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Abstract

Purpose – The objective of this study is to present a binary-valued data envelopment analysis (DEA) theory. The
authors’ proposed approach, for the first time, combines binary-valued and integer-valued theories concurrently in
the DEA context. To do so, new production possibility sets (PPSs) with some distinguished features are developed.
Design/methodology/approach – The authors address integer inputs and outputs in the proposed
approach by introducing a new PPS.
Findings – To take into account the binary data, the authors develop axiomatic DEA principles. The binary
production principles guarantee any combination of convexity and feasibility. Furthermore, the authors
develop a newDEAmodel to consider integer and real data. A case study is presented to show the usefulness of
the developed models. Using the proposed models, the authors obtained benchmarks to solve the sustainable
supplier selection problems.
Originality/value – (1) For the first time, binary-valued and integer-valued theories are presented in an
integrated DEAmodel. (2) To deal with the pure binary data, a new PPS is proposed. (3) To consider real, integer
andbinary data, a newPPS is introduced. (4) New technologies are developed topropose feasible solutions. (5)The
proposedmodels can project inefficient decision-making units (DMUs) on efficiency frontier given binary, integer
and real data. (6) A case study is given for the performance evaluation of sustainable suppliers.

Keywords Data envelopment analysis (DEA), Binary-valued data, Integer-valued data, Efficiency

measurement, Sustainable suppliers

Paper type Research paper

1. Introduction
Data envelopment analysis (DEA) is one of the most powerful approaches to measure the
efficiency of a set of decision-making units (DMUs). Because of the numerous advantages of
DEA, it has been developed and applied in many settings such as supply chains (SCs),
education, healthcare and energy (Kaffash et al., 2020; Wang et al., 2020; Zhao et al., 2019). In
standard DEA models, it is presumed that inputs and outputs deal with real-valued data.
However, in real-world problems, there might be binary inputs and outputs. Accepting to
refund or not refund raw materials by suppliers is a good example of binary data. Thus, in
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assessing the sustainability of suppliers, this type of data is considered binary. The literature
survey shows that none of the existingDEAmodels can take binary-valued data into account.
The presence of integer-valued data is another key issue in efficiency evaluation problems
using DEA. For example, the number of personnel is an integer input. There are a few
scholarly works to address integer inputs and outputs in the DEA context. However, there is
no DEA model to address both integer and binary data.

Supplier evaluation and selection are considered one of the most important and
challenging tasks to manage SCs (Kellner et al., 2019; Rashidi et al., 2020). Agreement and
work with reliable suppliers is also a complicated and significant strategic decision for
managers and decision-makers of SCs (Dey et al., 2015; Xie et al., 2011). Suppliers assessment
affects inventory planning (T€urk et al., 2017), production planning and control (Che, 2017;
Hlioui et al., 2017; Nguyen and Chen, 2018), financial performance (Yu and Huo, 2019), quality
management (Negash et al., 2020), risk management (Kaur and Singh, 2021; Rao et al., 2017;
Wong, 2020), purchasing management (Bolander et al., 2018) and customer satisfaction
(Lewin, 2009; Saor�ın-Iborra and Cubillo, 2019).

With respect to suppliers’ key role in different parts and various dimensions of an
organization, the importance of selecting appropriate suppliers has receivedmuch attention by
scholars. Over the last few years, owing to some factors such as media pressures, people’s
awareness and international regulations, companies have realized to consider sustainability
dimensions in the process of supplier evaluation and selection. Therefore, under such
conditions, proposing and developing advanced methods for supplier selection and evaluation
within sustainable SCs has emerged as an urgent topic. Sustainability in SCs is defined as
considering economic, environmental and social aspects in each echelon of SCs such as
suppliers, manufacturers and distributors (Barbosa-P�ovoa et al., 2018; Ding et al., 2016).

The objective of this study is to present a binary-valued DEA theory. We address integer
inputs and outputs in the proposed approach by introducing some new production possibility
sets (PPS). In summary and to the best of our knowledge, this study makes significant
contributions as follows:

(1) For the first time, binary-valued and integer-valued theories are presented in an
integrated DEA model.

(2) To deal with the pure binary data, a new PPS is proposed.

(3) To consider real, integer and binary data, a new PPS is introduced.

(4) New technologies are developed to propose feasible solutions.

(5) The proposed models can project inefficient DMUs on efficiency frontier given
binary, integer and real data.

(6) A case study is given for the performance evaluation of sustainable suppliers.

