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Abstract: The presence of a well-trained, mobile CNN model with a high accuracy rate is imperative
to build a mobile-based early breast cancer detector. In this study, we propose a mobile neural net-
work model breast cancer mobile network (BreaCNet) and its implementation framework. BreaCNet
consists of an effective segmentation algorithm for breast thermograms and a classifier based on the
mobile CNN model. The segmentation algorithm employing edge detection and second-order polyno-
mial curve fitting techniques can effectively capture the thermograms’ region of interest (ROI), thereby
facilitating efficient feature extraction. The classifier was developed based on ShuffleNet by adding
one block consisting of a convolutional layer with 1028 filters. The modified Shufflenet demonstrated
a good fit learning with 6.1 million parameters and 22 MB size. Simulation results showed that modi-
fied ShuffleNet alone resulted in a 72% accuracy rate, but the performance excelled to a 100% accuracy
rate when integrated with the proposed segmentation algorithm. In terms of diagnostic accuracy of the
normal and abnormal test, BreaCNet significantly improves the sensitivity rate from 43% to 100%
and specificity of 100%. We confirmed that feeding only the ROI of the input dataset to the network
can improve the classifier’s performance. On the implementation aspect of BreaCNet, the on-device
inference is recommended to ensure users’ data privacy and handle an unreliable network connection.
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1. Introduction

Computer vision and deep learning (DL) have achieved the utmost progress in viewing images at the
same level as that of humans [1] through the process of learning such as in medical image classification
[2–8]. Supported by publicly accessible datasets, computer-aided works based on image processing
and DL for medical interpretation have been increasingly improved. In breast cancer detection, DL has
been employed to classify medical images of mammography [9,10], ultrasound [11], histopathological
image [12–16], and thermography [17–22]. Despite the high accuracy rate of the deep neural networks
(NNs) applied to these modality images, the procedure for obtaining the images requires an individual
to visit a specific hospital to perform the screening. It is a constraint for many people with limited
mobility, such as those living far from the hospital or having other restrictions.

Moreover, thermography is a noninvasive early detector that can be promoted as a handy pre-cancer
screening tool [23]. Early detection means identifying breast masses when they are still in the treatable
stage with the least psychological and physical harm [24]. Therefore, developing and promoting of an
early detector and self-screening tool for precancer are needed to prevent breast cancer and minimize
the mortality rate.

Additionally, WHO has recommended that women should take responsibility for their health by
performing a breast self-examination. Preliminary research [25] also confirmed that screening, which
is a systematic procedure to identify an individual with an abnormality suggestive of cancer [26], can
reduce the incidence rate. Hence, a handy screening tool is highly required to allow women to perform
breast self-screening regularly.

A handy precancer screening tool based on thermography and DL can be an effective tool for breast
self-examination. Supported by the availability of publicly accessible datasets and the projection of
13.1 billion global mobile devices in 2023 [27], we believe a handy self-screening device can be
achieved at a low cost. In addition, smartphones integrated with a thermal camera [28–30] have also
been introduced into the market.

Further, the performance of DL has inspired attempts to provide high-quality intelligent services
on mobile devices. Nevertheless, our study indicated that the integration of DL and mobile devices is
still at the preliminary stage. Thus, further work should be conducted by considering the fundamental
requirements of a mobile application.

Requirements for a mobile application:
In deploying a DL model into a mobile application, we have to first decide the model inference

location: on the cloud server or local mobile device [31]. Inference on the cloud server deploys a
complex NN model and maintains the simplicity of the mobile application. However, some issues may
arise as a result of this method, such as the lack of users’ data privacy and the inability of some patients
to use the application in areas with poor internet connection [32]. By contrast, the inference of a NN
model on the local mobile device requires a less complex model that will allow the integration with
a mobile application. For practical examples, Apple places a limit of 200 MB on the App Store [33],
whereas Play Store requires that the compressed Android Package Kit be no more than 100 MB [34].

Since the intended mobile application is for breast cancer screening, a user’s image has to be confi-
dential. In addition, regular screening should not depend on the internet connection. Thus, we recom-
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mend that the inference (i.e., classification or prediction task) be localized within the mobile device.
To enable on-device inference, the following requirements have to be met:

• The input image should contain rich features. To obtain rich features from an image captured
using a cell phone, the image should be preprocessed with a simple and efficient algorithm.
• The mobile NN classifier should be deployable in the local mobile devices.
• As the application is for medical purposes, it should have the highest accuracy rate.

Considering the above requirements, we developed an efficient algorithm based on a convolutional
neural network (CNN) model that can classify breast thermograms at a high accuracy rate. The classi-
fier model breast cancer mobile network (BreaCNet), consists of a new segmentation algorithm and a
mobile NN.

The contributions of this study are as follows:

• It highlights the mobile application requirements for breast thermogram classification.
• It proposes a simple segmentation algorithm that suits the characteristics of breast thermograms

to provide rich features.
• It provides a good fit mobile CNN model based on ShuffleNet.
• It introduces a high accuracy classifier model called BreaCNet consisting of the proposed seg-

mentation algorithm and the mobile CNN model.
• It proposes an implementation framework of the classifier model in a mobile application.

The rest of this paper is organized as follows. Section 2 presents the related works, and Section 3
describes the materials and methods used in this work. BreaCNet’s development and its implemen-
tation framework for a mobile application are clearly explained in Section 4, followed by the model
performance discussion in Section 5. Finally, Section 6 concludes this study.

