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ABSTRACT

Learning the dynamic Hamiltonian of a quantum system is a fundamental task in
studying condensed matter physics and verifying quantum technologies. Many
protocols have been proposed for Hamiltonian learning. Still, many of them require

the ability to prepare quantum Gibbs states and estimate entropies of quantum states,
which are not easy for classical computers. Recent experimental progress of quantum
hardware has drawn much attention, motivating us to investigate the application of near-
term quantum computers in Hamiltonian learning. In this dissertation, we study the
Hamiltonian learning problems and propose algorithms to recover interaction coefficients
of a Hamiltonian, prepare quantum Gibbs states, and estimate the quantum entropies of
quantum states. We employ quantum circuits that are expected to be implementable in
the near-to-intermediate future.

First, we use the variational quantum algorithms to enable a hybrid quantum-
classical algorithmic scheme to tackle the Hamiltonian learning problem. By transform-
ing the Hamiltonian learning problem to an optimization problem using the Jaynes’
principle, we employ a gradient-descent method to give the solution and could reveal
the interaction coefficients from the system’s Gibbs state measurement results. In par-
ticular, the computation of the gradients relies on the Hamiltonian spectrum and the
log-partition function. Hence, as the main subroutine, we develop a variational quan-
tum algorithm to extract the Hamiltonian spectrum and utilize convex optimization to
compute the log-partition function. We also apply the importance sampling technique to
circumvent the resource requirements for large-scale Hamiltonians.

Second, we propose variational quantum algorithms for quantum Gibbs state prepa-
ration. First, we take the loss function as the system’s free energy and estimate it by a
truncated version. Then we train a parameterized quantum circuit to optimize the loss
function so that it can learn the desired quantum Gibbs state. Notably, our algorithms
can be implemented on near-term quantum computers. Furthermore, by performing
numerical experiments, we show that shallow parameterized circuits with only one
additional qubit can be trained to prepare the Ising chain and spin chain Gibbs states
with a fidelity higher than 95%. In particular, for the Ising chain model, we find that a
simplified circuit ansatz with only one parameter and one additional qubit can be trained
to realize a 99% fidelity in Gibbs state preparation at inverse temperatures larger than
2.

Third, we propose quantum algorithms to estimate the von Neumann and quantum
Æ-Rényi entropies of an n-qubit quantum state Ω using independent copies of the input
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state. We show how to efficiently construct the quantum circuits of both methods using
primitive single/two-qubit gates. We prove that the number of required copies scales
polynomially in 1/≤ and 1/§, where ≤ denotes the additive precision and § denotes the
lower bound on all non-zero eigenvalues. Notably, our method outperforms previous
methods in the aspect of practicality since it does not require any quantum query
oracles, which are usually necessary for previous methods. Furthermore, we conduct
experiments to show the efficacy of our algorithms to single-qubit states and study the
noise robustness.

iv



DEDICATION

To my family.

v





STATEMENT OF AUTHORSHIP AND PUBLICATIONS

The dissertation is based on the following articles:

• Youle Wang, Guangxi Li, and Xin Wang. A hybrid quantum-classical Hamiltonian
learning algorithm. Sci. China Inf. Sci. 66, 129502 (2023). https://doi.org/10.
1007/s11432-021-3382-2

• Youle Wang, Guangxi Li, and Xin Wang. (2020). Variational quantum Gibbs state
preparation with a truncated Taylor series. Physical Review Applied, 16(5), 054035.
https://doi.org/10.1103/PhysRevApplied.16.054035

• Youle Wang, Benchi Zhao, and Xin Wang. (2022). Quantum algorithms for estimat-
ing quantum entropies. http://arxiv.org/abs/2203.02386

The first work above has been published in Science China Information Sciences and was
also accepted as a short talk at the 21st Asian Quantum Information Science Conference,
AQIS 2021. The second work has been published in Physical Review Applied. The third
work is available online. In addition, I have co-authored the following articles that
are not included in this dissertation. In the first work below, the authors are listed in
alphabetical order.