The rest of this paper is organized as follows. Section 2 provides the literature review. In Section 3,
wepropose abinary-valuedDEAmodel. Section4provides a case studyalongwith themanagerial
implications. Finally, conclusions and future research directions are presented in Section 5.

2. Literature review
2.1 Integer DEA
The traditional DEA models assume that inputs and outputs deal with real-valued data.
However, in many real-world applications, inputs and outputs can only take integer values
such as the number of workers and the number of fabricated products. Although in some
cases rounding the obtained benchmarks to the nearest number is a solution, it can lead to
inaccuracy in efficiency assessments and performance benchmarks (Matin and Kuosmanen,
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2009). For the first time, Lozano andVilla (2006) proposed an integer-valued theory to address
integer inputs and outputs in DEA. Kuosmanen and Matin (2009) presented axioms of
“natural divisibility” and “natural disposability” in integer DEA models. The proposed
theory was improved by Matin and Kuosmanen (2009) based on returns to scale axioms.
Kazemi Matin and Emrouznejad (2011) developed the axiomatic foundation of integer DEA
models for considering bounded outputs. Chen et al. (2012) presented a DEA model for
including both undesirable outputs and integer data to assess city bus systems’ operational
performance. To assess and select suppliers, Azadi and Saen (2014) proposed a DEAmodel in
the existence of integer and stochastic data. Wu and Zhou (2015) presented an integer-valued
DEAmodel to address the input excesses and output shortfalls. Karimi et al. (2016) proposed
an integer DEA model to identify congestion of DMUs. They presented a mixed integer
programming (MIP) model for calculating efficiency scores. To measure the efficiency in
network structures dealing with integer-valued data and non-discretionary data, Taleb et al.
(2018) developed a super-efficiency slacks-based measure (SBM) model. Chen et al. (2017)
mixed the integer data and bounded data to deal with the binary data, which is quite naı€ve.
Pourmahmoud and Gholam Azad (in press) presented a DEA model to deal with the binary
data. However, their model has major issues, which will be discussed in Section 3. Navidi et al.
(2021) developed a DEAmethod, which can assess congestion without running a DEAmodel.
Their method can deal with negative and integer data. Chen et al. (2021) assessed academic
journals by integer DEA. Khoveyni et al. (2019) developed a slack-based DEA model to
identify congestion of DMUs in the presence of integer data. Alirezaee and Rafiee Sani (2018)
developed an axiomatic basis for DEA to deal with integer data in the existence of production
trade-offs. Zhou et al. (2018) proposed DEAmodels to assess the quality of air in the presence
of integer data.

2.2 Sustainable supplier selection
Amindoust et al. (2012) presented a fuzzy inference system to evaluate and select sustainable
suppliers. Azadi et al. (2015) proposed a fuzzy enhanced Russell measure (ERM) model to
measure the efficiency and effectiveness of sustainable suppliers. T€urk et al. (2017) presented
a two-stage method to rank suppliers and allocate orders. They applied a multi-objective
evolutionary algorithm (MOEA) to minimize conflict objectives of SCs and vendor risk.
Amindoust (2018) developed a hybrid intelligent approach for selecting resilient-sustainable
suppliers. To evaluate and select sustainable vendors, Khan et al. (2018) developed a
framework in terms of sustainability performance. The proposed approach uses the fuzzy-
inference system for prioritizing vendors from sustainability aspects and fuzzy-Shannon
entropy for determining the sustainability criteria weights. Mohammed (2020) developed a
fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method to
evaluate suppliers based on sustainability aspects. Bai et al. (2019) developed a group
decision-support approach for sustainable supplier selection. Ahmadi et al. (2020) combined
preference ranking organization method for enrichment of evaluations (PROMETHEE) and
best worst method (BWM) and developed a decision framework for evaluating sustainable
innovative vendors. Hendiani et al. (2020) used interval type-2 fuzzy preference relations for
developing a multi-criteria decision-making (MCDM) model to select sustainable suppliers.
Goswami and Ghadge (2020) proposed a framework to assess and select sustainable
suppliers using single and bi-objective DEA efficiencymodelingmethods. Negash et al. (2020)
developed a method for measuring product quality based on the process yield index to select
sustainable suppliers. Jain and Singh (2020) presented a fuzzy inference system for clustering
criteria to assess the vendors’ sustainability efficiency and select the best vendor. To select
sustainable suppliers, Chen et al. (2020) developed an integrated rough-fuzzy method.
Ortiz-Barrios et al. (2021) proposed a hybrid MCDM model to assess and select a sustainable
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supplier using fuzzy analytic hierarchy process (FAHP) and fuzzy decision-making trial and
evaluation laboratory (FDEMATEL). Beiki et al. (2021) integrated language entropy weight
method (LEWM) and multi-objective programming (MOP) to select sustainable suppliers.
Tseng et al. (2021) reviewed sustainable operation as a field that moves towards Industry 4.0
and suggested future research topics.

2.3 Knowledge gap
None of the cited DEAmodels do deal with binary data. To the best of our knowledge, there is
no paper to deal with binary data in DEA. This paper is the first attempt to deal with binary
data. The new model is used to assess the sustainability of suppliers.

3. Binary-valued DEA model
Here, we present the binary-valued DEA model for the first time and develop it further to
consider integer values in efficiency measurement. Table 1 lists the notations used in
this study.

Assume that there are n DMUs fðxj; yjÞjj ¼ 1; . . . ; ng. xj ¼ ðx1j; . . . ; xmjÞT and

yj ¼ ðy1j; . . . ; ysjÞT are inputs’ vectors and outputs’ vectors of DMUj, respectively. Also,

X ¼ ½x1; . . . ;xn �T and Y ¼ ½y1; . . . ; yn �T are m3 n matrix of inputs and s3 n matrix of

Notations Explanations

DMUo The DMU under evaluation
m The number of inputs
s The number of outputs
xj The input vector of DMUj

yj The output vector of DMUj

λ ¼ ðλ1; . . . ; λnÞ∈ f0; 1gn The binary variables for forming binary production technology
μ ¼ ðμ1; . . . ; μnÞ The vector of structural variables for forming a non-negative combination of

DMUs
T The production technology
TCRS The production technology with real data and constant returns to scale
TVRS The production technology with real data and variable returns to scale

TDEA
Bin

The production technology with binary data

TMixed−Bin−DEA
CRS

The production technology with binary, integer, and real data

θi The reduction ratio of the ith input of DMUo

wr The increase ratio of the rth output of DMUo

IR The set of inputs with real data

I I The set of integer inputs

IB The set of binary inputs

OR The set of outputs with real data

OI The set of integer outputs

OB The set of binary outputs

xRj The vector of real data of inputs

xIj The vector of integer inputs

xBj The vector of binary inputs

yRj The vector of real data of outputs

yIj The vector of integer outputs

yBj The vector of binary outputs
Table 1.

The notations
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outputs, respectively. The classical DEAmodels assume that all data are real numbers. InDEA,
given production principles, a technology T is introduced and part of the frontier of T is
considered as approximate of the production function. The production principles are as follows:

Principle 1 (Including observations): All the observed activities DMUj ¼ ðx j; y jÞ,
ðj ¼ 1; . . . ; nÞ belong to T.

Principle 2 (Feasibility): If ðx; yÞ∈T and x ≥x, then ðx; yÞ∈T. If y ≤ y, then ðx; yÞ∈T.

Principle 3 (Convexity): If ðx; yÞ; ðx; yÞ∈T, then for each μ∈ ½0; 1�, we have
ðμx þ ð1− μÞx; μy þ ð1− μÞyÞ∈T.

Principle 4 (Ray unboundedness or constant returns to scale (CRS)): For each ðx; yÞ∈T
and μ≥ 0, we have ðμx; μyÞ∈T.

Given the principles, different sorts of technologies can be generated. For instance, using the
four principles, the PPS is as follows:

TCRS ¼ ðx;yÞjx≥
Xn
j¼1

μjxj; y ≤
Xn
j¼1

μjyj; μj ≥ 0; j ¼ 1; . . . ; n

)(

By removing the CRS assumption, variable returns to scale (VRS) technology is obtained:

TVRS ¼ ðx;yÞjðx;yÞ∈ TCRS;
Xn
j¼1

μj ¼ 1

)(

The other technologies can be obtained by combining the production principles (Cooper
et al., 2000).

Note 1: Using the production technology, the DMUs are evaluated. The evaluation can be
input-oriented, output-oriented and non-oriented. For instance, to evaluate DMUo, the
following non-radial approach is considered:

min
1
m

Pm

i¼1θi
1
s

Ps

r¼1wr

s.t.

ðθixio;wryroÞeT (1)

θi ≤ 1; wr ≥ 1 ∀i; r

whereT can be one of the technologies of DEA. The DMUo is efficient if the objective function
of model (1) is 1. Otherwise, it is inefficient.

The standard DEA models assume that there exist real data. However, in the real world,
theremight be binary data. For instance, to select suppliers, one of the binary variables can be
whether or not the supplier has a quality control department.

Example 1: In Table 2, DMU C is inefficient as it is dominated by DMUs A and B.

DMUs Input 1 Input 2 Output

A 1 0 1
B 0 1 1
C 1 1 1

Table 2.
The dataset
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Since all the DMUs have similar fixed outputs, the Farrell frontier can be drawn.
Assuming real values, consider Figure 1.

The right-hand side of line segment AB (In the first quarter) is PPS. If wewish to assess the
efficiency of DMU C radially, the intersection of AB and OC is the radial projection point of
DMU C. As is seen, the radial projection point is not binary. Points A, B and C are the only
binary points in the PPS. Since DMUs A and B cannot dominate DMU C radially, DMU C is
radial efficient, which is wrong.

3.1 Data envelopment analysis in the presence of pure binary data
Assume that there are n DMUs, which consumem inputs to produce s outputs. In fact, DMUj

ðj ¼ 1; . . . ; nÞ produces output yrj ∈ f0; 1g using input xij ∈ f0; 1g.
Definition of binary sum operator (Pourmahmoud and Gholam Azad, in press): For each

δd ∈ f0; 1g; d ¼ 1; . . . ;D, binary sum operator is defined as follows:

XD
d¼1

δd ¼
�
0 ∀d; δd ¼ 0
1 ∃d; δd ¼ 1

Pourmahmoud and Gholam Azad (in press) proposed the following binary principles:

(1) (B1) Binary observations: ðXj;YjÞ∈Γ 0ðXj;YjÞ∈T ∀j ¼ 1; . . . ; n.

(2) (B2) No output can be produced without some input: If Y ≥ 0 and Y ≠ 0, then
ð0;Y Þ∉T.

(3) (B3) Binary additivity: ðX ;Y Þ; ðX 0;Y 0Þ∈T0 ðX þ X 0;Y þ Y 0Þ∈T:

(4) (B4) Binary disposability: ðX ;Y Þ∈T and ðU ;V Þ∈Γ; V ≤Y 0 ðX þ U ;Y −V Þ
∈T.

(5) (B5) Point-to-point frontier: ðX ;Y Þ∈T and ∃λ∈ f0; 1g; ðλX ; λY Þ∈Γ0ðλX ; λY Þ
∈T:

(6) (B6) Minimum extrapolation: T is the minimum set that satisfies (B1) to (B5).

Given the above binary principles, Pourmahmoud and GholamAzad (in press) suggested the
following theorem:

X1

X2

1

C

0

B

A

1

Figure 1.
The PPS of DMUs
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Theorem 1. Under axioms (B1)–(B2), TBDEA is the minimum extrapolation of PPS.

TBDEA ¼ ðX ;Y Þ∈Γj X ≥
Xn
j¼1

λjXj;Y ≤
Xn
j¼1

λjYj; λj ∈ f0; 1g; ∀j

)(

Apart from their vague proof,TBDEA does not satisfy (B1) to (B5), simultaneously. According
to (B5), ð0; 0Þ∈TBDEA. On the other hand, according to the definition of binary sum operator
and (B3) principle, at least for one input, there is

Pn
j¼1λjXij ¼ 1 because at least one of the

components of the inputs equals 1. Thus, given the X ≥
Pn

j¼1λjXj, TBDEA should be 0≥ 1,

which violates the theorem of Pourmahmoud and Gholam Azad (in press). The other issue of
Pourmahmoud and Gholam Azad (in press) is the existence of zero in the efficiency scores,
which is unreasonable.

Here, the axiomatic principles of DEA for binary data are developed addressing the issues
of Pourmahmoud and Gholam Azad (in press). The following new technology is introduced:

(1) Including observations principle: ðx j; y jÞ∈T; ∀ j ¼ 1; . . . ; n and

(2) Binary production principle:

∀ i; r : ðxi; yrÞ∈T and x0i ≤ xi; y
0
r ≥ yr; x

0
i; y

0
r ∈ 0; 1 0ðx0; y0Þ∈Tgf

Theorem 2. The following set is the smallest set that satisfies principles 1 and 2:

TDEA
Bin ¼ ðx; yÞ∈ f0; 1gmþs

xi ≥
Xn

j¼1
λjxij; yr ≤

Xn

j¼1
λjyrj;

Xn

j¼1
λj ¼ 1; λj ∈ 0; 1f g; j ¼ 1; . . . ; n

��� on

Proof: It is clear that TDEA
Bin satisfies both axiomatic principles 1 and 2. Now, we show that

TDEA
Bin is the smallest set that satisfies two principles. If T is an arbitrary set that satisfies

the two principles, then we show TDEA
Bin ⊆T. Assume that ðx; yÞ∈ f0; 1gmþs and

ðx; yÞ∈TDEA
Bin . Thus, there exists λ ¼ ðλ1; . . . ; λnÞ∈ f0; 1gn so that

xi ≥
Xn
j¼1

λjxij; yr ≤
Xn
j¼1

λjyrj;
Xn
j¼1

λj ¼ 1; j ¼ 1; . . . ; n; i ¼ 1; . . . ;m; r ¼ 1; . . . ; s

Since T satisfies both principles, given principle 1, we have�
xj; yj

�
∈T; ∀j ¼ 1; . . . ; n

On the other hand, given satisfying the set T in axiomatic principle 2, we have

xi ≥
Xn
j¼1

λjxij; yr ≤
Xn
j¼1

λjyrj;
Xn
j¼1

λj ¼ 1;
�
xi; yr

�
∈ 0; 1f g; ∀j ¼ 1; . . . ; n; i ¼ 1; . . . ;m; r

¼ 1; . . . ; s→
�
x; y
�
∈T

As a result, TDEA
Bin ⊆T and the theorem are proved.

Note 1: Instead of simultaneous development of convexity, feasibility and CRS principles, the
binary production principle deals with binary data. The binary production principle
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guarantees that any combination of the three principles can be obtained by the binary
production principle.

Note 2: The binary production technology can be constructed by permutation of zero and
one in which 2mþs binary points withmþ s dimensions are generated. However, it leads to a
wrong efficiency assessment. For example, consider the following two DMUs with one input
and one output:

DMUA ¼ ð1; 0Þ; DMUB ¼ ð1; 1Þ
Using zero and one permutation, four points ð0; 0Þ; ð1; 1Þ; ð0; 1Þ; ð1; 0Þ form binary
production technology. Given the production principles, DMU (0, 1) is infeasible.

Note 3: The PPS helps to assess the efficiency scores. Given binary inputs and outputs, the
radial models cannot assess the efficiency scores. Thus, non-radial models can be used. For
instance, the model of efficiency assessment of DMUo can be as follows:

min
1
m

Pm

i¼1θi
1
s

Ps

r¼1wr

s.t.

ðθixio;wryroÞeTDEA
Bin (2)

If the objective function of model (2) is 1, then DMUo is binary efficient. Otherwise, DMUo is
inefficient. The proposed technology of Theorem 2 is a PPS to evaluate efficiency in the
presence of pure binary data by which model (2) is developed.

3.2 Data envelopment analysis in the presence of mixed binary data
In the real world, there might be real, integer and binary data. Assume that there are the
following inputs and outputs:

I ¼ IR ∪ I I ∪ IB

O ¼ OR ∪OI ∪OB

where R, I and B are real, integer and binary data, respectively. Also, assume that there are n
DMUs, which are as follows:

S ¼ �
x j; y j

� ¼ �xR
j ;x

I
j ;x

B
j ; y

R
j ; y

I
j ; y

B
j

����j ¼ 1; . . . ; n
on

Now, the production principles are defined.

(1) Including observations principle:�
xj; yj

�
∈T; ∀j ¼ 1; . . . ; n

(2) Convexity principle:�
xRj ; x

I
j ; x

B
j ; y

R
j ; y

I
j ; y

B
j

�
;
�
xR

0
j ; x

I 0
j ; x

B
j ; y

R0
j ; y

I 0
j ; y

B
j

�
∈T; λ∈ ½0; 1�

λ
�
xIj ; y

I
j

�
þ ð1� λÞ

�
xI

0
j ; y

I 0
j

�
∈ Z I

þ; → λ
�
xRj ; x

I
j ; x

B
j ; y

R
j ; y

I
j ; y

B
j

�
þ ð1� λÞ

�
xR

0
j ; x

I 0
j ; x

B
j ; y

R0
j ; y

I 0
j ; y

B
j

�
∈T
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(3) Feasibility principle of real, integer, and binary data:�
xRj ; x

I
j ; x

B
j ; y

R
j ; y

I
j ; y

B
j

�
∈T; 0≤

�
xR

0
j ; x

I 0
j ; x

B0
j ;�yR

0
j ;�yI

0
j ;�yB

0
j

�
≤�

xRj ; x
I
j ; x

B
j ; y

R
j ; y

I
j ; y

B
j

�
; xI

0
j ; y

I 0
j ∈ Z I

þ; x
B0
j ; y

B0
j ∈ f0; 1g→

�
xR

0
j ; x

I 0
j ; x

B0
j ; y

R0
j ; y

I 0
j ; y

B0
j

�
∈T

(4) The partial ray unboundedness:�
xRj ; x

I
j ; x

B
j ; y

R
j ; y

I
j ; y

B
j

�
∈T; λ≥ 0; λ

�
xIj ; y

I
j

�
∈ Z I

þ; →
�
λxRj ; λx

I
j ; x

B
j ; λy

R
j ; λy

I
j ; y

B
j

�
∈T

Theorem 3. The following PPS is the smallest set that satisfies principles 1 to 4:

TMix�Bin�DEA
CRS ¼ ðx;yÞ¼ ðxR;xI ;xB;yR;yI ;yBÞ

xR≥
Xn
j¼1

μjx
R
j ; yR ≤

Xn
j¼1

μjy
R
j

xI ≥
Xn
j¼1

μjx
I
j ; y

I
≤
Xn
j¼1

μjy
I
j ;ðxI ;yIÞ∈Z I

þ

xBi ≥
Xn
j¼1

λjx
B
ij ; y

B
r ≤
Xn
j¼1

λjy
B
rj; x

B
i ; y

B
r ∈f0;1g

Xn
j¼1

λj ¼ 1; λjεf0;1gμj≥0 ; j¼ 1; . . . ;n

���������������������

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Proof: First, the PPS is considered as follows:

TMixed−Bin−DEA
CRS ¼TDEA

Bin 3TDEA
Mixed

where

TDEA
Bin ¼

��
xB;yB

�����xBi ≥Xn
j¼1

λjx
B
ij ; y

B
r ≤
Xn
j¼1

λjy
B
rj; x

B
i ; y

B
r ∈f0;1g;

Xn
j¼1

λj ¼ 1; λjεf0;1g; j¼ 1; . . . ;n

�

TDEA
Mixed ¼ ðx;yÞ¼ �xR;xI ;yR;yI�

�����������

xR≥
Xn

j¼1
μjx

R
j ; y

R
≤
Xn

j¼1
μjy

R
j

xI ≥
Xn

j¼1
μjx

I
j ; y

I
≤
Xn

j¼1
μjy

I
j ;
�
xI ;yI

�
∈Z I

þ

μj≥0; j¼ 1; . . . ;n

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

It is shown that TDEA
Bin and TDEA

Mixed are the smallest sets that satisfy the four principles. The
including observations principle and binary production principle are related to TDEA

Bin . As
is shown in Theorem 2, this set is the smallest set that satisfies the principles. It is

sufficient to show thatTDEA
Mixed is the smallest set that satisfies the four principles. It is clear

that TDEA
Mixed satisfies the four principles. It is shown that if a set like T satisfies all 4

principles, then TDEA
Mixed ⊆T. Assume that ðxR; xI ; yR; yI Þ∈TDEA

Mixed. Thus, there exists

λ ¼ ðλ1; . . . ; λnÞ; so that

xR ≥
Xn
j¼1

λjx
R
j ; y

R
≤
Xn
j¼1

λjy
R
j ; x

I
≥
Xn
j¼1

λjx
I
j ; y

I
≤
Xn
j¼1

λjy
I
j ; λj ≥ 0;

�
xI ; yI

�
∈ Z I

þ; j ¼ 1; . . . ; n
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Since T satisfies the four principles, given principle 1, we have�
xRj ; x

I
j ; y

R
j ; y

I
j

�
∈T; ∀j ¼ 1; . . . ; n

Also, given principle 2 and

	Pn
j¼1

μjx
I
j ;
Pn
j¼1

μjy
I
j



∈ Z I

þ, we have Xn
j¼1

μjx
R
j ;
Xn
j¼1

μjx
I
j ;
Xn
j¼1

μjy
R
j ;
Xn
j¼1

μjy
I
j

!
∈T;

Xn
j¼1

μj ¼ 1; μj ≥ 0; j ¼ 1; . . . ; n

On the other hand, based upon principle 3, we have

xR ≥
Xn
j¼1

μjx
R
j ; x

I
≥
Xn
j¼1

μjx
I
j ; y

R
≤
Xn
j¼1

μjy
R
j ; y

I
≤
Xn
j¼1

μjy
I
j ;
Xn
j¼1

μj ¼ 1; μj ≥ 0;

j ¼ 1; . . . ; n;
�
xI ; yI

�
∈ Z I

þ →

�
xR; xI ; yR; yI

�
∈T

Finally, given principle 4 we have

xR ≥
Xn
j¼1

λjx
R
j ; x

I
≥
Xn
j¼1

λjx
I
j ; y

R
≤
Xn
j¼1

λjy
R
j ; y

I
≤
Xn
j¼1

λjyj; λj ≥ 0;

j ¼ 1; . . . ; n;
�
xI ; yI

�
∈ Z I

þ →

�
xR; xI ; yR; yI

�
∈T

where λj ¼ αλj; α > 0. Thus, TDEA
Mixed ⊆T and the theorem are proved.

Thus, TMixed−Bin−DEA
CRS is the most comprehensive PPS in which all the real, integer and

binary data are considered, simultaneously.
At this juncture, a feasible model for evaluating efficiency in the presence of binary,

integer and real data is proposed. The new non-radial input-oriented DEA model in the
context of mixed binary-valued data can be presented as follows:

θ * ¼ min
1

m

Xm
i¼1

θi

s.t. Xn
j¼1

μjx
R
ij ≤ θix

R
io i∈ IR

Xn
j¼1

μjx
I
ij ≤ θix

I
io i∈ I I ;

Xn
j¼1

λjx
B
ij ≤ θix

B
io i∈ IB

Xn
j¼1

μjy
R
rj ≥ yRro r∈OR

Xn
j¼1

μjy
I
rj ≥ yIro r∈OI

Xn
j¼1

λjy
B
rj ≥ yBro r ∈OB

μj ≥ 0; λj ∈ f0; 1g j ¼ 1; . . . ; nXn
j¼1

λj ¼ 1

θix
B
io ∈ f0; 1g i∈ IB

0≤ θi ≤ 1 i ¼ 1; . . . ;m 
θix

I
io;
Xn
j¼1

μjy
I
rj

!
∈ Z I

þ

(3)
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Model (3) is a non-radial input-orientedmodel. In this model, the real inputs are dealt with like
the classical non-radial models. However, the integer inputs are dealt with by following
Kuosmanen and Matin (2009) approach. In other words, the θixIio is forced to be an integer.
Similarly, θixBio is forced to be binary.

Lemma 1. Model (3) is always feasible and 0 < θ * ≤ 1.

Proof: If μo ¼ λo ¼ 1 and μj ¼ λj ¼ 0ðh ¼ 1; . . . ; n; j≠ oÞ, then a feasible solution of
model (3) is obtained, inwhich the objective function ofmodel (3) becomes 1. On the

other hand, since the objective function isminimization, θ * ≤ 1. Also, since the left-
hand side of the three first constraints of model (3) are non-negative,
θiði ¼ 1; . . . ;mÞ should be non-negative. The three-second constraints, which

correspond with the outputs, prevent θi to be zero. Thus, we conclude that θ
* > 0;

and the lemma is proved.

Definition 1. DMUo is said to be efficient in terms of the proposed non-radial mixed
binary-valuedDEAmodel in (3) if its efficiency score equals one (i.e. θ * 5 1),
otherwise the DMUo is inefficient.

Note 4: Assuming CRS, we developed newmodels and, as is seen, there are no returns to scale
assumption for binary factors, and the returns to scale assumption is associated with the real
and integer factors. The VRS, increasing returns to scale and decreasing returns to scale
version of the developed models can be written, which only the constraints related to real and
integer factors are affected.

Note 5: Given Lemma 1, model (3) can evaluate the efficiency of DMUo in the presence of
binary, integer and real data. Also, using model (3), the projected inputs of DMUo are
calculated as follows: �

θ *
i x

R
io; θ

*
i x

I
io; θ

*
i x

B
io

�
∈R

jIRj
þ 3 Z

jI I j
þ 3 f0; 1gjIBj (4)

As is seen, the projected input is matched with binary, integer and real data. However, former
DEA models cannot differentiate the projected inputs in terms of binary, integer and real data.

4. Case study
Energy Keshvar Company (EKC) was founded in 1969 and is one of the leading Iranian
companies in manufacturing cooling and heating products [1]. One of the main materials of
EKC is cold-rolled steel. EKC wishes to assess the sustainability of suppliers of cold-rolled
steel. The inputs for assessing suppliers’ sustainability include price, delivery time,
environmental cost, and cost of work safety and labor health. The outputs are payment time,
refund, the number of environmental certificates and the number of product types.
Environmental costs and the number of environmental certificates are environmental
indicators, and the cost of work safety is considered as a social indicator, respectively. Other
variables such as price, delivery time, payment time, refund and the number of product types
are considered as economic indicators. Note that refund is a binary variable. Furthermore, the
number of environmental certificates and the number of product types are integer variables.
Table 3 shows the data set related to sustainable suppliers of EKC. The dataset dates back to
2018. Dataset is collected from archives and documents of EKC. Using model (2) and the CCR
(Charnes–Cooper–Rhodes) model, the results are reported in Table 4.

4.1 Results and discussions
Classic DEA models deal with real-valued data. However, in the real world, there might be
binary data. Matin and Kuosmanen (2009) suggested the theory of integer data in DEA.
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Nevertheless, they did not discuss the binary data in DEA. To the best of our knowledge, this
paper is the first attempt to incorporate binary data into the DEA. The proposedmodels were
validated by a case study. The findings are interesting. The second and sixth columns of
Table 4 depict the sustainability score using the new model (2) and CCR model. Using model
(2), the third, the fourth and the fifth columns show the projection point of refund (binary
variable), the projection point of the number of environmental certificates (integer variable)
and the projection point of the number of product types (integer variable), respectively.
However, the projection points of the CCR model are given in columns 7 to 9 of Table 4. As is
seen, using the CCR model, the projection points of refund (binary variable) for suppliers
Varagh Khodroo, Posko, Persian Foolad, Foolad Rohina and Foolad Sharood are not binary.
Also, using the CCR model, the projection point of the number of environmental certificates
for Posko and Persian Foolad is non-integer. This shows that the CCR model cannot assess
the DMUs’ efficiency in the presence of binary and integer data. Note that rounding up the
projected points of binary and integer variables is not a good idea. For instance, consider
Varagh Khodro. The projected point of binary and integer variables, using model (2), is (0, 6,
7), and the projected point of binary and integer variables, using rounded up CCRmodel, is (1,
6, 7), which is different from model (2).

4.2 Managerial implications
Supplier selection is one of the most essential tasks of SC managers (Rashidi et al., 2020).
Selecting the most sustainable suppliers is a complicated decision of managers (Xie et al.,
2011). Selecting proper suppliers improves planning (T€urk et al., 2017), quality of goods and
services (Negash et al., 2020), and customer satisfaction (Lewin, 2009). On the other hand, as is
seen in the case study, in the real world, there might be binary data, which managers have to
deal with it. This paper developed newmodels to deal with the situations that there are binary
data. The proposed models provide managers and decision-makers with some insights. Due
to social media pressures, intense competition in international markets and customers’
awareness, managers need to address the sustainability aspects in their decision-making.
The proposed models can assist managers to deal with both binary and integer data,
simultaneously. Compared with the traditional DEA models, providing better results is
another feature of the proposedmodels. Furthermore, suppliers can identify their inefficiency
reasons and improve their performance by more accurate benchmarks.

Figure 2 compares the sustainability scores usingmodel (2) and the CCRmodel. As is seen,
the results of model (2) are less than or equal to the CCR model. This implies higher
discrimination power of model (2). Also, it implies that taking into account both binary and
integer variables affects the results.

5. Conclusions and future research directions
The classical DEA models assume that the inputs and outputs deal with real values.
However, there are situations that inputs and outputs can only take binary data. Ignoring
binary data causes inaccurate results and unrealistic benchmarks. To address this issue, for
the first time, we presented the theory of binary-valued DEA. To take into account the binary
data, we developed axiomatic DEA principles. The binary production principles guarantee
any combination of convexity and feasibility. The CRS principles can be obtained by the
binary production principle. Furthermore, we developed a new DEA model to consider
integer and real data. Also, to tackle a real-world problem, for the first time, we incorporated
both binary-valued and integer-valued theories into DEA. Moreover, the developed model
provides better projection points on the efficiency frontier. A case study was presented to
show the usefulness of the developed models. Using the proposed models, we obtained better

Binary-valued
DEA

697



results and realistic benchmarks to solve the sustainable supplier selection problems. Our
proposed model also can identify unsustainable suppliers.

This research, as the first research in the field of binary data in DEA, opens new horizons
for prospective researchers. Here, several future research directions can be suggested based
on the theory presented in this paper. In the sustainability evaluation of suppliers, there are
some factors such as service-quality credence and service-quality experience that play the
role of both inputs and outputs (Azadi and Saen, 2011; Saen, 2010). Developing a model
considering dual-role factors and binary-valued data is a research direction for prospective
researchers. On the other hand, in real-world problems, the decision-maker may face
uncertainty. In these sorts of situations, developing fuzzy, stochastic and robust versions of
the proposed models can help managers to select the most sustainable suppliers.
Furthermore, the proposed theory can be applied in other settings such as market
selection, personnel evaluation, technology selection, etc.

Note

1. https://en.energyind.webexir.net/
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