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ABSTRACT The voltage regulation in distribution networks is one of the major obstacles when increasing
the penetration of distributed generators (DGs) such as solar photovoltaics (PV), especially during cloud
transients, causing potential stress on network voltage regulations. Residential demand response (DR) is one
of the cost-effective solutions for voltage management in distribution networks. However, the main barriers
of DR implementation are the complexities of controlling a large number and different types of residential
loads, satisfying customers’ preferences and providing them fair incentives while identifying the optimum
DR implementation locations and sizing as well as cooperating with the existing network equipment for the
effective voltage management in the networks. A holistic and practical approach of DR implementation is
missing in the literature. This study proposes a dynamic fair incentive mechanism using a multi-scheme load
control algorithm for a large number of DR participants coordinating with the existing network equipment for
managing voltage at medium voltage (MV) networks. The multi-scheme load control is comprised of short-
interval (10-minute) and long-interval (2-hour) DR schemes. The dynamic incentive rates are optimized
based on the energy contribution of DR participating consumers, their influence on the network voltage
and total power loss improvement. The proposed method minimizes the DR implementation cost and size,
fairly incentivizes the consumers participating in the DR and priorities their consumption preferences while
reduces the network power losses and DGs’ reactive power contributions to effectively manage the voltage
in the MV networks. An improved hybrid particle swarm optimization algorithm (IHPSO) is proposed for
the load controller to provide fast convergence and robust optimization results. The proposed approach is
comprehensively tested using the IEEE 33-bus and IEEE 69-bus networks with several scenarios considering
a large number of DR participants coordinatedwith theDGs and on-load tap changer (OLTC) in the networks.
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INDEX TERMS Cloud transients, consumer comfort, distribution networks, dynamic fair incentive, load
control, voltage management, distributed generation, solar photovoltaics.

I. INTRODUCTION23

Over the recent years, the use of renewable energy sources24

(RESs) in the form of distributed generators (DGs) have25

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Chen .

increased considerably [1]. The conventional distribution sys- 26

tems have not been designed with the consideration of bidi- 27

rectional power flows from the RESs, which create major 28

challenges for distribution system operators to maintain the 29

system reliability and power quality within the standard 30

limits. Cloud-induced transients over the solar photovoltaic 31
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(PV)-based DGs are considered as one of the potential barri-32

ers for further increase of the PV penetration in the distribu-33

tion networks [2]. If clouds sweep over the solar catchment34

area within a short time (in the scale of minutes), the PV35

power contribution drops quickly which36

may cause voltage drop at some buses, especially in remote37

ones [3]. Such transients can cause voltage deviations beyond38

the standard range [1] and excessive operation of the net-39

work equipment for the voltage regulation [2]. Some con-40

ventional approaches for managing voltage in the medium41

voltage (MV) distribution systems are the on-load tap changer42

(OLTC) mechanism of the transformer, step voltage regula-43

tors, and static volt-ampere reactive (VAR) compensators [1],44

[4]. However, thesemethods cannot guarantee that the voltage45

profile will be within the acceptable bounds throughout all46

connected feeders to an affected transformer [3]. Also, the47

lifetime of such operating equipment dramatically reduces48

because of the increased number of actions needed to handle49

the voltage deviations due to sudden changes in PV gener-50

ations [4]. In addition, researchers in [5] have introduced a51

two-level voltage control in the distribution level including52

the upper-level optimal reactive power dispatch and lower-53

level real-time control. In the lower level, the rooftop PVs54

form an aggregator, then the aggregators are governed by55

the introduced droop controllers in the MV networks. In the56

upper level, according to the network condition, the PV57

will be dispatched to minimize the active power loss in the58

network. Similarly, the study in [6] has introduced a new59

approach for voltage regulation in the distribution level using60

a three-level coordinated control method for the PV inverters.61

The introduced approach includes a ramp-rate control, and62

a droop control in the local level of voltage regulation, and63

the third level control based on dynamic average consensus64

in the case where the first two levels are not enough to retain65

the voltage level in the predefined boundaries. However, from66

the financial perspective, the motivation for the participation67

of rooftop PVs has not been investigated in these works.68

Also, it is important to mention that in most of the distri-69

bution networks, there is no incentive for the reactive power70

support provided by inverters. This reactive contribution is71

now included in the corresponding standards especially for72

small-scale inverter-interfaced PV systems, so the owners73

would not get paid for this contribution. Therefore, the own-74

ers of the private owned DGs intend to allocate most of their75

capacity of generation to generate active power to maximize76

their profit. However, in the framework here, the reactive77

power is provided by the large DGs through the optimization78

process. In other words, the local generation of the reactive79

power has been done by DGs with a large capacity, which80

they have enough capacity for generating both active and81

reactive power. Also, these large DGs are incentivizes for82

their reactive power contributions. Another important fact is83

that due to the high resistance/reactance (R/X) ratio in the84

distribution networks, the impact of the active and reactive85

powers changes on the voltage variation are not the same,86

and in some cases, the effect of the active power change in87

voltage variation is higher than the reactive power. Therefore, 88

unlike the transmission networks, the voltage magnitude in 89

the distribution networks can be controlled by the active 90

power from the consumers through demand response (DR) 91

programs effectively. 92

Therefore, one of the promising means of utilizing the 93

existing infrastructure for managing network voltage is the 94

optimal control of end-users’ loads through DR programs 95

[7], [8], [9] incorporated with home energy management 96

systems (HEMSs) [10], [11]. Utilities can communicate with 97

the consumers’ HEMSs, which can switch ON and OFF 98

the DR participated appliances almost instantaneously and 99

enable them to react fast to maintain the network voltage 100

effectively [12]. It can postpone the investments on the gen- 101

eration resources and network upgrades [13]. HEMS helps 102

utility for DR implementation by providing information such 103

as household appliances’ real-time energy consumption sta- 104

tus and consumption preferences set by consumers and by 105

receiving load control signals from the utility to control the 106

appliances. HEMSs are developed considerably over the past 107

years, and the smart grid technologies like smart metering 108

and appliances for load control via HEMS are becoming 109

more attractive for the modern distribution networks [11], 110

[12]. One of the main challenges in the implementation of 111

DR is how to fairly incentivize participants for encouraging 112

them to contribute on a DR program. The incentives to the 113

participating consumers in a DR program should not be fixed 114

or equal across all conditions in a network during an event 115

of voltage or thermal limits violations, namely defined as the 116

DR event in this paper. An incentive scheme should be fair 117

based on the DR participant consumers contribution in each 118

DR event and their locations within the network. A study 119

in [14] propose a fair incentive mechanism for the customers 120

to improve the power quality problems in the network. In the 121

following, the literature of the subject will be investigated in 122

more detail. 123

The growing penetration of electric vehicles into the dis- 124

tribution network may create huge challenges, which require 125

proper optimized operation for the distribution network [15]. 126

A study in [16] developed a strategy for peak shaving in the 127

distribution network via electric vehicle aggregators which 128

in turn leads to cost reduction and oversaturation of the 129

distribution transformers. Authors in [17], [18], and [19] 130

propose an optimal planning for renewable generators imple- 131

mentation and electric vehicle operations to minimize the 132

voltage deviations and power flow from the main grid as 133

well as minimize the power loss in the microgrids. Likewise, 134

in [20] and [21], demand response program in the presence 135

of an energy management scheme was provided to optimally 136

schedule the electric vehicles as well as adjust the household 137

appliances. The study in [22] developed a reward-based load 138

control algorithm to shave network peaks, where consumers’ 139

and utility’s profits are considered. It shows that the pro- 140

posed reward-penalty can move forward the organized opera- 141

tional characteristics and relieve the top bounce back without 142

forcing more costs on consumers. However, only a limited 143
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FIGURE 1. Architecture of the proposed voltage management system.

