50 30 40 50 30 40 50

GCN 0.816 0.825 0.829 0.695 0.708 0.716 0.743 0.753 0.770
Super-GCN 0.812 0.828 0.836 0.720 0.728 0.737 0.760 0.767 0.775

GMI 0.806 0.815 0.820 0.692 0.695 0.701 0.784• 0.794◦ 0.794•
SSGCN-clu 0.822• 0.829• 0.837• 0.682 0.683 0.680 0.756 0.766 0.775

SSGCN-comp 0.804 0.819 0.830 0.718 0.729 0.739• 0.744 0.752 0.761
SSGCN-par 0.784 0.791 0.798 0.724• 0.732• 0.738 0.751 0.762 0.769
Cotraining 0.804 0.820 0.823 0.675 0.684 0.697 0.716 0.726 0.736
Selftraining 0.807 0.821 0.818 0.696 0.706 0.710 0.777 0.775 0.782

Union 0.807 0.819 0.827 0.688 0.691 0.694 0.757 0.764 0.757
Intersection 0.800 0.818 0.821 0.705 0.712 0.716 0.745 0.765 0.769

M3S 0.792 0.807 0.815 0.713 0.716 0.721 0.765 0.769 0.774
DSGCN 0.798 0.809 0.816 0.684 0.684 0.685 0.784 0.786 0.786
InfoGNN 0.835 0.848 0.853 0.735 0.737 0.742 0.789 0.792 0.795

Method Wikics Coauthor_cs Coauthor_phy
30 40 50 30 40 50 30 40 50

GCN 0.752• 0.761• 0.764 0.901 0.900 0.903 0.924 0.932 0.933
Super-GCN 0.742 0.752 0.763 0.908 0.909 0.909 0.929 0.930 0.933

GMI 0.713 0.730 0.746 OOM OOM OOM OOM OOM OOM
SSGCN-clu 0.738 0.745 0.747 0.914 0.915 0.915 0.938• 0.939• 0.940•

SSGCN-comp 0.361 0.375 0.412 0.909 0.918 0.922• 0.928 0.933 0.937
SSGCN-par 0.741 0.750 0.755 0.906 0.908 0.908 0.933 0.933 0.934
Cotraining 0.750 0.756 0.765 0.889 0.895 0.898 0.926 0.924 0.927
Selftraining 0.743 0.760 0.768◦ 0.901 0.901 0.904 0.932 0.932 0.932

Union 0.752• 0.761 0.765 0.893 0.901 0.898 0.921 0.931 0.925
Intersection 0.748 0.765 0.767 0.896 0.898 0.905 0.927 0.927 0.932

M3S 0.745 0.755 0.763 0.916• 0.920• 0.922• 0.935 0.937 0.940
DSGCN 0.751 0.759 0.763 0.893 0.896 0.897 0.916 0.920 0.922
InfoGNN 0.754 0.764 0.766 0.919 0.922 0.923 0.943 0.944 0.945

The ablation results are reported in Table 5.7. under two settings where the number of given

labels per class is 3 and 10, respectively. The constrastive loss �I seems to make similar

contributions with both label rates, achieving an average improvement of 3.7% and 3.9%

over GCN on the six datasets. On top of �I , the use of GCE leads to further performance

improvements. Taking Wikics as an example, GCE further boosts the accuracy by 3.8% and

3.0% on the basis of �I , with 3 and 10 given labels per class, respectively. By comparing

the performance of InfoGNN-IT and InfoGNN-ITS, we can find that the informativeness

scores make distinct contributions under the two settings, where, for example, it achieves an

improvement of 3.3% with 3 given labels per class in contrast to 0.5% with 10 given labels

per class on Citeseer. This is because an increasing number of training labels counteracts
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Table 5.7 The Micro-F1 performance comparisons with various ablation studies

Method Cora Citeseer Dblp Wikics Coauthor_cs Coauthor_phy
3 10 3 10 3 10 3 10 3 10 3 10

GCN 0.616 0.742 0.504 0.602 0.583 0.652 0.550 0.682 0.799 0.893 0.849 0.901
InfoGNN-I 0.681 0.764 0.583 0.694 0.598 0.739 0.549 0.695 0.824 0.887 0.885 0.928

InfoGNN-IT 0.697 0.790 0.590 0.723 0.618 0.768 0.587 0.725 0.827 0.892 0.899 0.937
InfoGNN-ITS 0.720 0.792 0.623 0.728 0.646 0.766 0.593 0.723 0.827 0.886 0.906 0.937

InfoGNN 0.735 0.792 0.652 0.721 0.669 0.765 0.610 0.723 0.865 0.906 0.924 0.938

the effect of informativeness scoring. The similar phenomenon can also be observed on

the contribution of �KL. It also plays a more significant role at a lower label rate, where

imbalanced predictions are more likely to occur.

5.4.6 Sensitivity Analysis

We also conduct experiments to test the impact of hyperparameters (α,β ,q,k and r) on the

performance of InfoGNN. We take turns to test the effect of each hyperparameter while

fixing the values of the rest. Due to space limit, we only report the results when 3 and 10

labels per class are given for training.

Hyperparameter α controls the contribution of the contrastive loss �I to the total loss.

Its impact on model performance is shown in Fig. 5.2. With 3 given labels per class

provided, we find that a larger α could lead to better performance before α = 0.6. After that,

the performance retains at a good level with very slight changes. With 10 labels per class

provided, except on Dblp, the changes of α do not largely impact model performance on Cora

and Citeseer. This indicates that, when label information is very limited, our model requires

stronger structural regularization to help generate discriminative node embeddings. On the

other hand, when label information is relatively sufficient, network training is dominated by

supervised loss from given labels. Thus, �I mainly takes effects when given labels are scarce.

Fig. 5.3 shows performance comparisons on different values of β . A similar trend with α

can be observed on both settings. With only 3 labels per class provided, the class-imbalance

problem is more likely to occur during pseudo labeling. Thus, our model favors a larger

β to regularize numbers of each pseudo label class to be relatively equivalent, as shown in
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(a) α with 3 given labels per class (b) α with 10 given labels per class

Fig. 5.2 Sensitivity analysis w.r.t. α on citation networks

(a) β with 3 given labels per class (b) β with 10 given labels per class

Fig. 5.3 Sensitivity analysis w.r.t. β on citation networks

Fig. 5.3(a). As β increases from 0.1 to 1.0, our model boosts its classification accuracy by

around 3% on Citeseer and Cora. When 10 labels are given, as more label information can

be exploited, the class-imbalance problem is less likely to arise. Hence, the change of β does

not result in much impact on model performance.

Hyperparameter q is the generalization coefficient in �T . Fig. 5.4(a) illustrates model

performance changes with an increase of q when one label per class is given. We can see

that, as q rises, the performance of our method shows a gradual increase on the three datasets.

This is because the severe lack of label information is more probable to incur noise in pseudo

labels. A larger q is then able to decay the gradient update on unreliable samples that have

lower prediction probabilities. This reduces the sensitiveness of our model towards incorrect
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(a) q with 1 given labels per class (b) k with 1 given labels per class

Fig. 5.4 Sensitivity analysis w.r.t. q & k on citation networks

pseudo labels, leading to better performance. On the other hand, when descending q near

zero, the GCE loss is approaching close to SCE, and at the same time, the model has a

significant performance degradation. This further proves the superiority of GCE over SCE

loss when only few labels are given for training.

Hyperparameter k is the threshold for �T , which controls how many unlabeled nodes are

selected for pseudo labeling. Fig. 5.4(b) depicts the performance changes by varying k with

one given label per class. As we can see in this figure, a medium k achieves better accuracy,

while either too small or too large k would undermine model performance.

Hyperparameter r indicates the number of hops for generating positive and negative

subgraphs to calculate informativeness measures. The value of r controls the scale of

sampled subgraphs. A larger r means the informativeness score is measured w.r.t. a larger-

scale neighborhood. To investigate how the scale of sampled subgraphs affects model

performance, we conduct experiments with varying values of r on three datasets (Cora,

Wikics and Coauthor_phy) with diverse topology characteristics. As depicted in Fig.5.5,

for edge-sparse graphs (e.g., Cora), a larger r tends to result in better performance. For

edge-dense graphs (e.g., Coauthor_phy), a smaller r is more likely to exert better performance.

For graphs with medium edge density (e.g., Wikics), the best results are achieved with a

medium r. When r exceeds 3 hops, model performance has a slight drop on all three datasets.



78 Informative Pseudo-Labeling for Graph Neural Networks with Few Labels

(a) r-hops with 3 given labels per class (b) r-hops with 10 given labels per class

Fig. 5.5 Sensitivity analysis w.r.t. number of hops r for sampled subgraphs

In summary, our method favors a smaller subgraph scale on dense graphs, but a larger scale

on sparse graphs for sampling sufficient structural contexts in the local neighborhood.

5.5 Conclusion

In this chapter, I propose an informativeness augmented pseudo-labeling framework, called

InfoGNN, to address semi-supervised node classification with few labels. I argue that all of

the existing pseudo-labeling approaches on GNNs suffer from two major pitfalls: information

redundancy and noisy pseudo labels. To address these issues, I propose to quantify node

informativeness based on MI estimation maximization. Taking both informativeness and

prediction confidence into account, more informative unlabeled nodes are selected for pseudo

labeling. We then adapt a generalized cross entropy loss on pseudo labels to mitigate

the adverse effect of unreliable pseudo labels. Furthermore, we apply a class-balanced

regularization in response to the potential class-imbalance problem caused by pseudo labeling.

Extensive experimental results and ablation studies verify the effectiveness of our proposed

framework, and demonstrate its superior performance to state-of-the-art baseline models,

especially under very few-label settings.

On the whole, this chapter offers an effective pseudo-labeling solution with information

augmentation to cope with the label scarcity challenge in the semi-supervised node classifi-
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cation task. However, apart from the label sparsity problem, the GNN learning also suffers

from the label noise problem, which can dramatically deteriorate the generalization ability of

the model and result in poor predicting performance. Therefore, in the next chapter, I will

explore how to learn a robust GNN to combat the label noise problem on graphs.





