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ABSTRACT

Learning the dynamic Hamiltonian of a quantum system is a fundamental task in
studying condensed matter physics and verifying quantum technologies. Many
protocols have been proposed for Hamiltonian learning. Still, many of them require

the ability to prepare quantum Gibbs states and estimate entropies of quantum states,
which are not easy for classical computers. Recent experimental progress of quantum
hardware has drawn much attention, motivating us to investigate the application of near-
term quantum computers in Hamiltonian learning. In this dissertation, we study the
Hamiltonian learning problems and propose algorithms to recover interaction coefficients
of a Hamiltonian, prepare quantum Gibbs states, and estimate the quantum entropies of
quantum states. We employ quantum circuits that are expected to be implementable in
the near-to-intermediate future.

First, we use the variational quantum algorithms to enable a hybrid quantum-
classical algorithmic scheme to tackle the Hamiltonian learning problem. By transform-
ing the Hamiltonian learning problem to an optimization problem using the Jaynes’
principle, we employ a gradient-descent method to give the solution and could reveal
the interaction coefficients from the system’s Gibbs state measurement results. In par-
ticular, the computation of the gradients relies on the Hamiltonian spectrum and the
log-partition function. Hence, as the main subroutine, we develop a variational quan-
tum algorithm to extract the Hamiltonian spectrum and utilize convex optimization to
compute the log-partition function. We also apply the importance sampling technique to
circumvent the resource requirements for large-scale Hamiltonians.

Second, we propose variational quantum algorithms for quantum Gibbs state prepa-
ration. First, we take the loss function as the system’s free energy and estimate it by a
truncated version. Then we train a parameterized quantum circuit to optimize the loss
function so that it can learn the desired quantum Gibbs state. Notably, our algorithms
can be implemented on near-term quantum computers. Furthermore, by performing
numerical experiments, we show that shallow parameterized circuits with only one
additional qubit can be trained to prepare the Ising chain and spin chain Gibbs states
with a fidelity higher than 95%. In particular, for the Ising chain model, we find that a
simplified circuit ansatz with only one parameter and one additional qubit can be trained
to realize a 99% fidelity in Gibbs state preparation at inverse temperatures larger than
2.

Third, we propose quantum algorithms to estimate the von Neumann and quantum
Æ-Rényi entropies of an n-qubit quantum state Ω using independent copies of the input
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state. We show how to efficiently construct the quantum circuits of both methods using
primitive single/two-qubit gates. We prove that the number of required copies scales
polynomially in 1/≤ and 1/§, where ≤ denotes the additive precision and § denotes the
lower bound on all non-zero eigenvalues. Notably, our method outperforms previous
methods in the aspect of practicality since it does not require any quantum query
oracles, which are usually necessary for previous methods. Furthermore, we conduct
experiments to show the efficacy of our algorithms to single-qubit states and study the
noise robustness.
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1
INTRODUCTION

1.1 Hamiltonian learning

Learning the Hamiltonian dynamics is vital in studying quantum physics and re-
alizing quantum computers in experiments. In the literature, it has been applied
to predict the quantum system’s locality that describes the effective interactions

between particles, which plays a crucial role in quantum technology, such as quantum
lattice models [162], quantum simulation [129], and adiabatic quantum computation [4].
With recent experimental advances in tools for studying complex interacting quantum
systems [7], it is becoming more and more important to learn the dynamics of complicated
physical systems, which can predict the evolution of any initial state governed by the
Hamiltonian. Another critical utility is relevant to the verification of quantum devices
and simulators towards building fault-tolerant quantum computers [89] since certifying
that the engineered Hamiltonian matches the theoretically predicted models will always
be an indispensable step in developing high-fidelity quantum gates [139].

In many-body physics, the system’s Hamiltonian is often characterized by some
parameters that describe the interactions between particles. Mathematically, the Hamil-
tonian can be decomposed into a linear combination of local Pauli matrices. To be more
specific, let H denote the Hamiltonian, then

H =
mX

`=1
µ`E`,(1.1)

where vector µ= (µ1, . . . ,µm) 2 [°1,1]m consists of interaction parameters, and {E`}m`=1

1



CHAPTER 1. INTRODUCTION

are n-qubit local Pauli operators that act non-trivially on at most fixed number particles,
and integer m=O(pol y(n)).

Despite the number of these parameters µ in general scales polynomially in the
system’s size, it is pretty challenging to learn these parameters. Classically characterizing
the system’s Hamiltonian via tomography would require resources that exponentially
scale in the system’s size [63]. Other than tomography, there are methods [60, 144, 153–
155] that cost polynomially many resources while requiring the ability to simulate the
dynamics of the system, which is classically intractable. In particular, it is difficult to
perform quantum simulation as a large amount of low-decoherence and fully-connected
qubits are required, which are not available on noisy intermediate-scale quantum (NISQ)
devices [118].

The main goal of our research is to employ a trusted NISQ devices to study complex
quantum system. For this purpose, we exploit the variational quantum algorithms
(VQAs) that have been gaining popularity in many areas [25, 32, 71, 90, 110, 114, 131,
146, 148, 158]. VQAs are a class of hybrid quantum-classical algorithms that are expected
to be implementable on NISQ devices. The principal process is to optimize a certain loss
function via parameterized quantum circuits (PQCs). In particular, the loss function
depending on parameters of the circuit is evaluated on quantum devices, and then the
parameters are updated using gradient-based methods classically.

In Chapter 3, we propose a hybrid quantum-classical algorithm to recover the inter-
action coefficients from the measurement results of Gibbs states. To this end, we take
advantage of the strategy proposed recently in [5]. Specifically, let e` = tr(ΩØE`), for all
`= 1, . . . ,m, denote measurement results of a quantum Gibbs state ΩØ = e°ØH / tr(e°ØH),
where {E`}m`=1 are given Pauli matrices. It has been shown that solving the optimization
problem below suffices to complete the Hamiltonian learning task [5].

µ= argmin∫ logZØ(∫)+Ø
mX

`=1
∫`e`.(1.2)

Here, ZØ(∫) = tr(e°Ø
Pm

`=1∫`E`) denotes the partition function, parameterized by ∫ =
(∫1, ...,∫m) 2 [°1,1]m, and Ø denotes the inverse temperature of the system. Notably,
the challenge of our approach is to compute the log-partition function logZØ(∫) and its
gradient since computing partition function is #P-hard [57, 99]. Our idea is to solve
the optimization problem in Eq. (1.2) by a gradient-descent method and compute the
corresponding gradients utilizing variational quantum algorithms.

This Chapter is based on the following paper:
Youle Wang, Guangxi Li, and Xin Wang. A hybrid quantum-classical Hamiltonian
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learning algorithm. Sci. China Inf. Sci. 66, 129502 (2023). https://doi.org/10.1007/
s11432-021-3382-2

1.2 Quantum Gibbs state preparation

As shown in Sec. 1.1, quantum Gibbs states or thermal states are of significant impor-
tance for Hamiltonian learning. Thus, a subroutine for preparing Gibbs state of a given
Hamiltonian is demanded. On top of that, quantum Gibbs states have many applications
in quantum computing, which would boost the development of quantum algorithms. The
reason is that quantum Gibbs states not only can be used to study many-body physics
but also can be applied to quantum simulation [35], quantum machine learning [18, 85],
and quantum optimization [133]. For example, sampling from well-prepared Gibbs states
of Hamiltonians can be applied in solving combinatorial optimization problems [133],
solving semi-definite programs [24], and training quantum Boltzmann machines [85].

In fact, the preparation of the desired quantum state is quite challenging. For in-
stance, it is well-known that finding the ground state of a physical Hamiltonian is QMA-
hard [151]. This is because, for Gibbs states, the preparation at arbitrary low temperature
could be as hard as finding the ground state [3]. In the context, various methods are
proposed to achieve this goal in classical and quantum computing [23, 82, 117, 137, 138].
Many quantum methods use quantum techniques, including quantum rejection sam-
pling [156], quantum walk [161], dynamics simulation [80, 109, 124], dimension reduc-
tion [19]. Although in the worst case, the costs of these methods could be exponential in
expectation, they can be efficient when some conditions are satisfied. Such as the ratios
between the partition functions of the infinite temperature states and the Gibbs state
is at most polynomially large [117], and the gap of the underlying Markov chain of the
quantum walk is polynomially small [140, 161]. However, these methods require complex
quantum subroutines such as quantum phase estimation, which are costly and hard to
implement on near-term quantum computers.

In Chapter 4, we study how to prepare a high-fidelity Gibbs state and simultaneously
minimize the task’s quantum resources as much as possible, including qubit, gate counts,
and circuit size. Minimizing resources is motivated by the implementation of near-term
quantum computers. One feasible scheme is to take advantage of variational quantum
algorithms (VQAs) [106] since VQAs are widely believed to be implementable on near-
term quantum computers. This strategy succeeds in reducing the resources by using
shallow quantum circuits. Notably, several methods for preparing Gibbs states using
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CHAPTER 1. INTRODUCTION

VQAs have already been proposed [36, 74, 103, 104, 109, 142, 157, 160] to prepare Gibbs
states. For instance, Wu and Hsieh [157] proposed a variational approach by using Rényi
entropy estimation [74] and thermofield double states, Yuan et al. [160] discussed the
application of imaginary time evolution to Gibbs state using parameterized circuits, and
Chowdhury et al. [36] proposed entropy estimation method using tools such as quantum
amplitude estimation and linear combination of unitaries. In contrast, we propose a
variational Gibbs states preparation algorithm using shallow circuits in the thesis.

