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ABSTRACT The voltage regulation in distribution networks is one of the major obstacles when increasing
the penetration of distributed generators (DGs) such as solar photovoltaics (PV), especially during cloud
transients, causing potential stress on network voltage regulations. Residential demand response (DR) is one
of the cost-effective solutions for voltage management in distribution networks. However, the main barriers
of DR implementation are the complexities of controlling a large number and different types of residential
loads, satisfying customers’ preferences and providing them fair incentives while identifying the optimum
DR implementation locations and sizing as well as cooperating with the existing network equipment for the
effective voltage management in the networks. A holistic and practical approach of DR implementation is
missing in the literature. This study proposes a dynamic fair incentive mechanism using a multi-scheme load
control algorithm for a large number of DR participants coordinating with the existing network equipment for
managing voltage at medium voltage (MV) networks. The multi-scheme load control is comprised of short-
interval (10-minute) and long-interval (2-hour) DR schemes. The dynamic incentive rates are optimized
based on the energy contribution of DR participating consumers, their influence on the network voltage
and total power loss improvement. The proposed method minimizes the DR implementation cost and size,
fairly incentivizes the consumers participating in the DR and priorities their consumption preferences while
reduces the network power losses and DGs’ reactive power contributions to effectively manage the voltage
in the MV networks. An improved hybrid particle swarm optimization algorithm (IHPSO) is proposed for
the load controller to provide fast convergence and robust optimization results. The proposed approach is
comprehensively tested using the IEEE 33-bus and IEEE 69-bus networks with several scenarios considering
alarge number of DR participants coordinated with the DGs and on-load tap changer (OLTC) in the networks.

INDEX TERMS Cloud transients, consumer comfort, distribution networks, dynamic fair incentive, load
control, voltage management, distributed generation, solar photovoltaics.

I. INTRODUCTION
Over the recent years, the use of renewable energy sources
(RESs) in the form of distributed generators (DGs) have
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increased considerably [1]. The conventional distribution sys-
tems have not been designed with the consideration of bidi-
rectional power flows from the RESs, which create major
challenges for distribution system operators to maintain the
system reliability and power quality within the standard
limits. Cloud-induced transients over the solar photovoltaic
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(PV)-based DGs are considered as one of the potential barri-
ers for further increase of the PV penetration in the distribu-
tion networks [2]. If clouds sweep over the solar catchment
area within a short time (in the scale of minutes), the PV
power contribution drops quickly which

may cause voltage drop at some buses, especially in remote
ones [3]. Such transients can cause voltage deviations beyond
the standard range [1] and excessive operation of the net-
work equipment for the voltage regulation [2]. Some con-
ventional approaches for managing voltage in the medium
voltage (MV) distribution systems are the on-load tap changer
(OLTC) mechanism of the transformer, step voltage regula-
tors, and static volt-ampere reactive (VAR) compensators [1],
[4]. However, these methods cannot guarantee that the voltage
profile will be within the acceptable bounds throughout all
connected feeders to an affected transformer [3]. Also, the
lifetime of such operating equipment dramatically reduces
because of the increased number of actions needed to handle
the voltage deviations due to sudden changes in PV gener-
ations [4]. In addition, researchers in [5] have introduced a
two-level voltage control in the distribution level including
the upper-level optimal reactive power dispatch and lower-
level real-time control. In the lower level, the rooftop PVs
form an aggregator, then the aggregators are governed by
the introduced droop controllers in the MV networks. In the
upper level, according to the network condition, the PV
will be dispatched to minimize the active power loss in the
network. Similarly, the study in [6] has introduced a new
approach for voltage regulation in the distribution level using
a three-level coordinated control method for the PV inverters.
The introduced approach includes a ramp-rate control, and
a droop control in the local level of voltage regulation, and
the third level control based on dynamic average consensus
in the case where the first two levels are not enough to retain
the voltage level in the predefined boundaries. However, from
the financial perspective, the motivation for the participation
of rooftop PVs has not been investigated in these works.

Also, it is important to mention that in most of the distri-
bution networks, there is no incentive for the reactive power
support provided by inverters. This reactive contribution is
now included in the corresponding standards especially for
small-scale inverter-interfaced PV systems, so the owners
would not get paid for this contribution. Therefore, the own-
ers of the private owned DGs intend to allocate most of their
capacity of generation to generate active power to maximize
their profit. However, in the framework here, the reactive
power is provided by the large DGs through the optimization
process. In other words, the local generation of the reactive
power has been done by DGs with a large capacity, which
they have enough capacity for generating both active and
reactive power. Also, these large DGs are incentivizes for
their reactive power contributions. Another important fact is
that due to the high resistance/reactance (R/X) ratio in the
distribution networks, the impact of the active and reactive
powers changes on the voltage variation are not the same,
and in some cases, the effect of the active power change in
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voltage variation is higher than the reactive power. Therefore,
unlike the transmission networks, the voltage magnitude in
the distribution networks can be controlled by the active
power from the consumers through demand response (DR)
programs effectively.

Therefore, one of the promising means of utilizing the
existing infrastructure for managing network voltage is the
optimal control of end-users’ loads through DR programs
[71, [8], [9] incorporated with home energy management
systems (HEMSs) [10], [11]. Utilities can communicate with
the consumers’ HEMSs, which can switch ON and OFF
the DR participated appliances almost instantaneously and
enable them to react fast to maintain the network voltage
effectively [12]. It can postpone the investments on the gen-
eration resources and network upgrades [13]. HEMS helps
utility for DR implementation by providing information such
as household appliances’ real-time energy consumption sta-
tus and consumption preferences set by consumers and by
receiving load control signals from the utility to control the
appliances. HEMSs are developed considerably over the past
years, and the smart grid technologies like smart metering
and appliances for load control via HEMS are becoming
more attractive for the modern distribution networks [11],
[12]. One of the main challenges in the implementation of
DR is how to fairly incentivize participants for encouraging
them to contribute on a DR program. The incentives to the
participating consumers in a DR program should not be fixed
or equal across all conditions in a network during an event
of voltage or thermal limits violations, namely defined as the
DR event in this paper. An incentive scheme should be fair
based on the DR participant consumers contribution in each
DR event and their locations within the network. A study
in [14] propose a fair incentive mechanism for the customers
to improve the power quality problems in the network. In the
following, the literature of the subject will be investigated in
more detail.

The growing penetration of electric vehicles into the dis-
tribution network may create huge challenges, which require
proper optimized operation for the distribution network [15].
A study in [16] developed a strategy for peak shaving in the
distribution network via electric vehicle aggregators which
in turn leads to cost reduction and oversaturation of the
distribution transformers. Authors in [17], [18], and [19]
propose an optimal planning for renewable generators imple-
mentation and electric vehicle operations to minimize the
voltage deviations and power flow from the main grid as
well as minimize the power loss in the microgrids. Likewise,
in [20] and [21], demand response program in the presence
of an energy management scheme was provided to optimally
schedule the electric vehicles as well as adjust the household
appliances. The study in [22] developed a reward-based load
control algorithm to shave network peaks, where consumers’
and utility’s profits are considered. It shows that the pro-
posed reward-penalty can move forward the organized opera-
tional characteristics and relieve the top bounce back without
forcing more costs on consumers. However, only a limited
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FIGURE 1. Architecture of the proposed voltage management system.

number of households are considered in the simulations
assuming all appliances have the same power consumption
rating of 1 kVA, and the impact of DR on network power loss
at different times are not taken into account.

Therefore, in this paper, a dynamic incentive mechanism
to compensate for such locational impact on DR implemen-
tation is developed to take into account the contributions of
consumers in energy adjustment, voltage improvement, and
power loss reduction. The weightings of these contributions
are optimized here at different times considering the network
situations.