Chapter 6

Unified Robust Training for Graph

Neural Networks against Label Noise
1

In this chapter, I would investigate the issue of label-noise representation learning on graphs

under the semi-supervised setting. To mitigate the label noise problem, a unified robust

training framework has been proposed based on the label aggregation method. It can perform

sample reweighting and label correction simultaneously, which can significantly reduce

model sensitivity towards incorrect labels. Next, I will introduce details of the proposed

framework.

6.1 Introduction

Recently, graph neural networks (GNNs) have been proposed to learn node embeddings and

achieved state-of-the-art performance on the node classification task. The core of GNNs is to

learn neural network primitives that generate node representations by passing, transforming,

and aggregating node features from local neighborhoods [36]. As such, nearby nodes would

have similar node representations [130]. By generalizing convolutional neural networks to

graph data, graph convolutional networks (GCNs) [63] define the convolution operation via a

1Yayong Li, Jie Yin, Ling Chen. Unified Robust Training for Graph Neural Networks Against Label Noise.
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 528-540. Springer, 2021. [74]



82 Unified Robust Training for Graph Neural Networks against Label Noise

neighborhood aggregation function in the Fourier domain. The convolution of GCNs is a

special form of Laplacian smoothing on graphs [71], which mixes the features of a node and

its nearby neighbors. However, this smoothing operation can be disrupted when the training

data is corrupted with label noise. As the training proceeds, GCNs would completely fit

noisy labels, resulting in degraded performance and poor generalization. Hence, one key

challenge is how to improve the robustness of GNNs against label noise, which is largely

under explored yet.

Despite the lack of research attention on learning GNNs with noisy labels, it has been

extensively studied on tasks with independent and identically distributed (IID) data in the

domain of computer vision and natural language processing, such as the image classification

[56, 60, 97, 127] and text classification task [5, 58, 85]. Label noise naturally stems from inter-

observer variability, human annotator’s error, and errors in crowdsourced annotations [60].

Existing methods attempt to correct the loss function by directly estimating a noise transition

matrix [97, 127], or by adding extra layers to model the noise transition matrix [37, 58, 120].

However, it is difficult to accurately estimate the noise transition matrix particularly with a

large number of classes. Alternative methods such as MentorNet [56] and Co-teaching [47]

seek to separate clean samples from noisy samples, and use only the most likely clean

samples to update model training. Other methods [4, 102] reweight each sample in the

gradient update of the loss function, according to model’s predicted probabilities. However,

they require a large number of labeled samples or an extra clean set for training. Otherwise,

reweighting would be unreliable and result in poor performance.

The aforementioned learning techniques, however, cannot be directly applied to tackle

label noise on graphs. This is attributed to two significant challenges. (1) Label sparsity:

graphs with inter-connected nodes are arguably harder to label than individual images. Very

often, graphs are sparsely labeled, with only a small set of labeled nodes provided for training.

Hence, we cannot simply drop “bad nodes” with corrupted labels like previous methods

using “small-loss trick” [47, 56]. (2) Label dependency: graph nodes exhibit strong label

dependency, so nodes with high structural proximity (directly or indirectly connected) tend
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to have a similar label. This presses a strong need to fully exploit graph topology and sparse

node labels when training a robust model against label noise.

To tackle these challenges, we propose a novel approach for robustly learning GNN

models against noisy labels under semi-supervised settings. Our approach provides a unified

robust training framework for graph neural networks (UnionNET) that performs sample

reweighting and label correction simulatenously. The core idea is twofold: (1) leverage ran-

dom walks to perform label aggregation among nodes with structural proximity. (2) estimate

node-level class distribution to guide sample reweighting and label correction. Intuitively,

noisy labels could cause disordered predictions around context nodes, thus its derived node

class distribution could in turn reflect the reliability of given labels. This provides an effective

way to assess the reliability of given labels, guided by which sample reweighting and label

correction are expected to weaken unreliable supervision and encourage label smoothing

around context nodes. We verify the effectiveness of our proposed approach through ex-

periments and ablation studies on real-world networks, demonstrating its superiority over

competitive baselines.

6.2 Problem Statement

In this work, we consider the semi-supervised node classification setting. Given an undirected

graph G = {V ,E ,X} with only a small fraction of nodes being labeled, let L = {(xi,yi)}|L|i=1

denote the set of labeled nodes, and U denotes the unlabeled set. Under the GNN learning

framework, the aim is to learn a representation hxi for each node vi such that its class label

can be correctly predicted by f (hxi). For node classification, the standard cross entropy loss

is used as the objective function:

J ( f (hx),y) =− ∑
i∈L

∑
j∈m

yi j log( f (hxi) j). (6.1)

where m denotes the number of the classes.
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GNN
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Fig. 6.1 Overview of the UnionNET Framework. The key idea is to infer the reliability
of the given labels through estimating node-level class probability distributions via label
aggregation. Based on this, the corresponding label weights and corrected labels are obtained
to update model parameters during training.

However, when class labels in L are corrupted with label noise, the standard cross

entropy would cause the GNN training to overfit incorrect labels, and in turn lead to degraded

classification performance. Therefore, in our work, we aim to train a robust GNN model that

is less sensitive to label noise.

Formally, given a small set of noisy labeled nodes L , we aim to: (1) learn node represen-

tations h for all nodes V , and (2) learn a model f (h) to predict the labels of unlabeled nodes

in U with maximum classification performance.

6.3 The UnionNET Learning Framework

To effectively tackle label noise on graphs, one desirable solution should consider the

following key aspects. First, since only a small set of labeled nodes are available for training,

we cannot simply drop “bad nodes” using “small-loss trick” [47, 56]. Second, graph nodes

that share similar structural context exhibit label dependency. Thus, we propose a unified

framework, UnionNET, for robustly training a GNN and performing label correction, as

shown in Fig 6.1.

Taking a given graph as input, a GNN is first applied to learn node representations

and generate the predicted label for each node. Then, label information is aggregated to
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estimate a class probability distribution per node. This aggregation is operated on a support

set constructed by collecting context nodes with high structural proximity. According to

node-level class probability distributions, our algorithm generates label weights and corrected

labels for each labeled node. Those corrected labels generated from the support set could

potentially provide extra “correct” supervision. Taken together, both given labels reweighted

by label weights and corrected labels are used to update model parameters.

6.3.1 Label Aggregation

On graphs, it is well studied that nodes with high structural proximity tend to have the same

labels [81, 160]. The supervision from noisy labels however disrupt such label smoothness

around context nodes. Nevertheless, their smoothness degree could provide a reference to

assess the reliability of given labels. Hence, we design a label aggregator that aggregates

label information for each labeled node from its context nodes to estimate its class probability

distribution. Specifically, for each labeled node x̂ ∈ L , called anchor node, we construct

a support set of size k by performing random walks to collect context nodes with higher-

order proximity. The generated support set is denoted as S = {(xi,yi)|x̂}k, where xi is the

supportive node in S and yi is one-hot encoding of xi’s class label. During the random walk,

if node xi ∈ L , the given label yi is collected in S. Otherwise, the predicted label is collected.

Given anchor node x̂ and its support set S, we derive a node-level class probability distri-

bution P(y|x̂,S) over m classes. It signifies the probabilities of the anchor node belonging to

m classes in reference of its support set. Particularly, we specify a non-parametric attention

mechanism given by,

P(y|x̂,S) = ∑
xi∈S

A (x̂,xi)yi = ∑
xi∈S

exp(hT
xi

hx̂)

∑x j∈S exp(hT
x j

hx̂)
yi. (6.2)

Here, the probability of the anchor node belonging to each class is calculated according to

its proximity with nearby nodes in the support set. We define the proximity as the inner

product in the embedding space, and apply softmax to measure the contribution made by
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each label in the support set to estimating the anchor node’ class probability distribution.

In the support set, if a node has a higher similarity with the anchor node (i.e., higher inner

product), its label would contribute more to P(y|x̂,S), and vice verse. This simple yet

effective mechanism estimates a class probability distribution for each node, which is used to

guide sample reweighting and label correction.

6.3.2 Sample Reweighting

For GNNs, the standard cross entropy loss implicitly puts more emphasis on the samples for

which the predicted labels disagree with the provided labels during gradient update. This

mechanism enables faster convergence and better fitting to the training data. However, if there

exist corrupted labels in the training set, this implicit weighting scheme would conversely

push the model to overfit noisy labels, leading to degraded performance [154]. To mitigate

this, we devise a reweighting scheme for each node according to the reliability of its given

label, so that the loss of reliable labels could contribute more during gradient update.

Specifically, we define the reweighting score of anchor node x̂ as:

pr(ŷ|x̂,S) = ∑
xi∈S,yi=ŷ

exp(hT
xi

hx̂)

∑x j∈S exp(hT
x j

hx̂)
yi. (6.3)

The loss function for the labeled nodes is thus defined as:

Jr =− ∑
x̂∈L

pr(ŷ|x̂,S)× ŷ log( f (hx̂)), (6.4)

where pr(ŷ|x̂,S) is the weight imposed on each labeled node x̂ according to the aggregated

label information. If the given label ŷ is highly consistent with nearby labels, its gradient

would be back-propagated as it is. Otherwise, it would be penalized by the weight during

back-propagation.
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6.3.3 Label Correction

The reweighting method reduces the sensitivity of the standard cross entropy to noisy labels,

and boosts the robustness of the model. As labeled nodes are limited for training, we also

augment the set of labeled nodes by correcting noisy labels. Accordingly, we define the label

correction loss as

Jc =− ∑
x̂∈L

pc(y
c|x̂,S)×yc log( f (hx̂)), (6.5)

pc(y
c|x̂,S) = max

yi
P(yi|x̂,S) = max

yi
∑

xi∈S

exp(hT
xi

hx̂)

∑x j∈S exp(hT
x j

hx̂)
yi. (6.6)

This provides additional supervision for x̂ with the corrected label yc, encouraging it to have

the same label with the most consistent one in its support set. This approach aggregates labels

from context nodes via a linear combination based on their similarity in the embedding space.

It thus helps diminish the gradient update of corrupted labels, and boosts the supervision

from consistent labels.

However, in the presence of extreme label noise, this approach would produce biased

correction that deviates far away from its original prior distribution over the training data.

This bias could exacerbate the overfitting problem caused by noisy labels. To overcome this,

we employ a KL-divergence loss between the prior and predicted distributions to push them

as close as possible [125]. It is given by:

Jp =
m

∑
j=1

p j log
p j

f (hX) j

, (6.7)

Where p j is the prior probability of class j in L , and f (hX) j =
1
|L| ∑x∈L f (hx) j is the mean

value of predicted probability distribution on the training set.

6.3.4 Model Training

The training of UnionNET is given in Algorithm 3, which consists of the pre-training phase

(Step 1-4) and the training phase (Step 6-11). The pre-training is employed to obtain a
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parameterized GNN. The pre-trained GNN then generates node representations h, which

are used to compute sample weights and corrected labels. After that, model parameters are

updated according to the loss function:

J f = (1−α)Jr +αJc +βJp. (6.8)

Compared with GNNs with the standard cross entropy loss, the training of UnionNET incurs

an extra computational complexity of O(|L|ml) to estimate node-level class distributions,

where |L| is number of labeled nodes, m is number of classes, and l is number of nodes

including context nodes in the support set.

Algorithm 3 Robust training for GNNs against label noise

Input: Graph G = {V ,E ,X}, node sets L ,U , α , β
Output: label predictions

1: Initialize network parameters
2: for t = 0; t < epoches; t = t +1 do

3: if t < start_epoch then

4: pre-train the network according to Eq.(6.1);
5: else

6: Generate node representations hx

7: Construct support set S for each node x̂ ∈ L
8: Aggregate labels to produce node-level class distribution P(y|x̂,S)
9: Compute weight pr(ŷ|x̂,S) using Eq.(6.3)

10: Generate corrected label yc and its weight pc(y
c|x̂,S) using Eq.(6.6)

11: Update parameters by descending gradient of Eq.(6.8)
12: end if

13: end for

14: return Label predictions

6.4 Experiments

6.4.1 Datasets and Baselines.

Three benchmark datasets are used in our experiments: Cora, Citeseer, and Pubmed. We

use the same data split as in [63], with 500 nodes for validation, 1000 nodes for testing, and
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the remaining for training. Of these training sets, only a small fraction of nodes are labeled

(3.6% on Citeseer, 5.2% on Cora, 0.3% on Pubmed) and the rest of nodes are unlabeled.

Details about the datasets can be found in [63].

As far as we are concerned, there has not yet been any method exclusively proposed to

deal with the label noise problem on GNNs for semi-supervised node classification. We

select three strong competing methods from image classification, and adapt them to work

with GCN [63] under our setting as baselines.

• Co-teaching [47] trains two peer networks simultaneously, and each network selects

the samples that have small losses to update the other network.

• Decoupling [84] also trains two networks simultaneously, but it updates the model

parameters using only the samples with which the two networks disagree.

• GCE [154] utilizes a negative Box-Cox transformation as the loss function.

As a general robust training framework, UnionNET can be applied to any semi-supervised

GNNs for node classification. Hereby, we instantiate UnionNET with two state-of-the-art

GNNs, GCN [63] and GAT [130], denoted as UnionNET-GCN and UnionNET-GAT,

respectively.

6.4.2 Experimental Setup.

Due to the fact that there are not yet benchmark graph datasets corrupted with noisy labels,

we manually generate noisy labels on public datasets to evaluate our algorithm. We follow

commonly used label noise generation methods in the domain of images [47, 56]. Given a

noise rate r, we generate noisy labels over all classes according to a noise transition matrix

Qm×m, where Qi j = p(ỹ = j|y = i) is the probability of clean label y being flipped to noisy

label ỹ. We consider two types of noise: 1). Symmetric noise: label i is corrupted to other

labels with a uniform random probability, s.t. Qi j = Q ji; 2). Pairflip noise: mislabeling only

occurs between similar classes. For instance, given r = 0.4 and m = 3, the two types of noise
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transition matrices are given by

Qsymmetric =

⎡
⎢⎢⎢⎣

0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6

⎤
⎥⎥⎥⎦ ; Qpairflip =

⎡
⎢⎢⎢⎣

0.6 0.4 0.

0. 0.6 0.4

0.4 0. 0.6

⎤
⎥⎥⎥⎦

Our experiments follow a transductive setting, where the noise transition matrix is only

applied to L , while both validation and test sets are kept clean. For UnionNET-GCN, we

apply a two-layer GCN, which has 16 units of hidden layer. The hyper-parameters are set as

L2 regularization of 5∗10−4, learning rate of 0.01, dropout rate of 0.5. For UnionNET-GAT,

we apply a two-layer GAT, with the first layer consisting of 8 attention heads, each computing

8 features. The learning rate is 0.005, dropout rate is 0.6, L2 regularization is 5∗10−4.

We set the random walk length as 10 on Cora and Citeseer, and 4 on Pubmed, and the

random walk is repeated for 10 times for each node to create the support set. We first pre-train

the network, during which only the standard cross entropy are used, i.e. Jpre =J ( f (hx),y).

After that, it proceeds to the formal training, which uses J f in Eq.(6.8) as the loss function.

And α and β are set as 0.5 and 1.0.

With regard to the hyperparameters of the baseline methods, their backbone GCN archi-

tectures remain the same with UnionNET-GCN for fair comparison. And then the grid search

strategy is applied to determine their optimal hyperparameters over the validation set such

that they can reach their best performance for evaluation.

6.4.3 Comparison with State-of-the-art Methods

Table 6.1 compares the node classification performance of all methods w.r.t. both the

symmetric and asymmetric noise types under various noise rates. The best performer is

highlighted by bold, and the second best performer is highlighted by underline on each

setting. For GCN-based baselines, UnionNET-GCN generally outperforms all baselines by

a large margin. Compared with GCN in case of symmetric noise type, UnionNET-GCN

achieves an accuracy improvement of 3.4%, 6.3%, 13.1% and 7.1% under the noise rate
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Table 6.1 Performance comparison (Micro-F1 score) on node classification

Symmetric label noise Asymmetric label noise
Dataset Methods noise rate (%)

10 20 40 60 10 20 30 40

Cora

GCN 0.778 0.732 0.576 0.420 0.768 0.696• 0.636 0.517•
Co-teaching 0.775 0.665 0.486 0.249 0.773• 0.630 0.542 0.393
Decoupling 0.738 0.708 0.564 0.436• 0.743 0.683 0.574 0.518

GCE 0.794• 0.741• 0.621• 0.402 0.773• 0.714 0.652• 0.509
UnionNET-GCN 0.812 0.795 0.707 0.491 0.801 0.771 0.710 0.584

GAT 0.755 0.709 0.566 0.389 0.764 0.683 0.616 0.534
UnionNET-GAT 0.797 0.784 0.692 0.546 0.774 0.745 0.660 0.540

Citeseer

GCN 0.670 0.634 0.480 0.360• 0.667 0.624 0.531 0.501•
Co-teaching 0.673 0.541 0.379 0.273 0.677 0.583 0.472 0.418
Decoupling 0.588 0.584 0.402 0.348 0.615 0.548 0.537 0.468

GCE 0.690• 0.649• 0.542• 0.358 0.701• 0.633• 0.552• 0.498
UnionNET-GCN 0.701 0.673 0.567 0.401 0.706 0.667 0.587 0.521

GAT 0.649 0.604 0.475 0.338 0.651 0.599 0.551 0.480
UnionNET-GAT 0.695 0.667 0.585 0.424 0.697 0.654 0.604 0.512

Pubmed

GCN 0.748 0.672 0.508 0.367 0.739 0.686 0.618• 0.528
Co-teaching 0.769• 0.660 0.478 0.345 0.761• 0.634 0.576 0.472
Decoupling 0.650 0.625 0.422 0.334 0.641 0.592 0.428 0.396

GCE 0.750 0.699• 0.561• 0.393• 0.753 0.696• 0.609 0.567◦
UnionNET-GCN 0.769 0.725 0.588 0.409 0.776 0.719 0.649 0.556

GAT 0.736 0.670 0.525 0.381 0.737 0.657 0.594 0.536
UnionNET-GAT 0.751 0.726 0.570 0.361 0.758 0.702 0.626 0.552

of 10%, 20%, 40% and 60% on Cora, respectively. Similar improvements can be seen on

Citeseer and Pubmed, where the smallest improvement is 2.1% on Pubmed with a noise

rate of 10%, and the largest improvement is 8.7% on Citeseer with a noise rate of 40%. In

case of asymmetric noise type, UnionNET-GCN has the similar performance. Quantitatively,

UnionNET-GCN outperforms GCN by an average of 3.6%, 5.0%, 5.4%, 3.8% on the four

noise rates on three datasets.

In most cases, GCE is the second best performer, but its advantage comes at the cost

of worse converging capability, leading to sub-optimal performance. Co-teaching and

Decoupling do not exhibit robustness towards noisy labels as reported in fully supervised

image classification. Their performance drops are expected, as labeled data is further reduced

when they prune the training data. This exacerbates the label scarcity problem in our

semi-supervised setting.
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In order to further verify the significance of the improvements, we have also conducted

the paired t-test between UnionNET-GCN and the best baseline methods. We utilize the •(◦)
to indicate UnionNET-GCN is significantly better (worse) than the best baseline performer

at the 95% significance level. And the t-test results exhibit consistent performance with the

Micro-F1 score, which further proves the effectiveness of the proposed method.

In addition, in terms of the GAT backbone, UnionNET-GAT also surpasses GAT on the

three datasets w.r.t. most noise rates. Similar to UnionNET-GCN, UnionNET-GAT generally

exhibits greater superiority on higher noise rates. For example, in case of symmetric noise

type, UnionNET-GAT outperforms GAT by an average of 3.4%, 6.4%, 9.4% and 7.4% at the

four noise rates. Such performance gains validate the generality of UnionNET on improving

robustness of different GNN models against noisy labels.

6.4.4 Ablation Study

We conduct ablation studies to evaluate the effectiveness of various components in Union-

NET. Our ablation study is based on GCN, with two ablation versions: 1) UnionNET-R

with only sample reweighting; 2) UnionNET-RC with sample reweighting and label correc-

tion. The ablation results are summarized in Table 6.2. When only reweighting is applied,

UnionNET-R consistently exhibits advantages over GCN, though the advantageous margins

vary over different noise rates and noise types. When it comes to UnionNET-RC, both smaple

reweighting and label correction are applied, but, surprisingly, the performance becomes

worse than UnionNET-R in some extreme cases with higher noise rates. Therefore, label

correction does not guarantee performance gains, whose utility is exerted only with the

regularization of the prior distribution loss.

6.4.5 Hyper-parameter Sensitivity

We further test the sensitivity of UnionNET-GCN w.r.t. the hyper-parameters (α , β ) in

Eq.(6.8) and the random walk length for the support set construction. We report the results
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Table 6.2 Performance comparison of ablation experiments based on GCN

Symmetric label noise Asymmetric label noise
Dataset Methods noise rate (%)

10 20 40 60 10 20 30 40

Cora

GCN 0.778 0.732 0.576 0.420 0.768 0.696 0.636 0.517
UnionNET-R 0.785 0.770 0.659 0.480 0.796 0.709 0.646 0.521

UnionNET-RC 0.788 0.759 0.626 0.339 0.783 0.703 0.601 0.516
UnionNET-GCN 0.812 0.795 0.707 0.491 0.801 0.771 0.710 0.584

Citeseer

GCN 0.670 0.634 0.480 0.360 0.667 0.624 0.531 0.501
UnionNET-R 0.692 0.643 0.507 0.363 0.699 0.627 0.547 0.484

UnionNET-RC 0.657 0.645 0.495 0.330 0.660 0.642 0.511 0.431
UnionNET-GCN 0.701 0.673 0.567 0.401 0.706 0.667 0.587 0.521

Pubmed

GCN 0.748 0.672 0.508 0.367 0.739 0.686 0.618 0.528
UnionNET-R 0.766 0.710 0.573 0.417 0.759 0.705 0.624 0.560

UnionNET-RC 0.770 0.695 0.573 0.362 0.757 0.650 0.608 0.497
UnionNET-GCN 0.769 0.725 0.588 0.409 0.776 0.719 0.649 0.556

on the three datasets at 40% symmetric noise rate in Fig. 6.2. α controls the trade-off

between sample reweighting and label correction. When α is zero, our method is only a

reweighting method. When α reaches 1, our method evolves as a self-learning based label

correction method, where given labels are replaced with predicted labels after the initial

epoches. On Cora and Citeseer, our method achieves the best results at a medium α value.

But on Pubmed, its performance improves as α increases, and reaches its best when α = 1.0.

This is possibly because Pubmed has stronger clustering property with only three classes,

enabling the predicted labels to be more reliable for correction. The performance changes

w.r.t. β exhibits similar trends on the three datasets, where our method gradually improves

its performance as β increases. The random walk length determines the order of proximity

the support set could cover. Either too small or too large of the random walk length would

impair the reliability of the supportive nodes, and thus undermine performance improvements.

Empirically, our method achieves its best at a medium range of random walk lengths.

6.5 Conclusion

In this chapter, a novel semi-supervised framework, UnionNET, is built up for learning with

noisy labels on graphs. I argued that, existing methods on image classification fail to work on
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(a) α (b) β (c) Walk Length

Fig. 6.2 Hyper-parameter sensitivity analysis on α,β , and the random walk length

graphs, as they often take a fully supervised approach, and requires extra clean supervision or

explicit estimation of the noise transition matrix. Our approach provides a unified solution to

robustly training a GNN model and performing label correction simultaneously. UnionNET is

a general framework that can be instantiated with any state-of-the-art semi-supervised GNNs

to improve model robustness, and it can be trained in an end-to-end manner. Experiments

on three real-world datasets demonstrated that our method is effective in improving model

robustness w.r.t. different label noise types and rates, and outperform competitive baselines.

In summary, this chapter provides an effective solution to combat the label noise problem

by proposing a unified robust training framework for GNNs. In the next chapter, I will make

a conclusion of this thesis and outline a few potential directions for my future research.



Chapter 7

Conclusion and Future Work

In this chapter, I would first make a summarization of the whole thesis, and then offers some

directions for my further research.

7.1 Conclusion

In this thesis, I focus on the research of handling label sparse and noise problems on attributed

graphs with the expectation of relieving GNNs’ high dependence on large amounts of high-

quality labels. The comprehensive literature review allows me to gain a deep insight into

the limitations and challenges with regard to the label-associated problems on GNNs. Based

on these knowledge, I develop my research from three perspectives, i.e. active learning,

pseudo-labeling and label-noise representation learning on attributed graphs. Active learning

has been proposed to tackle the label scarcity problem by constructing the train set with

the most useful nodes. It is tasked to select the most informative nodes and query their

labels for training within a given labeling budget, such that the selected nodes can maximize

the classification performance of the model. To address this problem, a semi-supervised

adversarial active learning (SEAL) framework is proposed on graphs in Chapter 4. It selects

the nodes that share the least information with the existing labeled nodes. Inspired by the

generative adversarial network, a GAN-like architecture is established with two adversarial

components, i.e. a GNN encoder and a semi-supervised discriminator network, to measure
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the informativeness of the unlabeled candidates via the adversarial min-max game. The

nodes having the largest divergence scores with the existing label set will be selected for

querying labels. Experimental results show that the nodes selected by SEAL are able to well

refine the decision boundary and obtain superior classification performance compared with

baseline methods.

Then, I investigate a strict case of semi-supervised node classification where only very

few labels are available for learning GNN classifiers. I argue that the existing methods

suffer from a pair of contradictory problems, i.e. information redundancy and pseudo-label

noise. In response to this challenge, an informativeness augmented pseudo-labeling method

(InfoGNN) is proposed in Chapter 5, expecting to bring in more informative candidates

while avoiding negative impacts from noisy pseudo-labels. This method consists of two main

components, where an informativeness estimator is designed to measure node informativeness

via the mutual information maximization technique, and a generalized cross entropy loss is

applied to mitigate the problem of pseudo-label noise. Besides, a class-balance regularization

is also applied to relieve the potential class imbalance problem during pseudo-labeling.

Combining them together, InfoGNN can take the aspects of informativeness, reliability

and class-imbalance into consideration at the same time. Extensive experiments over six

real-world datasets demonstrate that the proposed method can effectively improve model

performance by a large margin.

Finally, to combat the label noise problem, a robust training framework (UnionNET) is

proposed for learning GNNs with noisy labels under the semi-supervised setting in Chapter

6. This approach provides a unified solution for performing sample reweighting and label

correction simultaneously. This solution is based on the intuition that since noisy labels

usually cause disordered predictions around neighboring nodes, the derived node class

distribution by neighboring nodes can in turn reflect the reliability of given labels. Therefore,

to estimate the label reliability, a label aggregation method is proposed to estimate node-level

class probability distributions, which further provide guidance for the operation of sample

reweighting and label correction. The extensive experimental results show that the proposed

UnionNET achieves state-of-the-art performance over multiple datasets in the context of
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different noise types and rates. To the best of our knowledge, this is the first work that studies

the label noise problem on node classification tasks under the semi-supervised setting.

7.2 Future Work

In the future, I will continue to focus on the label-associated problems on attributed graphs,

and I am going to extend my research to more related topics in this area. Here, I outline

several directions for my future research:

• Class-imbalanced problem: Current GNNs are primarily learned based on balanced-

splitting label sets, ignoring the fact that the class distribution of given labels is usually

inherently skewed in real-world datasets. Under the class-imbalanced setting, few

classes (i.e. majority classes) usually dominate the whole labeled set in terms of their

numbers, while the rest of classes (i.e. minority classes) only occupy a small portion of

labeled nodes. This would induce GNNs to produce coarse representations in minority

classes and compromise the classification performance [117]. Besides inheriting

challenges existing in the IID data, the complex topological relationships among nodes

in minority and majority classes would further aggravate this problem. However, how

to address the class imbalanced problem on graphs is still under-explored.

Confronting this challenge, the following two directions may provide me with possible

solutions for handling the class-imbalanced problem: 1) the adversarial oversampling

method; Instead of increasing the number of minority samples by random data augmen-

tation technique, adversarial oversampling method can generate minority nodes that

reside close to the decision boundary between different classes, thereby better refining

the classifier; 2) the edge drop method; Since excessive links between minority and

majority classes would weaken the characteristic of the minority nodes during feature

aggregation process, selectively dropping redundant links connecting different classes

would benefit to eliminating the negative effect of imbalance bias.
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• Non-homophily graph: Most message passing mechanisms of GNNs are designed

based on the homophily assumption that connected nodes are more likely to share

the same labels. Thus the connected nodes with high structural proximity are usually

pushed together during training, so as to learn similar representations for them and

serve for the downstream node classification tasks. However, this learning mechanism

is conflicting with non-homophily (heterophily) graphs, where nodes with different

labels tend to be connected together. Under this situation, the feature aggregation

operation among different classes would conversely make the learned representations

more indistinguishable, and thus deteriorating the model performance.

To address this challenge, I would make efforts from the two perspectives: 1) since

the nodes with high structural and semantic similarities might be far away from each

other in a heterophily graph, I would increase the reception field of GNNs, such

that they can have the capability of capturing long-distance dependencies among

nodes; 2) Instead of the uniform aggregation mechanism, I would try to design the

discriminative aggregation mechanism, which can assign specific weights to local

neighbors to demonstrate their distinct contributions to learning the class-differentiable

representations for center nodes.

• Graph incremental learning: Currently, most of our research efforts have been on

investigating static graphs, however, how to deal with dynamic graphs is still under

explored. In real-world applications, graphs usually rapidly evolve with novel class

nodes being incrementally added in different time periods. Under this situation, the

GNN models are desired to be able to undertake a sequence of incremental learning

sessions, where each session involves fulfilling the classification task on a set of novel

(unseen) classes. Graph incremental learning is tasked to learn such a GNN model that

can acquire novel knowledge from the new sessions while preserving the capability

of recognizing all encountered classes in the previous sessions. Nevertheless, during

the incremental learning session, the up-to-date GNN models that are trained on a set

of new classes often suffer from the catastrophic forgetting problem, and have a poor

performance on previously encountered classes.
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In order to address this catastrophic forgetting problem, I would resort to knowledge

distillation techniques, where the distillation loss allows the model to retain previously

acquired knowledge by minimizing the divergence of representations between old and

new models, thereby assisting the new model to maintain the ability of distinguishing

old class. In addition, it would be also a promising solution to mitigate the forgetting

problem by selectively storing and replaying a small number of samples that can well

represent previous tasks, which can avoid the model to be completely overwritten by

the novel classes, and thus preserving the previous knowledge.
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