number of households are considered in the simulations144

assuming all appliances have the same power consumption145

rating of 1 kVA, and the impact of DR on network power loss146

at different times are not taken into account.147

Therefore, in this paper, a dynamic incentive mechanism148

to compensate for such locational impact on DR implemen-149

tation is developed to take into account the contributions of150

consumers in energy adjustment, voltage improvement, and151

power loss reduction. The weightings of these contributions152

are optimized here at different times considering the network153

situations.154

Another challenge in DR implementation is to optimize the155

control of a large number of various types of household appli-156

ances through HEMSs simultaneously and maintaining the157

consumers’ comfort levels by prioritizing their consumption158

preferences in addition to considering network constraints.159

Inappropriate load control may lead to network constraints160

violation [23] and unnecessarily increase the volume of161

load control which can cause discomfort to consumers and162

increase the DR cost. DR implementation through HEMSs163

and coordination of DGs, as proposed in this paper (as shown164

in Fig. 1) can benefit both utilities and consumers. All these165

considerations in the load control algorithm create a complex166

optimization process, which requires a long computational167

time. Various analytical and soft computing strategies such as168

heuristic approaches [24], reinforcement learning [25], etc.,169

are proposed to solve such complex problems for schedul-170

ing appliances. Some of these approaches are successful in171

obtaining the optimal solution. However, they are not fast172

enough in convergence and entail heavy computational costs,173

which are not suitable for a fast voltage management process174

considering a large number of DR participants. Moreover,175

the consumption decision priorities of the individual DR176

participant to retain their comfort levels are important indices177

for a successful DR implementation, are not considered in the178

aforementioned studies.179

The study in [6] provides a large percentage of real-time180

balancing reserve for theMV network by aggregating electric181

water heaters (EWHs) for load shifting while maintaining the 182

consumers’ comfort levels. In [26], a virtual energy storage 183

system concept is proposed considering EVs and ACs to 184

cater for the comfort levels of consumers at different indoor 185

temperatures. However, these studies are limited to control of 186

few appliances. Multi-layers DR study in [27] uses only air 187

conditioner (AC), EWH, and cloth dryer to satisfy both utility 188

and consumer preferences. A load shedding optimization 189

technique is proposed in [2] for the utility to maintain their 190

network voltage considering a limited number of household 191

appliances. These studies consider only a few selected appli- 192

ances from a limited number of DR consumers in the load 193

control, assuming all the consumers have similar appliances 194

with fixed kW ratings of appliances without any fair opti- 195

mized incentive distribution. In reality, the appliances’ power 196

ratings and their availability vary between the consumers and 197

may not be the same across all participating consumers in 198

a DR event. Therefore, a realistic approach considering the 199

variability of household appliances and their different kW 200

sizes for a large number of DR participants are yet to be 201

investigated in the load control algorithm. 202

Toward this end, this study introduces a holistic multi- 203

scheme load control strategy for managing multi-interval 204

voltage fluctuations in the MV networks and minimizing the 205

power loss with the following main contributions: 206

1) A dynamic incentive mechanism is proposed for fairly 207

rewarding the DR participating consumers based on 208

their energy contribution and their influence on the 209

network voltage and loss improvements. 210

2) The load control algorithm is developed to optimize 211

the DR participants’ locations and support their con- 212

sumption decisions to maintain their comfort levels by 213

considering appliances’ switching status, disturbance 214

ratio and their fair interruption in the DR event. 215

3) An improved hybrid particle swarm optimization 216

(IHPSO) algorithm is proposed in the load controller to 217

provide fast and robust convergence in handling a large 218

number of DR participants and objective parameters 219

such as minimizing the network loss, DGs’ reactive 220

power contribution, DR cost and sizing, fair incen- 221

tive distribution and the participants’ consumption 222

preferences. 223

The rest of the paper is organized as follows; Section II 224

presents the proposed objective function, dynamic fair incen- 225

tive strategy, multi-scheme DR for voltage management and 226

consumer preference definitions and modelling. Section III 227

explains the solution approach for the multi-interval voltage 228

management. Section IV provides simulation results of the 229

proposed approach, and the relevant conclusion is presented 230

in Section V. 231

II. METHODOLOGY 232

This section provides the details of the objective function 233

and the proposed dynamic fair incentive rate design for the 234

multi-scheme load control for different intervals of voltage 235

management (as shown in Fig. 1). 236
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A. OBJECTIVE FUNCTION237

The optimization problem of each load control scheme has238

two conflicting objectives. The first objective is to satisfy the239

distribution network technical constraints including voltage240

magnitude, line thermal bounds, active power loss and DGs’241

reactive power capabilities. The second objective is to pro-242

vide fair incentive rates to consumers while minimizing the243

total cost of DR as well as consumers’ welfare disturbances.244

In the proposed optimization problem, the decision variables245

include the incentive rate factors of each DR candidate bus,246

the participating appliances’ switching variables and prefer-247

ences, and the reactive power contribution from DGs. The248

outcomes of the optimization process are the optimal switch-249

ing positions (ON/OFF) of the appliances, the fair incentive250

rates and the reactive power output of each DG at the time of251

each DR event. Thus, the objective function (OF) is formu-252

lated in the form of a mixed integer nonlinear programming253

problem.254

Min [Of ]Of =
T∑
t=1

Ptlossλt + N t
DR∑
i=1

(
DRti × π

t
i
)