Another challenge in DR implementation is to optimize the
control of a large number of various types of household appli-
ances through HEMSs simultaneously and maintaining the
consumers’ comfort levels by prioritizing their consumption
preferences in addition to considering network constraints.
Inappropriate load control may lead to network constraints
violation [23] and unnecessarily increase the volume of
load control which can cause discomfort to consumers and
increase the DR cost. DR implementation through HEMSs
and coordination of DGs, as proposed in this paper (as shown
in Fig. 1) can benefit both utilities and consumers. All these
considerations in the load control algorithm create a complex
optimization process, which requires a long computational
time. Various analytical and soft computing strategies such as
heuristic approaches [24], reinforcement learning [25], etc.,
are proposed to solve such complex problems for schedul-
ing appliances. Some of these approaches are successful in
obtaining the optimal solution. However, they are not fast
enough in convergence and entail heavy computational costs,
which are not suitable for a fast voltage management process
considering a large number of DR participants. Moreover,
the consumption decision priorities of the individual DR
participant to retain their comfort levels are important indices
for a successful DR implementation, are not considered in the
aforementioned studies.

The study in [6] provides a large percentage of real-time
balancing reserve for the MV network by aggregating electric
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water heaters (EWHs) for load shifting while maintaining the
consumers’ comfort levels. In [26], a virtual energy storage
system concept is proposed considering EVs and ACs to
cater for the comfort levels of consumers at different indoor
temperatures. However, these studies are limited to control of
few appliances. Multi-layers DR study in [27] uses only air
conditioner (AC), EWH, and cloth dryer to satisfy both utility
and consumer preferences. A load shedding optimization
technique is proposed in [2] for the utility to maintain their
network voltage considering a limited number of household
appliances. These studies consider only a few selected appli-
ances from a limited number of DR consumers in the load
control, assuming all the consumers have similar appliances
with fixed kW ratings of appliances without any fair opti-
mized incentive distribution. In reality, the appliances’ power
ratings and their availability vary between the consumers and
may not be the same across all participating consumers in
a DR event. Therefore, a realistic approach considering the
variability of household appliances and their different kW
sizes for a large number of DR participants are yet to be
investigated in the load control algorithm.

Toward this end, this study introduces a holistic multi-
scheme load control strategy for managing multi-interval
voltage fluctuations in the MV networks and minimizing the
power loss with the following main contributions:

1) A dynamic incentive mechanism is proposed for fairly
rewarding the DR participating consumers based on
their energy contribution and their influence on the
network voltage and loss improvements.

2) The load control algorithm is developed to optimize
the DR participants’ locations and support their con-
sumption decisions to maintain their comfort levels by
considering appliances’ switching status, disturbance
ratio and their fair interruption in the DR event.

3) An improved hybrid particle swarm optimization
(IHPSO) algorithm is proposed in the load controller to
provide fast and robust convergence in handling a large
number of DR participants and objective parameters
such as minimizing the network loss, DGs’ reactive
power contribution, DR cost and sizing, fair incen-
tive distribution and the participants’ consumption
preferences.

The rest of the paper is organized as follows; Section II
presents the proposed objective function, dynamic fair incen-
tive strategy, multi-scheme DR for voltage management and
consumer preference definitions and modelling. Section III
explains the solution approach for the multi-interval voltage
management. Section IV provides simulation results of the
proposed approach, and the relevant conclusion is presented
in Section V.

Il. METHODOLOGY

This section provides the details of the objective function
and the proposed dynamic fair incentive rate design for the
multi-scheme load control for different intervals of voltage
management (as shown in Fig. 1).
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A. OBJECTIVE FUNCTION

The optimization problem of each load control scheme has
two conflicting objectives. The first objective is to satisfy the
distribution network technical constraints including voltage
magnitude, line thermal bounds, active power loss and DGs’
reactive power capabilities. The second objective is to pro-
vide fair incentive rates to consumers while minimizing the
total cost of DR as well as consumers’ welfare disturbances.
In the proposed optimization problem, the decision variables
include the incentive rate factors of each DR candidate bus,
the participating appliances’ switching variables and prefer-
ences, and the reactive power contribution from DGs. The
outcomes of the optimization process are the optimal switch-
ing positions (ON/OFF) of the appliances, the fair incentive
rates and the reactive power output of each DG at the time of
each DR event. Thus, the objective function (OF) is formu-
lated in the form of a mixed integer nonlinear programming
problem.

T Npr
Min[Of)Of = | Ploa' + Y (DRS x m})
t=1 i=1

Npc

+ Z (Qk,t X Uk)) At + Penaltyr,,,; (la)
k=1

N

where, DR! = Z |Anf| x P!
n=1

Penaltyp,,; = Penaltyy,y; vioiation

'
tPenaltypoyer 1oss + Penaltygyiching

$:t.Vinin < V] < Vipax, Vj, 1 (1b)
1| < Inax, VI, 1 (Ic)
Qi = Q' < Qb k.1 (1d)

Here, DR represents the total kKW DR contribution from it
candidate at ™ timeframe of a DR event;\’and 7/ present
the energy cost from the upstream grid and the associated
incentive rate ($/kWh) from the corresponding DR bus; 7y is
the price of reactive power generation by DGs ($/kVAr); N},
is the total number of DR candidate consumers participating
in a DR programming at time #;A¢ is the time frame duration
of a DR event; T represents the number of time intervals
for DR events in a particular day; P; 0ss 18 the total network
active power loss at time ¢. An! is the optimised switching
status (ON/OFF) of the n™ appliance of the i consumer
at time t during a DR event. P?’t is the rated kW demand
of the n appliance participated in the DR event. N} is the
total number of appliances of a consumer considered in a
DR event. The total kW for DR contribution (DR}) from
i candidate location is calculated by aggregating all kW
ratings of participating appliances at time t. The limits of the
magnitude of bus voltages, line thermal limits and reactive
power output of DGs are expressed in (1b)-(1d), respec-
tively. The reactive power output of each DG is minimized
by the formulation of OF so that the maximum capacity
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of the DGs can be used for active power production. The
DR cost for each participating consumer is then calculated
by multiplying the total controlled demand (kW), optimized
incentive rate ($/kWh) of the corresponding bus (as explained
in Section I1.B), and the duration (in hours) of the DR event.
The Penaltyr,,,, factor is a combination of voltage violation
penalty factor (Penaltyy,; vipiarion)» POWer loss penalty fac-
tor (Penaltyp,,..r 10ss) and appliances’ switching constraints
penalty factor (Penalty’, ... g). These applied penalty factors
will be discussed in Sections II.D and IV. In the following,
the DR incentive rates and the associated contribution will be

calculated.

B. THE INCENTIVE RATE ALLOCATION AND DR LOCATION
SELECTION

Use DR participants based on their locations in the network
will have a higher influence on the network parameters (such
as bus voltages, line currents, and network loss) and are
tended to be interrupted more in a DR event than those
participants located comparatively less sensitive locations in
the same network [21], [22]. As a consequence, DR par-
ticipants located in the buses with higher impacts on the
network parameters, contribute more to the voltage and loss
improvements than the other participants. If all the par-
ticipating consumers are provided with an equal incentive
rate ($/kWh) (e.g., as considered in [12], [25], and [28]),
it implies a potential fairness issue on the incentive distri-
bution between the participating consumers. To provide a
better balance between the contributions and the rewards to
the participating consumers, this study proposes a mechanism
of calculating incentive rate dynamically for each DR event,
which uses the location of the participating consumers in
the network, technical parameters of the network and the
time of the DR event. The calculated incentive rate of each
participant is mainly a combination of three components:
energy cost rate ($/kWh) based on the time of use (TOU)
tariff, voltage improvement cost and total loss improvement
cost, as shown in (2a). As seen in (2a), k, k and k} are the
coefficient factors of energy cost, voltage improvement cost
and total power loss improvement cost, respectively, which
are optimized dynamically at the time of DR consumers’
participating in a DR event (discussed in Section IV). The
proposed algorithm will optimize these coefficients for each
DR bus based on the voltage and power loss sensitivities and
applied penalty factors for voltage and power loss violations
(as explained in Section IV) to determine the incentive rate
of each DR bus. The objective function in (1a) will try to
minimize the total cost by optimizing k{, k5 and k} values.
Equations (2b)-(2¢) and (2d)-(2e) are used to calculate volt-
age and total loss improvement factors of each selected DR
bus for rate design, respectively.

