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Abstract
Deep-learning based natural language processing (NLP) models are proven vulnerable to 
adversarial attacks. However, there is currently insufficient research that studies attacks to 
neural machine translations (NMTs) and examines the robustness of deep-learning based 
NMTs. In this paper, we aim to fill this critical research gap. When generating word-level 
adversarial examples in NLP attacks, there is a conventional trade-off in existing methods 
between the attacking performance and the amount of perturbations. Although some lit-
erature has studied such a trade-off and successfully generated adversarial examples with 
a reasonable amount of perturbations, it is still challenging to generate highly successful 
translation attacks while concealing the changes to the texts. To this end, we propose a 
novel Hybrid Attentive Attack method to locate language-specific and sequence-focused 
words, and make semantic-aware substitutions to attack NMTs. We evaluate the effective-
ness of our attack strategy by attacking three high-performing translation models. The 
experimental results show that our method achieves the highest attacking performance 
compared with other existing attacking strategies.
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1  Introduction

Natural language processing (NLP) models are crucial for numerous AI-related applica-
tions, including sentiment analysis (Li et al., 2021; Xue et al., 2022), knowledge tracing 
(Song et al., 2021, 2022), question answering (Berant et al., 2013), and machine translation 
(Luong et al., 2017; Dzmitry Bahdanau & Bengio, 2015). These models exploit contextual 
information in textual sequences which make them vulnerable to text perturbation. Among 
the NLP tasks, NMTs can also be sensitive to adversarial examples, such as malicious tam-
pering and input typos, as the sequence-to-sequence mapping relies on both the accuracy 
of individual word translation and contextual correlation within a sentence. Therefore, as 
a practical application that can be broadly applied for commercial purposes, the robust-
ness of NMTs against adversarial attacks is highly desired, posing the necessity of studying 
NMT-targeted attacks.

Existing attack methods to NLP models can be generally divided into character-level 
and word-level attacks. Character-level attacks, which manipulate informational letters 
within a word to attack the victim NLP model with incorrectly spelled examples, have 
been explored and proven effective in both white-box and black-box settings (Belinkov & 
Bisk, 2017; Ebrahimi et al., 2018). However, character-level attacks can be easily defended 
by spelling auto-correction methods. In contrast, word-level attack methods hold that an 
adversary should locate the vulnerable words and manipulate them, such as swapping, 
inserting, deleting, and substituting, to deceive the NLP models (Cheng et al., 2019; Alzan-
tot et al., 2018). However, word-level attacks to NLP models usually have a trade-off where 
the attacking performance depends on the number of perturbed words (Michel et al., 2019). 
Despite of the constant efforts on improving NLP attack methods, it is still challenging to 
strike such a balance between the number of perturbed words and its effectiveness in exist-
ing works, which is particularly true for attacks to NMTs which have not been well studied 
in the literature.

To this end, we argue that it is necessary to have an attack method that maximizes 
the attacking performance without having to increase the number of word perturbations. 
Therefore, we propose an attack strategy with a two-step approach: (1) a hybrid attention 
attack strategy to locate the top vulnerable words (i.e., victim words). This strategy consists 
of two types of attention weights: a language-specific attention that examines the correla-
tion of words between source and target languages, and a sequence-centered self-attention 
that focuses on the language understanding of the source sentence itself. (2) a pre-trained 
Mask Language Model (MLM) to make semantic-aware substitutions to the victim words 
discovered in (1), to ensure that the generated adversarial examples are semantically cor-
rect. With the proposed strategy, we can make high-quality word-level attacks to NMTs 
with only a small amount of perturbations.

Specifically, the main contributions of this paper are as follows:

•	 We propose a novel Hybrid Attentive Attack (HAA) method which identifies the most 
influential words in an input sequence based on language-specific and sequence-cen-
tered attentions.

•	 We introduce a semantic-aware word substitution strategy for the proposed HAA 
method to strike a balance between attack effectiveness and imperceptibility.

•	 We conduct extensive experiments on real-world datasets with three state-of-the-art 
victim NMTs. Experimental results demonstrate that our proposed method achieves the 
best performance with a small number of perturbed words.
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2 � Related Work

In this section, we will introduce some previous about the textual attacks to NLP model, 
attention mechanisms and BERT variants.

2.1 � Word‑level attacks to NLP models

Word-level attacks pose non-trivial threats to NLP models by locating the victim words 
and manipulating them for targeted or untargeted purposes. With the help of an adopted 
FGSM (Goodfellow et al., 2015), Papernot (2016) was the first one to generate word-level 
adversarial examples to classifiers. They replaced the randomly chosen words and find 
the substitution with the help of the gradient to pose adversarial threat. Notably, while the 
textual data is naturally discrete, many gradient-based victim words selection methods are 
inherited from computer vision (Chivukula & Liu, 2018; Yin et  al., 2018; Chivukula & 
Liu, 2017), which leaves locating victim words a challenging problem (Yang et al., 2020, 
2021). Many existing methods randomly select the victim words, without considering the 
gradient and contextual information, and focus on words manipulations (Zang et al., 2020; 
Cheng et al., 2020; Wang et al., 2021) while Liang argues the selection of victim words is 
also important. To concrete this, he performed a white-box attack they provided a concept 
of Hot Training Phrase (HTP) and Hot Sample Phrase (HSP) to select the victim words 
with the help of backpropagation to get all the cost gradients (Liang et al., 2017). To make 
a more practical black-box setting, Gao (2018) proposed a new criterion without gradient 
information for locating the victim words to attack classifiers, by greedily searching the 
word with the highest score on the criterion. Furthermore, Li (2020) defined a score func-
tion by applying the logits from BERT (Devlin et al., 2019) for selecting the victim words, 
and then substitute them with BERT to attack downstream jobs based on BERT.