255

+

NDG∑
k=1

(
Qk,t × ηk

))
1t + PenaltyTotal (1a)256

where, DRti =
N t
A∑

n=1

∣∣Anti ∣∣× Pn,ti ;257

PenaltyTotal = PenaltyVolt.violation258

+PenaltyPower loss + Penaltytswitching259

s.t.Vmin ≤ V t
j ≤ Vmax ,∀j, t (1b)260 ∣∣I tl ∣∣ ≤ Imax ,∀l, t (1c)261

Qk,tmin ≤ Q
k,t
≤ Qk,tmax∀k, t (1d)262

Here, DRti represents the total kW DR contribution from ith263

candidate at t th timeframe of a DR event;λtand π ti present264

the energy cost from the upstream grid and the associated265

incentive rate ($/kWh) from the corresponding DR bus; ηk is266

the price of reactive power generation by DGs ($/kVAr); N t
DR267

is the total number of DR candidate consumers participating268

in a DR programming at time t;1t is the time frame duration269

of a DR event; T represents the number of time intervals270

for DR events in a particular day; Ptloss is the total network271

active power loss at time t . Anti is the optimised switching272

status (ON/OFF) of the nth appliance of the ith consumer273

at time t during a DR event. Pn,ti is the rated kW demand274

of the nth appliance participated in the DR event. N t
A is the275

total number of appliances of a consumer considered in a276

DR event. The total kW for DR contribution (DRti ) from277

ith candidate location is calculated by aggregating all kW278

ratings of participating appliances at time t. The limits of the279

magnitude of bus voltages, line thermal limits and reactive280

power output of DGs are expressed in (1b)-(1d), respec-281

tively. The reactive power output of each DG is minimized282

by the formulation of OF so that the maximum capacity283

of the DGs can be used for active power production. The 284

DR cost for each participating consumer is then calculated 285

by multiplying the total controlled demand (kW), optimized 286

incentive rate ($/kWh) of the corresponding bus (as explained 287

in Section II.B), and the duration (in hours) of the DR event. 288

The PenaltyTotal factor is a combination of voltage violation 289

penalty factor (PenaltyVolt.violation), power loss penalty fac- 290

tor (PenaltyPower loss) and appliances’ switching constraints 291

penalty factor (Penaltytswitching). These applied penalty factors 292

will be discussed in Sections II.D and IV. In the following, 293

the DR incentive rates and the associated contribution will be 294

calculated. 295

B. THE INCENTIVE RATE ALLOCATION AND DR LOCATION 296

SELECTION 297

Use DR participants based on their locations in the network 298

will have a higher influence on the network parameters (such 299

as bus voltages, line currents, and network loss) and are 300

tended to be interrupted more in a DR event than those 301

participants located comparatively less sensitive locations in 302

the same network [21], [22]. As a consequence, DR par- 303

ticipants located in the buses with higher impacts on the 304

network parameters, contribute more to the voltage and loss 305

improvements than the other participants. If all the par- 306

ticipating consumers are provided with an equal incentive 307

rate ($/kWh) (e.g., as considered in [12], [25], and [28]), 308

it implies a potential fairness issue on the incentive distri- 309

bution between the participating consumers. To provide a 310

better balance between the contributions and the rewards to 311

the participating consumers, this study proposes amechanism 312

of calculating incentive rate dynamically for each DR event, 313

which uses the location of the participating consumers in 314

the network, technical parameters of the network and the 315

time of the DR event. The calculated incentive rate of each 316

participant is mainly a combination of three components: 317

energy cost rate ($/kWh) based on the time of use (TOU) 318

tariff, voltage improvement cost and total loss improvement 319

cost, as shown in (2a). As seen in (2a), k t1, k
t
2 and k

t
3 are the 320

coefficient factors of energy cost, voltage improvement cost 321

and total power loss improvement cost, respectively, which 322

are optimized dynamically at the time of DR consumers’ 323

participating in a DR event (discussed in Section IV). The 324

proposed algorithm will optimize these coefficients for each 325

DR bus based on the voltage and power loss sensitivities and 326

applied penalty factors for voltage and power loss violations 327

(as explained in Section IV) to determine the incentive rate 328

of each DR bus. The objective function in (1a) will try to 329

minimize the total cost by optimizing k t1, k
t
2 and k t3 values. 330

Equations (2b)-(2c) and (2d)-(2e) are used to calculate volt- 331

age and total loss improvement factors of each selected DR 332

bus for rate design, respectively. 333

π ti = TOU t
i ×

(
k t1 + k

t
2 ×1V

t
i + k

t
3 ×1P

i,t
loss

)
, 334

∀i, t,
∑

k t = 1 (2a) 335
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s.t.1V t
i =

AVS ti
1

N t
DR

∑N t
DR

i=1 AVS i
t
,∀i, t (2b)336

AVS ti =
1
Nv

Nv∑
j=1

∂

∣∣∣V t
j

∣∣∣
∂Pti

,∀i, t (2c)337

n1Pi,tloss =
TLS ti

1
N t
DR

∑N t
DR

i=1 TLS
t
i

,∀i, t (2d)338

TLS ti =
∂
∣∣Ptloss∣∣
∂Pti

,∀i, t (2e)339

Ptloss =
Nl∑
l=1

Rl
∣∣I tl ∣∣2,∀l, t (2f)340

where, AVS ti represents the average of sensitivity factors in341

all voltage violated buses (Nv) due to power change (∂Pti ) at342

ith bus at t th time interval. (∂
∣∣∣V t

j

∣∣∣) is the voltage change at343

each violated bus j at time t due to power change (∂Pti ) at i
th

344

bus, which is obtained from inverse Jacobian matrix [9]. The345

buses with the higher AVS tivalues are considered for ranking346

the DR candidate buses. TLS ti represents the sensitivity factor347

of total active power loss (∂
∣∣Ptloss∣∣) with respect to power348

change (∂Pti ) at ith bus at t th time interval. The bus with349

higher loss sensitivity (TLS ti ) value has more influence on350

total network loss change due to active power change in that351

bus [30]. Nl is the number of branches, I tl is the current352

flowing through branch l at time t, Rl is the resistance of353

branch l. As seen, branch current is involved in DR selection354

process for the purpose of reducing thermal limit violations355

in a network, so, another index for current is not defined356

here. These sensitivities are calculated in accordance with the357

proposed approach in [30] to determine the DR candidate358

buses. The candidate locations for DR implementation are359

crucial for the MV networks, as there are many consumers360

connected in each bus of the MV networks. Identifying the361

effective locations for DR implementation which have high362

influences on the network voltage and loss improvement,363

will reduce the optimization search space and time, total364

DR implementation size, consumer disruptions, and conse-365

quently the total DR cost [9]. It is important to mention that366

sensitivity analysis is conducted with respect to active power367

changes from participating consumers, as many policies at368

the moment recognize energy contribution of small-scale369

consumers in DR programs [9]. Therefore, to identify the370

optimal DR candidate locations for each DR event, in this371

study, sensitivity analysis for both voltage and total power372

loss in regard to active power changes are performed. The373

combination of the bus voltage sensitivity in (2c) and the total374

power loss sensitivity in (2e) is considered to rank each bus375

of the network for DR candidate bus selection. The bus with376

the highest summed value of (2c) and (2e) will be ranked as 1,377

with the second highest value, ranked 2, and so on. Section IV378

provides the bus ranking results using the combined approach379

of voltage and power loss sensitivities. The typical TOU380

electricity pricing structure for the proposed incentive rate 381

development is obtained from [29]. 382

C. MULTI-SCHEME LOAD CONTROL FOR VOLTAGE 383

MANAGEMENT 384

The proposed load control algorithm is implemented into two 385

DR schemes i.e., 10-minute and 2-hour schemes for handling 386

the short and long intervals of voltage variations in the MV 387

networks, respectively. Household appliances are categorized 388

based on their operation cycles to use in each DR scheme, 389

as discussed below. 390

1) SHORT-INTERVAL (10-MINUTE) DR SCHEME 391

A maximum of 10-minute load control is considered in this 392

scheme for the short duration cloud movements. The candi- 393

date appliances for this DR scheme are AC and EWH. These 394

devices can be interrupted for a maximum of 10-minute of 395

their control cycle to avoid consumer discomfort and rebound 396

effect of DR. Thus, they can be interrupted multiple times to 397

compensate for the fast variations of voltage in the network 398

due to the cloud transients. To minimize the consumer dis- 399

comfort and DR rebound effect, once the load control signal 400

is sent to these devices, another signal will not be sent to these 401

devices for the next 10 minutes. The switching ON and OFF 402

decisions of available ACs and EWHs in each DR candidate 403

bus in a DR event depend on their thermostat set points and 404

dead band temperatures [6], [21]. 405

2) LONG-INTERVAL (2-HOUR) DR SCHEME 406

A maximum of 2-hour load control is reasonable for man- 407

aging long interval voltage variations caused by the solar 408

PV generations [31]. In this scheme, we have selected those 409

electric household appliances that have lower impacts on 410

the consumers’ comfort levels if their operation is deferred 411

and have flexibilities to shift their operation time. Appli- 412

ances like dishwasher, washing machine, pool pump, dryer, 413

and EV are suitable for this scheme. For dishwasher and 414

washing machine, the consumption cycles have to be com- 415

pleted once started their operation. However, their operat- 416

ing/starting time can be shifted. Appliances like EV, pool 417

pumps and smart dryer [32] can be interrupted during their 418

operation cycles and thus can be interrupted any time during 419

DR events. 420

D. CONSUMER CONSUMPTION PREFERENCES IN DR 421

EVENT 422

DR participants’ consumption preferences are taken into 423

account in both of the above mentioned DR schemes, 424

as described below. Utility collects the DR appliances’ con- 425

sumption preferences from each participant consumer prior 426

to any DR activation, which will minimize the consumer 427

comfort violations. Two important criteria are considered in 428

this paper to model the consumer preferences: 429

1) consumption preferences on each DR appliance, and 430

2) each DR appliance’s switching constraints. 431
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TABLE 1. Parameters for appliance consumption preferences.

1) CONSUMPTION PREFERENCES432

The consumption preferences of each DR appliance are433

defined as consumption restriction and priority. During a DR434

event, these appliances will not be switched ON or OFF.435

In Table 1, the numerical values (0 to 4) are considered to436

define the initial switching statuses and consumption prefer-437

ences of each appliance in the load control algorithm prior to438

activate in a DR event. The switching status of nth appliance439

of the ith consumer is defined by Anti , as shown in (3). Anti is440

a decision variable in the optimisation process for finding441

an optimal load adjustment in a DR event (discussed in the442

next section). Appliances allocated with the preference of 2,443

3 or 4 (as shown in Table 1) by the consumers, will not444

be included in the optimization process and their switching445

status (ON/OFF) will be unchanged during the optimization446

process. Thus, the corresponding Anti is always zero. Based447

on Anti value for each appliance, the proposed load control448

algorithm tries to minimize the voltage violations in the449

distribution network, comfort disturbances, and the DR cost,450

as discussed in Section II.A.451

Anti =


1 the appliance is turned ON
0 no change is occured
−1 the appliance is turned OFF

