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Abstract

Purpose

Engineering design and operational decisions depend largely on deep under-

standing of applications that requires assumptions for simplification of the prob-

lems in order to find proper solutions. Cutting-edge machine learning algorithms

can be used as one of the emerging tools to simplify this process, while not all

the engineers have sufficient grasp of the machine learning principles. In this

paper, we have proposed a novel scalable and interpretable machine learning

framework to automate this process and fill the current gap.

Design/methodology/approach

The essential principles of the proposed pipeline are mainly (1) scalability, (2) in-

terpretibility, and (3) robust probabilistic performance across engineering prob-

lems. The lack of interpretibility of complex machine learning models prevents

their use in various problems including engineering computation assessments.

Many consumers of machine learning models would not trust the results if they

cannot understand the method. Thus, the SHAP Additive exPlanations (SHAP)
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approach is employed to interpret the developed machine learning models.

Findings

The proposed framework can be applied to a variety of engineering problems

including seismic damage assessment of structures. The performance of the pro-

posed framework is investigated using two case studies of failure identification

in reinforcement concrete (RC) columns and shear walls. In addition, the re-

producibility, reliability, and generalizability of the results were validated and

the results of the framework were compared to the benchmark studies. Clearly,

the results of the proposed framework outperformed the benchmark results with

high statistical significance.

Originality/value

Although, the current study reveals that the geometric input features and rein-

forcement indices are the most important variables in failure modes detection,

better model can be achieved with employing more robust strategies to establish

proper database to decrease the errors in some of the failure modes identifica-

tion.

Keywords: Explainable Machine Learning, Automated Framework, Gradient

Boosting, Failures in RC Member

1. Introduction

Engineering design and operational decisions depend largely on engineers’

understanding of applications that requires assumptions for simplification of the

problems in order to find solutions. The simplification process is often done with

combination of computational methodologies, engineering resources, and field5

data. Adding robust optimization techniques and machine learning algorithms

to the current equation boosts the level of overall accuracy in decision-making

and design performance improvement to solve challenging engineering problems

and explore interpretibility of the solutions [1]. Machine learning as an applied

scientific discipline has numerous advantages in real-world engineering problems10

and applied sciences; the most fundamental its advantage is that a machine
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learning algorithm can learn from empirical data where modeled phenomena

are hidden, non-evident, or not very well explained. Machine learning algo-

rithms in civil engineering first used for testing different existing tools on simple

problems and gradually were applied to harder problems. Recently, numerous15

studies show that universal nonlinear machine learning algorithms including ar-

tificial neural networks, fuzzy logic, support vector machine, decision trees, and

random forests can be used as adaptive tools for solving complex practical clas-

sification and regression problems in engineering along with general properties

of statistical learning from data and the mathematical theory of generalization20

from experience [2, 3].

Emerging as one of the most contemporary machine learning techniques, gra-

dient boosting has shown success in various areas including stock price predic-

tion [4], traffic speed forecast [5], Alzheimer diagnosis [6], and health monitoring

systems [7]. In addition to this, gradient boosting has recently shown promis-25

ing use in several engineering problems such as automatic detection of cracks

from concrete surface [8], structural damage assessment for proper maintenance

[9, 10], prediction of undrained shear strength [11], and safety evaluation of steel

trusses [12] which opens new avenue in modeling engineering problems includ-

ing seismic damage assessment of structures. The boosting principles and weak30

learners for the first time was proposed by Schapire [13] in 1990. Changing the

distribution of the training iteratively is the main idea of boosting algorithms.

This principle helps to bias the training process towards the specimens that are

harder to classify. At each iteration, the boosting algorithm assigns a weight to

each training instance. At the end of each boosting round, the assigned weights35

are getting updated adaptively. Thus, various bootstraps can be chosen from

the original training set via the updated weights where play an important role

as a sampling distribution. This is the main principle of the base classifiers.

Gradient tree boosting, also known as gradient boosting machine (GBM) or

gradient boosted regression tree (GBRT) was originally proposed by Breiman40

and elaborated by Friedman in 2000 [14]. The key principle of the boosting

algorithms is to use some variants of weak (base) learners in a bounded size.
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The most common types of weak learners for gradient tree boosting models are

decision trees which the prediction error can be updated with slight modification

of the weights at each round.45

In this paper, we have employed one of the invariants of the boosting al-

gorithm, named as XGBoost which is short for eXtreme Gradient Boosting

[15]. XGBoost uses some modifications with respect to its predecessors such

as sparsity-aware split finding, weighted quantile sketch, and parallel structure

which makes this algorithm scalable which can be able to be used on high50

performance computing. To recapitulate, a gradient boosting algorithm, first

optimizes the loss function, makes the weak learner to predict the exemplars,

and uses an additive model to add weak learners to minimize the loss function.