NMT, a type of NLP models, is an approach to machine translation that uses an deep 
learning techniques to predict the likelihood of a sequence of words, typically modeling 
entire sentences in a single integrated model (Kalchbrenner & Blunsom, 2013). Since the 
NMT is based on deep learning techniques and can be used for commercial purposes, there 
are raising number of researchers concern that the security and fairness of NMT can be 
abused. The attack for NMT is firstly introduce by Belinkov (2017), who worked with char-
acter-based neural machine translation and tent to attack NMT with natural typos without 
assuming any gradients. In addition to the attacks, they have explored two approaches to 
increase model robustness: structure-invariant word representations and robust training on 
noisy texts. Ebrahimi (2018) provided white and black box attack techniques and showed 
that white-box attacks were more damaging than black-box attacks, while black-box set-
ting is more practical. For white-box attack, they tried to mute or push a particular word in 
a translation task by using gradient-based optimization. As for black-box attack, they just 
randomly picked a character and made necessary changes. Different from the two previous 
pioneers, Cheng (2019) proposed a gradient-based white-box attack technique called Adv-
Gen to attack NMT in sentence-level. Guided by the training loss they used a greedy choice 
based approach to find the best solution. Their research paper is based on using adversarial 
examples for both attack generation and using these adversarial examples to improve the 
robustness and security of the model. While Michael (2019) also worked on textual white-
box attacks to NMTs from a sentence-level and proposed a natural criterion for untargeted 
attacks. They argued that adversarial examples should be meaning preserving on the source 
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side but meaning destroying on the target side. They used the gradients of the model which 
replaces one word from the sentences to maximize the loss while they used KNN to deter-
mine the top 10 words which are similar to the victim word for purpose of preserving the 
semantic means. Besides, it was also proposed to attack NMTs via data poisoning (i.e., 
changing the training data) (Xu et al., 2021).

The pre-mentioned attacking strategies are all from character and word levels, while 
they all have some drawbacks such as being detected word correction system, too percep-
tible for human eyes. Different from these pioneers who attacked the NMT from charac-
ter-level and sentence-level, Tan (2020) proposed to attack NMT in a word-level under a 
black-box setting. They applied BLEU as a score function to locate the victim words by 
measuring the difference between the original sentence and the sentence with target word 
replaced with a special token, and replaced these victim words with synonyms.

2.2 � Attention in NMT

Attenion was first derived from human intuition based on the human activities, later 
adapted to machine translation for automatic token alignment (Hu, 2019). Attention mech-
anism, a simple method that can be used for encoding sequence data based on the impor-
tance score each element is assigned, has been widely applied to and attained significant 
improvement in various tasks in natural language processing, including sentiment classi-
fication, text summarization, question answering, dependency parsing, etc. In this section, 
we will introduce some related work about attention mechanism in NLP.

The traditional machine translation models (Kalchbrenner & Blunsom, 2013) are con-
structed by an encoder-decoder architecture, both of which are recurrent neural networks. 
An input sequence of source tokens is first fed into the encoder, with which the tokens will 
be transferred to the hidden representations, and then the decoder will utilize these hidden 
representations from the encoders as the initial input and output a sequence of dependent 
tokens. Such an encoder-decoder framework had achieved highest performance compared 
to purely statistical machine translation models. However, this architecture suffers from 
two serious drawbacks. First, RNN is forgetful, meaning that old information cleaned up 
after being propagated over multiple time steps. Second, there is no explicit word align-
ment during decoding and therefore focus is scattered across the entire sequence. To this 
end, the concept of attention was first introduced for an encoder-decoder structured NMT 
by Bahdanau (2015), and has become popular in the NMT community as an essential com-
ponent of sequence-to-sequence models. Bahdanau provided such an attention mechanism 
to model word alignments between input and output sequence, which is an essential aspect 
of structured output tasks such as translation or text summarization. Based on Bahdanau’s 
attention, Luong (2015) proposed two attention models, namely local and global, in context 
of machine translation tasks. The global attention model is similar to Bahdanau’s attention 
while the local attention is computed with hidden states from the output of the encoder. 
Luong’s attention achieved a better performance than Bahdanau’s attention and provided a 
way of transparentizing the NMTs.

Recurrent architectures rely on sequential processing of input at the encoding step that 
results in computational inefficiency, as the processing cannot be parallelized (Vaswani 
et al., 2017). To address this, Vasiwani proposed Transformer architecture that eliminates 
sequential processing and recurrent connections. Specifically, transformer-based architec-
tures, which are primarily used in modelling language understanding tasks, avoid recur-
rent structure in neural networks and instead trust entirely on self-attention mechanisms 
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to draw global dependencies between inputs and outputs. To be more specific, the trans-
former views the encoded representation of the input as a set of key-value pairs,(K,  V), 
whose dimension equals input sequence length. For the decoder, the previous output is 
compressed into a query Q and the next output is produced by mapping this query and 
the set of keys and values. Referring to Bahdanau’s and Luong’s attention, the transformer 
adopts the scaled dot-product attention: the output is a weighted sum of the values, where 
the weight assigned to each value is determined by the dot-product of the query with all the 
keys:

Transformer architecture achieved significant parallel processing, shorter training time, and 
higher accuracy for Machine Translation without any recurrent component. Besides, self-
attention can provide correlations among the contextual words for NLP models, which we 
will utilize in our proposed algorithm.