• Xin Wang, Youle Wang, Zhan Yu, and Lei Zhang. Quantum Phase Processing:
Transform and Extract Eigen-Information of Quantum Systems. http://arxiv.
org/abs/2209.14278

• Xin Wang, Zhixin Song, and Youle Wang. (2021). Variational Quantum Singular
Value Decomposition. Quantum, 5(1), 483. https://doi.org/10.22331/q-2021-06-29-483

• Guangxi Li, Youle Wang, Yu Luo, Yuan Feng, Quantum data fitting algorithm for
non-sparse matrices. http://arxiv.org/abs/1907.06949

All my publications are available on arXiv and Google Scholar.

vii

https://doi.org/10.1007/s11432-021-3382-2
https://doi.org/10.1007/s11432-021-3382-2
https://doi.org/10.1103/PhysRevApplied.16.054035
http://arxiv.org/abs/2203.02386
http://arxiv.org/abs/2209.14278
http://arxiv.org/abs/2209.14278
https://doi.org/10.22331/q-2021-06-29-483
http://arxiv.org/abs/1907.06949




ACKNOWLEDGMENTS

This dissertation would not have been possible without the support I received during the
doctoral study. I express my sincere gratitude and appreciation to all people who have
helped me.

First, I want to thank my supervisor, professor Yuan Feng, who introduced me to
quantum computing and taught me how to do research at the beginning of my research
journey. In each meeting, he would listen carefully to my presentation and taught me
how to make myself clear. His high research standards and profound knowledge in the
area impressed me. I also sincerely thank him for giving me the freedom to communicate
with other researchers and the support to visit overseas. In particular, I appreciate his
support during the great pandemic of COVID-19.

I am very grateful to professor Sanjiang Li and professor Zhengfeng Ji for guiding my
study. Sanjiang Li has provided much kind advice for me in research and life and is also
very nice. Zhengfeng is a very expert in the area and has a very high taste for research.
When I was wandering at the beginning of my study, Zhengfeng shared his experience
in research to guide me through the time. And he would share his opinion about the
research I focused on and push me to study further to deepen my understanding and do
more meaningful research.

Moreover, I thank the partners and friends from Institute for Quantum Computing,
Baidu, where I have had a great time and done much interesting research. I thank
Institute for Quantum Computing, Baidu, for giving me the opportunity to join them
as visiting student and research intern during my studies. I thank mentor Xin Wang
for leading me to research projects during my internship. I am deeply inspired by his
expertise in the area and the rigour he pursues in research, from which I can benefit a
lot. I also appreciate him and Lijing Jin for hosting a birthday party.

During the visiting at Baidu, I had met many friends with diverse backgrounds. Their
diverse research backgrounds and expertise have brought many meaningful discussions
and collaborations. I cherish the opportunities to work Zhixin Song, Ranyiliu Chen, and
Benchi Zhao and thank them for sharing their knowledge in different areas. I also have
enjoyed in-depth discussions with many interns, including Xuanqiang Zhao, Zihe Wang,
Xia Liu, Chengkai Zhu, Chenfeng Cao, Jiaqing Jiang, Sizhuo Yu, Kaiyan Shi, Zihan
Xia, and many others not mentioned. I thank them for sharing their knowledge and
perceptive opinions.