2. Related work

Numerous studies have been devoted to breast cancer detection based on thermography and DL
since 2018 [23]. The works mostly used the image datasets from the database for mastology research
(DMR) [35]. The examples of breast thermograms downloaded from DMR are shown in Figure 1(a),(b)
which presents the normal and abnormal thermograms in RGB and grayscale, respectively. The abnor-
mal breast thermogram was obtained from a patient with a medical history of mammography and a sign
of cancer on the right breast. The normal and abnormal thermograms were nearly indistinguishable by
the naked eye. However, when the statistical feature analysis was employed, there was a significant
difference found between the temperature distribution in the normal breast thermogram and that of the
abnormal one.

As illustrated in Figure 1(c), the histogram of the normal breast showed that both sides of the
breast have similar temperature distributions and a lower mean temperature compared with that of the
abnormal one Figure 1(d). Thus, the symmetrical characteristics of a breast thermogram can indicate
the signs of normality and abnormality in breast tissues [36] and can be an alternative medical imaging
modality to detect breast cancer symptoms at an early stage.
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Figure 1. Breast thermograms from DMR. (a) normal thermogram, (b) abnormal thermo-
gram, (c) the histogram distribution of (a) and (d) the histogram distribution of (b).

Lightweight CNN model:
A lightweight CNN is a compressed model in the perspective of weight and architecture [37]. The

lightweight model contains few network parameters to minimize the memory usage and increase the
computational speed. Many works have been conducted to develop a lightweight model, such as work
by Winoto et al. [38] that built a CNN model with only 0.88 million parameter trained on SVHN
dataset and Shuvo et al. [39] that developed a CNN model with 3.76 million parameters trained on
lung sound dataset. Meanwhile, some lightweight pretrained models that were trained on DMR dataset
as presented in Table 1 are MobileNetV2 [40], Xception [41], ResNet18 [42] and ShuffleNet [43].

Among those lightweight models, MobileNetV2 and ShuffleNet shows a minimal parameter learn-
ing. MobileNetV2 was developed based on MobileNet [44] that applied depthwise separable convolu-
tions to reduce the computation in the first few layers. The computation was less because a parameter
called width multiplier with a range value of (0, 1] was introduced to lender the network uniformly at
each layer. Another hyperparameter used to reduce the computational cost is a resolution multiplier
to the input image with a value in the range of (0, 1]. MobileNetV2 maintains the simplicity of Mo-
bileNet and introduces linear bottlenecks and inverted residuals. Linear layers prevent nonlinearities
from destroying information, whereas the inverted residual allows the shortcut connections between
thin bottleneck layers. With its light architecture, MobileNetV2 has a computational cost of 300 mil-
lion multiply-adds, 3.5 million parameters, and a 13 MB size. Meanwhile, ShuffleNet introduced a
channel shuffle to help the information flow across feature channels to overcome information loss due
to the use of the rectified linear unit (ReLU). Pointwise group convolutions were also employed to re-
duce the computational complexity of 1 × 1 convolution. Using this technique, ShuffleNet performed
with only 1.4 million learning parameters and a 5.4 MB size.
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Table 1. Properties of the most commonly used pre-trained CNNs on DMR [45].

Network Depth Size (MB) Parameter (million) Image input size
GoogleNet 22 5.2 7.0 224 × 224
Inceptionv3 48 89 23.9 299 × 299
DenseNet 201 77 20.0 224 × 224
MobileNetV2 53 13 3.5 224 × 224
ResNet18 18 44 11.7 224 × 224
ResNet50 50 96 25.6 224 × 224
ResNet101 101 167 44.6 224 × 224
Xception 71 85 22.9 299 × 299
ShuffleNet 50 5.4 1.4 224 × 224
AlexNet 8 227 61.0 227 × 227
VGG16 16 515 138 224 × 224
VGG19 19 535 144 224 × 224

We observed some studies that conducted on CNN model trained on DMR as shown in Table 2.
MobileNetV2 and ShuffleNet had been fine-tuned, trained, and tested by Roslidar et al. [17] and were
confirmed to outperform deep CNN in the binary classification of breast thermograms with optimum
accuracy and low training loss rate. Fernandes et al. [18] stated that RestNet18, which uses the low-
est number of parameters among other CNN models (ResNet34, ResNet50, ResNet152, VGG16 and
VGG19), has excellent stability performance. Zuluaga-Gomez et al. [19] proposed a handcrafted CNN
structure. However, its accuracy rate was only 92%. Meanwhile, Tello-Mijares et al. [21] trained
AlexNet on DMR with segmentation preprocessing and achieved a 100% accuracy rate. Nevertheless,
the segmentation in their study required a complex algorithm. Recently, Sánchez-Cauce et al. [22] pro-
posed multiple inputs in the forms of breast thermograms and clinical data fed into CNN to improve
the performance. Their system achieved a 97% accuracy rate.

The aforementioned studies indicated that light networks are more stable than deep networks in
performing a classification task. However, simple CNN models built from scratch were found to have
a lower accuracy rate than those of the pre-trained ones. Research by Tajbakhsh et al. [46] compared
the performance of a pre-trained CNN with thoses of the handcrafted ones. They revealed that the
implementation of a pre-trained CNN with fine-tuning and training on medical images can outperform
or, in the worst case, as good as a CNN built from scratch. Moreover, fine-tuned CNNs are more robust
to the size of the training dataset. Thus, fine-tuning pre-trained CNN models is a good strategy for
building a CNN model for analyzing medical images that are usually exposed to a very limited dataset.