n! = TOU} x (k{ k) x AV KL x APY! )

loss
Vi, t, Z K = (2a)
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. AVS! _
LAV = ———— Vi1 (2b)
1
N 2 AVSi
R O ’Vf
AVS! = E; P Vit (2¢)
j:
s
nAP = ————— Vit (2d)
1
Im Zi:DlR TLS?
alp
TLS! = }—l‘;”},\ﬁ,t (2e)
JP!
N; 5
P;()sx = ZRZ |Ilt| ’ Vl’t (2f)
=1

where, AVS : represents the average of sensitivity factors in
all voltage violated buses (N,) due to power change (8P§) at

i bus at t"* time interval. (9 )V]’ )) is the voltage change at

each violated bus j at time t due to power change (apﬁ) at i
bus, which is obtained from inverse Jacobian matrix [9]. The
buses with the higher AVS!values are considered for ranking
the DR candidate buses. TLS" represents the sensitivity factor
of total active power loss (9 }P;oss}) with respect to power
change (9P}) at i bus at " time interval. The bus with
higher loss sensitivity (7LS%) value has more influence on
total network loss change due to active power change in that
bus [30]. N; is the number of branches, I[ is the current
flowing through branch 1 at time t, R; is the resistance of
branch 1. As seen, branch current is involved in DR selection
process for the purpose of reducing thermal limit violations
in a network, so, another index for current is not defined
here. These sensitivities are calculated in accordance with the
proposed approach in [30] to determine the DR candidate
buses. The candidate locations for DR implementation are
crucial for the MV networks, as there are many consumers
connected in each bus of the MV networks. Identifying the
effective locations for DR implementation which have high
influences on the network voltage and loss improvement,
will reduce the optimization search space and time, total
DR implementation size, consumer disruptions, and conse-
quently the total DR cost [9]. It is important to mention that
sensitivity analysis is conducted with respect to active power
changes from participating consumers, as many policies at
the moment recognize energy contribution of small-scale
consumers in DR programs [9]. Therefore, to identify the
optimal DR candidate locations for each DR event, in this
study, sensitivity analysis for both voltage and total power
loss in regard to active power changes are performed. The
combination of the bus voltage sensitivity in (2c) and the total
power loss sensitivity in (2e) is considered to rank each bus
of the network for DR candidate bus selection. The bus with
the highest summed value of (2c) and (2e) will be ranked as 1,
with the second highest value, ranked 2, and so on. Section IV
provides the bus ranking results using the combined approach
of voltage and power loss sensitivities. The typical TOU
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electricity pricing structure for the proposed incentive rate
development is obtained from [29].

C. MULTI-SCHEME LOAD CONTROL FOR VOLTAGE
MANAGEMENT

The proposed load control algorithm is implemented into two
DR schemes i.e., 10-minute and 2-hour schemes for handling
the short and long intervals of voltage variations in the MV
networks, respectively. Household appliances are categorized
based on their operation cycles to use in each DR scheme,
as discussed below.

1) SHORT-INTERVAL (10-MINUTE) DR SCHEME

A maximum of 10-minute load control is considered in this
scheme for the short duration cloud movements. The candi-
date appliances for this DR scheme are AC and EWH. These
devices can be interrupted for a maximum of 10-minute of
their control cycle to avoid consumer discomfort and rebound
effect of DR. Thus, they can be interrupted multiple times to
compensate for the fast variations of voltage in the network
due to the cloud transients. To minimize the consumer dis-
comfort and DR rebound effect, once the load control signal
is sent to these devices, another signal will not be sent to these
devices for the next 10 minutes. The switching ON and OFF
decisions of available ACs and EWHs in each DR candidate
bus in a DR event depend on their thermostat set points and
dead band temperatures [6], [21].

2) LONG-INTERVAL (2-HOUR) DR SCHEME

A maximum of 2-hour load control is reasonable for man-
aging long interval voltage variations caused by the solar
PV generations [31]. In this scheme, we have selected those
electric household appliances that have lower impacts on
the consumers’ comfort levels if their operation is deferred
and have flexibilities to shift their operation time. Appli-
ances like dishwasher, washing machine, pool pump, dryer,
and EV are suitable for this scheme. For dishwasher and
washing machine, the consumption cycles have to be com-
pleted once started their operation. However, their operat-
ing/starting time can be shifted. Appliances like EV, pool
pumps and smart dryer [32] can be interrupted during their
operation cycles and thus can be interrupted any time during
DR events.

D. CONSUMER CONSUMPTION PREFERENCES IN DR
EVENT
DR participants’ consumption preferences are taken into
account in both of the above mentioned DR schemes,
as described below. Utility collects the DR appliances’ con-
sumption preferences from each participant consumer prior
to any DR activation, which will minimize the consumer
comfort violations. Two important criteria are considered in
this paper to model the consumer preferences:

1) consumption preferences on each DR appliance, and
2) each DR appliance’s switching constraints.
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TABLE 1. Parameters for appliance consumption preferences.

Preference  Definition Initial status and Controllable in

Anf

(mode) controllable condition DR event?
0 not restricted the (?srrl)lti)znsiiiitikz I;lz;;ld it Yes lor0
1 not restricted thi:ﬁll):)l;asnvi?t(i;iglNO?lg it Yes -lor0
2 notavailable o e forpr N0
S ey e roNetl N o
4 restricted the appliance is OFF and it No 0

cannot be switched ON

1) CONSUMPTION PREFERENCES

The consumption preferences of each DR appliance are
defined as consumption restriction and priority. During a DR
event, these appliances will not be switched ON or OFF.
In Table 1, the numerical values (0 to 4) are considered to
define the initial switching statuses and consumption prefer-
ences of each appliance in the load control algorithm prior to
activate in a DR event. The switching status of n'h appliance
of the i consumer is defined by An!, as shown in (3). An' is
a decision variable in the optimisation process for finding
an optimal load adjustment in a DR event (discussed in the
next section). Appliances allocated with the preference of 2,
3 or 4 (as shown in Table 1) by the consumers, will not
be included in the optimization process and their switching
status (ON/OFF) will be unchanged during the optimization
process. Thus, the corresponding An} is always zero. Based
on An} value for each appliance, the proposed load control
algorithm tries to minimize the voltage violations in the
distribution network, comfort disturbances, and the DR cost,
as discussed in Section IL.A.

1 the appliance is turned ON

Ant = { 0 no change is occured 3)

—1 the appliance is turned OFF

2) APPLIANCE SWITCHING CONSTRAINTS
In addition to considering appliances’ consumption pref-
erences, the load control algorithm minimizes the random
switching of appliances in a DR event. This avoids switching
ON/OFF of large number of appliances as a result of reduced
disturbances on the consumer comfort levels. In order to
tackle this optimization problem, two constraints are applied
in the load control algorithm for each participating appliance
in a DR event, which are 1) assigning a priority to those appli-
ances which have high kW power ratings to be controlled
first, 2) limiting the excessive amount of appliances control
of each consumer. By applying the above constraints on the
participating appliances, a less amount of load adjustment
is likely required for each DR event as well as consumer
inconveniences will be minimized.

To comply with the appliance control priorities and mini-
mize the excessive switching disturbances on a consumer’s
appliances, the average disturbance ratio (ADR) factor is
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proposed in this paper. ADR represents the ratio of the total
demand change (AP) to the total number of disturbed appli-
ances of i consumer at " time interval, as in:

t
ADR! = M (4a)

Znil |An:|

Na
> Anf x P!
n=1

s.LAPY bRy = (4b)

where APZDR([') is the sum of kW demand change, N4 is the
total number of appliances of a consumer participating in a
DR event, P} " is the rated kW demand of the n* appliance.
All the parameters are for the i consumer at 1™ time interval
during the DR event. ADR is treated as a technical constraint
during the optimisation process in the objective function (in
Section II.A). The associated penalty factor for ADRf pre-
sented in (5), is added into the objective function (1a).

M P >ADR!