The type of loss function can be chosen based on the type of problem and use-

case. For example, a squared error can be a good choice for regression problems55

while a logarithmic loss for classification problems as we have shown in section

3. Moreover, XGBoost includes extra implementations for the constraints that

are applied on the additive model. The main benefit of employing the decision

tree as an additive model is the number of degrees of freedom we would have in

terms of hyper-parameters. In better words, the additive model can be changed60

by increasing/decreasing the number of trees (estimators), number of leaves or

terminal nodes, the depth of tree or number of observations per split. In addi-

tion to this, other objectives can be chosen based on the learning quality can

be applied including minimum improvement to loss, L1 (mean-absolute-error as

regularize) and L2 (mean-squared-error as regularize) weights (the value at each65

leaves) regularization which would results in huge improvement in the results in

comparison to classical machine learning models.

Many consumers of machine learning models will not trust the results if

they cannot understand the method. While the mechanism and math of a

black-box model is still a difficult concept to grasp, we hope that supplementing70

interpretability will go a long way in fostering trust in these methods. The basic

idea of interpretability comes from the simplicity of the model: the simpler

model, the more explainable. For complex models such as ensemble methods
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[16] including gradient boosting, simplicity is not attainable. We can name

two important elements of a complex model: (1) the information that can be75

algorithmically extracted, and (2) the noise [17]. The complex models often

perform significantly better than the parametric models (in terms of prediction)

and have achieved tremendous success in applications across many fields [18].

Cutting edge methods involving complex models have the ability to significantly

improve outcomes, however the trade-off between accuracy and interpretability80

is a significant challenge in the field of machine learning. Hastie et al. [17] has

shown multiples ways, including Friedman’s partial dependence plot [19] and

Pearl’s back-door adjustment [20], to determine causal interpretation of black-

box models. Therefore, an approach is needed to replace the complex model

with an interpretable approximation of the original model.85

There are several approaches to improve the explainability of a model: (1)

LIME [21], (2) DeepLIFT [22], (3) Layer-Wise Relevance Propagation [23], (4)

Shapley Regression Values [24], and (5) Shapley Sampling Values [25]. SHAP is

a unified approach created to explain the output of any machine learning model

through connecting game theory with local explanations. SHAP unifies several90

of the previous methods and presents the only possible consistent and locally

accurate additive feature attribution method based on expectations [26, 27].

There is a myth between gradient definition (how y changes as x changes at

the point x) and slope definition (how y changes as x differs from the baseline).

SHAP implies that what is important here is the slope rather the gradient.95

In this paper, the details of the modeling design and interpretation frame-

work are explained in section 2. Then, section 3 presents the performance of the

proposed framework using two case studies. Last, the summary and conclusions

of the current study are presented in section 4.

2. Modeling & Interpretation Framework100

Modeling and interpretation framework includes three main components:

(1) training, (2) testing, and (3) generalization. Fig. 1 illustrates the flowchart
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Figure 1: Modeling and interpretation framework flowchart.

of the framework. As shown, the pipeline begins with loading the database

along with data preprocessing and feature encoding (no feature standardiza-

tion/scaling). The database is splitted into train/test sets in a stratified fashion.105

This would a be crucial task to improve the generalization results due to any

imbalanced classification problem. In the training step, the feature standardiza-

tion/scaling can be fitted to the train data and scaler object should be applied

to the test set to transform the test data into the scaled train data subspace (no

fitting for test data). Next, the hyper-parameters of the XGBoost model should110

be tuned. Fail to tune the hyper-parameter values is one of the most common

reasons for training a biased/over-fitted model.