Based on the previous research findings, here, we implemented transfer learning on MobileNetV2
and ShuffleNet. These models cost few learning parameter with minimal memory usage. Moreover,
these models have been confirmed to excellently perform when trained on DMR dataset and a binary
group of classification [17].
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Table 2. Works that implemented CNN on the DMR dataset.

Work Model Contribution Limitation
Roslidar et
al. [17]

Pre-trained
Network

Confirmed that the
lightweight outperform
dense CNN

The learning curve was not
provided

Fernandez et al.
[18]

Pre-trained
Network

Provided stability analysis
on trained CNN

Did not propose a method to
enrich the image feature

Zuluaga-Gomez
et al. [19]

Proposed
CNN

Proposed data augmentation Low accuracy

Tello et al. [21] Pre-trained
Network

Worked on preprocessing
and classification

Complex segmentation algo-
rithm; the CNN model is not
light

Sánchez-Cauce
et al. [22]

Proposed
CNN

Multi-input of breast ther-
mograms and clinical data

Information about CNN de-
velopment is unknown

3. Material and methods

Figure 2(a) shows the workflow of model development followed by the deployment. The input
images were priorly segmented to allow rich features fed into a CNN model. The CNN model was
built by applying transfer learning. Then, the model was deployed as a mobile or web-based appli-
cation. Figure 2(b) demonstrates the model (BreaCNet) development and implementation framework.
More detailed descriptions of each working process of BreacNet development and implementation are
described in Section 4.

3.1. Dataset

The breast thermogram dataset used in this study was obtained from DMR [35], which has been
publicly used in related research. The thermograms were acquired using static and dynamic proto-
cols [47]. The static protocol is a single captured image after 10–15 minutes of thermal stabilization
during patients’ resting period, whereas the dynamic protocol is a thermogram series captured every 15
seconds in five minutes. The images were captured from the front, left, and right sides of the patients’
positions. We used the front images of 33 sick and 121 healthy patients. There were 121 frontal static
images and 2581 frontal dynamic ones labeled as normal breast thermograms, and 33 frontal static
images and 676 frontal dynamics ones labeled as abnormal breast thermograms. Thus, in total, we had
2702 normal breast thermograms and 709 abnormal ones.

The thermograms of normal and abnormal classes are imbalanced in number, in which the number
of abnormal thermograms is far lower than that of normal ones. We started the training and testing
dataset setups by grouping the thermograms of each patient, one group for the training and the other
for the testing. Accordingly, we had an equal number of 586 for both the normal and abnormal ther-
mograms for the training dataset. Then, we took 65 thermograms of each class for the testing dataset.
Thus, in total, we used 1172 (90%) and 130 (10%) breast thermograms for the training and testing,
respectively. For the validation dataset, we assigned 10% of the training data.
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We used more thermograms for the model training than for the testing to enable more learning. This
approach is supported by Cho et al. [48] which confirmed that accuracy is proportional to the number
of training dataset.

(a)

(b)

Figure 2. The workflow of (a) general CNN model development and deployment and (b)
BreaCNet development and implementation.

3.2. Model development

In this study, the model is intended to classify breast thermograms and will be implemented as a
mobile application to allow regular breast self-screening. As previously mentioned in Section 2, for a
limited medical dataset, it is better to apply transfer learning because it will allow the model trained on
a large dataset to transfer its knowledge to a smaller dataset. Since the breast thermogram dataset in
this work was limited, we employed transfer learning to build the model.

Pre-trained models were fine-tuned and trained on the breast thermogram dataset. For each training
validation with a 100% accuracy rate, the model was then tested with the testing dataset. To achieve
the highest performance, we modified the architecture by adding more layers and filters. Thus, the NN
will learn the input feature better.

The model performance was observed from the training and validation learning curves during the
training process. The training learning curve shows how well the model learns, whereas the validation
learning curve shows how well the model generalizes. We also measured the performance using the
evaluation metrics. The evaluation metrics used here are the ones commonly considered in diagnostic
medicine-accuracy, sensitivity, and specificity-which are calculated using Eqs (3.1)–(3.3) [49].
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Accuracy =
T P + T N

T P + FP + FN + T N
(3.1)

S ensitivity =
T P

T P + FN
(3.2)

S peci f icity =
T N

T N + FP
(3.3)

where T P, T N, FP and FN indicate true positive, true negative, false positive and false negative im-
ages. A true positive is an outcome where the model correctly classifies the abnormal category; a true
negative is an outcome where the model correctly classifies the normal category; a false positive is an
outcome where the model incorrectly predicts the abnormal category; a false negative is an outcome
where the model incorrectly classifies the normal category. Meanwhile, sensitivity indicates the pro-
portion of positive results correctly identified by the testing and specificity as the proportion of negative
results correctly identified by the testing.

3.3. Model deployment

After obtaining a high-performance model, we designed the implementation framework for model
deployment. The model deployment can be an application for mobile or web-based one. This study en-
closed the part of the model deployment’s implementation framework, which includes the inferencing
preference, application overview, and model monitoring strategy. In determining the inference (classi-
fication task) location, we considered the primary usage, and tradeoffs that might arise. Inferencing on
the cloud will allow complex model algorithm implementation. It is suitable for commercial or public
service usage. However, for individual usage or self-screening, inferencing on the local mobile device
is better because it will ensure data privacy and independence on the internet connection.

4. Proposed breaCNet and its implementation framework

As shown in Figure 2(b), BreaCNet covers the image segmentation and classification processes. We
developed an effective segmentation algorithm that compiles the image enhancement, edge detection,
and boundary tracing to obtain the ROI of breast thermal images. BreaCNet’s classifier model was built
by employing transfer learning of the lightweight pre-trained CNN model. The classification process
consisted of modifying the architecture of the pre-trained CNN model, fine-tuning, training, and testing
the model repetitively until it achieved good fit performance with a high accuracy rate. Meanwhile,
the BreaCNet deployment discussion covers the implementation framework of inferencing, applica-
tion features, and model monitoring. Each step of the BreaCNet development and its implementation
framework is explained below.

4.1. BreaCNet development

BreaCNet consists of segmentation and mobile CNN algorithms. The segmentation algorithm was
built by considering the breast thermogram characteristics with an efficient algorithm. The objective
was to obtain the region of interest (ROI) of each breast thermogram. Meanwhile, the CNN models
were based on the pre-trained MobilenetV2 and Shufflenet that had been fine-tuned, trained, tested and
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modified to achieve high accuracy. The model will be trained and tested using the segmented dataset
and the raw dataset to assess the effects of the segmentation process on the model performance.

4.1.1. Segmentation

The quality of input influences the performance of CNN. Feeding only the ROI of breast thermo-
grams to a CNN model may accelerate the feature learning because it will only learn the important
parts of the input. Thus, we proposed a segmentation algorithm for breast thermograms to provide
rich features of the input. The segmentation algorithm will define the ROI of the breast thermograms,
which includes half of the armpit, collarbone, and chest, in which all breast tissues and nearby ganglion
groups were analyzed [36].

The ROI extraction of breast thermogram images is challenging due to the amorphous nature and
the lack of clear boundary in these images [50]. The ROI’s unclear edges of breasts makes it difficult
to accurately perform segmentation at the border of the inframammary fold-the anatomical boundary
formed at the breast’s inferior border-where it joins the chest. Moreover, each breast thermogram
exposes various intensity distributions at the boundary of the ROI area. Thus, a specific and automatic
segmentation algorithm that is applicable to all breast thermograms is required.

Here, we propose an automatic breast’s ROI boundary tracer based on Sobel edge detection. The
inevitable low contrast and noise around the inframammary folds [51] were addressed using second-
order polynomial curve fitting. A similar method was proposed by Sathish et al. [52]; however, the
number of breast thermograms that could be segmented using their proposed algorithm was minimal.
Provided that the CNN model training requires much training data, we improved the segmentation
algorithm to overcome this issue.

Unlike the work of Sathish that applied Canny filtering for edge detection, we employed Sobel
filtering to sharply take the outer boundary of the breasts’ ROI edges. The segmentation algorithm is
presented in Algorithm 1. The algorithm consists of image smoothing, image edge detection, breasts’
ROI boundary tracing, and image masking.

First, we converted the RGB image into a grayscale image. Then, we applied Gaussian filtering to
the grayscale image for smoothing. We used a variance value of 3 since it was the best value in our
trials. Using this variance value and the Sobel kernel, a sharp edge boundary could be generated. The
edge boundary was further used to trace the outer boundary of the breast’s ROI.

Before tracing the boundary, the image was divided at the image’s central point (Ct) into the right
and left side. Then, the outer boundaries of the right and left side were traced using the edge value of 1
from the Sobel edge detector. Meanwhile, the top boundary was obtained by scanning the image from
the bottom to the top. The first nonzero pixel in the column was the initial point of the top border.

Afterwards, we approximated the bottom boundary using the second-order polynomial curve fitting,
p(x), for each side of the breast using Eq (4.1) [53].

p(x) = p1x2 + p2x + p3 (4.1)

To minimize the computation, only four points were assigned for the polynomial curve fitting for
the right and left sides of the breasts. The first point was determined by calculating the histogram of a
horizontal projection profile (Hpp) from the bottom using Eq (4.2) [54].
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Algorithm 1 Proposed breast thermogram segmentation.
Input: Breast thermogram images in RGB, I0

Output: ROI of the breast thermogram images, IS

1: for each image in dataset do
2: I0 ← read the image
3: Ig ← convert RGB image of I0 to grayscale
4: IG ← apply Gauss filtering to Ig

5: IE ← apply Sobel filtering to IG to find the edges
6: Ct ← find the center of the image IE

7: left and right boundary← IE value is 1 from the left and right
8: top boundary← scan IE from the bottom, find the first pixel with value of 1
9: Hpp ← calculate the sum of value 1 in each row from the left and right

10: the first point of the polynomial← the first highest Hpp from the lowest position of IE

11: the second, third, and fourth point of the polynomial← the indices along the bottom boundary
of edges of IE

12: end for
13: return IS

Hpp =
∑

x

f (x, y) (4.2)

The first pixel with the highest Hpp was the curve’s first point. Since the edges of the bottom infra-
mammary fold demonstrated discontinuity in some images (Figure 3 (c)), we applied some constraints
to keep the indices inline. If the first point of (x, y) were Lx1 and Ly1, the next points were:

Lxm = Lxm−1 + C (4.3)

and
Lym = Lym−1 − m2 (4.4)

where m and C denote the following points and the increment in the distance between indices, respec-
tively.

Then, indices of boundary tracing were applied to the original image to obtain the segmented breast
thermogram. The segmentation processes, along with the results of each process, are shown in Figure 3.
The original images Figure 3(a) as the inputs were first converted to Figure 3(b) grayscale images,
which were then smoothed using the Gaussian filtering. Next, the edges were extracted using the
Sobel edge detector resulting in Figure 3(c) images with edges. The information on edges was then
used to obtain Figure 3(d) the outer boundary of the breast ROI. Finally, we obtained Figure 3(e)
the segmented images after masking Figure 3(d) the indices of the outer boundary to the Figure 3(a)
original images.

Our segmentation algorithm can segment all breast thermograms in the dataset, enabling sufficient
training data for the NN. In addition, the algorithm requires a simple computation, allowing it to be
integrated into the CNN model to support automatic segmentation in the mobile application.
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Figure 3. Breast thermogram segmentation process: (a) RGB images; (b) grayscale images;
(c) images with edges; (d) boundaries of the images; (e) segmented images.

4.1.2. CNN model

A CNN is a DL network which takes an input, assigns learnable weight/biases to various aspects
of the input, and classifies it into a specific group [55]. Generally, the input is an image. Image
preprocessing is usually not required in CNNs as they can learn the features/characteristics, unlike
conventional methods where a filter has to be hand-engineered. Generally, CNNs work similarly to a
common NN that performs computations through a process of learning [56]. Two main functions that
differentiate the CNNs from other NNs are the convolution and pooling functions (Figure 4).

The convolution function extracts the features from an image using a filter/kernel which consists of
weight matrixes, resulting in feature maps. The weights of the kernels are randomly generated in the
size of 1 × 1, 3 × 3, 5 × 5 or 7 × 7. If the input is in RGB, which has three channels, then the kernel
size will be 1 × 1 × 3, 3 × 3 × 3, 5 × 5 × 3 or 7 × 7 × 3. The number of filters is usually in the multiples
of 2, such as 32, 64, 128 and so forth [56].

The feature maps become the input of the pooling, specifically after the application of nonlinearity
[57]. The nonlinear activation function takes a real-valued input and squashes it into a small range,
such as [0, 1], for the ReLU activation function [58].
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Figure 4. CNN diagram for breast thermogram classification in binary classes.

The pooling function progressively reduces the spatial size of the feature maps and keeps only the
relevant features. Here, the maximum or average value of the feature matrix is determined by the
function used (maximum, minimum, or average pooling) [55,59]. Thus, the number of parameters and
computations in the network can be reduced.

Convolution and pooling are usually conducted in many layers to enable optimum feature learning.
The output of the last pooling layer is flattened to justify the fully-connected layer that accepts an
array input. A fully-connected layer is usually placed at the end of the output classification. The last
fully-connected layer has a similar size to the number of classification class.

In this study, the classification task was performed using a lightweight CNN model to provide
model inferencing on user-end devices for breast self-screening. The pre-trained MobileNetV2 [40]
and ShuffleNet [43] were trained and fine-tuned to achieve optimal performance. Each network was
trained and tested two times with the raw dataset (without preprocessing) and the segmented dataset.
To optimize the accuracy rate, we modified the architecture of the networks. Then, for every pre-trained
network with a training validation of 100%, we conducted the testing simulations.

Training and fine-tuning of CNN models:
Training and fine-tuning processes of the pre-trained model are presented in Figure 5. The initial

step was loading and reading the breast thermogram dataset. Then, the dataset was divided into the
training and testing dataset in the proportion of 90% and 10%, respectively.

The next step was training a network using the given dataset. The pre-trained network was loaded
and fine-tuned with the learning parameters of optimization, initial learning rate (ILR), maximum
epoch, mini-batch size (MBs), and momentum. For optimization, we employed the stochastic gradient
descent optimizer with momentum (SGDM) [60]. Gradient descent enabled us to update each param-
eter in a network by iteratively selecting a direction that would reduce the error rate until the objective
functions converged to the minimum value. The stochastic gradient descent is a variant of gradient
descent computing only on a small subset random selection of data but can yield the same performance
as the gradient descent with a low learning rate. The ILR was manually set up on a log scale from 10−3

to 10−4. This method, called the learning rate grid search, boosts the order of magnitude where a good
learning rate may reside and describes the relationship between the learning rate and performance [61].
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Figure 5. The training and fine-tuning process of the pre-trained network.

Further, we assigned MB sizes of 10 and 12, considering the small number of the training dataset
and the computation resource. Meanwhile, the momentum, a moving average of the gradients to update
the weight of the network, was set to 0.9 to avoid fluctuation (with smaller momentum) and shifting
value (with higher momentum) [62].

The number of epochs, a hyperparameter that determines how many times the learning algorithm
will work through the entire training dataset, was set from 50 and forth with a step size of 25. One
epoch means that each sample in the training dataset has an opportunity to update the internal model
parameters. An epoch comprises one or more batches.

Besides tuning the parameters, the raw and segmented datasets were fed alternately into the net-
works. Thus, we were able to assess the segmentation effects on training accuracy improvement. The
final step was testing the trained network to predict the class of the testing dataset (raw or segmented).
The prediction results were used to calculate the evaluation metrics and project the confusion matrix.