In this dissertation, we propose variational quantum algorithms by minimizing the
system’s free energy [122] based on the truncated Taylor series of the free energy. This is
because Gibbs state minimizes the free energy. In other words, assuming the system’s
state is Ω, the free energy is defined by F(Ω) = tr(HΩ)°Ø°1S(Ω), where S(Ω) denotes
the von Neumann entropy. Then Gibbs state, denoted by ΩG , is the global minimum of
the functional F(Ω). Our approach uses parameterized quantum circuits (PQCs) with
enough expressiveness to prepare the desired quantum Gibbs state or a very close state.
For convenience, we denote the generated state via PQC by Ω(µ). Then the variational
principle could be formulated as

ΩG º argminµF(Ω(µ)).(1.3)

Hence, our methods focus on finding the optimal parameters to minimize F(Ω(µ)).
This Chapter is based on the following paper:

Youle Wang, Guangxi Li, and Xin Wang. (2020). Variational quantum Gibbs state
preparation with a truncated Taylor series. Physical Review Applied, 16(5), 054035.
https://doi.org/10.1103/PhysRevApplied.16.054035

1.3 Quantum entropy estimation

When estimating the system’s free energy, it is essential to estimate the von Neumann
entropy. In this dissertation, we consider the quantum entropy estimation problem to
complete our Hamiltoninan learning method. In Chapter 5, we propose concrete quantum
algorithms for von Neumann entropy and more general quantum Rényi entropy.

Entropy [10] is an important concept that characterizes the system’s randomness and
lead to many theoretical and practical applications in many fields including computer sci-
ence and quantum physics. The classical Shannon entropy [130] and the Rényi entropies
[123] are fundamental in information theory as they capture the operational quantities
of information processing. The classical entropy depicts information by measuring the

4
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uncertainty associated with a classical probability distribution. In the quantum setting,
the corresponding concepts are the von Neumann [143] and quantum Rényi entropies
[116], which are crucial to develop many areas such as quantum information theory [15],
entanglement theory [70], and quantum chemistry [8]. Recently, many works apply quan-
tum entropies for quantum computing applications. For instance, quantum entropies can
provide the asymptotic lower bound for compressing quantum data [128].

Given a quantum state Ω 2 C2n£2n , the von Neumann entropy is defined by S(Ω) =
°tr(Ω ln(Ω)), and the quantum Æ-Rényi entropy is defined by RÆ(Ω)= 1

1°Æ logtr(ΩÆ) with
parameter Æ 2 (0,1)[ (1,+1). Taking the limit Æ! 1, RÆ(Ω) converges to S(Ω) up to a
proportional factor. Additionally, if Ω is diagonal in the computational basis, S(Ω) and
RÆ(Ω) degenerate to their classical counterparts. In past decades, various methods [108]
have been proposed to estimate quantum entropies, while a large number of quantum
resources are demanded as well. The most straightforward method to estimate quantum
entropy is the tomography [2], which figures out the description of the density matrix. In
that case, the cost increases exponentially with the size of the state. On top of that, the
current optimal classical algorithm for quantum entropy estimation has a cost that is
linear to the number of non-zero elements of the density matrix [88].

Although aforementioned quantum algorithms [36, 56, 66, 93, 100, 135] have promised
speedups over the tomography method in the entropy estimation task, the quantum
query model for the input state, the most crucial component of these algorithms, is still
not known how to construct efficiently. And hence, the timescale for these algorithms to
be effective in practice remains an open question. On the other hand, the fast develop-
ment of quantum computing devices has brought us into the noisy intermediate-scale
quantum (NISQ) era [118]. An emergence of studies have focused on delivering quantum
applications via near-term quantum devices [17, 31, 49], and estimating quantum en-
tropies with applications (e.g., entanglement spectroscopy, Gibbs state preparation) is
one of the fundamental tasks in the field. To better exploit NISQ devices in the quantum
entropy estimation task, it is highly desirable to devise quantum algorithms without
using the quantum query model.

In this work, we propose quantum algorithms of concrete implementation to estimate
the von Neumann and quantum Rényi entropies of an unknown quantum state using
independent copies of the input state. To develop our algorithms, we firstly use the Fourier
series approximation to decompose the entropy. Then, we devise quantum circuits to
estimate each term in the Fourier series. When design quantum circuits, we synthesize
several quantum gadgets, such as the iterative quantum phase estimation [87], the
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exponentiation of the quantum state in [98], the linear combination of unitaries [16],
and qubit reset [45]. These gadgets make the circuits slightly friendly to NISQ devices
(only include primitive single/two-qubit gates, and two copies of the state are maintained
at a time). In the end, we could obtain the estimated entropy by classical post-processing.
In particular, we utilize the sampling method to reduce the computational resources and
speedup the computation.

This Chapter is based on the following paper:
Youle Wang, Benchi Zhao, and Xin Wang. (2022). Quantum algorithms for estimating
quantum entropies. 22-26. http://arxiv.org/abs/2203.02386

In Chapter 6, we conclude the dissertation by summarizing the contributions and
discussing several directions for future work.
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2
PRELIMINARY

2.1 Notation and terminology

Throughout this dissertation, we assume the reader is familiar with basic notions of
quantum computing, including quantum states, quantum circuits, measurements for
closed/open systems. More information about quantum computing can be found in the
textbook by Nielsen and Chuang [111] and the lecture notes by Lin Lin [94]. We also
assume the basic familiarity of linear algebra [9].

We use Dirac notation |¡i to denote the pure quantum state, which is also a unit
vector. h¡| = |¡i† means the dual vector of |¡i. The notation

≠
√

ØØ¡
Æ
represents the inner

product between states |√i and |¡i. For a finite-dimensional space, we use {|√ ji}dj=1
to represent the computational basis of the Hilbert space, with d being the space’s
dimension. Furthermore, we use notations Ω and æ to represent the mixed quantum
states. The state overlap is given by tr(Ωæ), where tr means the trace of the matrix.

We use uppercase lettersU andW to denote the quantum circuit, µ denotes the vector
of parameters of the parameterized quantum circuit. Uppercase letter L(µ) represents
the loss function. The indexed notation, e.g., Ul(µl) and Wl , means the subcircuit module
in the parameterized quantum circuit. H is the Hamiltonian, and Hl is a Pauli string.

7



CHAPTER 2. PRELIMINARY

2.2 Variational quantum algorithms

Variational quantum algorithms (VQAs) are put forward to effectively exploit NISQ
computers, which have already found applications in many areas. [25, 50, 71, 110, 114,
146–148]. The core of VQAs is to solve a certain optimization problem by training a
parameterized quantum circuit (PQC) [12]. A gradient-based method is usually used
to perform the optimization, where quantum devices are employed to evaluate the loss
function, and classical devices are used to update parameters. When the loss function
converges to the global optimum, the optimization loop halts and outputs the final
parameters, at that time, the PQC with final parameters will prepare the desired
quantum states and reveal the solutions.

2.2.1 Parameterized quantum circuit

In the NISQ era, parameterized quantum circuits (PQCs) provide a concrete way to
implement quantum algorithms. Generally, PQC is composed of a series of single-qubit
rotations gates (e.g., Rx,Ry.Rz) and two-qubit fixed gates (e.g., CNOT/CZ). This dis-
sertation uses U(µ) to denote the PQC, where µ represents the vector of all tunable
parameters. The explicit expression is given below.

U(µ)=U(µ1, ...,µL)=
LY

l=1
Ul(µl)Wl ,(2.1)

where Ul(µl)= exp(°iµlHl /2), Hl is a Pauli string, and Wl is a generic unitary operator
that does not depend on any angle µ. Integer L is the circuit depth. An illustration is
depicted in Fig. 2.1.

Next, we explain how to use PQC to solve practical tasks by reviewing the well-known
variational quantum eigensolver, which uses a parameterized quantum circuit to learn
the ground state of a Hamiltonian and output the ground state energy.

2.2.2 Variational quantu eigensolver

Variational quantum eigensolvers (VQE) [114] are a class of algorithms that use param-
eterized quantum circuit (PQC) to find the ground state of a Hamiltonian of practical
interest, e.g., Hamiltonians of chemical molecules. In general, we are able to write the
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2.2. VARIATIONAL QUANTUM ALGORITHMS

Figure 2.1: A circuit module of PQC. Ul(µl) is a gate with tunable parameter µl , and Wl
is a parameter-free gate, e.g., CNOT.

n-qubit Hamiltonian of practical interest as a weighted sum of Pauli strings.

H =
mX

l=1
µlEl ,(2.2)

where µl 2R are interaction coefficients, El 2 {X ,Y ,Z, I}≠n are Pauli strings that act on
constant qubits, and integer m=O(poly(n)). The key of VQE is to solve an optimization
problem.

µ§ = argminµh0n|U†(µ)HU(µ)|0ni.(2.3)

Here, we suppose the input state of VQE is an n-qubit all-zero state, and H is the
Hamiltonian of interest, and U(µ) means the parameterized quantum circuit (PQC) to
use. The optimization is solved straightforwardly by the gradient-based or gradient-free
method. In the next section, we discuss more details about estimating the gradient when
employing a gradient-based method. In contrast to the classical simulation, the loss
function here can be evaluated efficiently using quantum circuits.