2.3 � BERT and its variations

BERT evolution has multiplied into diverse domains over time. Descendent of the Trans-
former architecture, BERT is a Bidirectional Encoder Representation which is trained with 
two unsupervised tasks: masked language model, and next sentence prediction. BERT 
models are heavily pre-trained on millions and billions of unannotated texts allowing us 
to fine-tune the model on custom tasks and with specific datasets through a transfer learn-
ing. Due to the superior model structure and large training data, BERT has performed 
many state-of-arts in many NLP tasks such as GLEU (Wang et  al., 2018), SQuADv1.1 
(Rajpurkar et al., 2016), SQuASv2.0 (Rajpurkar et al., 2018), SWAG (Zellers et al., 2018), 
etc. In addition to the performance in language understanding, BERT has also become a 
ground-breaking framework for many natural language processing tasks such as Sentimen-
tal analysis, sentence prediction, abstract summarization, question answering, natural lan-
guage inference, and many more. BERT has various model configurations, BERT-Base the 
most basic model with 12 encoder layers and BERT-Large model with an additional num-
ber of layers.

Over time many new models have been inspired by the BERT architecture but are 
trained in different languages or optimized on domain-specific data sets. One of well-
known BERT variants is RoBERTa (Liu et  al., 2019), known as a Robustly Optimized 
BERT Pretraining Approach, which is developed to enhance the training phase. RoBERTa 
was developed by training the BERT model longer, on larger data of longer sequences and 
large mini-batches. By such a setting, RoBERTa obtained substantially improved results 
with some modifications of BERT hyper-parameters. Besides, RoBERTa does not make 
next sentence prediction (NSP) and make dynamic word masking.

A lite version of BERT (ALBERT) (Lan et  al., 2020) was another well-known ver-
sion of BERT. It was proposed to enhance the training and results of BERT architecture 
by using parameter sharing and factorizing techniques to reduce the number of parame-
ters. BERT model contains millions of parameters, BERT-based holds about 110 million 
parameters which makes it hard to train also too many parameters impact the computation. 
To overcome such challenges ALBERT was introduced as it has fewer parameters com-
pared to BERT.

Attention(�,�,�) = softmax

�
��⊤

√
n

�
�.
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3 � Methodology

In this section, we first introduce and formulate the attention mechanism in NMT. Then, 
we elaborate on the proposed two-step attentive adversarial attack to NMTs, which fea-
tures an attentive word location and a semantic-aware word substitution. Specifically, we 
firstly calculate the Hybrid Attention weights consisting of the language-specific transla-
tion attention and sequence-centered self-attention to locate the sensitive words. Then, we 
target to find replacement words using costume-designed selection steps to ensure parsing 
correctness and semantic preservations.

3.1 � Attentions in NMT

Bahdanau (2015) proposed the attention mechanism to help the word alignments, espe-
cially for long sentences. We argue that such an attention mechanism reflects the contri-
butions of each input words to the translated results, therefore a small perturbation to the 
most contributing word will give a heavy influence to the translation. The attention model 
utilizes a encoder-decoder framework for each step j during decoding they compute an 
attention score �ji for hidden representation h in i of each input token to obtain, and the 
formulation is below:

where eji is output of an alignment model a, usually a forward neural network, and s
i
 is the 

decoder RNN hidden state for time i. Using eji , one can score how well the inputs around 
position j and the output at position i match. cji is the encoded sentence representation with 
respect to the current element hj to measure its similarity with output sequence ( y1,y2...yt ), 
where y1 is the t-th output tokens. The diagram for the this attetion model is demonstrated 
in Fig. 1.

Self-Attention (Vaswani et al., 2017) can be applied to many other kinds of NLP tasks 
besides machine translation. Different from a translation task, the goal is to learn the 
dependencies between the words in a given sentence and use that information to capture 
the internal structure of the sentence. In self-attention, there are 3 important variables, 
Q, K and V, which are vectors used to get better encoding for both our source and target 
words. All of these three variables are hidden representations from the linear layer. Futhur-
more, the attention weights of self-attention is also calculated different with Bahdanau’s 
attention, the formulation is below:

(1)eji =a
(
si, hj

)

(2)�ij =
exp

�
eij
�

∑T

k=1
exp

�
eik

�

(3)cj =

T∑

j=1

�jihi,

(4)Self = Attention(𝐐,𝐊,𝐕) = softmax

�
𝐐𝐊⊤

√
(dk)

�
𝐕.
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where dk is the number of dimensions for key vector K. We argue to attack NMTs using 
self-attention too, as an disturbance to the dependency of source language can also deprave 
the translation quality.

3.2 � Problem formulation

Denoting the source sequence as S, the translated target sequence as Y, a NMT model can 
be defined as f (S) ∶ S → Y  . We denote S = [w1,… ,wn] and Y = [h1,… , hk] , where w and 
h denote the words in the source and target sequence, while n and k are the number of 
words in each respective sequence. To ensure the attack’s applicability, we assume a black-
box setting where the attacker can only query the NMT model for translated results of a 
given input, and does not have access to the model parameters, gradients or training data. 
For an input pair (S, Y), we want to generate an adversarial example Sadv such that f (Sadv) 
has an obvious semantic difference from Y. Additionally, we want Sadv to be grammatically 
correct and semantically similar to S.

3.3 � Attentive word location

Attention weights in NMT models can be seen as the strength of semantic association 
between the source and target tokens, by adopting such a mechanism, the performance 
NMTs are boosted (Dzmitry Bahdanau & Bengio, 2015). Hence, we argue that NMTs can 
be crashed if the attention mechanism is tampered, and the best way of tampering attention 
is to adopt attention mechanism itself. In this subsection, we introduce the proposed atten-
tive word location scheme and demonstrate different attentive NMT attack implementa-
tions based on language-specific and sequence-centered attentions.

3.3.1 � Translation attentive attack

Since translation is a cross-language task defined by the source and target languages, it is 
intuitive to pose language-specific attacks to challenge NMTs’ robustness. To this end, we 
propose a Translation Attentive Attack (TAA) mechanism that focuses on influential words 
in the translation towards a certain target language. Concretely, we obtain such an attention 

Fig. 1   Illustration of an 
attention-based NMT 
model (Dzmitry Bahdanau & 
Bengio, 2015) with RNN based 
encoder-decoder structures, 
generating the t-th target token 
yt given a input sentence ( x

1
 , x

2

,..., xT)
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A that measures word-wise importance in a specific translation task based on a contextual 
NMT model (Dzmitry Bahdanau & Bengio, 2015).

To calculate A , we feed the NMT model with the source sequence to get the translated 
result Ŷ = [ĥ1,… , ĥk� ] , where k′ is the number of words in the attacked target sentence. 
We then extract a correlation matrix A from the softmax layer in the model’s decoder, 
thereby formulating the process as T(S) ∶ S → A . The elements in the correlation matrix A 
describe the probability distributions of translated words in the target language conditioned 
on the source sequence S, which can be written as:

where P denotes probability, and eij denotes the feature in the model depicting the match-
ing degree between the predicted word ĥj in the target language and the input word wi in 
S. The conditional probabilities reveal the correlation between the input sequence and 
the predicted sequence in the target language. Given its softmax-normalized distribu-
tion, we have 

∑n

i=1
aij = 1,∀j , therefore it is intuitive to measure wi ’s contextual contribu-

tion to a translated word ĥj using aij straightforwardly. Further, to find the most influen-
tial input words in the translation process, for the whole predicted sequence, we define 
the language-specific word-wise attention by summing the matrix elements by index j, as 
� = [A�

1
,… ,A�

i
,… ,A�

n
] , where A�

i
=
∑k�

j=1
aij.

We can sort the words of the source sequence according to such an attention weight, � , 
for the first step, and select the top language-specific influential words as the victim words 
for substitution in the second step, which will be introduced in Sect. 3.4.

3.3.2 � Self‑attentive attack

Beside the language-specific attack that focuses on the translation task between two lan-
guages above, the inherent semantics of the input sequence can also be tampered. Thus 
we propose a sequence-centered Self-Attentive Attack (SAA) which exploits attention 
from the input sequence itself. We utilize the transformer model (Vaswani et  al., 2017), 
V(S) ∶ S → B , to extract the self-attention matrix B , whose elements bij indicate the word-
wise weights given positional encodings. Particularly, since such weights are obtained via 
softmax activation, they are also naturally normalized ( 

∑n

i=1
bij = 1,∀j ), and thus they are 

suitable to quantitatively measure the dependencies among words across the entire input 
sequence. Therefore, similar to the first step in TAA, we define the sequence-centered self-
attention weight as � = [B�

1
…B�

i
…B�

n
] , where B�

i
=
∑n

j=1
bij.

Different from the language-specific attention in TAA that emphasizes on contextual 
alignment between source and target sequences, the sequence-centered attention in SAA 
can explore long-range dependencies within the input sequence itself, better indicating the 
word-wise influence on overall language understandings of the sequences.

3.3.3 � Hybrid attentive attack

As analyzed above, the translation-attentive attack and self-attentive attack focus on different 
aspects of NMTs, i.e., the cross-language context alignment and the overall semantic under-
standing of the source sequence, respectively. We argue that both the two aspects are crucial 

(5)aij = P(ĥj�[w1,… ,wi,…]) =
exp

�
eij
�

∑n

i=1
exp

�
eij
� ,
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for NMTs, and an ideal attack for NMTs should combine their advantages. Thus we propose a 
Hybrid Attentive Attack (HAA) scheme which comprehensively considers the word influence 
by combining the attention weight from TAA and SAA:

where ℍ = [H�
1
…H�

i
…H�

n
] and H′

i
 is the final influence weight for word wi in the input 

sentence. The optimal parameter � can be found by a greedy search based on the attack 
performance measured by BLEU on translated results. The overall workflow of the HAA 
model is demonstrated in Algorithm 1 with an example shown in Fig. 2.

(6)ℍ = (1 − �)𝔸 + �𝔹,

Fig. 2   An illustrated example of our HAA model. In this example, HAA generates an adversarial example 
with one word perturbed to attack an English-Chinese translation. The arrows inside the TAA box, and 
those in the SAA box, respectively represent the utilisation of translation and self-attention weights. The 
numbers inside the semantic-aware substitution box represents the sentence-level semantic similarity. The 
TAA, SAA, HAA and Semantic-aware Substitution workflows are reflected in lines 2–3, lines 4–5, line 6, 
and lines 7–15 in Algorithm 1, respectively
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3.4 � Semantic‑aware word substitution

In the above subsection, we locate the most influential words in the input sequence to be 
attacked. An ideal attack should guarantee sufficient concealment besides having attack effec-
tiveness, enabling the adversarial example to avoid being noticed by the NMT model. There-
fore, we further argue an qualified adversarial example Sadv should preserve semantics and be 
grammatically correct, constraining reasonable deviations from the original input sequence.

We propose to design such a semantic-aware word substitution approach based on the 
semantic feature similarity between the tampered sequence and the original one. We mask a 
victim word one at a time by a descending order of the attention score to get Smask , and utilise 
an MLM model M(Smask) ∶ Smask → S�

can
 , where S′

can
 is a mask-filled sentence. At each itera-

tion, we utilize M to generate n∗ best adversarial example candidates, 
�can = [S�

(can,1)
,… , S�

(can,p)
,… , S�

(can,n∗)
] , according to corresponding logits from M , and we 

use a pre-trained semantic retrieval model, universal sentence encoder (USE) (Yang et  al., 
2019), to calculate the cosine feature distance between the candidate S�

(can,p)
 and the original 

sequence S. Then we select Sadv with highest similarity to the original one as the adversarial 
example. By such a semantic-aware word substitution, we can complete the NMT adversarial 
attack process and strike a balance between influencing the translation result and concealing 
the perturbations with similar semantics.

4 � Experiments

We empirically evaluated and assessed our proposed attacking strategies (TAA, SAA 
and HAA) on a task of translating English to Chinese to three well-performed world-
leading NMTs: Google Cloud Translation, Baidu Cloud Translation and Helsinki NMT 
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(Tiedemann, 2020). To deeply explore the attacking performance, we not only attack the 
victim model but also make transfer attacks which utilize the adversarial examples gener-
ated on one victim NMT to attack other NMTs.

4.1 � Datasets

To get sufficient training data, we utilized 4 datasets as our training set for training the 
language-specific NMT and sequence-centered transformer models utilized for the TAA, 
the SAA, and the MLM for semantic-aware word substitution. Three of the training sets 
are Commentary (Tiedemann, 2012), Infopankki (Tiedemann, 2020) and the Openoffice 
(Tiedemann, 2020), are publicly available, while the other, YYeTs subs,1 is scripted by 
us from YYeTs website (provided in the supplementary material), which provides human 
translated movie and drama subtitles. The details of the train set can be found in Table 1.

To get reliable experimental results, we test attacking strategies on 3 other public data-
sets, WMT20 T1, WMT20 T2 (Tiedemann, 2020) and ALT-P(test) (Riza et  al., 2016). 
WMT is the main event for machine translation and machine translation research, which 
provides reliable multilingual datasets from Wikipedia. To diverse the sources of test set, 
we also include ALT-P dataset on news. The details of the test set can be found in Table 1.

4.2 � Victim models

We test the proposed attacking strategies on three well-performed NMTs: Google Cloud 
Translation2 (Google.T), Baidu Cloud Translation3 (Baidu.T), and Helsinki NMT 
(Hel.T) (Tiedemann, 2020). The first two NMTs are cloud translation platforms, which 
are used for commercial purposes while the other NMT, Helsinki NMT is based on 
MarianNMT(Junczys-Dowmunt et al., 2018) from Microsoft for academic purpose.

4.3 � Baselines

We compare our proposed strategies with 5 word-level attack strategies below:

Table 1   Introduces details about datasets used in the experiments

Dateset  YYeTs Subs Commentary Infopankki Openoffice WMT20 T1 WMT20 T2 ALT.P (test)

Size 500k 69k 30k 69k 6.0k 6.0k 1.0k
Avg.len 7.83 46.14 9.92 6.16 14.10 16.51 16.54
Min.len 1 1 1 1 3 2 2
Max.len 67 229 144 221 130 199 204
Content Movie subs News Science Education Wikipedia Wikipedia News
Purpose Training Set Testing set

1  https://m.​yysub.​net/
2  https://​cloud.​google.​com/​trans​late
3  https://​api.​fanyi.​baidu.​com/

https://m.yysub.net/
https://cloud.google.com/translate
https://api.fanyi.baidu.com/
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–	 RAND: randomly selects victim words in the target sentences and utilize the pro-
posed semantic-aware substitution strategy to construct the adversarial examples.

–	 Morpheus-Attack (Morph) (Tan et  al., 2020), greedily searches for words, from 
noun, verb, or adjective tags, maximally decreasing BLEU on source language side, 
and substitute them with synonyms.

–	 BERT-ATTACK (BERT.A) (Li et  al., 2020): utilizes BERT to locate the victim 
words by ranking the differences between the logits of original words and BERT-
predicted words, and then make substitutions with BERT.

–	 Seq2sick (Cheng et al., 2020): crafts the adversarial example by depraving the tar-
geted logits of victim NMT with regularization on preserving semantic similarity.

–	 PSO (Zang et al., 2020): selects word candidates from HowNet and employs the PSO 
to find adversarial text for classifier. We adjust the metric from classification logits 
to BLEU.

4.4 � Evaluation metrics

We use metrics based on BLEU and USE (Yang et al., 2019) to evaluate attacking per-
formance on the target language side and the semantic preservation on the source lan-
guage side. BLEU evaluates the sentence pairs in term of word alignment while USE is 
a multilingual pre-trained language model to evaluate the semantic similarity.

Since changes of the original input will always lead to changes of the translated out-
put, we examine how much more changes an attacked output has compared to those 
of the unattacked translation. So instead of directly using BLEU and USE on trans-
lated outputs, we define BLEU drop ratio (BDR) and USE drop ratio (UDR) to evaluate 
attacks:

where S and Y denote input sentence and translation reference, and f (⋅) is the victim NMT 
model.

In addition, we also evaluate how much word perturbations are made on the original 
inputs by using BLEU and USE on the attacked source language. To distinguish from 
the metrics used on the target language side, we use S-BLEU and S-USE for denoting 
changes made on the source language.

4.5 � Experimental settings

In this section, we will introduced the models used for HAA and results of greedy 
searching � . Since the number of of attacked words could intuitively affect the attack-
ing performance, the number of perturbed words in each sentence to be attacked ranges 
from 1 to 5 in our experiment comparisons.