(3)452

2) APPLIANCE SWITCHING CONSTRAINTS453

In addition to considering appliances’ consumption pref-454

erences, the load control algorithm minimizes the random455

switching of appliances in a DR event. This avoids switching456

ON/OFF of large number of appliances as a result of reduced457

disturbances on the consumer comfort levels. In order to458

tackle this optimization problem, two constraints are applied459

in the load control algorithm for each participating appliance460

in a DR event, which are 1) assigning a priority to those appli-461

ances which have high kW power ratings to be controlled462

first, 2) limiting the excessive amount of appliances control463

of each consumer. By applying the above constraints on the464

participating appliances, a less amount of load adjustment465

is likely required for each DR event as well as consumer466

inconveniences will be minimized.467

To comply with the appliance control priorities and mini-468

mize the excessive switching disturbances on a consumer’s469

appliances, the average disturbance ratio (ADR) factor is470

proposed in this paper. ADR represents the ratio of the total 471

demand change (1P) to the total number of disturbed appli- 472

ances of ith consumer at t th time interval, as in: 473

ADRti =
1PtADR(i)∑NA
n=1

∣∣Anti ∣∣ (4a) 474

s.t.1PtADR(i) =

∣∣∣∣∣
NA∑
n=1

Anti × P
n,t
i

∣∣∣∣∣ (4b) 475

where 1PtADR(i) is the sum of kW demand change, NA is the 476

total number of appliances of a consumer participating in a 477

DR event, Pn,ti is the rated kW demand of the nth appliance. 478

All the parameters are for the ith consumer at t th time interval 479

during the DR event. ADR is treated as a technical constraint 480

during the optimisation process in the objective function (in 481

Section II.A). The associated penalty factor for ADRti pre- 482

sented in (5), is added into the objective function (1a). 483

PenaltyADRti =


M 1 ≥ ADRti
M
(
2− ADRti

)
1 < ADRti < 2 ∀i, t

0 1≤ ADR
t
i

484

(5) 485

According to (5), the penalty factor of ADRti is maximum 486

when 1 greater than or equal to ADRti to exclude the corre- 487

sponding switching solution from the load control optimisa- 488

tion search space. M is a large number (i.e. = 102) which is 489

implemented in order to eliminate the unappropriated switch- 490

ing solutions. If ADRti value is larger than or equal to 2, the 491

penalty factor is zero to relax the ADRti constraint. If ADR
t
i 492

is confined within 1 and 2, a descending linear equation 493

is implemented to provide a linear relationship between the 494

value of ADR for each participant and the penalty factor. 495

To clearly understand the ADRti constraint, let us consider a 496

consumer have a 2kWwashingmachine and 1kW pool pump, 497

which current switching status are OFF and ON, respectively. 498

During a DR event, if the optimization algorithm decides 499

to switch on the washing machine but keep the switching 500

status of pool pump unchanged (which is ON), according 501

to (4a) and (4b), the ADR value will be 2 (=2/1). However, 502

if the optimization algorithm decides to switch on thewashing 503

machine and switch off the pool pump at the same time, the 504

ADR value will be 0.5 (|2−1|/2). Higher the ADR value, less 505

penalty factor will be added into the objective function in (1a). 506

The 1 and 2 values are user defined based on the required 507

optimisation output and maximum and minimum kW ranges 508

of the participated appliances. In this study we considered 1 509

and 2 values are 2 and 0.5, respectively. As a result, theADRti 510

constraint in (4a) helps the load control algorithm by selecting 511

the large (kW) available appliances of the DR participant to 512

be controlled in a DR event and thus, reduces the random 513

switching of the appliances. 514

Further, to limit an excessive amount of appliances control 515

for some participated consumers in a DR event, an additional 516

constraint called appliance fair interruption (AFI) 517
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is added into the optimization process. As stated before518

(in Section I), some consumers are usually interrupted more519

than others due to their sensitive locations in the network.520

If this constraint is not included in the algorithm will create a521

fairness issue regarding the number of appliance interruptions522

in a DR event. To limit the excessive number of appliances523

interruption for some location-based consumers, AFI will524

be calculated and minimized by the proposed load control525

algorithm in each DR event. AFI is defined using (6a) as the526

total number of disturbed appliances for each consumer. The527

associated penalty factor for AFI treated as a constraint in the528

optimization, is shown in (6b).529

AFI ti =
NA∑
n=1

∣∣Anti ∣∣,∀t, i (6a)530

PenaltyAFI ti =


M
(
AFI ti − 2

)
,AFI ti > 1 (long term)

M
(
AFI ti − 1

)
,AFI ti > 12(short term)

∀t, i
0, else

531

(6b)532

where AiFI ti is AFI for i
th consumer at t th time. PenaltyAFI ti is533

applied in the objective function (OF) stated in Section II.A534

for both long- and short-interval DR when AFI ti value for535

ith consumer is greater than 1 (i.e. = 2 appliances) and 2536

(i.e. = 1appliance), respectively.537

Finally, the total penalty factor (Penaltytswitching) is defined538

as follows:539

Penaltytswitching =
N t
DR∑
i=1

PenaltyADRti + PenaltyAFI ti (7)540

III. SOLUTION APPROACH541

The proposed voltage management strategy coordinates with542

consumers’ load control and DGs’ reactive power contribu-543

tions in each DR scheme for effective voltage management in544

the distribution networks, while maintaining the consumption545

preferences and fair incentives to the participants.546

Fig. 2 illustrates a flowchart of the proposed voltage man-547

agement method. It shows that each day the utility updates548

the forecast of the DGs’ output power and load demand, e.g.,549

for a span of 2 hours in advance using available reliable550

forecasting tools [33] and run offline load flow for every551

5 minutes of this time span to check the network voltage552

level limits. Fig. 2 shows that the offline load flow study553

with the forecasted data for voltage violation identification554

is achieved within 1 minute. Once the buses with voltage555

violations are identified, the DR scheme (either short- or556

long-interval) is selected in step 2 considering the duration of557

the voltage violation based on the 5-min load flow analysis.558

After the selection of a DR scheme, network buses are ranked559

using (2c) and (2e) within 25 to 30 seconds. The consumers560

located at the identified buses are then notified about the DR561

event. Upon this receiving notification, interested consumers562

can update their existing consumption preferences if they563

FIGURE 2. The flowchart of the proposed voltage management method,
tf: time frame.