Finally, I thank my friends and colleagues at UTS: Ji Guan, Guangxi Li, Yu Luo,
and Xiangzhen Zhou. When I first arrived in Sydney, Ji Guan helped me settle down. I

ix



learned a lot from him about living in a foreign country. Guangxi Li is very expertise in
computers, and he taught me a lot about programming. Yu Luo is very smart and patient.
We often worked together to solve complex mathematical questions. Xiangzhen Zhou is
a great friend and roommate. He also is a devout Christian. He often drove me to the
Church on Sunday, where I learned about church and belief. We shared an apartment for
one year, which was a great time, and I miss it. In particular, I thank my family for the
endless love and support for allowing me to pursue my dreams.

x



TABLE OF CONTENTS

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Hamiltonian learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum Gibbs state preparation . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Quantum entropy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminary 7
2.1 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Variational quantum algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Parameterized quantum circuit . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Variational quantu eigensolver . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Gradient estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Quantum Hamiltonian learning algorithm 11
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 A gradient-descent solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Hamiltonian learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Variational quantum Hamiltonian spectrum solver . . . . . . . . . 18
3.3.2 Gradient estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Random Hamiltonian models . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Quantum many-body models . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Numerical results using fewer eigenvalues of Ising Hamiltonians . 26

4 Quantum Gibbs state preparation 31
4.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



TABLE OF CONTENTS

4.2 Variational quantum Gibbs state preparation . . . . . . . . . . . . . . . . . 33
4.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 XY spin-1/2 chain model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Quantum entropy estimation 53
5.1 Quantum entropy approximations . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Approximation of von Neumann entropy . . . . . . . . . . . . . . . . 54
5.1.2 Approximation of Æ-Rényi entropy . . . . . . . . . . . . . . . . . . . . 59
5.1.3 Approximation error analysis . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Quantum circuit construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Circuit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Circuit width circumvent . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 A subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Quantum entropy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Effectiveness and correctness . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Comparison to literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion and future work 87

A Appendix 91
A.1 Supplementary proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Variational algorithm for Gibbs state preparation with higher-order trun-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3 Estimation of the higher-order gradients . . . . . . . . . . . . . . . . . . . . 99
A.4 Supplementary discussion for optimization . . . . . . . . . . . . . . . . . . . 101
A.5 Gate decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.6 Barren plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 109

xii



LIST OF FIGURES

FIGURE Page

2.1 A circuit module of PQC. Ul(µl) is a gate with tunable parameter µl , and Wl

is a parameter-free gate, e.g., CNOT. . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Flowchart of the gradient-descent method for Hamiltonian learning. . . . . . 13

3.2 The selected quantum circuitU(µ) for stochastic variational quantum eigen-
solver (SVQE). Here, D represents circuit depth. Parameters µ are randomly
initialized from a uniform distribution in [0, 2º] and updated via gradient
descent method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The curves in (a), (b), (c) represent the infinity norm of the error of µ with
different Ø, different number of µ, and different number of qubits, respectively.
In (d), (e), (f), the curves represent the infinity norm of the error of µ for
different many-body Hamiltonians with the number of qubits varies from 3 to
5. The numbers on the line represent the values of the last iteration. These
numbers close to 0 indicate that our algorithm is effective. . . . . . . . . . . . 28

3.4 Experimental results by using fewer eigenvalues. Each line corresponds to the
results by running HQHL with Ising Hamiltonians of different sizes. Results
show that using halved circuit depth, compared to the setting in Sec. 3.4.2,
could learn coefficients up to precision 0.05 for different sized Ising models
and a different number of µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Quantum circuit for implementing Destructive Swap Test. In the circuit, two
states Ω and æ are prepared at different registers. Then CNOT and Hadamard
gates are performed as shown. The state overlap can be estimated via post-
processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiii



LIST OF FIGURES

4.2 Quantum circuit for computing tr(Ω3). In the circuit, theU(µ) denotes the state
preparation circuit, and H denotes the Hadamard gate. Four registers are
used to prepare states by U(µ), and one ancillary qubit is used to perform the
controlled swap operator. The qubit reset occurs on the bottom two registers,
where the break in the wire means the reset operation. Notably, the state
on the bottom two registers are first implemented with a circuit U(µ) and
controlled swap operator and then reset to state |0i. Again,U(µ) and controlled
swap operator are performed on the bottom registers. Finally, tr(Ω3) can be
obtained via post-processing the measurement results. . . . . . . . . . . . . . . 32