Proposed mobile CNN model:
As fine-tuning the pre-trained networks had not yet achieved optimum accuracy, the architecture of

the base models was then modified. The last block was removed and replaced with a new activation
function of convolution, ReLU and pooling. The number of filters was increased to generate more
kernels for better learning. This procedure was performed for both pre-trained models. After the
network modification, we repeated the training procedure until optimum accuracy was achieved. The
modified MobileNetV2 was found to achieve a maximum accuracy rate of 98% using the segmented
dataset, whereas the modified ShuffleNet could achieve a maximum accuracy rate of 100%.

The structure of the modified ShuffleNet is shown in Figure 6. We removed the last block of the
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ShuffleNet, then added a new block of activation function as follows: one convolutional layer with
1028 filters, followed by the average pooling, ReLU, global average pooling, and fully connected layer
of 256. Then, the dropout was applied with the probability of 50%. The last fully connected layer was
connected to the output consisting of two classes with a softmax activation function.

The parameters of the modified ShuffleNet are summarized in Table 3. As more filters were em-
ployed, the learning parameter increased. The modified ShuffleNet was performed with 6.1 million
learning parameters and 22 MB in size.

Figure 6. The proposed CNN architecture based on ShuffleNet.

Table 3. Parameter of the proposed CNN.

Layer Input Output Filter
size

Filter
number

Stride Padding Probability

ShuffleNet-
baseline

224 ×224 × 3 7 × 7 × 544 – – – – –

Convolution 7 × 7 × 544 7 × 7 × 1028 3 × 3 1028 1 ’same’ –
Average pooling 7 × 7 × 1028 7 ×7× 1028 3 × 3 – 1 ’same’ –
ReLU 7 × 7 × 1028 7 × 7 × 1028 – – – – –
Global average
pooling

7 × 7 × 1028 1028 – – – – –

Fully-connected1 1028 256 – – – – –
Dropout – – – – – – 50%
Fully-connected2 256 2 – – – – –

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1304–1331.



1318

4.1.3. Testing result

The testing results were recorded and summarized in Table 4. Notably, the recorded testing results
were those with 100% training accuracy after each fine-tuning. The testing results showed that training
the ShuffleNet using an ILR of 10−3 and MBs of 10 can achieve the highest accuracy rate when the
model was trained at 75 epochs. However, when we applied a lower ILR of 10−4 with 100 and 150
epochs, the accuracy rates decreased. MobileNetV2, on the other hand, did not show any trend when
the learning parameters were tuned. Increasing the number of epochs also did not improve the learning.

Table 4. Classification results.

Model Learning Parameter Testing
Dataset

Accuracy Sensitivity Specificity

ShuffleNet [43] 50 Epoch, ILR 0.001, raw 0.71 0.48 0.94
MBs 10, raw dataset segmented 0.82 0.78 0.86
50 Epoch, ILR 0.001, raw 0.87 0.88 0.86
MBs 10, segmented dataset segmented 0.98 1.00 0.95
75 Epoch, ILR 0.001, raw 0.63 1.00 0.26
MBs 10, segmented dataset segmented 0.98 1.00 0.97
50 Epoch, ILR 0.0001, raw 0.71 0.48 0.94
MBs 10, segmented dataset segmented 0.87 0.88 0.86
100 Epoch, ILR 0.0001,
MBs 10, segmented dataset

segmented 0.82 0.78 0.86

150 Epoch, ILR 0.0001,
MBs 10, segmented dataset

segmented 0.59 0.60 0.58

MobileNetV2 50 Epoch, ILR 0.001, raw 0.68 1.00 0.37
[40] MBs 10, raw dataset segmented 0.96 1.00 0.92

50 Epoch, ILR 0.001,
MBs 10, segmented dataset

segmented 0.92 1.00 0.85

75 Epoch, ILR 0.001,
MBs 10, segmented dataset

segmented 0.92 1.00 0.83

100 Epoch, ILR 0.001, raw 0.88 0.83 0.92
MBs 10, raw dataset segmented 0.87 0.82 0.92

Modified-
MobileNetV2

100 Epoch, ILR 0.0005,
MBs 10,raw dataset

raw 0.75 0.51 1.00

100 Epoch, ILR 0.0005,
MB 10, segmented dataset

segmented 0.98 0.98 0.97

Proposed 100 Epoch, ILR 0.0005, raw 0.72 0.43 1.00
Modified- MBs 12, raw dataset segmented 0.85 0.728 0.97
ShuffleNet 100 Epoch, ILR 0.0005, raw 0.98 0.98 0.98

MBs 12, segmented dataset segmented 1.00 1.00 1.00
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The modified MobileNetV2 obtained the maximum accuracy rate of 98% when trained and tested
with the segmented dataset, and impressively, the modified ShuffleNet excelled the learning with a
100% accuracy rate when trained using segmented dataset. On average, the accuracy rate improved by
more than 9% when the segmented dataset trained the model. The classification results of the proposed
model are also presented in image data as shown in Figure 7. The proposed model can correctly classify
all breast thermal images of raw and the segmented dataset. While without segmentation algorithm,
which is shown by the raw dataset, some False Positive numbers occurred.

Figure 7. The classification result of (a) abnormal breast thermogram using raw and seg-
mented dataset; (b) normal breast thermogram using raw and segmented dataset.

4.2. BreaCNet implementation framework

BreaCNet can be implemented as a mobile breast self-screening application as it costs only 6.1
million parameters and is 22 MB in size. The application will allow women to screen their breast
condition independently. In this section, we propose a framework for the BreaCNet implementation for
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a mobile application. As mentioned in Section 1, a regular breast self-screening tool should not depend
on the internet connection. Moreover, it should keep the users’ data private. Thus, it is necessary to
locate the prediction task or inference on the local mobile device.

Inferencing on the local device will allow the prediction task to be executed using the mobile CPU.
Users can capture their breasts using a thermal camera embedded in their smartphone and feed the
image to the prediction model. The prediction result will appear in real time. However, the prediction
result’s accuracy may decrease as a result of feeding the indefinite images to the model prediction.
BreaCNet was trained on a homogenous dataset produced by a specific thermal camera and a particular
thermography protocol. Nevertheless, the App’s users may use different thermal cameras to capture
their breasts in various ways. Thus, continuous model monitoring is needed to maintain the model
performance. Figure 8 shows the BreaCNet implementation framework. There are two parts of the
framework: one part is for the application provider, whereas the other is for the application users. The
description of the process involved is as follows.

Figure 8. BreaCNet implementation framework: the illustration of steps involved in per-
forming BreaCNet on the local device while monitoring the model.

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1304–1331.



1321

Inferencing:
The prediction model of BreaCNet (1) is first optimized. Then, it is converted into a mobile frame-

work. Among the platforms that can be used for the mobile application are CoreML, TensorFlow, Lite,
and C#. Here, the converter takes the model and invokes the mobile formats to enable the on-device
DL inference with low latency and small binary size.

The model is then deployed into an application (2). The challenge here is integrating the application
programming interface (API) with the model. API enables interaction between data, applications, and
devices. The integration and interaction method must be consistent across platforms. The model has
to be bundled with the application code to allow smooth transfer to users. When deploying the model
using cross-platforms, special attention is required to determine the target platforms and the possible
devices.

Next, the application is provided for the users via online stores (3), such as the App Store and Play
Store. As the inference is localized on the local device, the users do not need an internet connection to
perform the prediction tasks. They can directly use the scan feature and obtain the prediction responses
in real-time. Besides, using this app needs less attention span; thus, breast self-screening can be done
regularly.

To protect the model, the encryption technique can be applied. By encrypting the weights and
architecture or scrambling the model format and piecing it together at runtime, the predictive model
can be kept black-boxed to end-users.

Application features:
On the users’ side (4), there are various application features can be provided, such as “Registration

and Login”, “Scan”, “Prediction”, “Education”, “Consultation” and “Feedback”. The “Registration
and Login” feature allows the users to get an independent identity to record their history and establish
a connection with the ”Consultation” feature function.

The “Scan” feature allows the users to capture their breasts using the built-in thermal camera in
their smartphone. Then, they can load the thermograms into the system for the prediction tasks of
breast screening. Next, the system will automatically execute the prediction task and generate real-
time prediction results. The results will also be automatically sent to the server as a reference for
model monitoring.

The “Education” feature provides educational information regarding breast cancer, thermography
protocol, and recommendation based on the prediction results, whereas the “Consultation” feature is a
service that connects users to social software products to enable communication with a medical expert.
The “Feedback” feature permits users to send their comments regarding the application to the server.
The application features can be extended for further needs.

Model monitoring:
The information on the prediction results and users’ comments regarding the application will be

pooled at the application provider’s server (5). This information will be useful for the application
provider to maintain the prediction accuracy rate and users’ satisfaction. Maintenance is highly nec-
essary for several reasons. First, the prediction accuracy rate may decrease due to various images
being input into the model. Second, the mobile feature may need improvement to meet the users’
needs. Third, other potential problems related to the application may exist, affecting the application’s
performance.

Occasionally, the model needs to be retrained (6). The dataset to retrain the model can be collected
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from several sources, such as users who voluntarily share their breast thermograms to the server, related
studies, and hospitals conducting thermography for breast cancer screening. As the training shows
improved performance, the application has to be updated with a smooth transfer to the users (7).

5. Performance evaluation and discussion

We evaluated BreaCNet performance by observing the learning curve and testing result. Due to the
use of DL for the classification task, there are two learning curves for each training and validation. One
is the accuracy learning curve, calculated using the metric evaluation of accuracy. The second is the
loss learning curve by which the parameters of the models are being optimized.

Figure 9 shows the training and validation accuracy learning curve. It demonstrates that in every
validation, the accuracy rate is mostly higher than or similar to that of the training. This means that
the learning is accurate. Meanwhile, the loss learning curve (Figure 10) demonstrates the learning loss
decreasing to the point of stability and a minimal gap between the two final training and validation
losses. The gap between the learning curves is referred to as the generalization curve, which is the
model’s ability to correctly adapt to new previously unseen data. Specifically, both validation and
learning losses were low; thus, we confirmed BreaCNet has a good fit [62].

Figure 9. The accuracy learning curve of the proposed CNN model.
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Figure 10. The loss learning curve of the proposed CNN model with its scale magnification.

We also observed feature learning using the raw and segmented datasets in the convolutional layer
(Figure 11). The light and dark areas indicate positive and negative activations, respectively. Since
the ReLU followed the convolutional layer, only the positive activations were used. Figure 11(a),(b)
depict the feature mapping of the raw and segmented datasets, respectively, which reveals that the
raw dataset causes more learning, whereas the segmented one activates only the important parts of the
breast thermograms. Accordingly, feature learning becomes more effective.

Figure 11. Comparison of feature mapping with (a) raw dataset and (b) segmented dataset.

BreaCNet, which consists of the proposed segmentation algorithm and modified ShuffleNet, has
demonstrated the best performance, as presented with the confusion matrix in Figure 12. When the
model was trained on the raw dataset, the accuracy was only 72% and 85% for raw and segmented
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testing datasets, respectively. Similarly, when the model was trained on the segmented dataset, the ac-
curacy and sensitivity significantly increased to 98% and 100% for raw and segmented testing datasets,
respectively. It showed that the classification task supported by the enriched features of the input image
performed better.

(a) (b)

(c) (d)

Figure 12. Confusion matrix of the proposed CNN model. (a) raw training and raw test-
ing dataset; (b) raw training and segmented dataset; (c) segmented training and raw testing
dataset; (d) segmented training and segmented testing dataset.

Comparison with similar works:
Our work is developing a breast thermal image classification model that begins with image process-
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ing to facilitate the learning and improve the classification accuracy. As we refer to the related works
in Table 1, Zuluaga-Gomez et al. [19] and Tello et al. [21] were also performed image preprocessing
before training the CNN models. As we took the same approach, we compared various aspects of both
works with BreaCNet in Table 5.

Table 5. Comparison of the proposed method with the similar works on breast thermogram
segmentation and classification using CNN.

Works Dataset Segmentation
algorithm

CNN
model

Learning
curve

Learning
parameter

Model
size

Accuracy

Zuluaga-
Gomez
[19]

57 patients;
19 healthy,
38 malig-
nant; 50%
training,
20% valida-
tion, 30%
testing

not clearly
described
of grayscale
mask and
cropping
method

proposed
reduced
convo-
lutional
layer
(hand-
crafted)

Unknown Unknown Unknown 92 %

Tello-
Mijares et
al. [21]

63 thermo-
grams; 35
normal, 28
abnormal;
the portion
for training
and testing
was not
mentioned

Gaussian
filtering
Curvature
function
k (cvt k)
Gradient
vector flow
snake (GVF)

AlexNet Unknown Unknown AlexNet
227 MB

100%

Proposed
BreaCNet

154 patients;
121 healthy,
33 sick; 90%
training,
10% testing

Gaussian
filtering
Sobel edge
detector,
Polynomial
curve fitting

Modified
Shuf-
fleNet

Validation
loss is
lower
than
training
loss

6.1
million

22 MB 100%

Zuluaga-Gomez et al. [19] demonstrated that data augmentation can increase the accuracy rate.
Their proposed data augmentation generated horizontal and vertical flip, 0◦–45◦ rotation, 20% zoom,
and noise normalization. The hyperparameter was defined using Bayesian optimization with a simple
CNN structure. Their model achieved only an accuracy rate of 92%. Besides, the segmentation algo-
rithm was not clearly described. The information about the learning curves and model size was also
unknown.

Tello et al. [21] developed a segmentation technique and trained the CNN model of AlexNet to
classify the breast thermograms into a binary class. Although they achieved 100% accuracy, the seg-
mentation procedure was complex as it demanded numerous calculations to find the elliptic curvature
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of the breast’s ROI. Unfortunately, the learning curve of pre-trained model training was not presented
and described; thus, the information about the model generalization was unknown. Moreover, the pre-
trained model size of AlexNet was 227 MB in size, which was greater than the recent practical sizes of
mobile applications that can be used by the industry [33, 34].

Meanwhile, BreaCNet demonstrated the best performance with an accuracy rate of 100%. The
classifier performed less computation because the segmentation procedure was simple. Furthermore,
the classification model was lightweight with 6.1 million parameters and 22 MB in size. It is worth
noting that the segmentation algorithm has to be validated when applied to other breast thermogram
datasets.

We also confirmed that using a segmented dataset as an input for training or testing can improve the
performance of the classification task. Feeding only the informative features to the network model will
enhance the feature learning performance and increase the accuracy rate.

Further, the increased accuracy rate as a result of filter addition clarifies that more filters enable
more learning. As filters in CNNs function as feature detectors, more filters will trigger more detectors
to learn the breast thermogram’s complex feature better.

Finally, the model can be beneficial if it is integrated into a mobile application that is accessible
at a low cost. The success of mobile self-screening also depends on the smartphone specification.
Thus, we encourage the smartphone industry to produce mobile devices with adequate thermal cameras
and computational ability. Hopefully, the availability of mobile self-screening for breast cancer will
encourage all women to be aware of their breast’s condition at the initial stage.

6. Conclusions

We built a classifier model, namely Breast Cancer mobile Network (BreaCNet), by integrating a
proposed segmentation algorithm and a well-trained modified ShuffleNet model to classify breast ther-
mograms into normal and abnormal binary classes. The segmentation algorithm was constructed using
Sobel edge detection and the second-order polynomial curve fitting. The modified architecture of
ShuffleNet was obtained by adding one convolutional layer with more filters and a dropout of 50% to
reduce the parameter cost. We confirmed that feeding the segmented breast thermogram can improve
the feature learning performance by more than 9%, and more filters enable more learning. The BreaC-
Net significantly increased the accuracy rate from 72% (using raw datasets) to 100% (using segmented
dataset). Moreover, the BreaCNet learning curve showed a good fit with 6.1 million parameters and 22
MB in size. Thus, it has fulfilled the requirements of the on-device inference of a mobile application.
For future work, the segmentation algorithm will be validated using other breast thermogram datasets
to enable the application used for various breast thermal images specification. In addition, the model
will be implemented as a mobile breast self-screening tool to support women’s awareness of regular
breast self-examination.
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