M (2 — ADR?)
0 p<ADR

PenaltyADR[r_ = P < ADR! <p, Vi, t

&)

According to (5), the penalty factor of ADR! is maximum
when P; greater than or equal to ADR! to exclude the corre-
sponding switching solution from the load control optimisa-
tion search space. M is a large number (i.e. = 10?) which is
implemented in order to eliminate the unappropriated switch-
ing solutions. If ADR; value is larger than or equal to Py, the
penalty factor is zero to relax the ADR! constraint. If ADR!
is confined within ‘P; and Py, a descending linear equation
is implemented to provide a linear relationship between the
value of ADR for each participant and the penalty factor.
To clearly understand the ADRf constraint, let us consider a
consumer have a 2kW washing machine and 1kW pool pump,
which current switching status are OFF and ON, respectively.
During a DR event, if the optimization algorithm decides
to switch on the washing machine but keep the switching
status of pool pump unchanged (which is ON), according
to (4a) and (4b), the ADR value will be 2 (=2/1). However,
if the optimization algorithm decides to switch on the washing
machine and switch off the pool pump at the same time, the
ADR value will be 0.5 (]2 —1|/2). Higher the ADR value, less
penalty factor will be added into the objective function in (1a).
The P; and P, values are user defined based on the required
optimisation output and maximum and minimum kW ranges
of the participated appliances. In this study we considered P;
and P, values are 2 and 0.5, respectively. As a result, the ADR.
constraint in (4a) helps the load control algorithm by selecting
the large (kW) available appliances of the DR participant to
be controlled in a DR event and thus, reduces the random
switching of the appliances.

Further, to limit an excessive amount of appliances control
for some participated consumers in a DR event, an additional
constraint called appliance fair interruption (AFI)
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is added into the optimization process. As stated before
(in Section I), some consumers are usually interrupted more
than others due to their sensitive locations in the network.
If this constraint is not included in the algorithm will create a
fairness issue regarding the number of appliance interruptions
in a DR event. To limit the excessive number of appliances
interruption for some location-based consumers, AFI will
be calculated and minimized by the proposed load control
algorithm in each DR event. AFI is defined using (6a) as the
total number of disturbed appliances for each consumer. The
associated penalty factor for AFI treated as a constraint in the
optimization, is shown in (6b).
Na
AFIL =" |Ant] Ve, i (62)
n=1
M AFI; —2), AFI; > T (long term)
M(AFI; — 1), AFI; > Tia(short term)
Vt, i

0, else

Penalty, g =

(6b)

where AiFI' is AFI for i consumer at t" time. Penalty g1 is
1

applied in the objective function (OF) stated in Section II.A
for both long- and short-interval DR when AFI} value for
i consumer is greater than T; (i.e. = 2 appliances) and T»
(i.e. = lappliance), respectively.
Finally, the total penalty factor (Penalty, .. .. g) is defined
as follows:
Npr
Penaltyéwitchmg = ZPenaltyADR§ + PenaltyAFlﬁ @)

i=1

Ill. SOLUTION APPROACH

The proposed voltage management strategy coordinates with
consumers’ load control and DGs’ reactive power contribu-
tions in each DR scheme for effective voltage management in
the distribution networks, while maintaining the consumption
preferences and fair incentives to the participants.

Fig. 2 illustrates a flowchart of the proposed voltage man-
agement method. It shows that each day the utility updates
the forecast of the DGs’ output power and load demand, e.g.,
for a span of 2 hours in advance using available reliable
forecasting tools [33] and run offline load flow for every
5 minutes of this time span to check the network voltage
level limits. Fig. 2 shows that the offline load flow study
with the forecasted data for voltage violation identification
is achieved within 1 minute. Once the buses with voltage
violations are identified, the DR scheme (either short- or
long-interval) is selected in step 2 considering the duration of
the voltage violation based on the 5-min load flow analysis.
After the selection of a DR scheme, network buses are ranked
using (2c) and (2e) within 25 to 30 seconds. The consumers
located at the identified buses are then notified about the DR
event. Upon this receiving notification, interested consumers
can update their existing consumption preferences if they
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FIGURE 2. The flowchart of the proposed voltage management method,
tf: time frame.

wish. Consumers who signed for participation in any DR
scheme need to provide their lists of available DR appliances
to the utility. Consumers can predefine their consumption
preferences for each day through HEMSs. Furthermore, the
consumers have an opportunity to change their preferences
frequently before committing their participation in any DR
event. The information exchange with the consumers takes
less than a second using the technologies like WiMAX (with
a bit rate of 5 to 25Mbps) and ZigBee (with a bit rate of
250 kbps) [12]. Therefore, the total required time for step 2 is
less than 1 minute.

In step 3, participated consumers’ information such as
appliances’ current states, consumption preferences and pre-
vious history of DR event participations are collected. Data
collection and processing in this stage are achieved within
2 minutes. The final step 4 optimizes the objective function to
calculate the optimum switching positions of the appliances,
DGs’ reactive power contributions and fair dynamic incentive
rates to the participated consumers to calculate the total DR
cost. Once the optimum solution is obtained, the control
signals are sent to appliances and DGs’ inverters to switch
ON/OFF, and provide reactive power support, respectively.
This stage is estimated to be performed within 2 minutes,
as the average computational time of the optimization process
for long- and short-interval schemes are around 50 and 20 sec-
onds in the IEEE 33-bus system respectively using MATLAB
software on Intel CORE i7-2600 PC with a clock speed of
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3.4 GHz and 12GB RAM. The next section describes the
optimization process based on the modified hybrid PSO.

A. IMPROVED HYBRID PARTICLE SWARM OPTIMISATION
(IHPSO)

To solve the complex non-linear objective functions (as men-
tioned section II.A), a Particle swarm optimization (PSO)
algorithm is proposed in this study. Various analytical and soft
computing methods such as Learning Automata [34], Rein-
forcement Learning with Q-learning [35] and Evolutionary
Algorithm (EA) [36] are previously being used to address
the complex problems of scheduling DR appliances. In some
studies, like [17], [18], [19] propose bi-level metaheuristic-
based algorithm and interval analysis methods to address
complex planning problem for solving voltage and power
loss issues in the microgrids. Though these metaheuristic-
based algorithms are suitable in addressing complex prob-
lems, with the increased number of optimization variables
they may increase the computational burden and time and
may not provide optimum outcomes. The PSO algorithm is
one of the derivative-free heuristic algorithms, which has
the proven ability to provide fast convergence with robust
output and require less computational time for the large scale
non-linear and mixed integer problems [13], [37]. The main
benefits of using PSO algorithm are that it has robust control
parameters and computational efficiency as compared with
the mathematical algorithm and other heuristic optimization
techniques [38]. It has fewer parameters to adjust and con-
straints acceptance and thus, it is easy to implement.

In this paper, an improved hybrid PSO is proposed which
is based on a modified version of classical PSO [13] incorpo-
rated with a pattern search (PS) algorithm [39] for providing
fast convergence and robust optimization output to solve
the voltage management problems. In this approach, PSO is
responsible for the exploration of the search space and the
detection of the potential regions with optimum solutions,
while PS is used to produce effective exploitation on the
potential regions obtained by PSO. An important drawback
of the PS method is the need to supply a suitable initial
point [39]. Where PS hybrids with PSO algorithm, the initial
starting point will no longer needs to be specified by the
user, it will be automatically generated by the PSO phase.
However, the standard PSO may not provide a suitable initial
starting point for PS in high dimensional problems, as the
standard PSO sometimes converges into local optima result-
ing in low optimizing precision. In order to improve the
accuracy of the solution, in this study, a mutation function
is applied in the standard PSO particle update rules. The
mutation function is conceptually equivalent to the muta-
tion in genetic algorithms (GA) [13]. A comparison study
in [38], shows that this modified version of PSO (MPSO)
outperforms other heuristic methods such as the original PSO,
GA, and simulated annealing in terms of accuracy, robustness
and speed. Furthermore, the constriction factor approach is
adopted in PSO in addition to the mutation method, which
outperforms compared to inertia weight approach [38].
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Therefore, an improved hybrid PSO (IHPSO) is proposed
in this study as a combination of MPSO and PS algorithms
to improve the optimisation performance and minimise the
computational time. Although the standard PSO combined
with PS is discussed in [39], we propose a hybrid model
of MPSO with PS in this paper with higher capabilities in
finding better solutions in a short period of time. In this hybrid
method, MPSO runs first to find the near global best location.
This global solution is provided to PS for further minimisa-
tion of the objective function. The idea behind this strategy
is to let MPSO utilise its strength aggressively exploring
the search space to find near optimum solution, then let
PS utilises its strength to quickly find the global optimum
solution by searching locally around the solutions given by
MPSO. Fig. 2 shows the hybrid optimisation process with the
MPSO and PS algorithms in Step 4.

The velocity and position updates of each MPSO parti-
cle at iteration k to search for the optimal solution are as
follows:

Vik+1 = ¥ X(V}40.5X @ax X rand x (Pbesti _sz>

4+0.5 X @pmax Xrand x (Gbm — Xl-k)

k+1 k k+1
X = xk v (8a)

where Vik and Xlk are velocity and position vectors of ith
particle at iteration k, respectively; y is the constriction factor
coefficient; Ppey, 1s the best value vector of ith particle so
far; Gpes: is the best value among Pp,g, so far; and rand is
a random number generator uniformly distributed between
0 and 1. The constriction factor coefficient (y ) is calculated
as shown in (8b). ¢4, and ¢ are constant values. In this study

Omax = 4.05 and ¢ =1 are considered [13].

2k
0 >4
Y= \/¢—2+\/<p2—4g0 (8b)
\/KT, else

In (8b), k € [0,1] is a coefficient that allows control of explo-
ration versus exploitation propensities. For a bigger value
of coefficient k, particles desire more exploration and pre-
venting explosion, derives slow convergence and searching
thoroughly the space before collapsing into a point. However,
for smaller values, particles care more exploitation and less
exploration. The mutation function is applied when Gy, is
not improving while the increasing of number of iterations.
The mutation function selects a particle randomly and then
adds a random perturbation to a randomly selected element of
the velocity vector of that particle by a mutation probability.
In this paper, if the Gps after 11 iterations is not improving,
the mutation function with the mutation probability of 0.85 is
applied.

MPSO handovers its global best (Gpess) location to PS as
an initial point (X0), which has a great influence on PS’s
calculation results. PS utilizes a set of directions comprising a
“pattern’ that it uses to search around the initial point (X0) to
find better points and ignores the rest of the search space. This
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FIGURE 3. IHPSO particle structure for voltage management using DR
coordinated with DGs and OLTC.

allows PS to find the optimum solution with much greater
efficiency. PS finds a series of points X0, X1, X2,..., Xn,
which are closer and closer to the optimal value of points.
When the termination conditions are met, the last point will
be the final solution for this search. In this study, the mesh size
and the mesh expansion and constriction factor are selected
as 1, 2 and 0.5, respectively. As for the stopping criteria, all
tolerances are set to 10~° or reaching the maximum number
of iterations. The formulation details of MPSO and hybrid of
the standard PSO with PS algorithm are presented in [13] and
[39], respectively.

In this study, each particle in IHPSO is composed of a
number of cells that represent as decision variables in the
optimization. As an example, Fig. 3 shows the coordinated
approach of DR with three DGs (Q*) and on-load tap changer
(OLTC ) for the long-interval DR scheme. In the long-
interval DR scheme (as explained in Section II.C), a maxi-
mum number of five appliances of each candidate consumer
are considered for DR participation. Each of these appliances
is defined with five switching control variables (as mentioned
in Table 1). Therefore, the number of cells (variables) for
the total DR candidate (Npg) is 5 x Npg, representing A, 1)
forn = 1,...,5and i = 1,...,Npg. Three cells (vari-
ables) are defined for three DGs. If more voltage regulator
devices are required to add in the optimisation (e.g., OLTC
control is added into the optimization process, as discussed in
Section IV.F) based on the number of variables of the device
to be optimized, the number of cells will be added into each
particle of IHPSO which show great flexibility and scalability
of this proposed approach. For example, in Fig. 3, one cell
is added for OLTC tap variable. Section IV.F presents the
optimized results with DR coordinated with DG and OLTC
in the IEEE 69-bus system.

To accelerate the optimization process with IHPSO, the
direct load flow method [40] is used in this study to calculate
the network parameters including V1), 11,1), and Pr joss(r) Tor
each particle at every iteration. This load flow approach uses
the bus injection to branch current (BIBC), branch current to
bus voltage (BCBV), and distribution load flow (DLF) matri-
ces which are implemented in MATLAB for this purpose.

IV. SIMULATION RESULTS AND CASE STUDIES

This section provides simulation results for two DR schemes
(i.e., long- and short-interval schemes) considering several
worst scenarios to show the effectiveness of the proposed
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FIGURE 4. IEEE 33-bus MV network with multiple DG connections.

voltage management method. The proposed approach is
tested on an IEEE 33-bus radial distribution test system
shown in Fig. 4. In this paper, the IEEE 33-bus distribution
system is modified with three large solar PV-based DGs with
a capacity of 1.22 MW each connected to buses 15, 29,
and 31. The optimal locations of the DG units in the 33-bus
distribution network as shown in Fig. 4 are identified by the
study in [41]. To analyze the DG power output, 1-minute
interval power production data is gathered for a 1.22 MW
PV system located at the University of Queensland’s St Lucia
campus in Brisbane [42], [43]. In this study, it is assumed that
a total 90 consumers are available to participate in each DR
event and randomly distributed in the DR candidate buses.
In this study, the permitted boundary of voltage magnitudes
for all network buses is considered within +5% of nominal
voltage [9]. In addition, the amount of reactive power and
active power from each DG unit can be obtained by consid-
ering the limits of power factor (PF;) within [—0.95, 4-0.95].
P; and P> are 0.5 kW and 2 kW, respectively (as discussed
in Section II.D). The total number of PSO particles is consid-
ered 300 and a self-adaptive iteration size technique is taken
into account. The mutation probability for MPSO is consid-
ered 0.85. As discussed previously, the proposed dynamic
fair incentive mechanism implemented through large-scale
consumer participation is a new approach compared to the
previous methods [44], [45].

A. CASE 1: LONG-INTERVAL VOLTAGE VARIATION

Case study 1 includes two scenarios of long-interval voltage
variations in the IEEE 33-bus network. Fig. 5 depicts the load
profile and the PV-based DG power output for a typical hot
summer day. Fig. 5 also presents the maximum voltage drops
at far end buses of the network caused by significant DGs’
output power drops during 11:15 to 12:08 (53 minutes) and
during 13.09 to 14.19 (70 minutes). As shown, voltages at
some remote buses fall extremely low below the standard lim-
its. Two DR events are applied to improve these long-interval
voltage variations using the proposed voltage management
procedure in Fig. 2. These two DR events are shown in Fig. 5,
as listed below:
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Case 1 : long-interval voltage variation
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FIGURE 5. Load and DG power output profile with and without DR
deployment.

Case 1: voltage drops in the most critical buses
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FIGURE 6. Voltage profiles of critical buses with and without (w/o0) DR
deployment.

Due to the prolonged voltage variations in the network
caused by the slow cloud movement, the 2-hour DR scheme
is initiated for each DR event to solve the under voltage prob-
lems. As seen in Fig. 5, the DR event 1 is activated from 11:15
to 12.08, which reduces the initial load demand (2,828 kW)
by about 10%. The DR event 2 is initiated at 13:09 and
remained active for around 70 minutes, which reduces the
initial load demand (2,600 kW) by 8.6% and injects a total
66 kVar from DGs into the network. The improvement of
voltage profiles during DR events 1 and 2 are presented
in Fig. 6, which shows the effectiveness of the proposed
approach in managing voltage violations during slow cloud
movement. DR event 1 for the event during 11:15 to 12:08
(53 minutes), DR event 2 for the event during 13.09 to 14.19
(70 minutes).
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FIGURE 7. (a) Average voltage sensitivities for selected buses, (b) total
loss sensitivities for the buses, and (c) optimized incentive rates for
consumers in DR candidate buses.

Figs. 7(a) and 7(b) show the average voltage sensitiv-
ity (AVS(. ) and total power loss sensitivity (TLS; ;)) with
respect to active power change in each voltage violation bus
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in order to identify the DR candidate buses (as explained in
Section II.B). As seen, the voltage and total loss sensitivity
values are much higher for the remote buses 8 to 18 in
respect to active power changes in those buses. Therefore,
the combined sensitivity values for buses 8 to 18 are higher
than other buses in the network. Thus, these 11 buses are
considered as DR buses for both DR events 1 and 2. Fig. 7(c)
illustrates the optimized incentive rates ($/kWh) for each DR
candidate bus obtained from (2a). It can be seen that for
DR event 1, the incentive rate increases progressively from
bus 8 to bus 18. It is due to the far end buses (i.e., 16, 17,
and 18) have higher voltage and loss sensitivities and they
contribute more to voltage and loss improvements. Thus, the
corresponding consumers in those buses will receive higher
incentive rates as compared to the low sensitive buses, which
shows a fair incentive rate distribution among the DR par-
ticipants. The optimized voltage improvement coefficient k»
is higher than the loss coefficient k3 for DR event 1. It is
due to our primary goal is to improve the network volt-
ages, which is prioritized by adding higher voltage violation
penalty cost (Penaltyy,; violarion) than the power loss penalty
cost (Penaltyp,,.r 10ss) 11 the objective function (la). The
utility can adjust the penalty factors for the voltage and power
loss based on the network conditions and can priorities one
power loss over voltage violations.

Interestingly, for the DR event 2, the optimized incentive
rates for buses 8 to 18 do not have much differences, it is
due to the fact that the coordinated control of reactive power
of DGs in the DR event 2 reduces the incentive rates in
DR candidate buses. In the DR event 2, the coordination
control of reactive power of DGs with DR event is used
due to only load control of consumers is not sufficient to
manage the voltages in all buses. The reactive power injected
from the DGs into the network improves the bus voltages
and reduces network losses. As a result, k» and k3 values
in DR event 2 are much lower compared to DR event 1,
as shown in Fig. 7(c). The k» and k3 values are related to
voltage improvement factor and power loss improvement fac-
tor, respectively (as explained in Section II.B). The optimized
values of these parameters are location dependent, mainly
depend on the voltage and power loss sensitivities. Table 2
shows the optimized results of some important variables from
the proposed voltage management algorithm applied in DR
events 1 and 2. It can be seen that the total penalty factor
is zero for both DR events, which means the consumers’
consumption preferences, appliances’ switching constraints
(as discussed in Section II.D) and bus voltage constraints
(£5%) are maintained to minimize the consumers’ comfort
violation and voltage violation. As shown in Table 2, in DR
event 2, the three DGs provided different reactive power
levels. It is interesting to note that the amount of the reactive
power injection varies based on the location of the DGs in
the network. According to the Figs. 7(a) and 7(b), the voltage
sensitivity and power loss sensitivity are higher in bus 15 than
bus 31 and bus 29, in where the three DGs are connected
respectively. As a result, the DG located in bus 15 provided
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TABLE 2. Results of case 1 using the proposed voltage management
approach (VMA).

DR |no VMA After VMA implementation (optimized values)
event PTJDSS PTJo:: DR DRCOS/ ($) Penalty DG OF ($)
kW) (kW) (kVAr)
1 |623kW| 44.7 261 67.3 0 0 111.9
DG,5=28
2 [83.1kW| 6l1.1 222.4 58.8 0 DGy=16 139.8
DG31 =22
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FIGURE 8. Load and DG power output profile with and without DR
deployment.

more reactive power support as compared to DGs located in
buses 29 and 31 to reduce the voltage violation and power
loss in the network.

B. CASE 2: SHORT-INTERVAL VOLTAGE VARIATIONS

Fig. 8 presents a typical day where high variability of
PV-based DG power generation is occurred due to the fast-
moving clouds. The cloud transient created large changes in
the net load and caused voltage drops in some remote buses,
as shown in Fig. 9. To compensate for the voltage drops due
to intermittent DG power generations, four DR events are
initiated as below, in which DR events 1 to 3 are short-interval
and DR event 4 is a long-interval DR:

1) DR event 1 for the event during 09:50 to 09:57
(7 minutes),

2) DR event 2 for the event during 10:17 to 10:26
(9 minutes),

3) DR event 3 for the event during 10:54 to 11:00
(6 minutes),

4) DR event 4 for the event during 12:15 to 14:15
(2 hours).

Due to the short-interval (<10 minutes) variation of the power
generation from the DGs, the first three DR events are acti-
vated using the 10-minute DR scheme by controlling ACs
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Case 2: voltage drops in the most critical buses
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FIGURE 9. Voltage profiles of critical buses with and without (w/o0) DR
deployment.

and EHWs. The DR event 4 is activated using the 2-hour
DR scheme due to the long-interval voltage variation in the
network. Fig. 9 shows the bus voltages with and without the
optimized DR events activation. It shows that the violated
bus voltages are improved significantly with the proposed
approach.

Fig. 10 shows the average voltage and power loss sensi-
tivity values in respect to active power change in each bus in
order to identify the DR candidate buses for the DR events.
The DR candidate buses for each DR event are selected
based on the highest combination of the sensitivity values,
as explained in Section IL.B.

Fig. 11 depicts the optimized incentive rates for the
selected candidate buses in each DR event, and as seen,
the incentive rate varies in each DR event and location.
The optimized incentive rates increase as the total bus
sensitivity values increase. As seen, the voltage improve-
ment cost coefficient kp is larger for all DR events than
the loss improvement cost coefficient k3, which is due to
the voltage violation is being penalized more than other
criteria.

Fig. 11 optimized incentive rates with k; values for DR
buses in all DR events. These k; values are optimized in such
way that the DR consumers located at the sensitive buses
receive their fair incentive rated based on their contribution
in the voltage and power loss improvement in the network.
Table 3 presents the optimized results for all DR events in
Case 2 with the proposed voltage control algorithm. It shows
that the total DR (kW) used in each DR event varies and
depends on the voltage violation magnitude and power loss
minimization. It can be seen from Table 3 that the proposed
load controller reduces the power loss in all DR events. In all
the DR events in Case 2, the optimized switching of the DR
appliances was enough to minimize the voltage violations in
the network. Thus, not reactive power injection was required
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Case 2: Average voltage sensitivities for selected buses
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FIGURE 10. (a) Average voltage sensitivities and (b) Total loss
sensitivities for selected buses.

TABLE 3. Results of the proposed voltage management approach (VMA).

Case 2, no VMA After VMA implementation (optimized values)
DR Prioss |Prioss DR DRy Penalty Penalty DGs’ OF cost
event# (kW) [(kW) (kW) ($) ADR AFI kVAr (9
1 689 |589 148.7 4.7 0 60 0 123.6
2 794 |733 684 2.6 0 0 0 76.0
3 82.1 [70.2 146.6 3.9 0 60 0 134.1
4 729 |559 2809 772 0 0 0 1332

from the DGs. The owner of the DGs can maximize the use
of the DGs’ capacity to freely produce maximum amount
of active power to the grid depending on the weather con-
ditions. The AFI (appliance fair interruption) is violated for
DR events 1 and 3 for some DR participants. It is due to those
particular

DR participants are located in the sensitive buses in the
network and required to control more appliances that other
participants to satisfy the voltage limit constraints. Therefore,
a small penalty factor (60) is added into the total objective
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FIGURE 11. Optimized incentive rates with k; values for DR buses in all
DR events.

cost for 6 consumers in DR events 1 and 3. The proposed
voltage management algorithm found the optimum solution
by prioritizing the voltage violation reduction over the AFI
violation.
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TABLE 4. number of appliances controlled in case 1 and case 2.

W.mc* Dish* Dryer Pump EV AC EWH
Off On Off On Off On Off On Off On Off On Off On
Initial cond. 41 49 57 33 66 24 54 36 30 60
DReventl 0 0 0 0 18 0 25 0 55 0

DRevent2 0O O O 0 35 0 13 0 29 0
Initial cond. 38 52 42 48 52 38 29 71 35 55 39 51 51 39
DR event 1 28 0 35 0
DR event 2 7 0 15 0
DR event 3 28 0 34 0
DRevent4 0 O O O 17 0 40 0 17 0

*W.mc = washing machine; Dish=dishwasher

C. APPLIANCES SWITCHING CONTROL FOR CASE 1 AND
CASE 2

Table 4 presents the number of appliances controlled during
all DR events for a total 90 participated consumers in both
Case 1 and Case 2. It shows the switching status (ON/OFF)
of the participated appliances before and after each DR event.
The DR events in Cases 1 and 2 reduce the consumers’ load
demand to compensate for the active power drops from the
DGs due to the clouding. The proposed algorithm determines
the number of appliances to be switched off in each DR
candidate bus to keep the voltage within the 5% limits
and minimize the total power loss. The algorithm optimizes
the switching of these appliances based on the constraints
applied by the participated consumers on their consump-
tion preferences and appliance switching (as explained in
Section II.D). As shown in Table 4, in all the DR events of
Case 1, the washing machine and dishwasher loads are not
switched off when they are operating (ON condition), as their
control preference is considered 3 (based on the definition
in Table 1) during the optimization process they cannot be
switched off while they are operating to avoid resetting the
control cycles of these appliances. Since, the Case 1 has
the long interval (1-2 hours) voltage problems as similar to
DR event 4 in Case 2, the short usage of loads such as AC
and EWH are not controlled in those DR events. Table 5
represents the randomly selected participated consumers’
appliances switching status before and during DR event 1 in
both Case 1 and Case 2. It shows that consumer consumption
preferences are prioritized in the proposed during voltage
management in the network. Furthermore, the variability of
kW demand (or rating) of each appliance and their participa-
tion availability in each DR event are considered in the opti-
mization algorithm to provide a realistic DR implementation
approach. A very few studies are available in the literature,
which include this flexibility in the algorithm, as discussed
in Section I.

D. VALIDATION OF THE PROPOSED INCENTIVE METHOD

In this section, the proposed dynamic DR incentive method
for voltage control is compared with three different
incentive methods. Fig. 12(a) shows different optimized
incentive rates simulated for DR event 1 in Case 1, which
are “Only power loss improvement rate”, “Only voltage
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TABLE 5. Switching configurations for case 1 and case 2 in DR event 1.

Case 1 Case 2
Initial condition (preference# / kW) Optimized switching status A, Initial ... [ Optimized ...
DR B#[Con#| W.mc | Dish [Dryer [Pump| EV [W.mc| Dish [Dryer [Pump | EV_[DR ($)|DR b#[Con#| AC [EHW | AC [EHW [DR ($)
2 | 0/0.6 | 1/1.2 |2/(n/a)| 1/2.0 | 1/3.0 0 1 0 0 1 10317 1 0/4.5 0 0
3 4 [0/1.8]0/20]1/3.0 1/3.0 0 1 0 10475 9 2 [1/1.8 1 0
7 1 0/1.5 [2/(n/a)| 1/3.0 [2/(n/a)| 1/3.0 0 0 1 0 0 10475 6 10/0.6]1/2.7 0 0 ]0.063
10 - 0/1.2 [ 0/3.0 | 0/1.0 | 1/6.0 0 0 0 0 10951 8 [1/02]027 0 0 ]0.044
14 58 [ 1/1.9 | 0/2.0 0/1.0 | 1/3.0 1 0 0 0 J0868| 10 | 29 [0/0.2 | 1/2.7 1 0 [0.082
16 68 | 1/1.9 | 0/2.0 [ 0/3.0 [ 1/1.0 1 0 1 0 13 0
17 79 | 1/.2 | 0/2.0 | 0/3.0 1/3.0 1 0 0965] 14
84 |N4J8H| 0/2.0 [ 0/3.0 | 1/2.0 0 0.647 1 ¢
18 85 [2/(n/a)| 0/1.5 | 0/3.0 | 1/2.0 | 1/3.0 0 1.617
89 | 1/0.2 | 1/2.0 | 0/3.0 1/3.0 1 1 097 ] 33

DR B#: DR Bus; Con#: consumer number; preference#: refer to Table I; kW: appliance kW rating; W.mc = washing machine; Dish=dishwasher;

DR($): DR cost ($); n/a = not available;
represents device preference setting not to turn off.

improvement rate”’, ‘“Fixed rate”” and “Proposed rate’.
“Only power loss improvement rate” uses power loss sensi-
tivity factor (2d) for DR rate calculation in (2a); “Only volt-
age improvement rate’” uses voltage sensitivity factor (2b) for
DR rate calculation in (2a); ““Fixed rate” uses the TOU price
rate in (2a); and the “Proposed rate”” combines power loss and
voltage sensitivities and TOU price rates for DR rate calcula-
tion in (2a). It can be seen in Fig. 12(a), the “Proposed rate”
scheme distributes the incentive proportionately across DR
participated buses based on their contributions in the voltage
and power loss improvement in the network. The proposed
incentive rate is higher at the far end of DR buses and lower
in the closer buses to the substation. The optimized incentive
rate falls between the power loss and voltage improvement
rates but closer toward the voltage improvement rate of each
DR bus, as the main objective of the paper is voltage control.
Fig. 12(b) presents the obtained objective function parame-
ters using four different optimized DR incentive rates. The
proposed incentive method provides the lowest value in the
objective function variables (i.e., DR cost ($), DR size (kW),
Power loss (kW), and Objective function cost ($)) compared
to other incentive methods.

Table 5 shows the optimized switching positions of DR
participated appliances using the proposed method for
two different intervals of DR events: “Long-interval” and
“Short-interval” respectively for Case 1 and Case 2. As can
be observed, if the participated consumers don’t have some
DR appliances, these non-available DR appliances are num-
bered as “2” (highlighted in orange in Table 5) in the
optimization process according to the appliance preference
definitions in Table 1. Therefore, the optimized switching
position for those appliances is zero (not operating) for any
DR event. The appliance preference number ““4” (highlighted
in blue) represents that the particular appliance is restricted
to participate in the current DR event, it is due to the fact
that the appliance has already participated in the previous
event or participant restricted to participate in a particular
DR event. Therefore, the optimized switching position for
those appliances is also zero. Finally, the appliance preference
number “3” (highlighted in red) indicates that the appliance
is under priority preference and its current status is ON and
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FIGURE 12. Comparisons of objective function variables using proposed
and other incentive rate methods.

can’t be switched OFF in the DR event. It is due to the
particular appliance can’t be interrupted while it is running
(e.g., washing machine and dishwasher) to avoid hardware
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damage or the appliance is prioritized to be ON for the
owner’s personal needs (e.g., the owner may need to charge
the EV for traveling). Therefore, the optimized switching
position for those appliances will not be changed (switching
status is 1). The above-mentioned appliance’s switching pref-
erences are important for the optimization process in order to
keep a record of the consumers’ DR participant history and
maintain their consumption preference and comfort levels in
each DR event.

Table 5 shows the optimized switching positions of
DR participated appliances using the proposed method for
two different intervals of DR events: “Long-interval” and
“Short-interval” respectively for Case 1 and Case 2. As can
be observed, if the participated consumers don’t have some
DR appliances, these non-available DR appliances are num-
bered as “2” (highlighted in orange in Table 5) in the
optimization process according to the appliance preference
definitions in Table 1. Therefore, the optimized switching
position for those appliances is zero (not operating) for any
DR event. The appliance preference number ““4” (highlighted
in blue) represents that the particular appliance is restricted to
participate in the current DR event, it is due to the fact that
the appliance has already participated in the previous event
or participant has been restricted to participate in a particular
DR event. Therefore, the optimized switching position for
those appliances is also zero. Finally, the appliance preference
number ““3” (highlighted in red) indicates that the appliance
is under priority preference and its current status is ON and
can’t be switched OFF in the DR event. It is due to the par-
ticular appliance can’t be interrupted while it is running (e.g.,
washing machine and dishwasher) to avoid hardware damage
or the appliance is prioritized to be ON for the owner’s
personal needs (e.g., the owner may need to charge the EV
for traveling). Therefore, the optimized switching position
for those appliances will not be changed (switching status is
1). The above-mentioned appliance’s switching preferences
are important for the optimization process in order to keep a
record of the consumers’ DR participant history and maintain
their consumption preference and comfort levels in each DR
event.