2.2.3 Gradient estimation

The gradient descent method is the most often used method to solve the optimization
problem in Eq. (2.3). We show how to transfer the gradient estimation to loss evaluation
in the following.

Suppose we want to compute the partial derivative of L(µ)= h0n|U†(µ)HU(µ)|0ni, i.e.,

9
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@L(µ)
@µk

. The partial derivative can be written in the following form.

@L(µ)
@µk

=
@h0n|QL

l=1W
†
l U

†
l (µl)H

QL
l=1Ul(µl)Wl |0ni

@µk

(2.4)

= h0n| @

@µk

LY

l=1
W†

l U
†
l (µl)H

LY

l=1
Ul(µl)Wl |0ni+ h0n|

LY

l=1
W†

l U
†
l (µl)H

@

@µk

LY

l=1
Ul(µl)Wl |0ni.(2.5)

Notice that @
@µk

Uk(µk)= °i
2 HkUk(µk). For convenience, we write the operations between

layer 1 to k°1 asU1:k°1, and operations between layer k+1 and L asUk+1:L, respectively.
Then the gradient can be rewritten as

@L(µ)
@µk

= i
2
h0n|U†

1:k°1W
†
kU

†
k(µk)HkU†

k+1:LHUk+1:LUk(µk)WkU1:k°1|0ni

+ °i
2
h0n|U†

1:k°1W
†
kU

†
k(µk)U

†
k+1:LHUk+1:LHkUk(µk)WkU1:k°1|0ni

(2.6)

= i
2
h0n|U†

1:k°1W
†
kU

†
k(µk)

h
HkU†

k+1:LHUk+1:L°U†
k+1:LHUk+1:LHk

i
Uk(µk)Wk.U1:k°1|0ni.

(2.7)

Next, we use the relation i[Hk,M] =U†
k(

º
2 )MUk(º2 )°U†

k(°
º
2 )MUk(°º

2 ) to simplify the
formula of the gradient. At the same time, we absorb theU†

k(±
º
2 ) andUk(±º

2 ) intoU
†
k(µk)

and Uk(º2 ), respectively.

@L(µ)
@µk

= 1
2
h0n|U†

1:k°1W
†
kU

†
k(µk)£

(2.8)

h
U†

k(
º

2
)U†

k+1:LHUk+1:LUk(
º

2
)°U†

k(°
º

2
)U†

k+1:LHUk+1:LUk(°
º

2
)
i
Uk(µk)Wk.U1:k°1|0ni

= 1
2

£
L(µ̂k,+)°L(µ̂k,°)

§
.

(2.9)

Here, µ̂k,± = (µ1, . . . ,µk ± º
2 , . . .) indicates that parameter µk is shifted by a phase of º

2 ,
while others do not change.

Clearly, to compute the gradient, we can shift the corresponding parameter by a
phase of ±º

2 . This method is called parameter shift rule [107]. As a result, the gradient
estimation is transferred to the loss evaluation.
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3
QUANTUM HAMILTONIAN LEARNING ALGORITHM

3.1 Problem Statement

Recall the goal of Hamiltonian learning is to learn the interaction coefficients µ from
the measurement results of a quantum Gibbs state. We assume that the Hamiltonian
to be learned H is composed of local Pauli operators {E`}m`=1, and the measurements
corresponding to {E`}m`=1 are performed on the Gibbs state ΩØ = e°ØH / tr(e°ØH) at an
inverse temperature Ø. The measurement results are denoted by {e`}m`=1, given by

e` = tr(ΩØE`), 8` 2 [m].(3.1)

Notice that manymethods proposed to efficiently obtain measurement results {e`}m`=1 [21,
39, 72]. We, therefore, assume the measurement results {e`}m`=1 have been given previ-
ously and focus on learning interaction coefficients from them. Formally, we define the
Hamiltonian learning problem (HLP) as follows:

Definition 1 (HLP). Consider a many-body Hamiltonian with a decomposition given
in Eq. (1.1), where |µ`|∑ 1 for all `= 1, ...,m. Suppose we are given measurement results
{e`}m`=1 of the quantum Gibbs state ΩØ, then the goal is to find an estimate bµ of µ such that

“ bµ°µ “1∑ ≤,(3.2)

where k ·k1 means the maximum norm.

11
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To solve the HLP, we adopt a strategy that is proposed recently in Ref. [5], which
transforms HLP into an optimization problem by using the Jaynes’ principle (or maximal
entropy principle) [75]. This strategy is to find a quantum state with the maximal entropy
from all states whose measurement results under {E`}m`=1 match {e`}m`=1.

max
Ω

S(Ω)(3.3)

s.t. tr(ΩE`)= e`, 8`= 1, ...,m

Ω > 0, tr(Ω)= 1.

It has been shown in [75] that the optimal state is of the following form:

æ=
exp(°Ø

Pm
`=1µ

§
`E`)

tr(exp(°Ø
Pm

`=1µ
§
`
E`))

.(3.4)

Here, state æ is a quantum Gibbs state of a Hamiltonian with interaction coefficients
µ§ = (µ§

1, ...,µ
§
m). As a result, Ref. [5] shows that coefficients of æ is the target interaction

coefficients, i.e., µ§ =µ. Moreover, Ref. [5] also points out an approach for obtaining µ§

that is to solve the dual optimization problem (cf. Eq. (1.2)). More specifically, the dual
problem in Eq. (1.2) is a result of applying the Lagrange multiplier method to problem
in Eq. (3.3), and coefficients ∫ are the corresponding Lagrange multipliers.

In Ref. [5], it has shown that the loss function is strongly convex. Hence, a gradi-
ent descent method can steadily find the desired solution and recover the unknown
Hamiltonian. To this end, we develop a gradient descent method tailored to quantum
computers to solve the problem in Eq. (1.2). A flowchart for illustration is shown in
Figure 3.1. Clearly, the main obstacle is to compute the corresponding gradients of the
objective function, which involves computing the partition function. Then, we formalize
the gradient estimation problem below.

Definition 2 (Gradient estimation). Given a Hamiltonian parameterized by coefficients
∫, i.e., H(∫)=Pm

`=1∫`E`, let L(∫) be the objective function

L(∫)= logZØ(∫)+Ø
mX

`=1
∫`e`,(3.5)

where ZØ(∫)= tr(e°ØH(∫)). Then the goal is to estimate the gradient rL(∫) with respect to
∫.
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Start

Input Ø, {E`}m`=1, and {e`}m`=1

Initialize coefficients ∫

Compute gradient r logZØ(∫)

Update ∫

Continue? Return

Output final coefficients

End

No

Yes

Figure 3.1: Flowchart of the gradient-descent method for Hamiltonian learning.

3.2 A gradient-descent solution

According to Eq. (4.2), one way to compute the loss function L(∫) and the gradient
requires the ability to prepare the Gibbs states. In the literature, there are many
proposals [43, 74, 148, 157, 158, 160] of Gibbs state preparation to this end. In this
chapter, we propose a method that does not demand the Gibbs state preparation.

To compute the log-partition function, we develop a method based on the relation
between the log-partition function and the system’s free energy [122]. In general, suppose
the state of the system is Ω, then the free energy is given by F(Ω) = tr(HΩ)°Ø°1S(Ω),
where S(Ω) is the von Neumann entropy. The relation states that the global minimum of
F(Ω) is proportional to the log-partition function, i.e.,

logtr(e°ØH)=°Ømin
Ω

F(Ω).(3.6)

Our method for minimizing the free energy depends on two key steps. First, we choose
a suitable PQC with enough expressiveness; then, we train it to learn the eigenvectors
of the Hamiltonian and output the corresponding eigenvalues. Second, we combine the
post-training PQC with the classical methods for convex optimization to find the global
minimum of the free energy. Next, we utilize the post-training PQC and the optimizer
of the convex optimization to compute the gradients. We also theoretically analyze the
estimation precision of the gradients. And, we discuss the efficiency of loss evaluation
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and gradients estimation by the importance sampling technique when the underlying
Hamiltonian is large.

Here, we consider computing the log-partition function logZØ(∫). Motivating our
method is the relationship between the log-partition function and free energy. Recall that
free energy of the system being state Ω is given by F(Ω)= tr(H(∫)Ω)°Ø°1S(Ω), assuming
the parameterized Hamiltonian is H(∫)=Pm

`=1∫`E`. Then the relation states that

logZØ(∫)=°Ømin
Ω

F(Ω).(3.7)

As shown in Eq. (3.7), it is natural to minimize the free energy to obtain the value of
logZØ(∫). However, it is infeasible to directly minimize the free energy on NISQ devices
since performing entropy estimation with even shallow circuits is difficult [55]. To deal
with this issue, we choose an alternate version of Eq. (3.7):

logZØ(∫)=°Ømin
p

NX

j=1
p j ·∏ j+Ø°1

NX

j=1
p j log p j,(3.8)

where ∏= (∏1, ...,∏N) is the vector of eigenvalues of H(∫), and p= (p1, ..., pN) represents
an N-dimensional probability distribution, with N the Hamiltonian’s dimension. Please
note that proofs for Eqs. (3.7)-(3.8) are provided in Appendix A.1.