(7)BDR =
BLEU(Y , f (S)) − BLEU(Y , f (Sadv))

BLEU(Y , f (S))

(8)UDR =
USE(Y , f (S)) − USE(Y , f (Sadv))

USE(Y , f (S))
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4.5.1 � Model structures

In this subsection, we introduce the structure of the language-specific NMT for TAA, trans-
former for SAA, and the MLM for semantic-aware word substitution. All of these 3 models 
are trained and fine-tuned on the same train datasets mentioned in Table 1.

•	 TAA​: The architecture of TAA consists of a 2-layer stacked LSTM, plus a Luong’s 
(2015) translation attention layer to process of the output of LSTM. To be more spe-
cific, the encoder takes a list of subtoken IDs to an embedding vector for each subtoken 
via an embedding layer. Further, we processes the embeddings into a new sequence 
with a LSTM. After encoding, the features of input sentences will be passed into a 
decoder, and the decoder’s job is to generate predictions for the next output token. The 
decoder receives the complete encoder output and uses a LSTM to keep track of what it 
has generated so far. To get translation attention, the decoder will utilize its LSTM out-
put as the query to the attention over the encoder’s output, producing the context vector. 
After the LSMT in decoder, we adopt the Luong’s translation attention to combine the 
LSTM output and the context vector generate the translation attention matrix. For the 
last step, decoders generates logit predictions for the next tokens based on the attention 
matrix. For the hyper-parameter, we set 1024 hidden units, 256 embedding dimmen-
sions, 64 batch size, with Adam optimizer.

•	 SAA: SAA is designed to get sequence-centered attention weights on the source lan-
guage, therefore it will be trained with only the data in source language. Since the data 
is unlabeled and sequential, we utilize BERT-base-uncased (Devlin et al., 2019), one 
of the best unsupervised language models, as the transformer to extract the sequence-
centered attention weights. The hyper-parameters of this model are public available. To 
adjust the model to our dataset, it will be fine-tuned on our datset with Adam optimizer 
with learning rate 0.001 and batch size 128.

•	 MLM for semantic-aware substitution: MLMs mask the words in the train set and are 
given a task to fill these masks, therefore utilize these models can help to find parsing 
substitutions for the proposed methods. We utilize a public pre-trained model, RoB-
ERTa-large (Liu et al., 2019), as our candidate to generate parsing and semantic-pre-
serving adversarial examples.

4.5.2 � Optimization of �

In the experiments, our proposed method, HAA, utilizes a greedy search for the best hyper-
parameter � to combine language-specific and sequence-centered attention. The objective 
used for searching is BLEU and the search is within the validation set which contains 1000 
samples separated from the training set. We greedily search for the optimal hyper-parame-
ter � within [0, 0.01,… , 1] with a step size of 0.01 for each victim model and the searched 
results for the three victim NMTs (Google, Baidu and Helsinki translations) are shown in 
Fig. 3.  

From searched results in Fig. 3, we can find that the optima � values for the three 
victim models are �Google = 0.68 , �Baidu = 0.47 and �Hel.T = 0.41 . Therefore, we can find 
the � can be different for different victim NMTs in our experimental settings. Since � 
is utilized to control the weight of SAA and TAA, it can show the preference between 
SAA and TAA. From the results, we find that for different victim NMTs, the proposed 
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HAA will have different preferences: TAA is preferred for Google translation while 
SAA is preferred for Baidu Translation and Helsinki Translation. Besides, as the � is 
searched based on the performance of NMTs, there is no doubt that the � can be dif-
ferent due to the different NMTs’ performance on datasets so that this preference can 
be different in datasets.

4.6 � Main results and analysis

We show the results for greedy searching process in Fig. 3. The main results of attacking 
performance and semantic preserving performance on different test data sets are shown 
in Tables 2, 3, 4, and Figs. 4, 5, and 6. In addition to the statistics of the results, an exam-
ple of learned attentions for the proposed methods is shown in Table  5 and an adver-
sarial example is also shown in Table 6 to show the differences of attacks. We validate 
the advantages of our proposed methods (i.e., TAA, SAA and HAA) from the following 
three aspects:

4.6.1 � Does HAA have superior attack performance compared to baselines?

We compare the attacking performance of the proposed attentive methods (TAA, 
SAA, and HAA) and non-attentive baselines in Fig.  2, reflected by decreases 
of BLEU and USE between the original and the attacked translation results. It 
can thus be concluded that the proposed method HAA achieves the best attack-
ing performance, with the largest metric score drops for both word alignment 
(BLEU) and semantic understanding (USE). Particularly, as shown in Fig.  2, 
HAA consistently outperforms other competing methods across different data 
domains, regardless of the number of perturbed words. Apart from HAA itself, 
its different attentive components TAA and SAA also show surpass the non-
attentive baselines in most cases.

Fig. 3   The process of searching for the best � for Google, Baidu and Helsinki NMT. The discovered opti-
mal � values are highlighted in red (Color figure online)
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4.6.2 � Balance between attack performance and the number of perturbed words

Concerning the trade-off between effectiveness and imperceptibility, we evaluate the 
attack’s imperceptibility from both appearance and semantic modification perspectives, the 
first of which is the number of words perturbed. As shown in Figs. 4, fig:T2 and fig:alt, 
comparing the numbers of words needed to achieve identical drops of metric scores 
(marked by the horizontal red dashed lines), we can find that HAA perturbs the fewest 
words, for it theoretical focuses on the most influential words with both language-specific 

Fig. 4   Attacking performance (BLEU, USE) on the WMT20 T1 dataset towards different numbers of per-
turbed words ranging from 1 to 5 for three victims, NMT, Goolge.T, Baidu.T and Helsinki.T

Fig. 5   Attacking performance (BLEU, USE) to the WMT20 T2 dataset towards different numbers of per-
turbed words ranging from 1 to 5 for three victims, NMT, Goolge.T, Baidu.T and Helsinki.T



3995Machine Learning (2022) 111:3977–4002	

1 3

and sequence-centered attentions. Thus we can conclude that the proposed HAA more 
successfully balances attacking performance and the appearance modifications to the 
sequence.

4.6.3 � How well does HAA reserve the semantic meaning of the original input 
sentences?

To further investigate the attack’s imperceptibility, we evaluate the semantic similarities 
between the original input sentence and its derived adversarial sample (i.e., S-BLEU and 
S-USE) shown in Tables 2, 3 and 4 on different datasets. All of the table demonstrates the 
attacking methods based our semantic-aware substitution, SAA TAA HAA and RAND, 
are the best methods in most cases in terms of semantic preserving. In some cases, our 
methods are not the best, but they are still comparable to the best method PSO by a close 
margin in semantic preservation. However, PSO’s preservation comes at the price of much 
inferior performance, as is shown by its BDR and UDR. Thus we can conclude that pro-
posed HAA provides the one of the best balances between attack performance and seman-
tics preservation.

To further validate the effectiveness of our word replacement strategy, we conduct an 
extensive experiment on our semantic-preserving performance by a task of substituting 
the same victim words located by our hybrid attention. We select 3 common substituting 
baselines:

–	 Default masked-word filling (HA.Def): utilize MLM to fill the mask without a consid-
eration to the semantic preservation

–	 Synonyms (HA.Syn): replace the victim words with synonym from the WordNet 
(Miller, 1998)

Fig. 6   Attacking performance (BLEU, USE) to the ALT.P dataset towards different numbers of perturbed 
words ranging from 1 to 5 for three victims, NMT, Goolge.T, Baidu.T and Helsinki.T. The horizontal red 
dashed lines indicate the numbers of words needed to achieve identical drops of metric scores



3996	 Machine Learning (2022) 111:3977–4002

1 3

–	 Word embedding distance ranking (HA.Rank): search the word embedding space in 
GloVe (Pennington et al., 2014) to set the word, with smallest distance ( l2 ) to victim 
word, as the replacement.

Table 5   Examples for attentions learned by proposed methods (TAA, SAA and HAA). The examples are 
red, blue and green for TAA, SAA, and HAA, respectively

The opacity of each word depends on its corresponding attention weight which is placed in the brackets 
after each token

Table 6   Adversarial examples (adv.) crafted by proposed methods and baselines, and their corresponding 
translated results (Tran.)

The semantic preserving (S-BLEU, S-USE) and attacking performance (BDR, UDR) metrics are provided 
in the brackets after the adversarial and translated sentence, respectively. The translation attacked by HAA 
made a completely wrong causality of between the “war” and the “mustache” by stating “The war of beard 
sparked off this atrocity” in the translation

BERT.A Adv. This atrocity sparked off the war of the mustache, a millennia long that saw the empires of 
the Elves and Dwarves crumble into ruins (S-BLEU: 0.9440, S-USE: 0.9865)

Tran. 这场暴行引发了胡子战争, 这场长达数千年的冲突中,精灵帝国和矮人帝国
陷入废墟。(BDR: 3.31%, UDR: + 3%)

Morph Adv. This atrocity sparked off the war of the mustache, a millennia spanning that saw the 
empires of the Elves and Dwarves disintegrate into ruins. (S-BLEU: 0.9120, S-USE: 0.9193)

Tran. 这一暴行引发了胡子战争,在长达数千年的战争中,精灵帝国和矮人帝
国解体。(BDR: + 7.76%, UDR: 5.19%)

PSO Adv. This atrocity sparked off the war of the mustache, one millennia spanning that saw the 
empires of the Elves and Dwarves crumble into ruins. (S-BLEU: 0.9669, S-USE: 0.9958)

Tran. 这场暴行引发了胡子战争,长达数千年 之久,精灵 和矮人帝
国 崩溃。 (BDR: 23.37%, UDR: 1.90%)

Seq2sick Adv. This atrocity sparked off the war of the mustache, a millennia spanning that saw the king of 
the Elves and Dwarves crumble into ruins. (S-BLEU: 0.9460, S-USE: 0.9663)

Tran. 这场暴行引发了胡子战争,长达数千年 之久,精灵 和矮
人 国王们 都陷入了困境。 (BDR: 21.33%, UDR: 5.789%)

SAA Adv. This atrocity sparked off the war of the mustache, a millennia spanning that saw the 
empires of the Elves and Dwarfs crumble into ruins. (S-BLEU: 0.9739, S-USE: 0.9832)

Tran. 这场暴行引发了胡子战争,长达数千年的 中,精灵帝国和矮人帝
国 奔溃。 (BDR: 21.33%, UDR: 5.78%)

TAA​ Adv. This atrocity sparked off the war of the beard, a millennia spanning conflict that saw the 
empires of the Elves and Dwarves crumble into ruins. (S-BLEU: 0.9329, S-USE: 0.9420) 

Tran. 这场暴行 是胡子战争引发的, 几千年
来, 精灵 和矮人帝国 都陷入困境。 (BDR: 37.43%, UDR: 13.86%)

HAA Adv. This atrocity sparked off the war of the beard, a millennia spanning conflict that saw the 
empires of the Elves and Dwarves crumble into ruins. (S-BLEU: 0.9329, S-USE: 0.9420)

Tran. 这场暴行 是胡子战争引发的,几千年
来,精灵 和矮人帝国 都陷入困境。 (BDR: 37.43%, UDR: 13.86%)
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The results from Table  7 show that HAA (semantic-aware substitution) achieves the 
best semantic-preserving performance on attacking the same position. Clearly, HAA 
can provide more parsing-correct and semantic-preserved adversarial examples than 
other methods.

4.7 � Transferability

The transferability of adversarial examples is defined as whether the adversar-
ial examples targeting at a specific model f can also mislead another model f ′ . 
To evaluate transferability, we apply one-word-perturbation adversarial exam-
ples generated by different methods on mBART-large-cc25 (Tang et al., 2020), a 
sequence-to-sequence transformer from Facebook, to attack Googl e, Baidu and 
Helsinki translation models. Figure  7 shows the results on the original mBART 
NMT and other transferred models. It can be concluded from this figure that our 
attentive methods (TAA, SAA, and HAA) achieve the best attack performance on 
the three transferred NMT models, demonstrating the effectiveness of our meth-
ods in terms of attack transferability.

4.8 � Attacking preference

As the superiority of proposed method in terms of attacking performance, we collect some 
statistics to research the attacking preference, described by speech (POS) tags, for different 
attacking strategies. In this subsection, we analyze statistics on POS as shown in Table 8, 
and aim to analyse the more vulnerable POS tags by a comparison between the proposed 
methods and baselines.

Words that are assigned to the same part of speech (POS) tags generally present 
similar syntactic importance, we investigate attacking strategies’ preference on POS 
tags for further lingual analysis. We apply Stanford PSO tagger (Toutanova et  al., 
2003) to annotate them with POS tags, including noun, verb, adjective (Adj.), adverb 
(Adv.) and others (i.e., pronoun preposition, conjunction, etc). Statistical results in 
Table 8 demonstrate that generally all the attacking methods tend to focus on noun, 
which we can suppose is the most sensitive POS category for translation. However, 
the proposed attacking strategies (TAA, SAA and HAA) tends to take a larger pro-
portion of Verbs than any other methods, thus we may conclude that Verb might be 
the second adversarially vulnerable POS tag.

Table 7   Comparisons among 
different word substituting 
methods

Metrics HA.Def HA.Syn HA.Rank HAA

Avg.S-BLEU 0.3634 0.3521 0.3631 0.3642
Avg.S-USE 0.7639 0.6733 0.7591 0.8328
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5 � Discussion and Conclusions

In recent years, safety and fairness of NLP models have greatly been threat by adversarial 
attacks. Most existing researches focus on NLP classifiers, such as fake news detection, 
sentiment analysis, and email spam while few researchers raise concern about the robust-
ness of the sequence-to-sequence neural machine translation (NMT) models. Unlike the 
classifiers, NMT outputs a sequence of dependent discrete classes or token IDs rather a 
single class. To this end, the attacking performance for NMTs would perform poorly if the 
victim words only affect their translation results while the semantics of other words are still 
preserved. Thus, to make a threat level attacks to NMTs, the attackers should not perturb 
the victim words only but also the contextual environment.

In this research, we have proposed HAA which selects influential words by both trans-
lation-specific and language-centered attentions and substitutes them with semantics pre-
served word perturbations. Adversarial examples generated by our proposed method will 
not only affect the victim words translation but also other words’ translations. Experiments 
demonstrate that HAA delivers the best balance between the number of perturbed words 
and attacking performance among the competing methods.

Fig. 7   Attacking performance (BDR, UDR) of transferred attacks from mBART to Google, Baidu and Hel-
sinki NMT models

Table 8   Distributions of POS 
tags for different attack strategies 
The percentages are calculated 
row-wise.

For each row, the most, second and third highest percentage is high-
lighted in bond, underlined italic, respectively

Models Noun Verb (%) Adj. (%) Adv. (%) Others (%)

PSO 40.89 9.12 15.77 17.89 16.33
Seq2sick 40.11 14.90 19.30 8.77 16.92
BERT.A 78.42 3.90 9.92 2.51 5.25
Morph 35.51 9.77 44.19 10.53 0.0
TAA​ 48.37 24.33 6.15 0.04 17.15
SAA 44.71 27.10 17.56 6.57 4.06
HAA 51.14 23.86 17.41 2.79 4.80
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Although the generated adversarial examples can threat the NMTs, adversarial exam-
ples are not bugs but features (Ilyas et al., 2019). To protect the NMT from the proposed 
attack, we believe that one possible defence strategy is adversarial retraining, which is usu-
ally done by joining the adversarial examples in the training set then retraining the mod-
els with the newly constructed training set. Although we did not perform the adversarial 
retraining in experiments, due to the lack of access to the victim models’ structure since the 
Google and Baidu translations are online service and Helsinki NLP does not specify their 
model structures, by joining the adversarial features into model training, the model can be 
theoretically more robust against adversarial attacks.

Since the adversarial attack is one of the most effective methods to test the robustness 
of a model, the proposed attentive attacks raise some concern about the attention mecha-
nism. As transformers with attention mechanism achieved great success, most of the exist-
ing well-performed NLP models are based on such an mechanism. Such an popularity of 
attentions could put NMTs in high risks because attackers can make effective attacks by 
utilizing the attention mechanism. Thus a safer way of applying attentions is a promising 
future research direction. At the same time, we also plan to pertinently study and design 
defence strategies to further improve the robustness of NMT models under future adver-
sarial attacks.
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