wish. Consumers who signed for participation in any DR 564

scheme need to provide their lists of available DR appliances 565

to the utility. Consumers can predefine their consumption 566

preferences for each day through HEMSs. Furthermore, the 567

consumers have an opportunity to change their preferences 568

frequently before committing their participation in any DR 569

event. The information exchange with the consumers takes 570

less than a second using the technologies like WiMAX (with 571

a bit rate of 5 to 25Mbps) and ZigBee (with a bit rate of 572

250 kbps) [12]. Therefore, the total required time for step 2 is 573

less than 1 minute. 574

In step 3, participated consumers’ information such as 575

appliances’ current states, consumption preferences and pre- 576

vious history of DR event participations are collected. Data 577

collection and processing in this stage are achieved within 578

2 minutes. The final step 4 optimizes the objective function to 579

calculate the optimum switching positions of the appliances, 580

DGs’ reactive power contributions and fair dynamic incentive 581

rates to the participated consumers to calculate the total DR 582

cost. Once the optimum solution is obtained, the control 583

signals are sent to appliances and DGs’ inverters to switch 584

ON/OFF, and provide reactive power support, respectively. 585

This stage is estimated to be performed within 2 minutes, 586

as the average computational time of the optimization process 587

for long- and short-interval schemes are around 50 and 20 sec- 588

onds in the IEEE 33-bus system respectively usingMATLAB 589

software on Intel CORE i7-2600 PC with a clock speed of 590

VOLUME 10, 2022 96365



M. M. Rahman et al.: Incentivized and Optimized Dynamic Mechanism

3.4 GHz and 12GB RAM. The next section describes the591

optimization process based on the modified hybrid PSO.592

A. IMPROVED HYBRID PARTICLE SWARM OPTIMISATION593

(IHPSO)594

To solve the complex non-linear objective functions (as men-595

tioned section II.A), a Particle swarm optimization (PSO)596

algorithm is proposed in this study. Various analytical and soft597

computing methods such as Learning Automata [34], Rein-598

forcement Learning with Q-learning [35] and Evolutionary599

Algorithm (EA) [36] are previously being used to address600

the complex problems of scheduling DR appliances. In some601

studies, like [17], [18], [19] propose bi-level metaheuristic-602

based algorithm and interval analysis methods to address603

complex planning problem for solving voltage and power604

loss issues in the microgrids. Though these metaheuristic-605

based algorithms are suitable in addressing complex prob-606

lems, with the increased number of optimization variables607

they may increase the computational burden and time and608

may not provide optimum outcomes. The PSO algorithm is609

one of the derivative-free heuristic algorithms, which has610

the proven ability to provide fast convergence with robust611

output and require less computational time for the large scale612

non-linear and mixed integer problems [13], [37]. The main613

benefits of using PSO algorithm are that it has robust control614

parameters and computational efficiency as compared with615

the mathematical algorithm and other heuristic optimization616

techniques [38]. It has fewer parameters to adjust and con-617

straints acceptance and thus, it is easy to implement.618

In this paper, an improved hybrid PSO is proposed which619

is based on a modified version of classical PSO [13] incorpo-620

rated with a pattern search (PS) algorithm [39] for providing621

fast convergence and robust optimization output to solve622

the voltage management problems. In this approach, PSO is623

responsible for the exploration of the search space and the624

detection of the potential regions with optimum solutions,625

while PS is used to produce effective exploitation on the626

potential regions obtained by PSO. An important drawback627

of the PS method is the need to supply a suitable initial628

point [39]. Where PS hybrids with PSO algorithm, the initial629

starting point will no longer needs to be specified by the630

user, it will be automatically generated by the PSO phase.631

However, the standard PSO may not provide a suitable initial632

starting point for PS in high dimensional problems, as the633

standard PSO sometimes converges into local optima result-634

ing in low optimizing precision. In order to improve the635

accuracy of the solution, in this study, a mutation function636

is applied in the standard PSO particle update rules. The637

mutation function is conceptually equivalent to the muta-638

tion in genetic algorithms (GA) [13]. A comparison study639

in [38], shows that this modified version of PSO (MPSO)640

outperforms other heuristicmethods such as the original PSO,641

GA, and simulated annealing in terms of accuracy, robustness642

and speed. Furthermore, the constriction factor approach is643

adopted in PSO in addition to the mutation method, which644

outperforms compared to inertia weight approach [38].645

Therefore, an improved hybrid PSO (IHPSO) is proposed 646

in this study as a combination of MPSO and PS algorithms 647

to improve the optimisation performance and minimise the 648

computational time. Although the standard PSO combined 649

with PS is discussed in [39], we propose a hybrid model 650

of MPSO with PS in this paper with higher capabilities in 651

finding better solutions in a short period of time. In this hybrid 652

method, MPSO runs first to find the near global best location. 653

This global solution is provided to PS for further minimisa- 654

tion of the objective function. The idea behind this strategy 655

is to let MPSO utilise its strength aggressively exploring 656

the search space to find near optimum solution, then let 657

PS utilises its strength to quickly find the global optimum 658

solution by searching locally around the solutions given by 659

MPSO. Fig. 2 shows the hybrid optimisation process with the 660

MPSO and PS algorithms in Step 4. 661

The velocity and position updates of each MPSO parti- 662

cle at iteration k to search for the optimal solution are as 663

follows: 664

V k+1
i = γ×(V k

i +0.5×ϕmax×rand ×
(
Pbest i − X

k
i

)
665

+0.5× ϕmax×rand ×
(
Gbest − X ki

)
666

X k+1i = X ki + V
k+1
i (8a) 667

where V k
i and X ki are velocity and position vectors of ith 668

particle at iteration k , respectively; γ is the constriction factor 669

coefficient; Pbest i is the best value vector of ith particle so 670

far; Gbest is the best value among Pbest i so far; and rand is 671

a random number generator uniformly distributed between 672

0 and 1. The constriction factor coefficient (γ ) is calculated 673

as shown in (8b). ϕmax and ϕ are constant values. In this study 674

ϕmax = 4.05 and ϕ =1 are considered [13]. 675

γ =


√

2

ϕ − 2+
√
ϕ2 − 4ϕ

, ϕ > 4√
, else

(8b) 676

In (8b), ∈ [0,1] is a coefficient that allows control of explo- 677

ration versus exploitation propensities. For a bigger value 678

of coefficient k , particles desire more exploration and pre- 679

venting explosion, derives slow convergence and searching 680

thoroughly the space before collapsing into a point. However, 681

for smaller values, particles care more exploitation and less 682

exploration. The mutation function is applied when Gbest is 683

not improving while the increasing of number of iterations. 684

The mutation function selects a particle randomly and then 685

adds a random perturbation to a randomly selected element of 686

the velocity vector of that particle by a mutation probability. 687

In this paper, if the Gbest after 11 iterations is not improving, 688

the mutation function with the mutation probability of 0.85 is 689

applied. 690

MPSO handovers its global best (Gbest ) location to PS as 691

an initial point (X0), which has a great influence on PS’s 692

calculation results. PS utilizes a set of directions comprising a 693

‘‘pattern’’ that it uses to search around the initial point (X0) to 694

find better points and ignores the rest of the search space. This 695
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FIGURE 3. IHPSO particle structure for voltage management using DR
coordinated with DGs and OLTC.

allows PS to find the optimum solution with much greater696

efficiency. PS finds a series of points X0, X1, X2,. . . , Xn,697

which are closer and closer to the optimal value of points.698

When the termination conditions are met, the last point will699

be the final solution for this search. In this study, themesh size700

and the mesh expansion and constriction factor are selected701

as 1, 2 and 0.5, respectively. As for the stopping criteria, all702

tolerances are set to 10−6 or reaching the maximum number703

of iterations. The formulation details of MPSO and hybrid of704

the standard PSO with PS algorithm are presented in [13] and705

[39], respectively.706

In this study, each particle in IHPSO is composed of a707

number of cells that represent as decision variables in the708

optimization. As an example, Fig. 3 shows the coordinated709

approach of DRwith three DGs (Qk ) and on-load tap changer710

(OLTC tap) for the long-interval DR scheme. In the long-711

interval DR scheme (as explained in Section II.C), a maxi-712

mum number of five appliances of each candidate consumer713

are considered for DR participation. Each of these appliances714

is defined with five switching control variables (as mentioned715

in Table 1). Therefore, the number of cells (variables) for716

the total DR candidate (NDR) is 5× NDR, representing An(i,t)717

for n = 1, . . . , 5 and i = 1, . . . ,NDR. Three cells (vari-718

ables) are defined for three DGs. If more voltage regulator719

devices are required to add in the optimisation (e.g., OLTC720

control is added into the optimization process, as discussed in721

Section IV.F) based on the number of variables of the device722

to be optimized, the number of cells will be added into each723

particle of IHPSOwhich show great flexibility and scalability724

of this proposed approach. For example, in Fig. 3, one cell725

is added for OLTC tap variable. Section IV.F presents the726

optimized results with DR coordinated with DG and OLTC727

in the IEEE 69-bus system.728

To accelerate the optimization process with IHPSO, the729

direct load flow method [40] is used in this study to calculate730

the network parameters includingV(j,t), I(l,t), andPT .loss(t) for731

each particle at every iteration. This load flow approach uses732

the bus injection to branch current (BIBC), branch current to733

bus voltage (BCBV), and distribution load flow (DLF) matri-734

ces which are implemented in MATLAB for this purpose.735

IV. SIMULATION RESULTS AND CASE STUDIES736

This section provides simulation results for two DR schemes737

(i.e., long- and short-interval schemes) considering several738

worst scenarios to show the effectiveness of the proposed739

FIGURE 4. IEEE 33-bus MV network with multiple DG connections.