E. PERFORMANCE ANALYSIS OF THE PROPOSED IHPSO
ALGORITHM

The objection function (OF) in (1a) is tested using different
classic PSO algorithms and compared with the proposed
IHPSO (improved hybrid particle swarm) algorithm. Using
each PSO algorithm, the OF is run 10 times to get the best
optimized result and standard deviation. Table 6 presents
the comparison of the optimized results for DR event 1 in
Case 1 using different PSO methods. It shows that with the
MPSO (modified particle swarm) method, the optimization
time is the lowest (32.32 sec.). However, it has a higher
objective function and standard deviation as compared to the
HPSO (hybrid particle swarm) and IHPSO methods. With the

VOLUME 10, 2022

TABLE 6. Optimized results comparisons between different PSO methods.

IHPSO

Criteria PSO (proposed)

MPSO  HPSO

Optimizationtime 3,33 353, 5100 5013
(sec.)

Best OF. result 10,569 10,493 112.4 111.9
Standard deviation 2.2 1.9 1.5 0.70

Case 1: Long-interval voltage variation
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FIGURE 13. Global best solution during searching process using different
PSO methods.

proposed IHPSO method the total objective function cost and
the standard deviation are the lowest among all methods and
with a slight increase in the optimization time compared to
the PSO and MPSO methods. The optimization time in the
PSO and MPSO is less because these methods don’t have any
hybridization approach with another optimization method,
as a result, the OF result is very high as compared to the
proposed THPSO method. Therefore, the proposed IHPSO
algorithm improves the OF performance and the accuracy of
the voltage control algorithm.

Fig. 13 depicts the obtained global best solution curve
during 100 iterations from all optimization methods. In all
these PSO methods when Pbest and Gbest stopped updating
for a period of time, it means a local optimal solution is found,
as seen in Fig. 13. It can be observed that the classic PSO
method stopped updating the optimization result after 50"
iteration and MPSO method after 40" iteration. MPSO shows
better performance than the classical PSO method due to a
mutation function as equivalent to GA algorithm is added
into MPSO. The proposed IHPSO method stopped updating
at around 70" iteration with a global best value of 11.9, while
HPSO stopped at 80" with the value of 112.4. The IHPSO
outperforms the HPSO method by reducing the optimization
time and objective function value. In IHPSO method, the GA
mutation function and PS algorithm help the particle to jump
out of the local optimum and enhance the chance of finding
the global optimal solution.
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TABLE 7. Results of the proposed voltage management approach (VMA) in a large network (69 bus-system).

After VMA implementation (optimized values)

Solution approaches

Load (MVA) Ploss (kW) DR (kW) DRcost($) OLTC tap (pu) DG (kVAr) OF ($) Run time (s)
No VMA 4.655 181.9 - - 1 DG61,62,64 =0 - -
DR with OLTC 4.626 154.92 167 44.09 1.0188 DG61,62,64=0 3366° 125.7
DG61 =401
DR with DG 3.958 96.33 159.5 42.11 - DG62 =401 658.8 119.8
DG64 =401
DG61 =248
DR with DG & OLTC  4.091 104.8 120.5 323 1.00625 DG62 =306 1530* 109
DG64 =356

3A high penalty cost (10°) is added in the optimization for each tap position changes in order to minimize the tap changing

DG DG DG
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67 69
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FIGURE 14. IEEE 69-bus MV network with multiple DG connections.

F. VALIDATION OF THE PROPOSED METHOD IN A LARGE
NETWORK

To validate the performance of the proposed voltage manage-
ment method in a larger scale distribution network with many
DR participated consumers and its coordination approach
with the network element, an IEEE 69-bus system [46] is con-
sidered in the simulation. The optimum locations of the large
solar PV-based DGs in the IEEE 69-bus network (in Fig. 14)
are studied in [41]. The capacity of each DG is 1.22MW with
a maximum power factor range £0.95 is considered. A total
14 DR candidate bus locations are identified out of 69 buses
in the network according to the highest combined bus voltage
sensitivity (2e) and the total loss sensitivity (2c) values of the
buses, as explained in Section 2.B. The selected bus locations
bus 24 to 27 and 56 to 65. A total 115 DR participants
are considered randomly across the 14 DR candidate buses.
Each participant is assumed to have a maximum 5 DR appli-
ances for the long-interval voltage management (as described
in Section 2.C). Therefore, the maximum DR participant
appliances in the optimization process are 575 (115 x 5).
It is assumed that during a high loading period in the net-
work, a huge cloud movement causes the total active power
production from DGs dropped to 10% (i.e. 366MW) from
their total available capacity (i.e. 3660MW). As a result, the
voltages at the far end buses drop significantly, as shown
in Fig. 15. In this case, the long-interval DR scheme is
initiated to solve the under-voltage problem using different
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FIGURE 15. Optimized voltage profiles of 69 buses with different DR
coordination approaches.

coordination approaches, which are DR with DGs’ reactive
power, DR with OLTC (on-load tap changer located between
bus 1 and 2) [46], and DR combined with DG and OLTC.
As seen, from the optimized voltage profiles in Fig. 15,
it can be seen that the DR with OLTC coordination approach
provides slightly better voltage improvement at the far end
buses as compared to other coordination approaches. How-
ever, it increases the voltage significantly at the buses closer
to the substation. On the other hand, using the DR with DG
and OLTC coordination approach provides a smooth variation
of the bus voltages across the network compared to all other
DR coordination approaches.

Table 7 shows the different optimized variables obtained
from each DR coordinated voltage management approach.
As explained above, the voltage management approach
(VMA) using DR with DG and OLTC provides better volt-
age management across all buses in the network. However,
the optimized objective function cost associated with this
solution is quite high compared to DR with DG solution,
as shown in Table 7. It is due to an additional cost in the objec-
tive function in (la) is added for each tap change of the
OLTC. The optimized cost using DR with DG approach is the
lowest amongst the three voltage management approaches.
Therefore, DR with DG approach can be a suitable and
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frequently useable voltage management solution for all net-
work conditions.

V. CONCLUSION
This paper proposes a dynamic incentive based load con-
trol algorithm using household appliances through home
energy management systems for managing both short- and
long-interval voltage variations in the MV networks due to
intermittent power output from solar DGs. Two DR schemes
namely 10-minute and 2-hour DR schemes are proposed
which can coordinate the network equipment such as reac-
tive control from DGs and OLTC to compensate the short-
and long-interval voltage variations, respectively. A dynamic
location ranking method is proposed, which calculates the
sensitivity values of voltage and total power loss to identify
the most suitable DR candidate buses and distribute incen-
tives fairly to DR participated consumers. Furthermore, each
participating consumer’s consumption preferences are priori-
tized in the DR event to maintain their comfort level. Finally,
an improved version of the hybrid PSO algorithm (IHPSO) is
proposed in the load controller, which is hybridization of the
modified PSO (MPSO) and Pattern Search

(PS) algorithms to provide faster convergence and better
optimisation results. The proposed load control method is
first verified and tested using an IEEE 33-bus network con-
sidering high intermittent power generation from the DGs.
The simulation results show that the load control algorithm
successfully manages both short and long-interval voltage
variations in the network. It minimises the excessive distur-
bances on consumers’ loads, reduces the total cost of voltage
compensation, prioritises the consumers’ consumption pref-
erences, and fairly incentives the consumers based on their
contributions. The proposed IHPSO heuristic optimisation
technique provides better optimisation results and reduces the
optimisation time. Finally, the proposed load control method
is tested using a large network (IEEE 69-bus network) with
many DR participated consumers to validate its performance
in voltage control using different coordination approaches
with the network voltage regulation devices such as OLTC.
The performance of the proposed IHPSO algorithm will be
further compared and tested with other optimisation algo-
rithms such as the bi-level metaheuristic-based algorithm and
interval analysis methods to validate its robustness.
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