4.3 Schematic representation of the variational quantum Gibbs state preparation
with truncation order 2. First, we prepare the Hamiltonian H and inverse
temperature Ø and then send them into the Hybrid Optimization. Second,
we choose an ansatz and employ it to evaluate the loss function L1,L2,L3 on
quantum devices. Then we calculate the difference ¢F2(µ) by using L1,L2,L3.
Next, if the condition ¢F2 ∑ ≤ is not satisfied, then we perform classical
optimization to update parameters µ of the ansatz and return to the loss
evaluation. Otherwise, we output the current parameters µ§, which could be
used to prepare Gibbs state ΩG viaU(µ). Here in the quantum device, registers
A2,B2,A3,B3 are used to evaluate tr(ΩB2ΩB3) and registers A4,B4, . . . ,A6,B6

are used to evaluate tr(ΩB4ΩB5ΩB6). . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Two ansatzes for Ising chain model. These ansatzes are composed of two
registers A and B, where one ancillary qubit is set in A and 5 qubits are set
in B. Notably, the qubits in B are performed with rotations Ry(µ) and CNOT
gates in (a), while only CNOT gates in (b). . . . . . . . . . . . . . . . . . . . . . 42

4.5 Fidelity curves for the Ising chain Gibbs state preparation with different Ø.
In (a), we use the Ansatz with 6 parameters (cf. Fig. 4.4(a)); In (b), we use
the Ansatz with only 1 parameter (cf. Fig. 4.4(b)). We can see that they have
almost the same performance, which indicates only 1 parameter is enough for
this task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Semilog plot of the fidelity vs. the Ising Hamiltonian length (L) with different
Ø for the Ising chain model. Here, log2 means logarithm with base 2. We can
see that the fidelity increases exponentially with Ø growing. . . . . . . . . . . 43

xiv



LIST OF FIGURES

4.7 The ansatz for XY spin-1/2 chain model. In this ansatz, it contains one ancilla
qubit in register A and 5 qubits in register B. Rotation gates Ry(µ) are first
applied on all qubits. Then, a basic circuit module (denoted in the dashed-line
box) composed of CNOT gates and rotation gates Ry(µ) is repeatedly applied.
Here, d means repeating d times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Fidelity curves for the XY spin-1/2 chain Gibbs state preparation with differ-
ent Ø. The results of the fidelity obtained with different Ø are represented by
coloured lines. In (a)-(d), numerical experiments are performed using different
ansatzes. In each ansatz, the basic circuit module (cf. Fig. 4.7) is repeated
different times, i.e., d. Note that each ansatz has (nA +nB)(d+1)= 6(d+1)
parameters. Here better performance are obtained with larger d. . . . . . . . 50

4.9 Boxplot of the fidelity vs. the truncation order K with different Ø for the XY
spin-1/2 chain model. Here the ansatz is similar to Fig. 4.7 while nA = nB = 3.
Each box consists of 30 runs with different parameter initializations. . . . . . 51

5.1 For a short time t, we first prepare a ground state |0ih0| in the measure
register, and prepare states Ω in the main register the ancillary register,
respectively. Subsequently, perform the controlled unitary operator e°iSt on
state Ω≠Ω. At the end of the circuit, we measure along the eigenbasis of
Pauli Z, which would immediately lead to an estimate for tr(Ω cos(Ωt)) up to
precision O(t2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 For general time t, the circuit could be inductively constructed. The operator
e°iS¢t is sequentially applied on the main register and different ancillary
registers, conditional on the measure register. Here, we append Q ancillary
states and use Q times of e°iS¢t. For clear, we label states on different register
by 1,2,3,Q+1, and the script of the swap operator indicates the registers that
swap operator acts on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 A quantum circuit for estimating tr(Ω cos(Ωt)) using qubit reset. The break
and a state Ω in the wire means implementing qubit reset. . . . . . . . . . . . 71