There are various methods including exhaustive grid-search, random search,

and Bayesian optimization [28]. Grid search provides an exhaustive search over
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specified parameter values. All the possible combinations of the specified hyper-115

parameters will be checked. In contrast to grid search, the main idea of random

search is not all the hyper-parameters values play an important role in the pre-

diction results. Therefore, tying out a fixed number of parameter settings can

be sampled from the specific distributions. Therefore, by random sampling,

the most important hyper-parameters can be determined and the other hyper-120

parameters settings can be kept fixed. The learning slope will be positive while

the similar outcomes would not be replicated. Checking all the combinations

of the hyper-parameters also requires large enough computational time where

designing a pipeline to predict what combinations are likely to work well using

machine learning methodologies could help to rescue from this challenge. This125

can be done by predicting the regions of the hyper-parameter space that might

give better outcomes and calculating the uncertainty of that prediction using

Gaussian Process models for each new combination of hyper-parameters. Gaus-

sian processes provide a simple, principled, practical, and probabilistic approach

in machine learning with an essential assumption that similar inputs give similar130

outputs. This simple and weak prior is actually very sensible for the effects of

hyper-parameters. Bayesian optimization, is a constrained global optimization

approach built upon Bayesian inference and Gaussian process models to find

the maximum value of an unknown function in the most efficient ways (less

iterations) [29, 30].135

After tuning the hyper-parameters, the model can be trained and the fitness

metrics can be evaluated using both training and testing data sets. Finally,

the visualization modules of the training stage including the evolution of the

performance metrics on both training and testing data sets, visualization of

the trained XGBoost trees, and the XGBoost feature importance can be em-140

ployed. The testing stage begins with running the testing visualization modules

including receiver operating characteristic (ROC) curves and confusion matrix.

Finally, SHAP values can be calculated for the testing data and SHAP visual-

ization modules can be applied on the testing data.

The main idea of generalization (as shown in Fig. 1 in the box with dashed145
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line) is to validate the reliability of the model by permuting the train/test data.

This would reduce the possibility of the stochastic results by incorporating the

statistical significance of the classification metrics over multiple iterations. The

generalization step begins with initializing the number of the iterations (n =

1, 2, ..., N). Then, for each iteration, the random seed is being initialized (new150

random seed = random seed × n) to maximize the possibility of the coverage

of the whole data in train/test sets. Consequently, the train/test split module

in a stratified fashion with the new random seed along with model training

module and the best set of hyper-parameters from the training component can

be employed. It should be noted that we should not incorporate a dynamic155

module to tune the hyper-parameters at each iteration since the main idea here

is to evaluate how reliable the trained model can be for different permutation of

the database. For each trained model, classification metrics can be calculated

based on the testing set (comes from a unique random seed). For instance, for

N iteration, we would have N models, and each model can be validated over its160

testing set using a classification metric. Therefore, we end up with an array of

metric values of size N which can be used for statistical significance tests and

confidence intervals.

3. Results & Discussion

In this section, the performance of the proposed framework is investigated165

via two case studies (1) failure modes in RC columns, and (2) failure modes

in RC shear walls. In addition to this, the reproducibility, reliability, and gen-

eralizability of the trained models is validated and the results of the proposed

pipeline are compared with similar studies.

3.1. Case Study 1: Failure Modes in RC Columns170

In this experimental study, the data contains 311 specimens of circular and

octagonal RC columns with 3 failure modes including 217 in flexure, 50 in

flexure-shear, and 44 in shear. The main features of the database to classify the
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Figure 2: XGBoost performance curves: (a) Evolution of log-loss for the train/test sets

through number of boosting rounds, and (b) ROC curves of various failure modes of RC

columns.

failure modes are (1) aspect ratio (a/D), where a is the shear span length, and D

is the diameter of circular columns, (2) axial load ratio (P/f ′cAg), where P is the175

axial load on the column, f ′c is the compressive concrete strength, and Ag is the

cross sectional area of the column, (3) longitudinal reinforcement index (ρlfy/f
′
c)

where ρl is the longitudinal reinforcement ratio, and fy is the yield strength of

longitudinal reinforcement, and (4) transverse reinforcement index (ρsfyh/ft),

where ρs = 4Asp/ds is a composite factor of transverse reinforcement area Asp180

and the distance between hoops ds, yield strength of transverse reinforcement

fyh, and tensile concrete strength ft [31, 32].

As discussed in section 2, the data is splitted into train/test sets in a stratified

fashion with 70% as training and 30% as testing (66 specimens with flexure, 15

specimens with flexure-shear, and 13 specimens with shear failure modes). The185

hyper-parameters of the trained XGBoost model was chosen using Bayesian

optimization. Fig. 2a illustrates the evolution of the multi-class-logarithmic-

loss (mlogloss) as the chosen evaluation metric over the number of boosting

rounds for both training and testing sets. As seen, the mlogloss values decay

for both training and testing sets through number of boosting rounds. This fact190

validates the trained model as a just-right fitted model and vanishes any chance
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Table 1: Classification results of trained model in prediction of testing set for various failure

modes of RC columns.

Failure Mode Precision Recall F1-Score Accuracy

Flexure 0.96 0.98 0.97 0.98

Flexure-Shear 0.82 0.60 0.69 0.60

Shear 0.80 0.92 0.86 0.92

Macro-Average 0.86 0.84 0.84 0.83

Micro-Average 0.91 0.91 0.91 0.91

Flexure Flexure-Shear Shear
Predicted label
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Shear
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Figure 3: Confusion matrix of the classification results of trained model over testing set for

various failure modes of RC columns.

of over-fitting. In addition to this, Fig. 2b depicts the ROC curves with area

under curve (AUC) of various failure modes of RC columns. An ROC curve

presents false positive rate (1-specificity) versus true positive rate (sensitivity

or recall) under different classification thresholds. The true positive rate is the195

proportion of positive cases that are correctly classified while the false positive

rate is the proportion of negative cases that are incorrectly classified as positive.

The performance can be evaluated through how well a model separates the true

positive rate from the false positive rate. The area under the ROC curve provides

a straightforward measure where an AUC of 1.0 represents a perfect model and200
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Figure 4: First trained tree of the XGBoost model for RC columns.

an AUC of 0.5 represents a worthless (stochastic) model. The closer the AUC

to 1.0, the better the model. As shown in Fig. 2b, the solid lines present the

curve for each of the failure modes separately and the red and blue dashed lines

present micro-average (weighted-average) and macro-average (numeric-average)

AUCs, respectively.205

Figure 5: Feature importance of the trained XGBoost model for RC columns.

Table 1 presents the classification results of the trained model applied on

the testing set for various failure modes of RC columns. This table includes

the report of precision, recall, f1-score, and accuracy for all three modes sep-

arately. In addition to this, macro-average, and micro-average calculation of
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the classification metrics are also presented. The trained XGBoost model has210

the best performance in predicting of flexure modes with a precision of 0.96,

recall of 0.98, and accuracy of 0.98. This could be due to extra presence of the

flexure modes in the training data (typical imbalanced classification problem

statement). However, the model showed lower recall in prediction of flexure-

shear failure mode, and lower precision in prediction of shear failure mode in215

the testing set. Additionally, the shear and flexure-shear failure modes both

have close precision around 0.80, while their recall values are 15% off from each

other with the fact that the shear and flexure-shear failure modes both cover the

same fraction of the train/test sets (around 16%). This would rise the fact that

how important is to use a stratified fashion for train/test splits to minimize any220

possibility of over-fitting. This would also increase the chance of training a gen-

eralizable model with even small number of specimens in any database. Fig. 3

presents the confusion matrix of the classification results of the testing set. The

diagonal elements represent failure modes that are predicted correctly. Among

66 specimens in flexure class, 1 case was incorrectly classified as flexure-shear,225

and among 13 specimens with shear class, 1 case was incorrectly classified as

flexure-shear. In principle, the trained model has good ability to distinguish

between flexure and shear cases and it did not classify any of the specimens in

these classes as the other class, while among 15 specimens with flexure-shear,

3 specimens were incorrectly classified as flexure, and 3 specimens were incor-230

rectly classified as shear (60% accurate). Therefore, increasing the number of

specimens with flexure-shear or adding more features with the ability to de-

crease the marginal error between flexure and shear would improve the model

performance. Mangalathu et al. [31] have also previously noted that it is often

arduous to properly establish the decision boundaries between flexure-shear and235

other modes of failure.

One of the most important aspects of the training a model is how the features

contribute in the training process which can be used as a metric to measure the

relative impact of the features in the trained model. Fig. 5 illustrates the

feature importance of the trained model based on the total gain metric. The240
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Figure 6: SHAP summary plots of the testing set for various failure modes of RC columns:

(a) Flexure, (b) Shear, and (c) Flexure-Shear.

gain implies the relative contribution of the corresponding feature to the trained

model calculated by taking each feature’s contribution for each tree in the model.

A higher value of this metric when compared to another feature implies that the

corresponding feature has more impact for generating a prediction. In principle,

total gain is the total improvement in evaluation metric (mlogloss here) brought245

by a feature with respect to all features to the branches it is on. In fact, before

adding a new split on a feature X to the branch, there were some wrongly

classified elements, after adding the split on this feature, there are two new

branches, and each of these branches would be more accurate (one branch saying

if your observation is on this branch, then it should be classified as 1, and the250

other branch saying the exact opposite and it should be classified as 0). As

shown in Fig. 5, aspect ratio has the most impact in the model and its total gain
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Figure 7: SHAP summary plot of the testing set with absolute impact of the features for

various failure modes of RC columns.
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Figure 8: XGBoost performance curves: (a) Evolution of log-loss for the train/test sets

through number of boosting rounds, and (b) ROC curves of various failure modes of RC

shear walls.

is more than two times more than the total gain of the transverse reinforcement

index which is the next important feature in the model. This can also be seen by

looking at the first couple trained trees. Fig. 4 illustrates the first trained tree255

of the XGBoost model. As seen, the first split is over aspect ratio, and second

splits over transverse reinforcement index and axial load ratio, respectively.

In addition to the XGBoost feature importance plot, SHAP can be a great

tool in order to reveal the interpretation of each single predictions of the trained

model. Fig. 6 presents the SHAP summary plots of the trained XGBoost260
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model for (a) flexure, (b) shear, and (c) flexure-shear failure modes using tree

explainer which is a combination of the feature importance with considering

the feature effect. For each of the features, the SHAP values (each dot in the

summary plot) and their impacting contribution (range and distribution) to the

model (high as red, low as blue) are shown. The density of the dots in the265

summary plot indicates the real distribution of the exemplars in the testing

data set. As seen, the aspect ratio is the important feature which indicates the

importance of the geometry of the columns. This result is along with what we

have already seen in Fig. 5 (importance over the training set) which indicates

the fact that model is properly trained and the possibility of over-fitting is270

reasonably minimized. However, the aspect ratio has shown different impacts

based on the failure modes. For instance, having larger values (in the test set)

for aspect ratio in the shear failure mode summary plot as shown in Fig. 6b

has shown counter-predictive response in the trained model while larger aspect

ratio values has shown direct response in prediction of the flexural model as275

depicted in Fig. 6a. Next impactful feature is the transverse reinforcement

index where higher values have counter-predictive response in the trained model

for shear and flexure-shear failure modes. On the contrary, it can be seen in Fig.

6a that higher transverse reinforcement index values increase the possibility of

the flexural failure. The longitudinal reinforcement index and the axial load280

ratio are the next important features in which they have shown mixed impacts.

For instance, the longitudinal reinforcement index has shown inverse response

between flexure and shear failure modes. In fact, the specimens with higher

longitudinal reinforcement index have shown counter-predictive responses for

flexural failure (Fig. 6a) while they have predictive responses in shear failure285

(Fig. 6b). Fig. 6c presents the SHAP summary plot of the flexure-shear failure

model. Despite the other two failure modes, the SHAP values of the flexure-

shear failure mode have shown consistency with their actual values. In principle,

as the feature values decrease, the predictive responses of the model increase.

While SHAP values can have both positive and negative values, for the290

sake of comparison, the average of absolute SHAP values are used in Fig. 7
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to compare the global average impact on the model output magnitude (Ij =∑n
i=1 |φ

(i)
j |) for flexure (blue bar), shear (magenta bar), and flexure-shear (olive-

green bar) modes of failure. The idea behind SHAP feature importance is sim-

ple: features with large absolute SHAP values are important. This would be295

the global impact of the features over the testing set for each failure mode. It

is always recommended to compare Fig. 7 with the XGBoost feature impor-

tance (Fig. 5). As seen, the features have the same ranking in both of the

figures and they share close impact/importance over the model. For instance

the aspect ratio has 2.4, 4.1, and 5.4 times more total gain than transverse300

reinforcement index, longitudinal reinforcement ratio, and axial load ratio, re-

spectively. Similarly, the aspect ratio has 1.5, 3.8, and 3.8 times more average

impact on model output magnitude than transverse reinforcement index, lon-

gitudinal reinforcement ratio, and axial load ratio, respectively. It should be

noted that the XGBoost total gain (feature importance) is calculated over the305

course of the training data while the SHAP summary plot is calculated based

on the trained model over the course of testing data.

Table 2: Classification results of trained model in prediction of testing set for various failure

modes of RC shear walls.

Failure Mode Precision Recall F1-Score Accuracy

Flexure 0.87 0.89 0.88 0.89

Flexure-Shear 0.79 0.93 0.86 0.93

Shear 0.94 0.86 0.90 0.86

Sliding-Shear 1.00 0.57 0.73 0.57

Macro-Average 0.90 0.81 0.84 0.82

Micro-Average 0.88 0.87 0.87 0.87

3.2. Case Study 2: Failure Modes in RC Shear Walls

In this experimental study, the data contains 393 specimens of RC shear

walls in which 238 of the specimens have a rectangular, 95 with barbell type,310
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and 60 with flanged cross sections. It should be noted that all of the presented

shear walls include symmetric cross sections and continuous longitudinal rein-

forcement without lap splices, deformed, and straight reinforcement. Moreover,

the selected specimens with RC shear walls have 4 failure modes including 152

in flexure, 122 in shear, 96 in flexure-shear, and 23 in sliding-shear. The main315

features of the database to classify the failure modes are (1) aspect ratio M/V lw

calculated as the shear span length to the wall length where M is the base mo-

ment, V is the base shear, and lw is the wall length, (2) length to thickness

ratio of the wall lw/tw, where tw is the thickness of the wall, (3) axial load

ratio (P/f ′cAg), where P is the axial load on the column, f ′c is the compres-320

sive concrete strength, and Ag is the cross sectional area of the column, (4)

ratio of the boundary element to cross sectional area Ab/Ag, where Ab is the

boundary element, (5) section, (6) web vertical reinforcement index ρvwfy,vw/f
′
c,

where ρvw is the vertical reinforcement ratio of the web, and fy,vw is the ver-

tical yield strength of web reinforcements, (7) web horizontal reinforcement325

index ρhwfy,hw/f
′
c, where similarly ρhw is the horizontal reinforcement ratio of

the web, and fy,hw is the horizontal yield strength of web reinforcements, (8)

boundary element vertical reinforcement index ρvcfy,vc/f
′
c, where ρvc is the ver-

tical reinforcement ratio of the boundary element, and fy,vc is the vertical yield

strength, and (9) boundary element horizontal reinforcement index ρhcfy,hc/f
′
c,330

where ρhc is the horizontal reinforcement ratio of the boundary element, and

fy,hc is the horizontal yield strength [31, 32].

Similar to the first case study , the data is splitted into train/test sets in

a stratified fashion with 70% as training and 30% as testing (46 specimens

with flexure, 29 specimens with flexure-shear, 36 specimens with shear, and335

7 specimens with sliding-shear failure modes). The section feature includes

various cross section shapes including rectangular, barbell, and flanged with

categorical values. The categorical values are encoded as integers for the sake of

modeling. Moreover, the hyper-parameters of the trained XGBoost model was

chosen using Bayesian optimization. Similarly, Fig. 8a illustrates the evolution340

of the mlogloss over the number of boosting rounds for both training and testing
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Figure 9: Confusion matrix of the classification results of the trained model over the testing

set for various failure modes of RC shear walls.

Figure 10: First trained tree of the XGBoost model for RC shear walls.

sets and Fig. 8b shows the ROC curves of various failure modes of RC shear

walls, where the solid lines present the curve for each of the failure modes

separately and the red and blue dashed lines present the micro-average and

macro-average AUCs, respectively. As seen, the mlogloss values decay for both345

training and testing sets through number of boosting rounds, flexure and flexure-

shear failure modes have the best AUC values (0.98), and sliding-shear failure

mode has the worst performance with an 0.86 AUC among all failure modes of

the RC shear walls.

Table 2 presents the results of the trained model in prediction of the testing350
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Figure 11: Feature importance of the trained XGBoost model for RC shear walls.
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Figure 12: SHAP summary plots of the testing set for various failure modes of RC shear walls:

(a) Flexure, (b) Flexure-Shear, (c) Shear, and (d) Sliding-Shear.

set for various failure modes of RC shear walls. The trained XGBoost model

has the best precision in prediction of the sliding-shear failure mode, the best
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Figure 13: SHAP summary plot of the testing set with absolute impact of the features for

various failure modes of RC shear walls.

recall and accuracy in prediction of the flexure-shear failure mode, and the best

f1-score in prediction of the shear mode with values of 1.0, 0.93, 0.93, and 0.90,

respectively. The probabilistic values can be taken from their AUC values based355

on the ROC curves according to the Fig. 8b where flexure, and flexure-shear

modes they both have an AUC of 0.98, shear mode has an AUC of 0.97, and the

sliding-shear mode has the worst AUC (0.86). Furthermore, Fig. 9 presents the

confusion matrix of the classification results of the testing set. High precision

and low sensitivity (recall) values of the sliding-shear failure mode can be due to360

the few number of specimens in the experimental database that can be a good

point of attention for the future studies. Feature contribution of the trained

model is presented in Fig. 11 using the XGBoost total gain metric, where similar

to the RC columns case study, the aspect ratio has the highest total gain among

all of the features. This implies that the geometrical features still play the most365

important role in RC failure assessment. Similar to the RC column results, this

fact can also be seen by looking at the first couple trained trees, where the first

split is over the aspect ratio. Fig. 10 illustrates the first trained tree of the

XGBoost model.

Fig. 12 presents the SHAP summary plots of the trained XGBoost model for370

(a) flexure, (b) flexure-shear, (c) shear, and (d) sliding-shear failure modes using

tree explainer. Similar to Fig. 5, the aspect ratio is the most important feature
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which indicates the importance of the geometry in prediction of the failure in

shear walls. The higher values of the aspect ratio showed linear correlation with

the prediction of the flexure (Fig. 12a), and flexure-shear (Fig. 12b), while375

they have inverse effects (counter-predictive feature) on sliding-shear (Fig. 12d)

and shear (Fig. 12c) failure modes. Following the aspect ratio, the boundary

element vertical reinforcement index has shown mixed importance based on the

testing set where higher values of the vertical reinforcement index has predictive

responses in prediction of shear failure modes while they have shown counter-380

predictive responses in prediction of flexure failure mode. In addition to this,

length to thickness ratio is the second imapactful feature in prediction of the

flexure-shear failure mode while it has not shown importance in prediction of

the other failure modes which can be clearly seen in Fig. 13 as the global aver-

age impact on the model output magnitude for flexure (purple bar), shear (blue385

bar), flexure-shear (red bar), and sliding-shear (green bar) modes of failure.

The aspect ratio, horizontal and vertical boundary element reinforcement in-

dices, following by the horizontal and vertical web reinforcement indices are the

top five features with the highest global impact in prediction of various failure

modes of RC shear walls. It should be noted that the SHAP explainability has390

numerous variations and in this study only some of them were presented, while

the proposed framework does have the ability to visualize all of the available

SHAP visualizations (more on https://github.com/slundberg/shap).

3.3. Generalization Study

Last, the validation of the generalizability of the proposed models is desired.

As shown in section 2, the proposed framework has the feature to validate

the results to be reproducible and statistically reliable. For example, the main

train/test runs of both case studies resulted in micro-average AUC = 0.987, and

AUC = 0.968 for RC columns and RC shear walls, respectively. The confidence

interval (CI) for any significance level can be calculated using the following

formula:

CI = Score± ZScore ×
√
Score× (1− Score)

N
(1)
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Figure 14: Histograms of the micro-average AUCs based on the generalization runs with

random-stratified train/test sets for (a) RC columns, (b) RC shear walls. The stars illustrate

the related performance of the trained models presented in Section 3. The figures share the

same y-axis scale for the sake of comparison.

where ZScore for 95% significance level is 1.96, and N is the testing sample size.395

Therefore, the CI for the micro-average AUC of RC columns (Score=0.987 and

N=94) would be [0.965, 1.00], and similarly the CI for the micro-average AUC

of RC shear walls (Score=0.968 and N=118) would be [0.937, 1.00]. The pre-

sented CIs are true based on the central limit of theorem [1] if we have normal

distributions for the scores which can be acquired if we have big enough sample400

size. To simulate this theorem and validate the generalizability of the models,

1000 different runs with random-stratified train/test sets as defined in section 2

employed. Fig. 14 illustrates the histograms of the micro-average AUCs based

on the 1000 generalization runs with random-stratified train/test sets for (a) RC

columns, (b) RC shear walls, where the light-blue solid line, navy dashed line,405

and red dashed lines present the kernel density estimation, median (50th per-

centile), lower and upper confidence intervals, respectively. In addition to this,

the scatter point with star marker depicts the micro-average AUC resulted based

on the prediction of each trained model over the testing set. The generalization

confidence intervals with 95% statistical significance level for RC columns and410

RC shear walls are CI = [0.9539, 0.9873] and CI = [0.9255, 0.9723], respectively.

As shown, the micro-average AUCs of the testing sets (star markers) are inside
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the experimental confidence intervals for both case studies which proves the fact

that the presented models are statistically generalizable with 95% significance

level. Moreover, the micro-average AUCs of the main models are in the right415

tail of the distributions which can be due to the tuned hyper-parameters of

the XGBoost resulted from the Bayesian optimization. In addition to this, the

performance of two case studies can be compared via the spread of two distri-

butions. As shown in Fig. 14, the histograms for RC shear walls (Fig. 14(b))

has a wider spread. This can be due to higher number of failure modes in RC420

shear walls study and relatively close number of specimens in the study. This

can be used as a useful notes to engineers to take into account before designing

experiments.

3.4. Comparative Study

As a comparative study, we have outperformed the results of the best models425

presented by Mangalathu et al. [31] based on the same experimental database.

They have employed random forests as the best models with micro-average test-

ing accuracy of 84% and 86% for RC columns, and RC shear walls, respectively.

However, as we reported in Table 3, the presented XGBoost models have im-

proved the micro-average testing accuracy for 7% and 2% for RC columns, and430

RC shear walls, respectively. In addition to this, we have compared the overall

precision and recall of the models, where the models presented by the current

framework outperformed the random forests models. It should be noted that

the testing size in both studies was set to 30% of the data. The proposed

framework showed robust performance in multi-label imbalanced classification435

while the results presented by Mangalathu et al. did not handle this issue. In

principle, Mangalathu et al. did not pay attention to the importance of the

stratification of the imbalanced classes and this was ended up with misleading

results. In fact, in imbalanced classification problems the crucial goal is to find a

trade-off to predict the low prevalence class as well as the high prevalence class,440

while training a model that detects the high prevalence class is not a challenge

and the performance would be still reasonably high. However, stratification
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Table 3: Comparison of the classification results of the proposed framework with the model

presented by Mangalathu et al. [31]. All the metrics are evaluated as on the testing data and

they all reported as micro-average.

Database Model Accuracy Precision Recall

RC Columns
XGBoost 0.91 0.91 0.91

Random Forest 0.84 0.86 0.84

RC Shear Walls
XGBoost 0.88 0.87 0.87

Random Forest 0.86 0.86 0.86

helps to prevent this issue for any test scenarios and prevents possible risks and

damages. It is crucial to keep the prevalence of each class in both training and

testing sets. Therefore, their models were not generalizable enough since they445

did not learn all the classes equally. Moreover, boosting algorithms change the

training data distribution iteratively with the goal of predicting the specimens

that are harder to classify. This feature would enable the proposed framework

to outperform the random forest models that are based on constructing parallel

decision trees, while XGBoost is a result of a sequence of decision trees.450

4. Summary & Conclusions

In this paper, we have proposed an scalable-interpretable modeling frame-

work which can be applied to a variety of engineering problems. The pipeline

was applied on two case studies: (1) failure modes in RC columns, and (2)

failure modes in RC shear walls. The results of the pipeline for both studies455

were compared to the benchmark study. Clearly, the results of the proposed

pipeline outperformed the results that were presented in the benchmark study

and passed the reliability validation tests with high statistical significance. This

would give the experimental domain experts enough insights to plan studies

that will help establishing better experimental database to reveal the flaws of460
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the current models that would help creating better machine learning models in

the future.

In addition, we have discussed why it is beneficial to use gradient boosting

models, as well as some of the explainability complications involved in such mod-

els. Through our case studies we have illustrated that by using SHAP values,465

these models can be interpretable, at least in the area of feature importance.

As the availability of data increases, so does the opportunity for machine learn-

ing algorithms to discover solutions to real-world problems. Many consumers of

machine learning models will not trust the results if they cannot understand the

method. While the mechanism and math of a black-box model is still a difficult470

concept to grasp, we hope that supplementing predictions with understandable

feature importance results will go a long way in fostering trust in these methods.

If this trust cannot be gained, the benefit of cutting-edge methods in machine

learning is largely lost.
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Appendix480

1. Precision = True Positive/(True Positive + False Positive)

2. Recall = True Positive/(True Positive + False Negative)

3. F1-Score = 2×True Positive/(2×True Positive + False Positive + False

Negative)

4. Accuracy = (True Positive + True Negative)/(True Positive + True Neg-485

ative + False Positive + False Negative)
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