voltage management method. The proposed approach is 740

tested on an IEEE 33-bus radial distribution test system 741

shown in Fig. 4. In this paper, the IEEE 33-bus distribution 742

system is modified with three large solar PV-based DGs with 743

a capacity of 1.22 MW each connected to buses 15, 29, 744

and 31. The optimal locations of the DG units in the 33-bus 745

distribution network as shown in Fig. 4 are identified by the 746

study in [41]. To analyze the DG power output, 1-minute 747

interval power production data is gathered for a 1.22 MW 748

PV system located at the University of Queensland’s St Lucia 749

campus in Brisbane [42], [43]. In this study, it is assumed that 750

a total 90 consumers are available to participate in each DR 751

event and randomly distributed in the DR candidate buses. 752

In this study, the permitted boundary of voltage magnitudes 753

for all network buses is considered within ±5% of nominal 754

voltage [9]. In addition, the amount of reactive power and 755

active power from each DG unit can be obtained by consid- 756

ering the limits of power factor (PF i) within [−0.95,+0.95]. 757

1 and 2 are 0.5 kW and 2 kW, respectively (as discussed 758

in Section II.D). The total number of PSO particles is consid- 759

ered 300 and a self-adaptive iteration size technique is taken 760

into account. The mutation probability for MPSO is consid- 761

ered 0.85. As discussed previously, the proposed dynamic 762

fair incentive mechanism implemented through large-scale 763

consumer participation is a new approach compared to the 764

previous methods [44], [45]. 765

A. CASE 1: LONG-INTERVAL VOLTAGE VARIATION 766

Case study 1 includes two scenarios of long-interval voltage 767

variations in the IEEE 33-bus network. Fig. 5 depicts the load 768

profile and the PV-based DG power output for a typical hot 769

summer day. Fig. 5 also presents the maximum voltage drops 770

at far end buses of the network caused by significant DGs’ 771

output power drops during 11:15 to 12:08 (53 minutes) and 772

during 13.09 to 14.19 (70 minutes). As shown, voltages at 773

some remote buses fall extremely low below the standard lim- 774

its. Two DR events are applied to improve these long-interval 775

voltage variations using the proposed voltage management 776

procedure in Fig. 2. These two DR events are shown in Fig. 5, 777

as listed below: 778
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FIGURE 5. Load and DG power output profile with and without DR
deployment.

FIGURE 6. Voltage profiles of critical buses with and without (w/o) DR
deployment.

Due to the prolonged voltage variations in the network779

caused by the slow cloud movement, the 2-hour DR scheme780

is initiated for each DR event to solve the under voltage prob-781

lems. As seen in Fig. 5, the DR event 1 is activated from 11:15782

to 12.08, which reduces the initial load demand (2,828 kW)783

by about 10%. The DR event 2 is initiated at 13:09 and784

remained active for around 70 minutes, which reduces the785

initial load demand (2,600 kW) by 8.6% and injects a total786

66 kVar from DGs into the network. The improvement of787

voltage profiles during DR events 1 and 2 are presented788

in Fig. 6, which shows the effectiveness of the proposed789

approach in managing voltage violations during slow cloud790

movement. DR event 1 for the event during 11:15 to 12:08791

(53 minutes), DR event 2 for the event during 13.09 to 14.19792

(70 minutes).793

FIGURE 7. (a) Average voltage sensitivities for selected buses, (b) total
loss sensitivities for the buses, and (c) optimized incentive rates for
consumers in DR candidate buses.

Figs. 7(a) and 7(b) show the average voltage sensitiv- 794

ity (AVS(i,t)) and total power loss sensitivity (TLS(i,t)) with 795

respect to active power change in each voltage violation bus 796
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in order to identify the DR candidate buses (as explained in797

Section II.B). As seen, the voltage and total loss sensitivity798

values are much higher for the remote buses 8 to 18 in799

respect to active power changes in those buses. Therefore,800

the combined sensitivity values for buses 8 to 18 are higher801

than other buses in the network. Thus, these 11 buses are802

considered as DR buses for both DR events 1 and 2. Fig. 7(c)803

illustrates the optimized incentive rates ($/kWh) for each DR804

candidate bus obtained from (2a). It can be seen that for805

DR event 1, the incentive rate increases progressively from806

bus 8 to bus 18. It is due to the far end buses (i.e., 16, 17,807

and 18) have higher voltage and loss sensitivities and they808

contribute more to voltage and loss improvements. Thus, the809

corresponding consumers in those buses will receive higher810

incentive rates as compared to the low sensitive buses, which811

shows a fair incentive rate distribution among the DR par-812

ticipants. The optimized voltage improvement coefficient k2813

is higher than the loss coefficient k3 for DR event 1. It is814

due to our primary goal is to improve the network volt-815

ages, which is prioritized by adding higher voltage violation816

penalty cost (PenaltyVolt.violation) than the power loss penalty817

cost (PenaltyPower loss) in the objective function (1a). The818

utility can adjust the penalty factors for the voltage and power819

loss based on the network conditions and can priorities one820

power loss over voltage violations.821

Interestingly, for the DR event 2, the optimized incentive822

rates for buses 8 to 18 do not have much differences, it is823

due to the fact that the coordinated control of reactive power824

of DGs in the DR event 2 reduces the incentive rates in825

DR candidate buses. In the DR event 2, the coordination826

control of reactive power of DGs with DR event is used827

due to only load control of consumers is not sufficient to828

manage the voltages in all buses. The reactive power injected829

from the DGs into the network improves the bus voltages830

and reduces network losses. As a result, k2 and k3 values831

in DR event 2 are much lower compared to DR event 1,832

as shown in Fig. 7(c). The k2 and k3 values are related to833

voltage improvement factor and power loss improvement fac-834

tor, respectively (as explained in Section II.B). The optimized835

values of these parameters are location dependent, mainly836

depend on the voltage and power loss sensitivities. Table 2837

shows the optimized results of some important variables from838

the proposed voltage management algorithm applied in DR839

events 1 and 2. It can be seen that the total penalty factor840

is zero for both DR events, which means the consumers’841

consumption preferences, appliances’ switching constraints842

(as discussed in Section II.D) and bus voltage constraints843

(±5%) are maintained to minimize the consumers’ comfort844

violation and voltage violation. As shown in Table 2, in DR845

event 2, the three DGs provided different reactive power846

levels. It is interesting to note that the amount of the reactive847

power injection varies based on the location of the DGs in848

the network. According to the Figs. 7(a) and 7(b), the voltage849

sensitivity and power loss sensitivity are higher in bus 15 than850

bus 31 and bus 29, in where the three DGs are connected851

respectively. As a result, the DG located in bus 15 provided852

TABLE 2. Results of case 1 using the proposed voltage management
approach (VMA).

FIGURE 8. Load and DG power output profile with and without DR
deployment.

more reactive power support as compared to DGs located in 853

buses 29 and 31 to reduce the voltage violation and power 854

loss in the network. 855

B. CASE 2: SHORT-INTERVAL VOLTAGE VARIATIONS 856

Fig. 8 presents a typical day where high variability of 857

PV-based DG power generation is occurred due to the fast- 858

moving clouds. The cloud transient created large changes in 859

the net load and caused voltage drops in some remote buses, 860

as shown in Fig. 9. To compensate for the voltage drops due 861

to intermittent DG power generations, four DR events are 862

initiated as below, in which DR events 1 to 3 are short-interval 863

and DR event 4 is a long-interval DR: 864

1) DR event 1 for the event during 09:50 to 09:57 865

(7 minutes), 866

2) DR event 2 for the event during 10:17 to 10:26 867

(9 minutes), 868

3) DR event 3 for the event during 10:54 to 11:00 869

(6 minutes), 870

4) DR event 4 for the event during 12:15 to 14:15 871

(2 hours). 872

Due to the short-interval (<10minutes) variation of the power 873

generation from the DGs, the first three DR events are acti- 874

vated using the 10-minute DR scheme by controlling ACs 875
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FIGURE 9. Voltage profiles of critical buses with and without (w/o) DR
deployment.

and EHWs. The DR event 4 is activated using the 2-hour876

DR scheme due to the long-interval voltage variation in the877

network. Fig. 9 shows the bus voltages with and without the878

optimized DR events activation. It shows that the violated879

bus voltages are improved significantly with the proposed880

approach.881

Fig. 10 shows the average voltage and power loss sensi-882

tivity values in respect to active power change in each bus in883

order to identify the DR candidate buses for the DR events.884

The DR candidate buses for each DR event are selected885

based on the highest combination of the sensitivity values,886

as explained in Section II.B.887

Fig. 11 depicts the optimized incentive rates for the888

selected candidate buses in each DR event, and as seen,889

the incentive rate varies in each DR event and location.890

The optimized incentive rates increase as the total bus891

sensitivity values increase. As seen, the voltage improve-892

ment cost coefficient k2 is larger for all DR events than893

the loss improvement cost coefficient k3, which is due to894

the voltage violation is being penalized more than other895

criteria.896

Fig. 11 optimized incentive rates with ki values for DR897

buses in all DR events. These ki values are optimized in such898

way that the DR consumers located at the sensitive buses899

receive their fair incentive rated based on their contribution900

in the voltage and power loss improvement in the network.901

Table 3 presents the optimized results for all DR events in902

Case 2 with the proposed voltage control algorithm. It shows903

that the total DR (kW) used in each DR event varies and904

depends on the voltage violation magnitude and power loss905

minimization. It can be seen from Table 3 that the proposed906

load controller reduces the power loss in all DR events. In all907

the DR events in Case 2, the optimized switching of the DR908

appliances was enough to minimize the voltage violations in909

the network. Thus, not reactive power injection was required910

FIGURE 10. (a) Average voltage sensitivities and (b) Total loss
sensitivities for selected buses.

TABLE 3. Results of the proposed voltage management approach (VMA).

from the DGs. The owner of the DGs can maximize the use 911

of the DGs’ capacity to freely produce maximum amount 912

of active power to the grid depending on the weather con- 913

ditions. The AFI (appliance fair interruption) is violated for 914

DR events 1 and 3 for some DR participants. It is due to those 915

particular 916

DR participants are located in the sensitive buses in the 917

network and required to control more appliances that other 918

participants to satisfy the voltage limit constraints. Therefore, 919

a small penalty factor (60) is added into the total objective 920

96370 VOLUME 10, 2022



M. M. Rahman et al.: Incentivized and Optimized Dynamic Mechanism

FIGURE 11. Optimized incentive rates with ki values for DR buses in all
DR events.

cost for 6 consumers in DR events 1 and 3. The proposed921

voltage management algorithm found the optimum solution922

by prioritizing the voltage violation reduction over the AFI923

violation.924

TABLE 4. number of appliances controlled in case 1 and case 2.

C. APPLIANCES SWITCHING CONTROL FOR CASE 1 AND 925

CASE 2 926

Table 4 presents the number of appliances controlled during 927

all DR events for a total 90 participated consumers in both 928

Case 1 and Case 2. It shows the switching status (ON/OFF) 929

of the participated appliances before and after each DR event. 930

The DR events in Cases 1 and 2 reduce the consumers’ load 931

demand to compensate for the active power drops from the 932

DGs due to the clouding. The proposed algorithm determines 933

the number of appliances to be switched off in each DR 934

candidate bus to keep the voltage within the ±5% limits 935

and minimize the total power loss. The algorithm optimizes 936

the switching of these appliances based on the constraints 937

applied by the participated consumers on their consump- 938

tion preferences and appliance switching (as explained in 939

Section II.D). As shown in Table 4, in all the DR events of 940

Case 1, the washing machine and dishwasher loads are not 941

switched off when they are operating (ON condition), as their 942

control preference is considered 3 (based on the definition 943

in Table 1) during the optimization process they cannot be 944

switched off while they are operating to avoid resetting the 945

control cycles of these appliances. Since, the Case 1 has 946

the long interval (1-2 hours) voltage problems as similar to 947

DR event 4 in Case 2, the short usage of loads such as AC 948

and EWH are not controlled in those DR events. Table 5 949

represents the randomly selected participated consumers’ 950

appliances switching status before and during DR event 1 in 951

both Case 1 and Case 2. It shows that consumer consumption 952

preferences are prioritized in the proposed during voltage 953

management in the network. Furthermore, the variability of 954

kW demand (or rating) of each appliance and their participa- 955

tion availability in each DR event are considered in the opti- 956

mization algorithm to provide a realistic DR implementation 957

approach. A very few studies are available in the literature, 958

which include this flexibility in the algorithm, as discussed 959

in Section I. 960

D. VALIDATION OF THE PROPOSED INCENTIVE METHOD 961

In this section, the proposed dynamic DR incentive method 962

for voltage control is compared with three different 963

incentive methods. Fig. 12(a) shows different optimized 964

incentive rates simulated for DR event 1 in Case 1, which 965

are ‘‘Only power loss improvement rate’’, ‘‘Only voltage 966
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TABLE 5. Switching configurations for case 1 and case 2 in DR event 1.

improvement rate’’, ‘‘Fixed rate’’ and ‘‘Proposed rate’’.967

‘‘Only power loss improvement rate’’ uses power loss sensi-968

tivity factor (2d) for DR rate calculation in (2a); ‘‘Only volt-969

age improvement rate’’ uses voltage sensitivity factor (2b) for970

DR rate calculation in (2a); ‘‘Fixed rate’’ uses the TOU price971

rate in (2a); and the ‘‘Proposed rate’’ combines power loss and972

voltage sensitivities and TOU price rates for DR rate calcula-973

tion in (2a). It can be seen in Fig. 12(a), the ‘‘Proposed rate’’974

scheme distributes the incentive proportionately across DR975

participated buses based on their contributions in the voltage976

and power loss improvement in the network. The proposed977

incentive rate is higher at the far end of DR buses and lower978

in the closer buses to the substation. The optimized incentive979

rate falls between the power loss and voltage improvement980

rates but closer toward the voltage improvement rate of each981

DR bus, as the main objective of the paper is voltage control.982

Fig. 12(b) presents the obtained objective function parame-983

ters using four different optimized DR incentive rates. The984

proposed incentive method provides the lowest value in the985

objective function variables (i.e., DR cost ($), DR size (kW),986

Power loss (kW), and Objective function cost ($)) compared987

to other incentive methods.988

Table 5 shows the optimized switching positions of DR989

participated appliances using the proposed method for990

two different intervals of DR events: ‘‘Long-interval’’ and991

‘‘Short-interval’’ respectively for Case 1 and Case 2. As can992

be observed, if the participated consumers don’t have some993

DR appliances, these non-available DR appliances are num-994

bered as ‘‘2’’ (highlighted in orange in Table 5) in the995

optimization process according to the appliance preference996

definitions in Table 1. Therefore, the optimized switching997

position for those appliances is zero (not operating) for any998

DR event. The appliance preference number ‘‘4’’ (highlighted999

in blue) represents that the particular appliance is restricted1000

to participate in the current DR event, it is due to the fact1001

that the appliance has already participated in the previous1002

event or participant restricted to participate in a particular1003

DR event. Therefore, the optimized switching position for1004

those appliances is also zero. Finally, the appliance preference1005

number ‘‘3’’ (highlighted in red) indicates that the appliance1006

is under priority preference and its current status is ON and1007

FIGURE 12. Comparisons of objective function variables using proposed
and other incentive rate methods.

can’t be switched OFF in the DR event. It is due to the 1008

particular appliance can’t be interrupted while it is running 1009

(e.g., washing machine and dishwasher) to avoid hardware 1010
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damage or the appliance is prioritized to be ON for the1011

owner’s personal needs (e.g., the owner may need to charge1012

the EV for traveling). Therefore, the optimized switching1013

position for those appliances will not be changed (switching1014

status is 1). The above-mentioned appliance’s switching pref-1015

erences are important for the optimization process in order to1016

keep a record of the consumers’ DR participant history and1017

maintain their consumption preference and comfort levels in1018

each DR event.1019

Table 5 shows the optimized switching positions of1020

DR participated appliances using the proposed method for1021

two different intervals of DR events: ‘‘Long-interval’’ and1022

‘‘Short-interval’’ respectively for Case 1 and Case 2. As can1023

be observed, if the participated consumers don’t have some1024

DR appliances, these non-available DR appliances are num-1025

bered as ‘‘2’’ (highlighted in orange in Table 5) in the1026

optimization process according to the appliance preference1027

definitions in Table 1. Therefore, the optimized switching1028

position for those appliances is zero (not operating) for any1029

DR event. The appliance preference number ‘‘4’’ (highlighted1030

in blue) represents that the particular appliance is restricted to1031

participate in the current DR event, it is due to the fact that1032

the appliance has already participated in the previous event1033

or participant has been restricted to participate in a particular1034

DR event. Therefore, the optimized switching position for1035

those appliances is also zero. Finally, the appliance preference1036

number ‘‘3’’ (highlighted in red) indicates that the appliance1037

is under priority preference and its current status is ON and1038

can’t be switched OFF in the DR event. It is due to the par-1039

ticular appliance can’t be interrupted while it is running (e.g.,1040

washing machine and dishwasher) to avoid hardware damage1041

or the appliance is prioritized to be ON for the owner’s1042

personal needs (e.g., the owner may need to charge the EV1043

for traveling). Therefore, the optimized switching position1044

for those appliances will not be changed (switching status is1045

1). The above-mentioned appliance’s switching preferences1046

are important for the optimization process in order to keep a1047

record of the consumers’ DR participant history and maintain1048

their consumption preference and comfort levels in each DR1049

event.1050

E. PERFORMANCE ANALYSIS OF THE PROPOSED IHPSO1051

ALGORITHM1052

The objection function (OF) in (1a) is tested using different1053

classic PSO algorithms and compared with the proposed1054

IHPSO (improved hybrid particle swarm) algorithm. Using1055

each PSO algorithm, the OF is run 10 times to get the best1056

optimized result and standard deviation. Table 6 presents1057

the comparison of the optimized results for DR event 1 in1058

Case 1 using different PSO methods. It shows that with the1059

MPSO (modified particle swarm) method, the optimization1060

time is the lowest (32.32 sec.). However, it has a higher1061

objective function and standard deviation as compared to the1062

HPSO (hybrid particle swarm) and IHPSOmethods. With the1063

TABLE 6. Optimized results comparisons between different PSO methods.

FIGURE 13. Global best solution during searching process using different
PSO methods.

proposed IHPSOmethod the total objective function cost and 1064

the standard deviation are the lowest among all methods and 1065

with a slight increase in the optimization time compared to 1066

the PSO and MPSO methods. The optimization time in the 1067

PSO andMPSO is less because these methods don’t have any 1068

hybridization approach with another optimization method, 1069

as a result, the OF result is very high as compared to the 1070

proposed IHPSO method. Therefore, the proposed IHPSO 1071

algorithm improves the OF performance and the accuracy of 1072

the voltage control algorithm. 1073

Fig. 13 depicts the obtained global best solution curve 1074

during 100 iterations from all optimization methods. In all 1075

these PSO methods when Pbest and Gbest stopped updating 1076

for a period of time, it means a local optimal solution is found, 1077

as seen in Fig. 13. It can be observed that the classic PSO 1078

method stopped updating the optimization result after 50th 1079

iteration andMPSOmethod after 40th iteration.MPSO shows 1080

better performance than the classical PSO method due to a 1081

mutation function as equivalent to GA algorithm is added 1082

into MPSO. The proposed IHPSO method stopped updating 1083

at around 70th iteration with a global best value of 11.9, while 1084

HPSO stopped at 80th with the value of 112.4. The IHPSO 1085

outperforms the HPSO method by reducing the optimization 1086

time and objective function value. In IHPSO method, the GA 1087

mutation function and PS algorithm help the particle to jump 1088

out of the local optimum and enhance the chance of finding 1089

the global optimal solution. 1090
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TABLE 7. Results of the proposed voltage management approach (VMA) in a large network (69 bus-system).

FIGURE 14. IEEE 69-bus MV network with multiple DG connections.

F. VALIDATION OF THE PROPOSED METHOD IN A LARGE1091

NETWORK1092

To validate the performance of the proposed voltage manage-1093

ment method in a larger scale distribution network with many1094

DR participated consumers and its coordination approach1095

with the network element, an IEEE 69-bus system [46] is con-1096

sidered in the simulation. The optimum locations of the large1097

solar PV-based DGs in the IEEE 69-bus network (in Fig. 14)1098

are studied in [41]. The capacity of each DG is 1.22MWwith1099

a maximum power factor range ±0.95 is considered. A total1100

14 DR candidate bus locations are identified out of 69 buses1101

in the network according to the highest combined bus voltage1102

sensitivity (2e) and the total loss sensitivity (2c) values of the1103

buses, as explained in Section 2.B. The selected bus locations1104

bus 24 to 27 and 56 to 65. A total 115 DR participants1105

are considered randomly across the 14 DR candidate buses.1106

Each participant is assumed to have a maximum 5 DR appli-1107

ances for the long-interval voltage management (as described1108

in Section 2.C). Therefore, the maximum DR participant1109

appliances in the optimization process are 575 (115 × 5).1110

It is assumed that during a high loading period in the net-1111

work, a huge cloud movement causes the total active power1112

production from DGs dropped to 10% (i.e. 366MW) from1113

their total available capacity (i.e. 3660MW). As a result, the1114

voltages at the far end buses drop significantly, as shown1115

in Fig. 15. In this case, the long-interval DR scheme is1116

initiated to solve the under-voltage problem using different1117

FIGURE 15. Optimized voltage profiles of 69 buses with different DR
coordination approaches.

coordination approaches, which are DR with DGs’ reactive 1118

power, DR with OLTC (on-load tap changer located between 1119

bus 1 and 2) [46], and DR combined with DG and OLTC. 1120

As seen, from the optimized voltage profiles in Fig. 15, 1121

it can be seen that the DR with OLTC coordination approach 1122

provides slightly better voltage improvement at the far end 1123

buses as compared to other coordination approaches. How- 1124

ever, it increases the voltage significantly at the buses closer 1125

to the substation. On the other hand, using the DR with DG 1126

andOLTC coordination approach provides a smooth variation 1127

of the bus voltages across the network compared to all other 1128

DR coordination approaches. 1129

Table 7 shows the different optimized variables obtained 1130

from each DR coordinated voltage management approach. 1131

As explained above, the voltage management approach 1132

(VMA) using DR with DG and OLTC provides better volt- 1133

age management across all buses in the network. However, 1134

the optimized objective function cost associated with this 1135

solution is quite high compared to DR with DG solution, 1136

as shown in Table 7. It is due to an additional cost in the objec- 1137

tive function in (1a) is added for each tap change of the 1138

OLTC. The optimized cost using DRwith DG approach is the 1139

lowest amongst the three voltage management approaches. 1140

Therefore, DR with DG approach can be a suitable and 1141
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frequently useable voltage management solution for all net-1142

work conditions.1143

V. CONCLUSION1144

This paper proposes a dynamic incentive based load con-1145

trol algorithm using household appliances through home1146

energy management systems for managing both short- and1147

long-interval voltage variations in the MV networks due to1148

intermittent power output from solar DGs. Two DR schemes1149

namely 10-minute and 2-hour DR schemes are proposed1150

which can coordinate the network equipment such as reac-1151

tive control from DGs and OLTC to compensate the short-1152

and long-interval voltage variations, respectively. A dynamic1153

location ranking method is proposed, which calculates the1154

sensitivity values of voltage and total power loss to identify1155

the most suitable DR candidate buses and distribute incen-1156

tives fairly to DR participated consumers. Furthermore, each1157

participating consumer’s consumption preferences are priori-1158

tized in the DR event to maintain their comfort level. Finally,1159

an improved version of the hybrid PSO algorithm (IHPSO) is1160

proposed in the load controller, which is hybridization of the1161

modified PSO (MPSO) and Pattern Search1162

(PS) algorithms to provide faster convergence and better1163

optimisation results. The proposed load control method is1164

first verified and tested using an IEEE 33-bus network con-1165

sidering high intermittent power generation from the DGs.1166

The simulation results show that the load control algorithm1167

successfully manages both short and long-interval voltage1168

variations in the network. It minimises the excessive distur-1169

bances on consumers’ loads, reduces the total cost of voltage1170

compensation, prioritises the consumers’ consumption pref-1171

erences, and fairly incentives the consumers based on their1172

contributions. The proposed IHPSO heuristic optimisation1173

technique provides better optimisation results and reduces the1174

optimisation time. Finally, the proposed load control method1175

is tested using a large network (IEEE 69-bus network) with1176

many DR participated consumers to validate its performance1177

in voltage control using different coordination approaches1178

with the network voltage regulation devices such as OLTC.1179

The performance of the proposed IHPSO algorithm will be1180

further compared and tested with other optimisation algo-1181

rithms such as the bi-level metaheuristic-based algorithm and1182

interval analysis methods to validate its robustness.1183
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