5.4 Quantum circuit for implementing the module W . . . . . . . . . . . . . . . . . . 72

xv



LIST OF FIGURES

5.5 This figure depicts the resulting circuit by substituting c-e°iS¢t with the
circuit of controlled-A (dashed box) in Figure 5.1. The dotted circuit is the
controlled-W circuit, in which the c-R1 and oc-R2 are the 1-controlled R1

gate (apply R1 on the target qubit if the control qubit in state |1i) and 0-
controlled R2 gate (apply R2 on the target qubit if the control qubit in state
|0i), respectively. The definitions of R1 & R2 can be found in Eqs. (5.113)-
(5.114). The circuits between dotted boxes are known as reflectors. Denote
that all elements in the circuit can be broken down into single/two-qubits
gates, please refer to Appendix A.5 for details. . . . . . . . . . . . . . . . . . . . 73

5.6 In (a) and (b), the black dashed line represents the actual entropy of quantum
state Ω. The blue and orange curves are average entropy over 20 repeats for
≤ equal to 0.2 and 0.4, respectively. The shadowed area stands for standard
deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 The results for 4 randomly generated states. In (a) and (b), the blue bar is
the real quantum entropy, the Estimated Entropy 1 stands for the entropy
corresponding to the Fourier series approximation, and the Estimated Entropy
2 is the average entropy (100 sample points, repeat 20 times) calculated by
our approach. In addition, the error bar represents the standard deviation. . 83

5.8 Figures (a) and (b) represent results for von Neumann entropy, and (c) and (d)
represent the results for 2-Rényi entropy. The green curves link the average
estimated entropy at different noise levels. The black dashed line represents
the actual von Neumann entropy of quantum state Ω. . . . . . . . . . . . . . . 84

A.1 Quantum circuit for anti-controlled rotation oc-R2. . . . . . . . . . . . . . . . . 103
A.2 Quantum circuit for controlled phase gate c-S. . . . . . . . . . . . . . . . . . . . 103
A.3 Quantum circuit for implementing controlled select(S). Here we take three-

qubit state Ω as example. The circuit appends one qubit |0i. The decomposition
of the c-S is given in Figure A.2. Particularly, the c-Z gate is applied only
when t> 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xvi



LIST OF TABLES

TABLE Page

3.1 Hyper-parameters setting. The number of qubits (# qubits) varies from 3
to 5, and the number of µ (# µ) from 3 to 6. Ø is chosen as 0.3, 1, 3. “LR”
denotes learning rate. The values of µ are sampled uniformly in the range
of [-1, 1]. The term, likes “[[0 2 1] [2 1 3] [0 3 3]]”, indicates there are three
El ’s and each has three qubits with the corresponding Pauli tensor product.
Here “0,1,2,3” represent “I,X ,Y ,Z” respectively. For example, for the first
sample, the corresponding Hamiltonian is taken as H=0.3408 ·I ≠Y ≠ X -
0.6384 ·Y ≠X ≠Z -0.4988 ·I≠Z≠Z. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Hyper-parameters setting for many-body models. For each Hamiltonian model,
the number of qubits varies from 3 to 5, and the number of µ is determined
by the number of Pauli operators. “LR" denotes learning rate. The values of µ
are sampled uniformly in the range of [°1,1]. . . . . . . . . . . . . . . . . . . . 25

3.3 Parameters setting for HQHL. The script index means the length of the tuple,
e.g., ()8 indicates the tuple consists of 8 entries. The notation 0, . . . means the
entries following 0 are all zeros as well. Notation #∏ means the number of
eigenvalues we learned. Please note that we omit the Ø= 1 in the table. . . . 27

5.1 Upper bound on the overall weights. . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Cost estimation of Algorithm 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xvii




	Title Page
	Certificate of Original Authorship
	Abstract
	Dedication
	Statement of Authorship and Publications
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables



