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ABSTRACT 

Acute Lymphoblastic Leukemia (ALL) is cancer in which bone marrow overproduces 

undeveloped lymphocytes. Over 6500 cases of ALL are diagnosed every year in the United 

States in both adults and children, accounting for around 25% of pediatric cancers, and the 

trend continues to rise. With the advancements of AI and big data analytics, early diagnosis of 

ALL can be used to aid the clinical decisions of physicians and radiologists. This research 

proposes a deep neural network-based (ALNet) model that employs depth-wise convolution 

with different dilation rates to classify microscopic white blood cell images. Specifically, the 

cluster layers encompass convolution and max-pooling followed by a normalization process 

that provides enriched structural and contextual details to extract robust local and global 

features from the microscopic images for the accurate prediction of ALL. The performance of 

the model was compared with various pre-trained models, including VGG16, ResNet-50, 

GoogleNet, and AlexNet, based on precision, recall, accuracy, F1 score, loss accuracy, and 

receiver operating characteristic (ROC) curves. Experimental results showed that the proposed 

ALNet model yielded the highest classification accuracy of 91.13% and an F1 score of 0.96 

with less computational complexity. ALNet demonstrated promising ALL categorization and 

outperformed the other pre-trained models. 
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1. Introduction 

Leukemia is a type of blood cancer that causes the body's white blood cells to become 

cancerous. The immune system is placed at risk by these abnormal blood cells, which affect 

the bone marrow and blood and can suppress red blood cell and platelet formation in the bone 

marrow[1]. Leukemia is classified into two types depending on the affected white blood cell: 

myelogenous or acute myeloid leukemia (AML) if the affected cells are monocytes or 

granulocytes, or lymphoblastic or acute lymphoblastic leukemia (ALL) if the affected cells are 

lymphocytes. ALL is a dangerous hematological condition categorized by the overproduction 



and continued multiplication of malignant and immature white blood cells. The disease can 

become fatal if left untreated, where the blasts rapidly spread into the bloodstream and other 

vital organs. Thus, it is pertinent to diagnose the disease as early as possible to improve 

treatment rates and recovery [2]. 

ALL is further divided into three subtypes: L1, L2, and L3. L1 cells are typically tiny and have 

a comparable shape, very little cytoplasm, and a well-structured and discoid nucleus. In 

comparison to L1, L2 cells exhibit more form variety and are larger with an irregular nucleus 

and different cytoplasm. L3 cells are round or oval, similar in form and size, have an abundance 

of cytoplasm, which includes vacuoles, and are usually bigger than L1 [1]. ALL is usually 

detected and diagnosed using a complete blood count test based on the number of white blood 

cells. A bone marrow aspiration, a microscopic examination of a blood smear, is used to 

confirm that a patient has been diagnosed with leukemia [1]. However, these manual detection 

approaches are both time-consuming and costly. 

Considering the numerous limitations of manual detection methods, computer-aided detection 

and diagnostic methods using deep learning are a promising alternative. Computer-aided 

methods have proven to be effective, accurate, cost-effective, and fast compared to the 

traditional approaches. For many years, physicians have classified and counted cells using 

cytometers for diagnosis. [3]. As an alternative, automatic white blood cells (WBC) 

identification technology, which is recognized for its low cost and homogeneous accuracy, is 

gaining attention in hematological illness diagnostics. WBC includes segmentation, feature 

extraction, classification, and numeration as the four main processes, whereby segmentation 

directly impacts categorization and counting accuracy [4]. In recent years, many artificial 

intelligence experts have combined deep learning with Convolutional Neural Networks 

(CNNs), enabling the development of powerful computer systems for medical assistance. 

CNNs are also employed in signal processing, natural language processing, image, video 

processing, medical fusion [24], and tumor diagnosis [26,27]. However, substantial processing 

capacity and a large quantity of data are required to train and adjust neural networks to perform 

the required task [9]. 

Deep neural networks have been shown to provide better results than traditional neural 

networks. The depth of a neural network is crucial in the performance of a model, which 

effectively increases when the network layers are increased due to the high ability to extract 

more complex feature patterns. The complex features help to improve the recognition accuracy 

of the model. A deep neural network enhances the automation of feature generation resulting 

in better self-learning capabilities even in unstructured data. 

To our knowledge, there are only a few publicly available supervised image datasets that can 

be used to test and validate methodologies for cell classification and segmentation of ALL. 

This work utilized the ALL Challenge dataset of ISBI 2019, a dataset created from segmenting 

microscopic images of white blood cells, for analysis. The strained noise and illumination 

errors have been rectified after the acquisition process through pre-processing [5].  

The proposed custom ALNet model addresses the following research problems:  



• The ability to diagnose ALL in datasets with distinctive attributes is a key difficulty for 

reliable detection and classification. 

• ALL and HEM (normal WBCs) classification are based on blast shape and 

cytochemical staining, where an ideal classification should detect elite features for 

biological distinctions. 

• Issues with optimal image categorization based on morphology, staining, molecular 

analysis, and flow cytometry must be fixed. 

• Improved performance must be generated from the enhanced learning process through 

identifying the best-needed patterns. 

• The selection of suitable features must be obtained for localization and area extraction 

of leukocytes, which separates distinct cell components, i.e., cytoplasm and nucleus. 

Pre-trained models and conventional deep learning architectures are used in most existing 

research works to diagnose Acute Lymphoblastic Leukemia. Therefore, this work analyzed the 

need for an accurate diagnosis of ALL through distinguishing immature leukemic blasts from 

normal cells (cancer). Deep neural custom model ALNet have been proposed to test and 

identify whether or not a patient is positive for ALL through microscopic image cells. A multi-

objective fitness function is created for all and normal patients by considering sensitivity, 

specificity, precision, and recall metrics. This research presents an ALL analysis/detection 

model based on a custom convolutional neural network: ALNet with enhanced clustered layers 

and hyper-tuned normalized parameters. The proposed model identified distinct key features 

for better classification even though blast shape and cytochemical staining is difficult to 

differentiate in images. The involved process like morphology, staining, molecular analysis, 

and flow cytometry identification is overcome by the deep neural network with an enhanced 

learning process resulting best patterns for ALL. 

The significant contributions of the ALNet model are described as follows: 

• The custom CNN architecture employs multiple stacked convolution layers that 

learn the hierarchical features for accurate classification. The batch normalization 

introduced between these stacked clusters enhances the obtained features for better 

classification. 

• The weights and learning process are enhanced through normalization, resulting in 

significantly reduced features across the stacked hierarchical clusters and 

subsequently the accurate and fast classification of ALL microscopic images.  

• In order to attain optimal accuracy, data were evaluated on multiple pre-trained 

transfer learning models, and also hyperparameter tuning was performed. 

• The results for both pre-trained and custom models were obtained for training and 

testing based on ROC curve, accuracy, and loss. 

 

The rest of the paper is organized as follows. The detection of Acute Lymphocytic Leukemia 

from microscopic images in previous research along with the existing limitations are discussed 

in section 2. The proposed custom ALNet model and its architecture are presented in section 

3. Section 4 discusses the experimental, and section 5 presents the comparison of the proposed 



and pre-trained transfer learning models. The study is concluded with a discussion of the future 

scope in section 6. 

2. Related Works 

A review of current work carried out by various researchers on microscopic WBC segmentation 

and classification is presented in this section. Wu et al. [6] used the Hue (H) and Saturation (S) 

components of the HSI model to develop an iterative Otsu's threshold technique for leukocyte 

segmentation based on a circular histogram. Experiments reveal that the approach is successful 

in segmenting the nucleus of WBCs, but it loses cytoplasm information. On a private dataset 

of 330 images, Rehman et al. [7] proposed a technique to categorize ALL subtypes using a 

fine-tuned AlexNet. The latter researchers combined robust segmentation and deep learning 

approaches and a convolutional neural network to train the proposed model on bone marrow 

images to obtain reliable classification results. Compared to other techniques, such as K-Neural 

Network (KNN), Support Vector Machine (SVM), and Naive Bayes, their proposed strategy 

achieved a good accuracy of 97.78%. Shafique and Tehsin [8] employed ALL-IDB and 50 

private images to classify ALL subtypes, using a pre-trained AlexNet that had been fine-tuned 

for their data. The pretrained network's final levels were replaced with new layers that 

categorize the input images into four categories, while a data augmentation strategy was 

utilized to reduce overtraining. Their datasets were compared to several color models to 

evaluate their performance across a variety of color images. Results show that their strategy 

achieved a sensitivity of 100%, specificity of 98.11%, and accuracy of 99.50% for acute 

lymphoblastic leukemia detection and a sensitivity of 96.74%, specificity of 99.03%, and 

accuracy of 96.06% for acute lymphoblastic leukemia subtype categorization. To classify ALL 

on ALL-IDB, Vogado et al. [9] applied a number of different pre-trained CNNs as fixed feature 

extractors and used pre-trained CNNs to extract characteristics from a blood smear image in 

order to provide a unique visual description. Principal Component Analysis (PCA) was used 

to extract features to identify the images as healthy or diseased, and an ensemble of classifiers 

was built by combining three distinct classification algorithms: Random Forest (RF), 

Multilayer Perceptron (MLP), and SVM. The proposed strategy achieved 100% accuracy. 

Deep learning models can be used to identify biomarkers from functional Magnetic Resonance 

imaging [25]. 

Prellberg and Kramer [11] presented a classification model based on a ResNeXt convolutional 

neural network with Squeeze-and-Excitation modules and attained an F1-score of 88.91% on 

the C-NMC dataset. Madhloom et al. [10] utilized and classified a private dataset and classified 

using a combination of KNN, Naive Bayes, SVM, and MLP, where KNN outperformed with 

99% accuracy compared to other conventional classifiers. Shi et al. [12] employed deep 

convolutional neural networks to solve the cell categorization challenge (CNNs). An ensemble 

of state-of-the-art CNNs was implemented to enhance the CNN classifier's generalization, and 

various augmentation techniques were explored. In addition, the Grad-CAM method was used 

to identify the discriminative region forecasting, thus predicting image category. Their model 

obtained an accuracy of 86.9% in early testing and 87.9% in final testing. Krishna Kanth [13] 

suggests the fuzzy hypersphere neural network (FHSNN) classifier for ALL identification 



where the number of genes in microarray datasets is greater than the number of samples 

available, achieving 100% accuracy with fewer genes than previously reported approaches.  

On the ISBI 2019 dataset, Kulhalli et al. [14] employed the ResNeXt101 Convolutional Neural 

Network architecture trained for varied periods by modifying the decision threshold. They 

attained an F1 score of 0.825 on the testing data. Pan et al. [15] introduced a neighborhood-

correction algorithm (NCA), fine-tuned a residual network to generate feature maps, and 

constructed a fisher vector for classification using similar weighted majority neighbors. 

Microscopic Normal and cancer cells (C-NMC) images were tested using NCA, which 

achieved an F1 score of 92.50 and an accuracy of 91.73% during testing. For 

lymphocyte/lymphoblast classification, Neoh et al. [16] suggested stimulating discriminant 

measures (SDM) based clustering which attained superior results than SVM, multi-layer 

perceptron, and Dempster-Shafer ensemble. SDM-based clustering method outperformed 

Fuzzy C-means, which focuses solely on within-cluster scatter variance when tested with the 

ALL-IDB2 database. It also outperformed Latent Dirichlet Allocation (LDA) during nucleus-

cytoplasm separation, attaining a recognition rate of 96.72%. 

Saber et al. [20] proposed a deep learning model based on the transfer learning technique to 

aid in the detection of Breast Cancer detection. The features are retrieved from the MIAS 

dataset using a pre-trained convolutional neural network architecture such as Inception V3, 

ResNet50, Visual Geometry Group networks (VGG)-19, VGG-16, and Inception-V2 ResNet 

in the proposed model. The transfer learning of the VGG16 model is effective for breast cancer 

diagnosis, with overall accuracy, sensitivity, specificity, precision, F-score, and AUC of 

98.96%, 97.83%, 99.13%, 97.35%, 97.66%, and 0.995% for the 80-20 method and 98.87%, 

97.27%, 98.2%, 98.84%, 98.04%, and 0.993% for the 10-fold. 

Kumar et al[28] proposed salp swarm and cat swarm method to optimize convolution neural 

network (SSPSO-CNN) and classify blood cells. Training was carried out using VGG19 model 

with 10674 images. Particle swarm optimization (PSO) was used along with salp swarm 

optimization (SSPSO) to improve the classification accuracy.  The proposed model attained 

classification accuracy of 99% using the augmented dataset.       

Deep learning has been used in the diagnosis of various diseases including plant diseases and 

insect pests [29]. The performance is said to be affected by the structure of the network and the 

hyperparameters which are manually selected. Yu et al. proposed an improved fruit fly 

optimization algorithm that searches for a better learning rate. Among all the models IResNet50 

has better diagnostic accuracy for tomato pests with 94.4%. Generative Adversarial Networks 

have been used in image processing due to image generation capabilities and have been used 

in data augmentation. Guan et al.[30] proposed  Texture-constrained multichannel progressive 

generative adversarial network (TMP-GAN ), a medical image augmentation method.  Joint 

training of Multiple channels is used to avoid shortcomings of generation methods. To improve 

the fidelity of synthesized images adversarial learning-based texture discrimination loss was 

used. To improve the accuracy TMP-GAN uses a progressive generation mechanism of the 

medical image synthesizer. This method experimented on the CBIS-DDMS and their 

pancreatic dataset which was observed to show an improved F1 score of 2.77% and 2.36%. 



An adaptive learning network called the neuro-fuzzy-based group method of data handling 

(NF-GMDH) was utilized to forecast the scour process at pile groups owing to waves [31]. The 

particle swarm optimization (PSO) and gravitational search algorithms were used to create the 

NF-GMDH network (GSA). Sediment size, geometric property, pile spacing, pile group 

organization, and wave characteristics upstream of group piles are all effective criteria for scour 

depth. NF_GMDH is a hierarchical structured adaptive learning network where each neuron 

has two input variables and one output variable. The final output is the average output of the 

last layer. The Comparative analysis of techniques used for classification in the existing 

literature is detailed in Table 1. 

Table 1: Comparative analysis of techniques used for classification in the existing literature 

Ref Data Method Advantage Disadvantage Accuracy 

(%) 

[35] ALL-IDB1 ShuffleNet The performance 

surpasses most 

of the pre-trained 

models like 

Xception and 

ResNet50. 

Results may 

have 

misclassification 

since the rules of 

shuffling are 

manually set 

rather than 

adaptive rule 

setting. 

96.67 

[34] ALL_IDB2 LeuFeatx – 

VGG16- adapted 

fine-tuned 

feature-extracted 

model. 

High 

performance of 

multiple 

classifiers 

employing 

LeuFeatx deep 

features. 

Data Imbalance 

can cause 

reduced 

performance 

96.15 

[33] AI-cell 

platform 

CNN Proposed model 

classifies 19 

types of WBCs 

and achieves 

better results 

than pre-trained 

models. 

Lack of  dataset  82.93 

[32] WBC Capsule 

Network 

Effectively 

learned training 

data and 

achieved high 

accuracy 

WBC’s were 

only classified 

under five 

classes 

96.86 

[28] WBC CNN VGG19 CNN 

architecture was 

Multiple 

optimization 

99.00 



optimized using 

SSPSO 

algorithm to 

achieve high 

classification 

accuracy  

algorithm is a 

lengthy process 

to fine tune 

CNN 

 

2.1 Convolutional Neural Network 

Advancements in a diversity of pattern recognition fields have been achieved over the last 

decade, from image processing to speech recognition, due to Convolutional Neural Networks. 

The most significant benefit of CNNs is that they reduce the number of parameters in Artificial 

Neural Networks (ANNs). This achievement has prompted researchers and developers to 

examine larger models in order to address difficult problems that were previously impossible 

to solve with regular ANNs [17]. Biological activities influence convolutional networks, where 

the pattern of communication between neurons mirrors a neuron's reaction to a specific 

stimulus in the visual cortex. Individual neurons react to stimuli based on their receptive zone. 

The receptive fields of the various neurons somewhat overlap when spanning the complete 

field of vision. The term "multilayer perceptron" refers to an entirely interconnected network, 

where neurons in each layer are coupled to all neurons in the layer below it. [18]. 

CNN is comprised of two neural networks: one that extracts features from the input to be 

analysed and another that classifies the extracted features. The feature extraction network 

receives the input image, then the extracted feature signals are fed into the neural network and 

used to classify the image. The classification neural network then generates an output based on 

the image's properties [19]. The convolution operation is given in equation (1): 

𝐹all  (A, B)  =  (Z ∗  F)(A, B)  = Σ𝑖 Σ𝑗  Z(A + l, B +  m)F(l, m)    (1) 

where Z is the input image matrix; F denotes the two-dimensional filter of sizes A and B; and 

𝐹all denotes the output feature map. The convolution operation is represented by (Z ∗  F). 

CNN offers a variety of alternatives, such as stride, for reducing adverse effects and settings. 

Controlling the stride allows us to modify the overlap with the following layer's node [17]. 

Given an image of I×I dimension and L×L filter size, the output size O is determined using 

equation (2), as illustrated in Figure 1. 

 

Figure 1. Movement of filter over the image 



𝑂 = 1 +
𝐼−𝐿

𝑋
       (2)  

where I is the input size; L is the filter size; and X is the stride size. One disadvantage of the 

convolution method is the loss of information that may be present on the image's border. 

Because edge features are only captured when the filter slips, they never have a chance to be 

recognized. The use of zero padding is a simple but effective approach to solve the issue, which 

is determined by modifying equation (2) into equation (3) with zero-padding: 

𝑂 = 1 +
𝐼+2𝑍−𝐿

𝑋
      (3) 

This padding concept allows us to avoid decreasing the network’s output size with depth, where 

Z is the number of zero-padding layers. As a result, any number of deep convolutional networks 

may be used. Following convolution, non-linearity is the next layer that can be used to regulate 

or turn off the output and to saturate or limit the output that is generated.  

Deep learning networks employ the rectified linear activation unit (ReLU) function to train 

deep convolutional networks.   ReLU returns the value provided as input (z) linearly for values 

greater than 0 or the value 0 if the input value is 0 or less than 0. The mathematical formulation 

of ReLU is given by equations (4) and (5): 

𝑅𝑒𝐿𝑈(𝑧) = max(0, 𝑧)         (4)  

𝑑

𝑑𝑧
𝑅𝑒𝐿𝑈(𝑧) = {

1 𝑖𝑓 𝑧 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (5) 

The pooling layer reduces the size of the image by combining neighboring pixels in a specified 

area into a single representative value. The three forms of pooling include max, average, and 

sum. The preceding layer's dimensionality is reduced by half when it is pooled. In a normal 

neural network, the fully-connected layer is compared to how neurons are constructed and are 

related to every other node in the subsequent layers.  

The Softmax function (Fall) computes the relative probabilities of each 'm' output classes using 

equation (6).  

𝐹𝑎𝑙𝑙 =
𝑒𝑍𝑙

∑ 𝑒𝑍𝑖𝑚
𝑖=1

          (6) 

where m is the number of classes, 𝑒𝑍𝑙 is the standard exponential function for input vector and 

𝑒𝑍𝑖 is the standard exponential function for the output vector. In most cases, the total of the 

outputs equals 1.  

The cross-entropy (Z(PQ)) between two probability distributions (P, Q) defined in equation (7) 

is employed as the loss function: 

Z(PQ) = −ΣiPilog (𝑄𝑖)        (7) 

where Pi represents the probability of the event ‘i’ in P (target probability distribution), 𝑄𝑖 

represents the probability of the event ‘i’ in Q (approximation of the underlying / target 

distribution). 



2.2 Transfer Learning Models 

In its most basic form, transfer learning uses information gained from one activity to solve 

other related issues. In this study, the knowledge collected from pre-trained networks was used 

to detect ALL in patients. ALL images were classified from normal images using four pre-

trained models: ResNet-50, VGG-16, AlexNet, and GoogleNet. These deep transfer learning 

pre-trained models were used as a feature extractor, and the classifier was trained on top of this 

extractor. Residual Networks, or ResNet, is a well-known neural network that is used to 

perform various computer vision tasks. ResNet-50 is a deep convolutional neural network with 

50 layers. AlexNet, the model credited with igniting interest in deep learning, has only eight 

convolutional layers, including five convolutional layers and three fully connected layers.  

Comparatively, the VGG network has 19 layers, Inception or GoogleNet has 22, and ResNet 

152 has 152. AlexNet is implemented with multiple GPUs, Overlapping Pooling, and ReLU 

Nonlinearity. Visual Geometry Group (VGG) is a deep convolutional network with 16 or 19  

layers in VGG-16 or VGG-19, respectively. However, Simonyan and Zisserman's VGG-16 and 

VGG-19 architectures include five convolution blocks and three fully connected layers. 

Inception-V1 is a 27-layer deep CNN, and Inception-V3 is the third version of Google's 

Inception CNN, which is made up of many inception blocks, each of which contains various 

sized convolution and pooling layers. Each inception block performs multi-level feature 

extraction. The InceptionResNet-50V2, which was derived from Francois Chollet's Xception 

model, has 164 layers, substantially more layers than Inception-V3. Xception, unlike Inception, 

uses depth-wise separable convolutions instead of inception modules. 

2.3 Research Gaps  

The predominant gaps in the research on Acute Lymphocytic Leukemia are addressed below. 

1. The majority of studies were done using small and private datasets [7,8], which limits 

the performance of deep learning models. To increase the performance of trained 

models, validation and testing must be done on large datasets to improve the model 

generalization. 

2. Using typical image processing techniques, it is difficult to describe and extract 

certain features from microscopic images in order to discern the properties of ALL. 

3. The challenge of distinguishing immature leukemic blasts from normal cells under 

the microscope is difficult since the images of the two cells are morphologically 

identical; hence, automatic feature extraction must be conducted. Although most deep 

learning models offer autonomous feature learning, they require many computations to 

obtain higher classification accuracy. As a result, this trade-off between accuracy and 

complexity must be handled through customized deep architectures. 

3. Methodology 

Figure 2 depicts the proposed system's overall workflow, illustrating data acquisition followed 

by training and testing the dataset using custom and transfers learning models. The dataset was 

split into training, validation, and testing, where ResNet 50, VGG-16, AlexNet, GoogleNet, 

and the proposed custom CNN named ALNet were employed for the classification of Acute 



Lymphoblastic Leukemia microscopic images. The final output includes the enhanced 

classified images, which demonstrates good accuracy. 

 

Figure 2. Overall workflow of the proposed system 

In recent years, several state-of-the-art convolution models have been used to classify Acute 

Lymphocytic Leukemia, which primarily include transfer learning and convolution models. 

This research presents a custom ALNet model and seven pre-trained models to classify Acute 

Lymphocytic Leukaemia from microscopic images. The proposed ALNet Model includes 

clustered convolution and pooling layers normalized by a batch normalization layer to reduce 

features and computational complexity. Batch normalization transforms the mean output close 

to 0 while keeping the standard deviation close to 1. This layer's output is normalized using the 

mean and standard deviation of the current batch of inputs. 

𝐵𝑁 = 𝛾 ∗
𝑏−𝑚𝑒𝑎𝑛(𝑏)

√𝑣𝑎𝑟(𝑏)+𝜀
+ 𝛽                                                                                                         (8) 

where  is the learned scaling factor; b is batch;  is a learned offset factor resulting in lesser 

trainable parameters; and  is a small configurable constant that is part of the constructor 

arguments. 

 

3.1 ALNet Model 

The proposed ALNet model includes five 2-D convolution layers, max-pooling layers, and an 

activation layer using ReLU as the activation function. These layers are clustered for generating 

improved features followed by batch normalization, resulting in elite features for better 

classification. Figure 3 depicts the suggested flow diagram and features of the ALNet model. 

Equation (9) is used to measure and evaluate the similarity between test and training images in 

order to improve their robust detection of ALL and HEM: 

𝑂 = 𝑋(𝑛)𝜑(𝑖(𝑛))                                                                                                              (9) 



where O is the neural network's output; I is the input vector; n is the number of input training 

samples; and 𝜑 is the radial basis function. 

The evaluation of classification error e(n) is shown in equation (10), where L(n) is the output 

response, and n is the number of iterations of the neural network. Equation (11) gives the 

objective function f(n), and equation (12) is used to determine the weights (z) that are updated 

during the computation process: 

𝑒(𝑛) = 𝐿(𝑛) − 𝑂(𝑛)                                                                                                           (10) 

𝑓(𝑛) =
1

2
 𝑒2(𝑛) =  

1

2
 [𝐿(𝑛) − 𝑂(𝑛)]2                                                                                  (11) 

∆𝑧(𝑛 + 1) = (𝑛 + 1) − ∆𝑧(𝑛)                                                                                             (12) 

Equation (13) is calculated to obtain the weights based on the gradient descent: 

∆𝑧(𝑛 + 1) = 𝛿𝑛∆𝑧(𝑛) − 𝛾𝑐𝑃𝑧(𝑛)
𝛽

𝑓(𝑛)                                                                                   (13) 

where 0< 𝛽 <1, 0< 𝛿 < 𝛾; 𝛾 is the learning rate; 𝛿 is the momentum factor; and 𝛿𝑛 is the 

momentum coefficient and 𝑃 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛.  

 

Figure 3. Architectural overview of the proposed network ALNet 

3.1.1 Cluster Layer One (𝑪𝑳𝟏) 

The hierarchical structure is maintained for the included layers in each cluster group. The Acute 

Lymphoblastic Leukemia images are used as the input of the first convolution layer, which is 

followed by another stacked hierarchical layer, and the generated features are fed to two 

stacked pooling layers. The convolutional layer processes the input of size 224×224×3 with 

5×5 kernel size, yielding a 32-feature map, followed by another convolutional layer that 

processes the output of the preceding convolution layer with 5×5 pixel filters, yielding a 32-

feature map.  A feature dimensionality reduction is achieved by employing two max-pooling 

layers with a 2×2 kernel size. A batch normalization layer is used to normalize the outputs of 

the previous levels.   

3.1.2 Cluster Layer Two (𝑪𝑳𝟐) 

Similarly, two convolution layers are grouped into a cluster using 64 filters with a 5×5- kernel 

size trailed by two stacked 3×3 max-pooling layers resulting in 11×11×64 fine-scale features 

of the image. Following the clustered layers, a batch normalization layer is used to normalize 

the resulting output from the convolution layers.  



3.1.3 Cluster Layer Three (𝑪𝑳𝟑) 

The normalized features obtained from the stacked clustered convolution features are fed to a 

convolution layer followed by a pooling layer. In CL3 layer the features are processed using 

128 filters with 5×5 kernel size, resulting in a 128-feature map. In the max-pooling layer, the 

3×3 kernel size is employed, resulting in a dimensionality reduction of 3×3×128. Using batch 

normalization, the time taken for the training process is reduced, achieving a better and faster 

convergence with optimal learning rate scheduling. The flattening layer serves as a utility layer 

for converting the output to a vector. To avoid the network from resulting in overfitting, the 

number of contributing neurons has been reduced by 30%, which helps to decrease the 

generalization error. The output obtained from the flattened layer is fed into a two-layer feed-

forward network with 128 neurons and a ReLU activation unit on one layer and two neurons 

and a sigmoid activation unit on the other layer. ReLU preserves sparsity while lowering the 

probability of a vanishing gradient, which occurs more frequently in dense models. The final 

layer comprises a sigmoid activation function to overcome the dead ReLU problem, which 

prevents further learning. Fully connected layers act as classification layers, contributing to the 

learning of a non-linear function by mixing non-linear combinations of high-level features 

provided by the output of the convolutional layers. Binary cross-entropy is employed as a loss 

function during the training phase, while RMSprop is used as an optimizer. The average of 

gradient descent is determined via equation (14): 

𝑆𝑟 = ∝. 𝑆𝑟 + (1−∝). ∞𝑄2    (14) 

where Q and  ∞  are the smoothing parameters used to update the gradient descent (Sr) and ∝ 

is the learning rate. This optimizer achieves speedy convergence by using an exponentially 

decreasing average of squared gradients and discarding information from the previous state. 

This model achieved an accuracy of 94%, specificity of 0.98, and sensitivity of 0.86. Because 

it is a shallow network, it works well as a baseline model.  

ALNet model consists of training set of images {𝐼𝑖} belonging to two classes {𝑙𝑖}, the ultimate 

objective of the proposed ALNet model is to learn the effective feature mapping 𝐹(𝑖) = 𝑙 into 

the three clustered levels of composition 𝐹(𝑖) = 𝑓(𝐶𝐿1) … . , 𝑓( 𝐶𝐿2) … . . 𝑓(𝐶𝐿3).  Each 

function defines the clustered layer of the processed input images. The features generated in 

the initial clustered layer processed by the kernel with a bias resulted in new discriminative 

high and low-level features. These discriminative features are further normalised resulting in 

fine features to be processed by the next cluster. Finally, the features are fine-tuned to generate 

the elite feature set to discriminate the ALL and HEM with high accuracy.  



Table 2: Layer structure and the obtained features 

 Layer Type Shape Param 

Cluster Layer 1 Conv2D (None, 220, 220, 32) 2432 

Conv2D_1 (None, 216, 216, 32) 25632 

MaxPooling2D (None, 108, 108, 32) 0 

MaxPooling2D_1 (None, 54, 54, 32) 0 

BatchNormalization (None, 54, 54, 32) 128 

Cluster Layer 2 Conv2D_2 (None, 50, 50, 64) 51264 

Conv2D_3 (None, 46, 46, 64) 102464 

MaxPooling2D_2 (None, 23, 23, 64) 0 

MaxPooling2D_3 (None, 11, 11, 64) 0 

BatchNormalization (None, 11, 11, 64) 256 

Cluster Layer 3 Conv2D_4 (None, 7, 7, 128) 204928 

MaxPooling2D_4 (None, 3, 3, 128) 0 

BatchNormalization (None, 3, 3, 128) 512 

Classification 

Layer 

Flatten (None, 1152) 0 

Dropout (None, 1152) 0 

Dense (None, 128) 147584 

Dense_1 (None, 2) 258 

 

4. Results and Discussions 

 

The dataset, experiments, model training, and validation are covered in depth in this section. 

This section also includes a performance comparison of the suggested technique with previous 

works. 

4.1 Experimental Setup  

Google Collab notebooks, a cloud computing environment, were used to implement the 

proposed work. Google Collab offers a free tensor processing unit (TPU) and graphics 

processing unit (GPU) to develop a deep neural learning model. To run the dataset on the 

transfer learning model, MATLAB was employed. The custom ALNet was implemented using 

Phyton programming. The data augmentation was done with OpenCV libraries. 

4.2 Data Acquisition and Pre-Processing 

The data were downloaded from Kaggle [23], the ISBI 2019 dataset. The training dataset 

consisted of 73 subjects, including 47 ALL (cancer) patients and 26 healthy individuals. 10,661 

cell images, 7272 ALL (cancer) images, and 3389 images were generated for the challenge.  

The test set consisted of 28 total subjects including 1219 ALL images for 13 ALL patients and 

648 normal images for healthy patients, making a total of 1867 cell images. The final test set 

composition of the data included 2586 images for 17 subjects, including 9 ALL and 8 normal 

patients. The training data was pre-processed and split to train and test three folds. Table 3 

shows the distribution of the training and test data. The size of images used for training and 



validation was 450 × 450 × 3 pixels. The images were pre-processed by cropping and resizing, 

resulting in a size of 224 × 224 × 3 pixels. Cropping was performed around the original image's 

center to avoid the loss of the data.  

Table 3: Distribution of images over train and test over folds 

Fold  Fold 0 Fold 1 Fold 2 Total  

Training 2821 2864 2843 8528 

Test 706 717 711 2134 

Total (Fold) 3527 3581 3554 10662 

 

4.3 Data Augmentation 

Images from the datasets were in BMP format and resized to 224 × 224 × 3 pixels for better 

processing. Augmentation was done after splitting the images into the training, validation, and 

test sets. Some methods, such as 15-degree rotation, horizontal flipping, zooming, and random 

contrast enhancement, were performed to generate more images. Horizontal axis flipping is 

substantially more common than vertical axis flipping since it has been used on benchmark 

datasets like ImageNet CIFAR-10 and Dermnet, making it far more popular. Fold 0 consisted 

of 2821 training and 706 test images, which resulted in 5642 training and 1412 test images 

after augmentation. Fold 1 consisted of 2864 training and 717 test images and, after 

augmentation, 5728 training and 1434 test images. Fold 2 consisted of 2843 training and 711 

test images and subsequently 5686 training and 1422 test images after augmentation. Figure 4 

displays the ALL, normal, and augmented images.  

 
(a) 

 
(b) 



 
(c) 

Figure 4. Examples of ALL, Normal, and Augmented images 

4.3 Hyperparameter Tuning 

Grid search was used to tune hyperparameters on ALNet models, which included the learning 

rate, epochs, dropout rate, batch size, and optimization units used in the gradient. The analysis 

included a dropout factor of 20%, 140 epochs, and gradient optimizers, such as Adams or 

RMSprop. In most versions of the ALNet models, a dropout likelihood of 20% was found to 

resonate well to minimize overfitting and improve the impact of generalization, and RMSProp 

was the best gradient optimizer. 

 The customized CNN model was trained for 140 epochs using the RMSprop optimizer with a 

learning rate of 0.0001. The CNN training process using batch normalization acquired better 

and faster convergence with optimal learning rate scheduling. Batch normalization provides 

the required regularisation, but it is not assured. Depending on the complexity of the problem 

dropout is utilized. In the proposed ALNet, addition of dropout before the pooling layer 

performed better than the batch normalisation with dropout after the pooling layer.  

4.4 Visual Interpretation of Trained Model Features 

Figure 5 depicts the characteristics retrieved by ALNet's inner layers throughout the training 

phase. The visual interpretation of the intermediate feature layers shows how the extracted 

features trains the model. 

  

Visual interpretation of feature map of 

the first layer 

Visual interpretation of feature map of 

the  6th layer 

  



  

Gradcam Activation map 

 

Figure 5. Visualization of the most salient features of the convolution and pooling layers 

 

4.5 Evaluation Metrics 

Evaluation metrics are critical for determining the performance of a trained model. The ALNet 

model's performance was assessed in terms of precision, accuracy, F1-score, recall, and 

confusion matrix. The testing accuracy was determined by estimating the outcome of the 

trained model on the test set. The confusion matrix was used to examine the model’s 

performance in each class. The testing accuracy was determined by estimating the outcome of 

the training phase on the test set that was allocated after the dataset was partitioned. Equations 

(15) to (18) include the equations for the evaluation metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑋

𝑋+𝑌+𝑍+𝑊
                                                                            (15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑋

𝑋+𝑌
                                                                                     (16) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑋

𝑋+𝑊
                                                                                          (17) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (18) 

Where X is True Positive, Y is True Negative, Z is False Positive, and W is False Negative. 

True positives(X) are outcomes when the model correctly predicts the positive class.  True 

Negative (Y) are outcomes when the model correctly predicts the negative class. False positives 

(W) are outcomes when the model predicts the positive class as the negative class and false 

negative (Z) is outcomes when the model predicts the negative class as the positive class. 

4.6 Ablation Studies 

The efficiency of the various components in the proposed design was tested using ablation 

experiments. The impact of clustering the convolution and pooling layers, followed by batch 

normalization, is critical. To perform the latter processes, custom ALNet and transfer learning 

models were trained, and their performance was evaluated using training and testing data 

grouped into three-folds. The ALNet model is tested for all three-fold test data and transfer 

learning model is tested with 645 images.4.7 Analysis of ALNet Architecture 



To test the ALNet model's efficacy for classification, it was trained and tested in three folds. 

As mentioned, the model’s architecture contains three clustered convolutions and max-pooling 

layers, followed by batch normalization. Each fold contains 535,010 trainable parameters. The 

model was trained over 140 epochs on each fold using the RMSprop optimizer. Table 4 shows 

each fold's accuracy and loss curves for both the training and validation sets. An inversely 

proportional relationship is noticed between the training loss and training accuracy with the 

increasing number of epochs. The training loss curve keeps declining until 60 epochs for all 

the three fold data.  Eventually, after 60 epochs, the training loss curve saturates and no further 

significant change is noticed.  Similar behaviour in the opposite trend is noticed for training 

accuracy.  A sharp positive slope is observed from 0 epoch to 60 epochs.  The rate of change 

of the positive slope decreases and eventually becomes flat after 60 epochs. The ALNet training 

process involved batch normalization which acquired better and faster convergence with 

0.0001 learning rate.  While training accuracy improved with time, where the model converged 

faster and attained saturation. Although the validation accuracy improved over time, it varied 

during the training. The model had a mean validation accuracy of 91.13% on all folds. The 

architecture of ALNet is the simplest among all the other mentioned transfer learning models. 

AlNet is robust to learning wide range of features relevant to microscopic cells. The 

architecture of ALNet is relatively smaller and simpler compared to other pre-trained models 

used in this study. The use of transfer learning model has a disadvantage of being time-

consuming and computationally costly. However, the architecture of ALNet is simple and 

requires fewer parameters and less time. 

 

Table 4: The ALNet model's learning process in terms of the epochs, models loss, and model 

accuracy curve 

 

 Loss Accuracy 

Fold 0 

  



Fold 1 

  

Fold 2 

  

 

Table 5: Learning process recorded by the AlexNet, VGG16, ResNet50, GoogleNet model 

with respect to epochs, loss, accuracy, respectively 

 

 Accuracy Loss 

AlexNet 

  

VGG16 

  



GoogleNet 

  

ResNet-50 

  

 

4.8 Analysis of Transfer Learning Architecture 

The performance of the pre-trained model with respect to the training and validation accuracy 

curves is shown in Table 5, and the interpretations are detailed in this section. As the loss curve 

descends, ResNet-50 yields strong fits until 400 epochs. Following that, the loss function 

increases, generating a disruption in the accuracy curve, indicating that the model overfits the 

data, resulting in an accuracy of 89 %. ResNet-50, AlexNet, GpoogleNet and VGG16 was fit 

over 1600 epochs for better results. The AlexNet model fits well, with an acceptable accuracy 

of around 90%. The accuracy of GoogleNet and VGG19 is 87 and 88 %, respectively. AlexNet 

outperformed all other pre-trained models, with a 90% accuracy rate. On the relevant validation 

sets, the Receiver operating characteristic (ROC) curve and the confusion matrix are illustrated 

after training. The ROC curve, along with the confusion matrix, is also derived for the transfer 

learning models and is displayed in Table 6.  

4.7.1 Performance Analysis 

The CNN architecture's model complexity and trainable parameters were greatly decreased by 

using the clustered block instead of single layers. The confusion matrix and ROC obtained for 

the proposed ALNet are presented in Table 7.  The performance of the ALNet on the test data 

set for each fold is illustrated in Table 7.  In fold 0, ALNet classifies 180 images as true positive, 

470 as true negative, 49 images as false-positive and 6 images as false negative which is close 

to 92.20% classification accuracy.  On fold 1, ALNet achieves 94% classification accuracy 

with 200 images as true positive, 470 as true negative, 33 images as false-positive and 10 

images as a false negative.  For the fold 2 dataset, the ALNet model classifies 170 images as 

true positive, 450 as true negative, 46 images as false-positive and 45 images as a false 



negative, which is close to 87.20% classification accuracy. Overall, the average classification 

accuracy of three-fold data, ALNet achieved 91% accuracy with the highest F1-score of 96% 

on the test set, whereas the accuracy of AlexNet, VGG16, GoogleNet, and ResNet-50 is found 

to be 90%, 88%, 87%, and 87% respectively. The findings of the experiments conducted to 

compare the performance of ALNet with  AlexNet, VGG16, ResNet50, and GoogleNet transfer 

learning model demonstrate the efficiency of ALNet. ALNet model outperformed the transfer 

learning models with high recall and precision values.   

Table 6: Findings recorded by the AlexNet, VGG16, ResNet50, and GoogleNet transfer 

learning model predicting ROC curve and confusion matrix, respectively 

 

 Confusion Matrix ROC Curve 

AlexNet 

  

VGG16 

  

GoogleNet 

         



ResNet-50 

      

 

 

Table 7: Findings recorded by the ALNet model predicting ROC curve and confusion matrix, 

respectively 

 

ALNet Confusion Matrix ROC Curve 

FOLD 0 
 

 

 

FOLD 1 

  



FOLD 2 

  

 

4.7.2 Comparison with State-of-the-art Architectures 

The proposed model's performance was compared to other existing methods for classifying 

ALL microscopic images. The test dataset was used to assess the proposed ALNet and transfer 

learning models. Performance was compared based on recall, precision, F1-score, and testing 

accuracy. Table 8 shows the comparison of AlexNet, VGG16, GoogleNet, and ResNet-50, 

which demonstrate that ALNet had the greatest accuracy and F1-score of all the models and 

used fewer parameters. Table 9 shows the fold-wise training and testing accuracy of the 

proposed ALNet model. 

Table 8: Comparison of ALNet with other transfer learning models on the dataset 

Model Training 

parameters 

Recall Precision Accuracy F1-score 

AlexNet 62,378,344 0.75 0.83 0.90 0.78 

VGG16 138,423,208 0.61 0.92 0.88 0.74 

GoogleNet 6,414,360 0.60 0.89 0.87 0.71 

ResNet-50 25,636,712 0.81 0.78 0.89 0.79 

Proposed 

ALNet 

 

535,010 0.98 0.93 0.91 0.96 

 

Table 9: Fold-wise training and testing classification accuracy 

Fold Accuracy in % 

Training Testing 

Fold 0 99.75 92.20 

Fold 1 99.89 94 

Fold 2 99.54 87.20 

Average 99.73 91.13 

 

  



4.7.3. Comparison with Existing Models for ALL Classification 

Table 10 compares the results of the proposed network with the other methods assessed on C-

NMC 2019 dataset in recent years.   Shi et al [12] used a deep convolution neural network 

along with various data augmentation and preprocessing techniques and obtained 87.9% 

accuracy.  An ensemble of recurrent and convolution neural networks was proposed by Shah 

et al [21] to exploit the spectral features using cosine transform.  The combination of 

convolution and RNN model achieved 86.6% accuracy. A weighted ensemble model utilizing 

the weights from the ensemble candidates’ kappa values was investigated by Mondal et al. 

[22].  As illustrated in Table 8, the proposed ALNet model is simpler in terms of the number 

of parameters (535,010) compared to other models.  Overall, the proposed ALNet model 

achieved the state-of-the-art highest training (99.73%) and testing accuracy (91.3%) with fewer 

model parameters performed better than the other methods. 

Table 10: Overall comparison of ALNet with existing models 

S.no Source Dataset Method Accuracy (%) 

1 Shi et al. [12] C-NMC-2019 3 x PNASNet-5 + vote11 87.9 

2 Shah et al [21] C-NMC-2019 AlexNet + 

LSTMDENSE + DCT-

LSTM 

86.6 

3 Mondal et al. 

[22] 

C-NMC-2019 Ensemble of CNN 86.2 

4 Proposed C-NMC-2019 ALNet 99.73 

 

5. Conclusion: 

In this work, an efficient cluster layer guided by the normalization CNN model, namely ALNet, 

is proposed for the classification of Acute Lymphoblastic Leukemia from microscopic images. 

In general, distinguishing immature leukemic blasts from normal cells under the microscope is 

difficult since the two cells' appearances are morphologically identical. Importantly, the cluster 

layers of ALNet extract the structural and contextual details from images, resulting in a robust 

feature set that discriminates the multiple ALL classes. Experimental results indicated that the 

ALNet model has learned in-depth features capable of the precise classification of ALL from 

microscopic images. The proposed ALNet model achieved a high F1-score of 96% with overall 

training and test accuracy of 99.73% and 91.13% respectively. Overall, ALNet model provides 

an improved tool to aid pathologists and oncologists in their clinical decision for diagnosing 

leukemia. 

Even though the current study provides high training accuracy, the test accuracy needs to be 

improved.  In future, experiments will be carried out to improve the data augmentation using 

Generative Adversarial Networks (GANs).  It is also proposed to construct a hybrid CNN to 

extract discriminate features by integrating different pre-trained CNNs and classification using 

Support Vector Machine (SVM), Random Forest and k-Nearest Neighbours(k-NN) classifiers.   
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