Thus, optimizing the R.H.S of Eq. (3.8) could obtain the desired quantity and avoid
the von Neumann entropy estimation simultaneously, assuming eigenvalues of the
Hamiltonian H(∫) is given previously. As a result, our task is reduced to solve the
following optimization program based on the equality in Eq. (3.8):

min
p

C(p)(3.9)

s.t.
NX

j=1
p j = 1

p j ∏ 0,8 j = 1, . . . ,N

where

C(p)=
NX

j=1
p j ·∏ j+Ø°1

NX

j=1
p j log p j.(3.10)

The optimization program in Eq. (3.9) is a typical convex optimization program. In the
context of convex optimization, there are many classical algorithms to solve the optimiza-
tion program, such as the interior-point method [81], ellipsoid method [64], cutting-plane
method [83], and random walks [78], etc. For example, we consider using the cutting
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plane method [76, 92], which requires the membership and evaluation procedures [91].
Concerning the program in Eq. (3.9), the membership procedure determines whether
a point belongs to the set of probability distributions, and the evaluation procedure
takes in a probability distribution p and returns the value C(p) with high accuracy.
Clearly, it is easy to determine whether the given point is a probability distribution while
challenging to efficiently evaluate the function value. Thus, we provide a procedure to
solve the convex optimization problem as well as overcome this challenge at the same
time in Algorithm 1.

Algorithm 1 Log-partition function estimation
Input: Parameterized quantum circuit U(µ), Hamiltonian H(∫), constant Ø;
Output: An estimate for logZØ(∫);
1: # Evaluation procedure construction
2: Take probability distribution p as input;
3: Set integer T and D (cf Proposition 1);
4: Sample TD integers t11, ..., t

1
T , ..., t

D
1 , ..., t

D
T according to p;

5: Prepare computational states |√t11
i, ..., |√t1T

i, ..., |√tD1
i, . . ., |√tDT

i;
6: Compute approximate eigenvalues: ∏tsj = h√tsj |U

†(µ)H(∫)U(µ)|√tsji for all j = 1, . . . ,T
and s= 1, . . . ,D;

7: Compute averages: aves = 1
T

PT
j=1∏tsj for all s= 1, ...,D;

8: Take the median value C(p)√median(ave1, ...,aveD)+Ø°1PN
j=1 p j log p j;

9: # Membership procedure construction
10: Construct a membership procedure;
11: # Convex optimization solution
12: Compute the function’s global minimum value C(p§) and the optimal point p§ via

the cutting plane method.
13: return value °ØC(p§) and the final point p§.

In Algorithm 1, we compute the log-partition function using a classical convex opti-
mization method. For this purpose, we first show the construction process of evaluation
procedure. That is, given a point p, find an estimate for C(p). We assume we are given
a parameterized quantum circuit U(µ) that can learn eigenvectors of the Hamiltonian
H(∫). In our approach, the U(µ) is combined with the importance sampling technique (cf.
lines 3-8) to deal with the large-sized Hamiltonians. The procedure is shown below:

1. Sample TD indices according to the distribution p (cf. line 4);

2. Evaluate the eigenvalues associated with the sampled indices (cf. lines 5-6);

3. Take the average over T (cf. line 7) and the median over D (cf. line 8) to evaluate
the function value C(p) with high accuracy and success probability.
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Eventually, with the evaluation procedure and the membership procedure, the global
minimum of C(p) could be obtained via the cutting plane method [76, 91, 92]. Finally,
based on the relationship between logZØ(∫) and C(p§) (cf. Eq. (3.8)), we could derive the
log-partition function value. Here p§ denotes the optimal distribution of the optimization
in Eq. (3.8)).

Remark 1 Notice that a crucial gadget in Algorithm 1 is the PQC U(µ), which we
have assumed to be accessible. To complement the assumption, we provide a procedure
for extracting eigenvalues in the next section, i.e., Stochastic variational quantum
eigensolver. In particular, we present a variational quantum algorithm for learning the
eigenvectors of the parameterized Hamiltonians.

Now we discuss the cost of applying Algorithm 1. As the efficiency of Algorithm 1
mainly relies on the cost of the evaluation procedure, we only discuss it here. Sup-
pose we have access to Hamiltonian H(∫)’s eigenvalues ∏, then the objective function
C(p) can be effectively evaluated. Recall that C(p) contains two parts

PN
j=1 p j ·∏ j and

Ø°1PN
j=1 p j log p j. On the one hand, the latter value can be computed immediately since

p is stored on classical devices. On the other hand, value
PN

j=1 p j ·∏ j can be regarded
as an expectation of the probability p, where value ∏ j is sampled with probability p j.
Notably, the total cost for estimating C(p) is dominated by the number of samples. Then
we analyze the number of required samples for loss evaluation in Proposition 1.

Proposition 1. For any constant Ø> 0 and parameterized Hamiltonian H(∫)=Pm
`=1∫`E`

with E` 2 {X ,Y ,Z, I}≠n and ∫ 2 Rm, suppose we are given access to a parameterized
quantum circuit U(µ) that can prepare H(∫)’s eigenvectors, then the objective function
C(p) can be computed up to precision ≤ with probability larger than 2/3 by taking T =
O(mk∫k22/≤

2) samples. Furthermore, the probability can be improved to 1°¥ costing an
additional multiplicative factor of D =O(log(1/¥)).

Sketch of proof In general, the expectation can be approximated by the sample mean
according to Chebyshev’s inequality. Specifically speaking, the expectation can be esti-
mated up to precision ≤ with high probability (e.g., larger than 2/3) by taking O(Var/≤2)
samples, where Var denotes the variance of the distribution. Here, the number of sam-
ples is T =O(mk∫k22/≤

2), since the variance is bounded by the squared spectral norm of
H(∫), which is less than

p
m k∫k2. Furthermore, Chernoff bounds allow improving suc-

cess probability to 1°¥ at an additional cost of a multiplicative factor of D =O(log(1/¥)).
More details are deferred to Appendix A.1. ⌅
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3.3. HAMILTONIAN LEARNING ALGORITHM

As shown in Proposition 1, our evaluation method is computationally efficient, since
the number of samples scales polynomially with the number of qubits. Hence Algorithm 1
could be applied to compute the partition function of the parameterized Hamiltonian,
given the suitable PQC U(µ).

3.3 Hamiltonian learning algorithm

Eventually, we present our hybrid quantum-classical algorithm for Hamiltonian learn-
ing (HQHL) in Algorithm 2. The main idea of HQHL is to find the target interaction
coefficients by a gradient-descent method (cf. Figure 3.1). Thus, HQHL’s main process is
to compute the gradient of the objective function. Specifically, we take Pauli operators
{E`}m`=1, {e`}

m
`=1, and Ø as input. Then we initialize the coefficients by choosing ∫ from

[°1,1]m uniformly at random. Next, we compute the gradient of the objective function
L(∫) by Algorithm 4. Then update the coefficients by choosing a suitable learning rate r
and using the estimated gradient. In consequence, after repeating the training process
sufficiently many times, the final coefficients are supposed to approximate the target
coefficients ∫.

Algorithm 2 Hybrid quantum-classical Hamiltonian learning algorithm (HQHL)
Input: Pauli operators {E`}m`=1, constants {e`}

m
`=1, and Ø;

Output: An estimate for target coefficients ∫;
1: Initialize coefficients {∫`}m`=1;
2: Set number of iterations I and l = 1;
3: Set parameterized quantum circuit U(µ);
4: Set learning rate r;
5: while l ∑ I do
6: Set Hamiltonian H(∫)=Pm

`=1∫`E`;
7: Train U(µ) by SVQE with H(∫);
8: Derive a probability bp§ by performing log-partition function estimation withU(µ)

and Ø;
9: Compute gradient rL(∫) by gradient estimation with U(µ), bp§, and Ø;

10: Update coefficients ∫√∫° rrL(∫);
11: Set l√ l+1;
12: end while
13: return the final coefficients ∫.

Notably, the learning process is in the “while" loop of HQHL. In the loop, the
subroutine SVQE (cf. Sec. 3.3.1) is first called to learn Hamiltonian’s eigenvectors and
eigenvalues. Here, we choose a suitable parameterized quantum circuitU(µ) and train it
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to prepare the eigenvectors of the Hamiltonian H(∫). Afterwards, we enter the process of
the log-partition function estimation. It first exploits the U(µ) to output the estimated
eigenvalues of the parameterized Hamiltonian H(∫) and then computes the objective
function L(∫). We would obtain a probability distribution bp§ that consists of eigenvalues
of the associated Gibbs state ΩØ(∫)= e°ØH(∫)/ZØ(∫). Lastly, we exploit the resultant results
(post-training circuit U(µ) and distribution bp§) to compute the gradients following the
procedure in Algorithm 4 and update the coefficient ∫ accordingly (cf. Eq. (3.13)).

Remark 2 To improve the scalability of our method, on the one hand, we use the
importance sampling technique to circumvent many resource requirements for Hamilto-
nian diagonalization. On the other hand, we discuss that learning partial eigenvalues
could also lead to the target Hamiltonian. In particular, we numerically show that
learning several low-lying eigenvectors could help recover the unknown Hamiltonian in
Sec. 3.4.3.

3.3.1 Variational quantum Hamiltonian spectrum solver

This section discusses learning the eigenvectors of the parameterized Hamiltonian H(∫)
using variational quantum algorithms and the importance sampling technique. First, we
outline the algorithm in Algorithm 3 and then discuss the fundamental theory. Second,
we circumvent the cost for coping with large-scaled Hamiltonians by the importance
sampling technique. We also analyze the cost of loss evaluation in the algorithm.

To incorporate variational quantum algorithms, we utilize the variational principle
of Hamiltonian’s eigenvalues. That is, Hamiltonian’s eigenvalues majorize the diagonal
elements, and the dot function with an increasingly ordered vector is Schur concave [126].
A similar idea has already been discussed in [110]. In contrast, our method learns the
full spectrum of the Hamiltonian. We define a function M(µ) over all parameters µ of the
circuit.

M(µ)=
NX

j=1
q j · h√ j|U†(µ)H(∫)U(µ)|√ ji,(3.11)

where q = (q1, ...,qN) is a probability distribution such that q1 < q2 < ... < qN , and
notations |√1i, . . . , |√Ni denote the computational basis. Suppose that PQC U(µ) has
enough expressiveness, thenU(µ)|√ ji could learn the j-th eigenvector of the Hamiltonian
H(∫) with suitable parameters. Particularly, M(µ) will reach the global minimum when
all eigenvectors are learned. In other words, we use the PQC U(µ) to learn eigenvectors
via finding the global minimum of M(µ) over all parameters µ.
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Algorithm 3 Stochastic variational quantum eigensolver (SVQE)
Input: Parameterized quantum circuit U(µ), Hamiltonian H(∫), and weights q;
Output: Optimal PQC U(µ);
1: Set number of iterations I and l = 1;
2: Set integers T and D;
3: Set learning rate rµ;
4: Set probability distribution q;
5: Sample TD integers k11,. . .,k

1
T ,. . . ,k

D
1 ,. . .,k

D
T according to q;

6: Prepare computational states |√k11
i, . . . , |√k1T

i, . . ., |√kD1
i, . . ., |√kDT

i;
7: while l ∑ I do
8: Compute value h√ksj |U

†(µ)H(∫)U(µ)|√ksji for all j = 1,. . .,T and s= 1,. . .,D;
9: Compute averages: aves = 1

T
PT

j=1h√ksj |U
†(µ)H(∫)U(µ)|√ksji for all s= 1, ...,D;

10: Let M(µ)√median(ave1, ...,aveD);
11: Use M(µ) to compute the gradient r by parameter shift rules [107];
12: Update parameters µ√ µ° rµr;
13: Set l√ l+1;
14: end while
15: return the final U(µ).

Remark 3 Choosing a suitable U(µ) is critical to many variational quantum algorithms
as well as our Algorithm 3. With enough expressibility, training the PQC U(µ) would
allow us to exactly or approximately learn the solution to the certain problem. The
expressibility of PQCs has been recently studied in [132]. Note that PQCs with high
expressive power generally suffer from the barren plateaus [29, 30, 33, 67] and there
exhibits a trade-off between their trainability and expressivity [34, 44, 69]. We also note
that we can dynamically design a problem-specific ansatz [20, 42, 119, 163].

Remark 4 In the learning process, we employ a gradient-based method to update the
parameters µ iteratively. In each iteration, the corresponding gradients are computed
via the parameter shift rule [107], which outsources the gradient estimation to the loss
evaluation. As this is similar to other variational quantum algorithms, we omit the
details of gradient computation. For details of gradient derivation, please refer to the
proof of Proposition 3 in [146].

Notice that for large Hamiltonians, the loss M(µ) may consist of exponentially many
terms, which would be a huge burden to the loss evaluation. However, we could employ
the importance sampling technique to circumvent this issue. To this end, M(µ) is taken
as an expectation of the distribution q. Hence, M(µ) is to be estimated by the sample
mean. Notably, the cost of loss evaluation is dominated by the number of samples, which
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is why we call our method stochastic variational quantum eigensolver (SVQE). Our
algorithm with importance sampling for minimizing M(µ) is depicted in Algorithm 3. In
the following, we analyze the sample complexity in the loss evaluation.

Proposition 2. Consider a Hamiltonian H(∫) = Pm
`=1∫`E` with Pauli operators E` 2

{X ,Y ,Z, I}≠n and constants ∫` 2 [°1,1]. Given any constants ≤ > 0, ¥ 2 (0,1), Ø > 0, the
objective function M(µ) in SVQE can be estimated up to precision ≤ with probability at
least 1°¥, costing TD samples with T =O(mk∫k22/≤

2) and D =O(log(1/¥)). Besides, the
total number of measurements is given below:

O

√
mTDk∫k21(n+ log(m/¥))

≤2

!
.(3.12)

Sketch of proof The number of samples is determined by the accuracy ≤ and Hamilto-
nian H(∫). By Chebyshev’s inequality, estimating M(µ) up to precision ≤ with high proba-
bility requires T =O(mk∫k22/≤

2) samples, since the variance is bounded by the spectral
norm, which is less than

p
m k∫k2. Meanwhile, the expectation value h√ j|U†(µ)H(∫)U(µ)|√ ji

is evaluated by measurements. We compute the expectation value of the observable H(∫)
by measuring each Pauli operator E` separately, since there are only m =O(pol y(n))
Pauli operators. More details are deferred to Appendix A.1. ⌅

Remark 5 Other methods for computing expectation value of Hamiltonians can be found
in Ref. [6, 136], where importance sampling is employed to sample Pauli operator El

of the Hamiltonian. Moreover, a technique called classical shadow [72] could also be
exploited to this end. Particularly, it can save the resources of quantum states to estimate
the expectation of Hamiltonian that consists of many terms of Pauli strings.

Remark 6 In the context of quantum algorithms, there are many proposed methods for
learning the low-lying eigenvectors of the Hamiltonian and diagonalizing Hamiltonian.
Some known quantum algorithms for Hamiltonian diagonalization are based on quantum
fast Fourier transform [1], which may be too costly for NISQ computers and thus not
suitable for our purpose. Recently, there have already been some works on finding
ground and excited eigenstates of the Hamiltonian with NISQ devices, i.e., variational
quantum eigensolvers [38, 68, 77, 79, 106, 110, 114, 146]. They may be employed to learn
eigenvectors in the Hamiltonian learning framework.
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3.3.2 Gradient estimation

Recall that we employ a gradient-based method to do the optimization in the Hamiltonian
learning (cf. Figure 3.1). We use the tools developed previously to derive the gradient
estimation procedure.

Usually, with the estimated gradient, parameters are updated in the following way:

∫√∫° rrL(∫),(3.13)

where r is the learning rate. The expression of the gradient is given below.

rL(∫)=
µ
@L(∫)
@∫1

, ...,
@L(∫)
@∫m

∂
.(3.14)

Furthermore, the explicit formula of each partial derivative is given in [5]:
@L(∫)
@∫`

= @

@∫`
logZØ(∫)+Øe` =°Øtr(ΩØ(∫)E`)+Øe`,(3.15)

where ΩØ(∫)= e°ØH(∫)/ZØ(∫) represents the Gibbs state associated with the parameterized
Hamiltonian H(∫).

Algorithm 4 Gradient estimation
Input: Post-training circuit U(µ), Pauli operators {E`}m`=1, optimal bp§, and constants Ø

and {e`}m`=1;
Output: Gradient estimate rL(∫);
1: Set `= 1;
2: Set integer K and D;
3: Sample K integers l11, ..., l

1
K , ..., l

D
1 , ..., l

D
K , according to bp§;

4: Prepare computational states |√l11
i,. . .,|√l1K

i,. . .,|√lD1
i,. . ., |√lDK

i;
5: while `∑m do
6: Compute value h√lsj |U

†(µ)E`U(µ)|√lsji for j = 1, ..,K and s= 1, ...,D;
7: Calculate averages: aves = 1

K
PK

j=1h√lsj |U
†(µ)E`U(µ)|√lsji for all s= 1, ...,D;

8: Take the median value: s` =°Ø ·median(ave1, . . . ,aveD)+Øe`;
9: Set `√ `+1;

10: end while
11: return vector (s1, ..., sm).

Here we provide a procedure for gradient estimation without preparing the Gibbs
state ΩØ(∫) in Algorithm 4. We use the post-training PQC U(µ) and the optimal dis-
tribution bp§ (cf. Algorithm 1), respectively. And the component of the gradient can be
computed in the sense that

@L(∫)
@∫`

º°Ø
NX

j=1
bp§
j · h√ j|U†(µ)E`U(µ)|√ ji+Øe`.(3.16)
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The validity of the relation in Eq. (3.16) is proved in Proposition 3.

Proposition 3 (Correctness). Consider a parameterized Hamiltonian H(∫) and its Gibbs
state ΩØ(∫). Suppose the U(µ) from SVQE (cf. Algorithm 3) and bp§ from log-partition
function estimation procedure (cf. Algorithm 1) are optimal. Define a density operator Ω§

Ø

as follows:

Ω§
Ø =

NX

j=1
bp§
j ·U(µ)

ØØ√ j
Æ≠

√ j
ØØU†(µ),(3.17)

where {|√i j} denote the computational basis. Denote the estimated eigenvalues by b∏, where
b∏ j = h√ j|U†(µ)H(∫)U(µ)|√ ji for all j = 1, . . . ,N. Then, Ω§

Ø is an approximation of ΩØ(∫) in
the sense that

D(Ω§
Ø,ΩØ(∫))∑

q
2Ømax

©
Ebp§[|b∏°∏|],Ep§[|b∏°∏|]

™
.(3.18)

where D(·, ·) denotes the trace distance, ∏ represent H(∫)’s true eigenvalues, p§ is the
distribution corresponding to ∏, i.e., ∏ j = e°Ø∏ j /

P
l e°Ø∏l , and

Ebp§[|b∏°∏|]=
NX

j=1
bp§
j |b∏ j°∏ j|, Ep§[|b∏°∏|]=

NX

j=1
p§
j |b∏ j°∏ j|.(3.19)

Note that the quantity in Eq. (3.16) contains an expectation of distribution bp§,
then the partial derivative @L(∫)

@∫`
is estimated by the sample mean. Specifically, we first

randomly select the computational basis vectors |√ ji complying with distribution bp§ and
then compute the associated eigenvalues via U(µ). The detailed procedure of sampling
and estimate computation is laid out in Algorithm 4. The number of required samples is
analyzed in Proposition 4.

Proposition 4 (Sample complexity). Given ≤> 0 and ¥ 2 (0,1), Algorithm 4 can compute
an estimate for the gradient rL(∫) up to precision ≤ with probability larger than 1°¥.
Particularly, the overall number of samples is KD =O(Ø2 log(2m/¥)/≤2) with K =O(Ø2/≤2)
and D = O(log(2m/¥)). Besides, the total number of measurements is O(KD ·mØ2(n+
log(m/¥))/≤2).

The proofs for Propositions 3-4 are deferred to Appendix A.1.
To validate the gradient estimation, we show that the average of the overall errors

determines the accuracy of the gradient estimation. For this purpose, Proposition 3 shows
that matrix Ω§

Ø is an approximation of the desired density matrix ΩØ(∫). Specifically, the
trance distance between Ω§

Ø and ΩØ(∫) is dependent on the averaged errors Ebp§[|b∏°
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∏|] and Ep§[|b∏°∏|]. Here, notation |b∏°∏| denotes the difference between estimated
eigenvalue and the associated real eigenvalue. bp§ and p§ are probability distributions,
corresponding to b∏ and ∏, respectively. In particular, the distributions p§ and p̂§ contain
components that are decreasing exponentially and hence Ep§[|∏̂°∏|] and Ep̂§[|∏̂°∏|]
can be determined with high accuracy by several components of |∏̂°∏|. As a result, it
implies that learning several low-lying eigenvectors with high accuracy may lead to a
high precision estimate of the gradient. We numerically verify this feature in Sec. 3.4.3.

Moreover, Proposition 4 shows the feasibility of our approach as the number of
measurements scales polynomially in parameters n, 1/≤, and Ø.

Remark 7 Note that the convergence rate may slow down if the estimated gradient
has an error. However, we can always set the error as small as possible to alleviate this
issue. At the same time, despite the estimation error, the effect on the convergence rate
can be suppressed due to the strong convexity of the loss function [22]. For example,
experimental results in Sec. 3.4.3 show that even though the estimated gradients are
implicit, the loss function could still converge in a reasonable time.

3.4 Numerical Results

In this section, we conduct numerical experiments to verify the correctness of our
algorithm. Specifically, we consider recovering interactions coefficients of several Hamil-
tonians, including randomly generated Hamiltonians and many-body Hamiltonians. To
ensure the performance of the algorithm, we choose a PQC (shown in Fig. 3.2) and set
the circuit with enough expressibility. When testing our algorithm, we first use SVQE
to learn the full spectrum of Hamiltonians, where size of the Hamiltonian varies from
3 to 5. In SVQE, weights q consists of a normalized sequence of arithmetic sequence.
For instance, when n= 3, q= (1,2,3, . . . ,8)/S3, where S3 =

P8
l=1 l. Furthermore, in order

to reduce quantum resources, we also partially learn the few smallest eigenvalues of
the selected Ising models and derive estimates for coefficients up to precision 0.05. With
fewer eigenvalues to be learned, the depth of the used PQC is significantly reduced.

3.4.1 Random Hamiltonian models

This section shows the effectiveness of our algorithm with random Hamiltonians from
three aspects: different Ø, different numbers of µ (# µ) and a different number of qubits
(# qubits).
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Rz(µ0,0,0) Ry(µ0,0,1) Rz(µ0,0,2) • Rz(µ1,0,0) Ry(µ1,0,1) Rz(µ1,0,2) · · ·

Rz(µ0,1,0) Ry(µ0,1,1) Rz(µ0,1,2) • Rz(µ1,1,0) Ry(µ1,1,1) Rz(µ1,1,2) · · ·

Rz(µ0,2,0) Ry(µ0,2,1) Rz(µ0,2,2) • Rz(µ1,2,0) Ry(µ1,2,1) Rz(µ1,2,2) · · ·

Rz(µ0,3,0) Ry(µ0,3,1) Rz(µ0,3,2) • Rz(µ1,3,0) Ry(µ1,3,1) Rz(µ1,3,2) · · ·
£D

Figure 3.2: The selected quantum circuit U(µ) for stochastic variational quantum eigen-
solver (SVQE). Here, D represents circuit depth. Parameters µ are randomly initialized
from a uniform distribution in [0, 2º] and updated via gradient descent method.

Table 3.1: Hyper-parameters setting. The number of qubits (# qubits) varies from 3 to
5, and the number of µ (# µ) from 3 to 6. Ø is chosen as 0.3, 1, 3. “LR” denotes learning
rate. The values of µ are sampled uniformly in the range of [-1, 1]. The term, likes “[[0
2 1] [2 1 3] [0 3 3]]”, indicates there are three El ’s and each has three qubits with the
corresponding Pauli tensor product. Here “0,1,2,3” represent “I,X ,Y ,Z” respectively.
For example, for the first sample, the corresponding Hamiltonian is taken as H=0.3408
·I≠Y ≠X -0.6384 ·Y ≠X ≠Z -0.4988 ·I≠Z≠Z.

Aspects n # µ Ø LR µ El

3 3 1 1.0 [ 0.3408 -0.6384 -0.4988] [[0 2 1] [2 1 3] [0 3 3]]

Ø 3 3 0.3 8.0 [-0.4966 -0.8575 -0.7902] [[1 0 0] [3 0 2] [3 1 3]]
3 0.1 [0.5717 -0.1313 0.2053] [[1 0 0] [3 3 3] [0 2 3]]

# µ 3

4

1 1.0

[-0.7205 -0.3676 -0.7583 -0.3002] [[3 2 1] [2 1 3] [0 0 2] [2 0 0]]
5 [-0.5254 -0.1481 -0.0037 -0.4373 0.7326] [[1 3 0] [2 1 1] [3 3 2] [2 3 1] [0 2 0]]

6 [-0.5992 0.7912 0.5307 [[3 2 2] [0 2 1] [1 2 1]
-0.5422 -0.9239 0.0354] [2 2 0] [0 1 2] [3 2 1]]

# qubits 4 3 1 1.0 [ 0.0858 0.3748 -0.1007] [[0 2 0 1] [1 0 0 1] [2 0 1 0]]
5 [-0.0411 0.7882 0.6207] [[2 2 2 1 2] [2 3 3 2 1] [1 2 0 2 3]]

In the experimental setting, we randomly choose Pauli tensor products E` from
{X ,Y ,Z, I}≠n and target coefficients µ by a uniform distribution over [°1,1]. Specifically,
we first vary the values of Ø by fixing the number of µ and the number of qubits to
explore our method’s sensitivity to temperature. We similarly vary the number of µ and
the number of qubits by fixing other hyper-parameters to explore our method’s scalability.
The actual values of these hyper-parameters sampled/chosen in each trial are concluded
in Table 3.1. In addition, the depth, D, of the PQC U(µ) is set according to the size of
Hamiltonian. As number of qubits ranges from n= 3 to n= 5, the depth D is set to be
10,20,40, respectively.
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Table 3.2: Hyper-parameters setting for many-body models. For each Hamiltonian model,
the number of qubits varies from 3 to 5, and the number of µ is determined by the
number of Pauli operators. “LR" denotes learning rate. The values of µ are sampled
uniformly in the range of [°1,1].

Many-body models # qubits # µ Ø LR µ

Ising model
3 6

1.0
2.0 [J0 = 0.1981, h0 = 0.7544]

4 8 1.0 [J0 = 0.5296, h0 = 0.4996]
5 10 0.5 [J0 =°0.6916, h0 = 0.4801]

XY model
3 6

1.0
1.0 J1 =°0.0839

4 8 1.0 J1 = 0.2883
5 10 0.6 J1 =°0.7773

Heisenberg
3 12

1.0
1.0 [J2 = 0.0346, h2 = 0.8939]

4 16 1.0 [J2 =°0.5831, h2 =°0.0366]
5 20 1.0 [J2 = 0.2883, h2 =°0.2385]

In Table 3.1, Hamioltonian is represented by a tuple. Each number 0,1,2,3 corre-
sponds to matrices I,X ,Y ,Z, respectively. µ denotes the interaction coefficients to be
learned. For instance, [[0 2 1] [2 1 3] [0 3 3]] means that the Hamiltonian consists of three
Pauli operators, where each term represents a Pauli operator, e.g., [0 2 1] means I≠Y ≠X .
Then, the parameters in the top second row represents the following Hamiltonian.

0.3408I≠Y ≠X °0.6384Y ≠X ≠Z°0.4988I≠Z≠Z.(3.20)

Other Hamiltonians to be tested are represented in a similar fashion.

The results for these three aspects are illustrated in Fig. 3.3. We find that all curves
converge to the values close to 0 in less than ten iterations, which shows our method is
effective. In particular, our method works for low temperatures Ø means that it is robust
to temperature. And the results for the different number of µ and qubits reveals our
method’s scalability to a certain extent.

3.4.2 Quantum many-body models

Here, we demonstrate the performance of our algorithm for quantum many-body models.
Specifically, we consider the one-dimensional nearest-neighbor Ising model, XY model,
and Heisenberg model. These many-body models are described by the Hamiltonians
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shown below:

(Ising model) H0 = J0
nX

l=1
ZlZl+1+h0

nX

l=1
Xl ,(3.21)

(XY model) H1 = J1
nX

l=1
(XlX l+1+Y lY l+1),(3.22)

(Heisenberg model) H2 = J2
nX

l=1
(XlX l+1+Y lY l+1+ZlZl+1)+h2

nX

l=1
Zl ,(3.23)

where periodic boundary conditions are assumed (i.e., Xn+1 = X1, Y n+1 =Y 1, and Zn+1 =
Z1). Notation Zl = I≠. . .≠Z≠. . . I that acts on the l-th qubit. Coefficient J is the coupling
constant for the nearest neighbor interaction, and h represents the external transverse
magnetic field. The experimental parameters are concluded in Table 3.2.

We consider the models with a different number of qubits, varying from n= 3 to n= 5.
The inverse temperature is set as Ø= 1. The coefficients J0,J1,J2 and h0,h2 are sampled
uniformly from a uniform distribution on [-1,1]. We also employ the parameterized
quantum circuit U(µ) in Fig. 3.2 for the SVQE. And the depth of U(µ) is also set as
D = 10,20,40 for different n. Moreover, the numerical results are shown in Fig. 3.3,
which imply our method is applicable to recover quantum many-body Hamiltonians.

3.4.3 Numerical results using fewer eigenvalues of Ising
Hamiltonians

Notice that we use a PQC U(µ) with deep depths to learn the full spectrum of small-
sized Hamiltonians in Secs. 3.4.1-3.4.2, which may be beyond the capacity of NISQ
devices. However, this section demonstrates the efficacy of HQHL in learning the Ising
Hamiltonians using a circuit with reduced depth, where few eigenvalues (instead of
the full spectrum) are learned. In particular, only halved circuit depths are needed for
Hamiltonians with 3-5 qubits, given in Table 3.2. Furthermore, the performance on n= 6
and n= 7-qubit Ising models, given below, is tested as well.

H = 0.1981
nX

l=1
ZlZl+1+0.7544

nX

l=1
Xl .(3.24)

To reduce the number of eigenvalues to be learned, we tune the weights q of the
SVQE such that the U(µ) can output several smallest eigenvalues. For instance, five
eigenvalues are learned for 4 & 5-qubit Ising Hamiltonians, and four eigenvalues are
learned for 3-qubit Ising Hamiltonians. As a result, the circuit depth of the used U(µ) is
significantly reduced. For example, we only use depth D = 20 to learn the coefficients
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Table 3.3: Parameters setting for HQHL. The script index means the length of the tuple,
e.g., ()8 indicates the tuple consists of 8 entries. The notation 0, . . . means the entries
following 0 are all zeros as well. Notation #∏ means the number of eigenvalues we
learned. Please note that we omit the Ø= 1 in the table.

# qubits n weights q # µ depth D LR #∏

3 (0.1,0.2,0.3,0.4,0, . . .)8 6 5 0.4 4
4 (0.1,0.15,0.2,0.25,0.3,0, . . .)16 8 10 0.55 5
5 (0.1,0.15,0.2,0.25,0.3,0, . . .)32 10 20 0.7 5
6 (1/21,2/21,3/21,4/21,5/21,6/21,0, . . .)64 12 30 0.55 6
7 (1/21,2/21,3/21,4/21,5/21,6/21,0, . . .)128 14 40 0.6 6

with precision 0.05 for 5-qubit Ising models. While, in Sec. 3.4.2, we use the depth D = 40.
Moreover, we find out that using a circuit with 35 depths suffices to learn well the 6-qubit
Ising model, where SVQE only learns six eigenvalues. Using the circuit with depth 40
could also reach a precision of 0.05 for the 7-qubit Ising Hamiltonian. The details of
parameters setting (weights, depth, learning rate, etc.) are given in Table 3.3. Besides,
the experimental results are depicted in Figure 3.4.
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(a) Vary Ø (b) Vary # µ

(c) Vary # qubits (d) Ising model

(e) XY model (f) Heisenberg model

Figure 3.3: The curves in (a), (b), (c) represent the infinity norm of the error of µ with
different Ø, different number of µ, and different number of qubits, respectively. In (d),
(e), (f), the curves represent the infinity norm of the error of µ for different many-body
Hamiltonians with the number of qubits varies from 3 to 5. The numbers on the line
represent the values of the last iteration. These numbers close to 0 indicate that our
algorithm is effective.



3.4. NUMERICAL RESULTS

Figure 3.4: Experimental results by using fewer eigenvalues. Each line corresponds
to the results by running HQHL with Ising Hamiltonians of different sizes. Results
show that using halved circuit depth, compared to the setting in Sec. 3.4.2, could learn
coefficients up to precision 0.05 for different sized Ising models and a different number
of µ.
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4
QUANTUM GIBBS STATE PREPARATION

4.1 Loss function

Recall the definition of the Gibbs state for a quantum Hamiltonian H:

ΩG = exp(°ØH)
tr(exp(°ØH))

.(4.1)

A closely related concept is "free energy" of the system, which is described by a density
operator Ω is given by

F(Ω)= tr(ΩH)°Ø°1S(Ω),(4.2)

where Ø = (kBT)°1 is the inverse temperature of the system, kB is the Boltzmann’s
constant, and S(Ω) := °trΩ lnΩ is the von Neumann entropy of Ω. As the Gibbs state
minimizes the free energy of the Hamiltonian H, it holds that

ΩG = argminΩF(Ω).(4.3)

Therefore, if we could generate parameterized quantum states Ω(µ) and find a way
to measure or estimate the loss function tr(ΩH)° kBT ·S(Ω), then one could design
variational algorithms via the optimization over µ [36, 157].

To design a suitable and efficient variational quantum algorithm for near-term
quantum devices, we design a loss function in the similar spirit of free energy. We focus
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CHAPTER 4. QUANTUM GIBBS STATE PREPARATION

on finding the optimal parameters that minimize the free energy. The main challenge
of minimizing the free energy comes from the quantum entropy estimation, which is
well-known to be difficult [55]. To overcome this challenge, we truncate the Taylor series
of the entropy at order K and set the truncated free energy as the loss function in our
variational quantum algorithms. Explicitly, the loss function is represented as a linear
combination of system’s energy and higher-order state overlaps, i.e., tr(Ωk), and estimate
each tr(Ωk) via quantum gadgets, e.g., Swap test, respectively.

1

• H

...
...

• H

...
...

8
>><

>>:
⇢

8
>><

>>:
�

Figure 4.1: Quantum circuit for implementing Destructive Swap Test. In the circuit, two
states Ω and æ are prepared at different registers. Then CNOT and Hadamard gates are
performed as shown. The state overlap can be estimated via post-processing.

|0i H • • H

|0i /

U(✓)
⇥ ⇥

|0i /

|0i /

U(✓)
⇥ |0i /

U(✓)
⇥

|0i / |0i /

1

Figure 4.2: Quantum circuit for computing tr(Ω3). In the circuit, the U(µ) denotes the
state preparation circuit, and H denotes the Hadamard gate. Four registers are used to
prepare states by U(µ), and one ancillary qubit is used to perform the controlled swap
operator. The qubit reset occurs on the bottom two registers, where the break in the
wire means the reset operation. Notably, the state on the bottom two registers are first
implemented with a circuitU(µ) and controlled swap operator and then reset to state |0i.
Again, U(µ) and controlled swap operator are performed on the bottom registers. Finally,
tr(Ω3) can be obtained via post-processing the measurement results.
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4.2. VARIATIONAL QUANTUM GIBBS STATE PREPARATION

Algorithm 5 Variational quantum Gibbs state preparation with truncation order 2
1: Choose the ansatz of unitary U(µ), tolerance ", truncation order 2, and initial para-

meters of µ;
2: Compute coefficients C0, C1, C2 according to Eq. (4.6).
3: Prepare the initial states |00i in registers AB and apply U(µ).
4: Measure and compute tr(HΩB1) and compute the loss function L1 = tr(HΩB1);
5: Measure and compute tr(ΩB2ΩB3) via Destructive Swap Test and compute the loss

function L2 =°Ø°1C1 tr(ΩB2ΩB3);
6: Measure and compute tr(ΩB4...ΩB6) via higher-order state overlap estimation and

compute the loss function L3 =°Ø°1C2 tr(ΩB4...ΩB6).
7: Perform optimization of F2(µ)=

P3
k=1Lk°Ø°1C0 and update parameters of µ;

8: Repeat 3-7 until the loss function F2(µ) converges with tolerance ";
9: Output the state Ωout = trAU(µ) |00ih00|ABU(µ)†.

4.2 Variational quantum Gibbs state preparation

In this section, we present a hybrid algorithm with the second-order loss function
in Algorithm 5, and a picture for illustration is depicted in Fig. 4.3. Please refer to
Appendix A.2 for the variational quantum algorithm for general truncation order K .

Clearly, Algorithm 5 can be efficiently implemented on near-term quantum devices
since the estimation of loss function F2 only requires measuring the expected value
hHiΩ, the purity or the state overlap tr(Ω2), and the higher-order state overlap tr(Ω3). To
compute the state overlap, one approach is to utilize the well-known Swap test [26, 58],
which has a simple physical implementation in quantum optics [48, 53] and can be
experimentally implemented on near-term quantum hardware [74, 95, 113]. For instance,
we could use a variant version of the Swap test (see Fig. 4.1), named destructive Swap
test [37, 53]. Compared to the general Swap test, destructive Swap test is more practical
on near term devices, since it is ancilla-free and costs less circuit depth and the number
of the gates. Using the circuit in Fig. 4.1, the quantity tr(Ω2) is expected to be estimated
on near-term quantum hardware.

Regarding higher order state overlaps, e.g., tr(Ω3), there are methods using the
similar circuit to that of the destructive Swap test [134], whose depth is only 2. For more
information, please refer to [134]. We can also use the qubit-efficient circuit proposed by
Yirka and Yirka [159] to compute tr(Ωk), for larger k. Particularly, the circuit only uses a
constant number of qubits, where the key is that some subset of qubits can be reset in the
course of quantum computation. For convenience, we call this method the higher-order
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Figure 4.3: Schematic representation of the variational quantum Gibbs state preparation
with truncation order 2. First, we prepare the Hamiltonian H and inverse temperature
Ø and then send them into the Hybrid Optimization. Second, we choose an ansatz and
employ it to evaluate the loss function L1,L2,L3 on quantum devices. Then we calculate
the difference ¢F2(µ) by using L1,L2,L3. Next, if the condition ¢F2 ∑ ≤ is not satisfied,
then we perform classical optimization to update parameters µ of the ansatz and return
to the loss evaluation. Otherwise, we output the current parameters µ§, which could
be used to prepare Gibbs state ΩG via U(µ). Here in the quantum device, registers
A2,B2,A3,B3 are used to evaluate tr(ΩB2ΩB3) and registers A4,B4, . . . ,A6,B6 are used to
evaluate tr(ΩB4ΩB5ΩB6).

state overlap estimation and provide an example for computing tr(Ω3) in Fig. 4.2. We
also refer interested readers to [159] for more details on qubit-efficient algorithms for
computing tr(Ωk). Hence, using these qubit-efficient quantum circuits will significantly
circumvent our approach’s resource requirements for computing tr(Ωk) for k ∏ 3 and
enable our approach to be implementable on NISQ computers.

In general, the variational quantum circuit contains a series of parameterized single-
qubit Pauli rotation operators and CNOT/CZ gates alternately [13]. Here we follow
this circuit pattern and mainly use Pauli-Y rotation operators and CNOT gates. For
the optimization part, a variety of approaches have been proposed to optimize such
variational quantum circuits, including Nelder-Mead [65, 141], Monte-Carlo [152], quasi-
Newton [65], gradient descent [150], and Bayesian methods. We employ a classical
optimizer to minimize the loss function via tuning the parameters and then use the
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optimized circuit to prepare the target Gibbs state. For instance, we choose ADAM [86]
as our gradient-based optimizer in the numerical experiments. Note that the subroutine
of loss evaluation occurs on the quantum devices, and the procedure of optimization is
entirely classical. Then, classical optimization tools such as gradient-based or gradient-
free methods can be employed in the optimization loop.

4.3 Error analysis

In this section, we analyze the performance of our variational algorithm. Specifically,
we first define a formal optimization problem that aims to find the global minimum of
the truncated free energy. Second, we show that the prepared state has a higher overlap
with the desired Gibbs state, using higher-order loss functions in our approach.

In our algorithm (Algorithm 8), the K-truncated-free energy FK is taken as the loss
function. To find the global minimum of the loss function FK , we update the parameters µ

till the termination condition is reached. We denote the obtained optimal parameters by
µopt. Then we can prepare an approximation operator for the Gibbs state by performing
the parameterized circuit U(µopt).

The loss function FK is obtained by truncating the Taylor series of von Neumann
entropy at order K . Specifically, let K 2Z+ be a positive integer, and denote the truncated
entropy by SK (Ω). Let H denote the Hamiltonian and Ø> 0 be the inverse temperature,
then the loss function FK (µ) is defined as

FK (µ)= tr(HΩ(µ))°Ø°1SK (Ω(µ)).(4.4)

Here the free energy is determined by parameters µ, since the state Ω(µ) is prepared by
the PQC U(µ). Particularly, the K-truncated entropy SK (Ω) is given as follows,

SK (Ω)=
KX

k=1

(°1)k
k

tr
≥
(Ω° I)kΩ

¥
=

KX

j=0
Cj tr(Ω j+1).(4.5)

In Eq. (4.5), coefficients Cj ’s of SK (Ω) are given in the form below:

C0 =
KX

k=1

1
k
, Cj =

KX

k= j

√
k
j

!
(°1) j
k

,CK = (°1)K
K

.(4.6)

where j = 1, ...,K °1.
Recall that our goal is to find parameters µopt that minimize the value of the loss

function FK (µ), i.e., µopt = argminµFK (µ). In practice, the optimization loop only termi-
nates if some condition given previously is reached. Therefore, one cannot obtain the true
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optimum, but some parameters µ0 that will approximately minimize the loss function in
the sense that

(4.7) FK (µ0)∑min
µ

FK (µ)+≤,

where ≤ is the error tolerance in the optimization problem. Especially, we assume the
used PQC U(µ) endows sufficient expressiveness to prepare the desired Gibbs state or a
state very close to it. Hence, the state Ω(µ0) could be taken to approximate the desired
Gibbs state.

Since the loss function FK (µ) is a truncated version of the free energy, the solution
µ0 to the optimization problem in Eq. (4.7) is not exactly the quantum Gibbs state ΩG .
However, the obtained state Ω(µ0) is not far away from the Gibbs state ΩG . Here, we use
the fidelity to characterize the distance between two states. In the following, we show
the validity of this claim by providing a lower bound on the fidelity between Ω(µ0) and ΩG

in Theorem 1. In particular, the result in Theorem 1 implies that the larger truncation
order K is, the state Ω(µ0) is closer to the state ΩG .

Theorem 1. Given a positive integer K and error tolerance ≤> 0, let Ø> 0 be the inverse
temperature, and µ0 be the solution to the optimization in Eq. (4.7). Assume the rank of
the output state Ω(µ0) is r, then the fidelity between the state Ω(µ0) and the Gibbs state ΩG

is lower bounded as follows

(4.8) F(Ω(µ0),ΩG)∏ 1°
s
2
µ
Ø≤+ 2r

K +1
(1°¢)K+1

∂
,

where ¢ 2 (0, e°1) is a constant determined by K.

Theorem 1 implies that we can regard the output state Ω(µ0) as an approximation for
the Gibbs state for a given error tolerance in the optimization problem and a truncation
order K . And the quantity in the right-hand-side of Eq. (4.8) quantifies the extent that
Ω(µ0) approximates ΩG . Also, we can easily see that the quantity becomes larger when
the order K increases.

Next, we prove Theorem 1 by building a connection between the relative entropy and
the fidelity and then deriving an upper bound on the truncation error.

Lemma 1. Given quantum states Ω and æ and a constant ±> 0, suppose that the relative
entropy S(Ωkæ) is less than ±, i.e., S(Ωkæ)∑ ±. Then the fidelity between Ω and æ is lower
bounded. To be specific, F(Ω,æ)∏ 1°

p
2± .
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Proof. Recall the relationship between the trace distance and the fidelity D(Ω,æ) ∏
1°F(Ω,æ), and Pinsker’s inequality D(Ω,æ) ∑

p
2S(Ωkæ) , then we have the following

inequality,

(4.9) F(Ω,æ)∏ 1°D(Ω,æ)∏ 1°
p
2S(Ωkæ) ∏ 1°

p
2± .

⌅

Lemma 1 states that, if one wants to lower bound the fidelity F(Ω(µ0),ΩG) between
the obtained state Ω(µ0) and the Gibbs state ΩG , then it suffices to upper bound the
relative entropy S(Ω(µ0)kΩG) between them. Thus we proceed to give an upper bound of
the relative entropy.

Let ±0 be the truncation error of SK (Ω), then the definition of the free energy allows
to bound the difference between the free energy and its truncated version, i.e., |FK (Ω)°
F(Ω)|∑ Ø°1±0. Recall the well-known free energy equation, F(Ω)=F(ΩG)+Ø°1S(ΩkΩG),
which indicates that, for arbitrary density Ω, the free energy F(Ω) can be represented as
a linear combination of the free energy F(ΩG) of the quantum Gibbs state ΩG and the
relative entropy between Ω and ΩG . Therefore, an upper bound on the relative entropy
S(Ω(µ0)kΩG) is readily derived as follows:

S(Ω(µ0)kΩG)=Ø|F(Ω(µ0))°F(ΩG)|(4.10)

=Ø|F(Ω(µ0))°FK (Ω(µ0))+FK (Ω(µ0))°F(ΩG)|(4.11)

=±0+Ø|FK (Ω(µ0))°F(ΩG)|(4.12)

∑2±0+Ø≤,(4.13)

where the inequality in Eq. (4.13) is due to the fact that F(ΩG) ∑ FK (Ω(µ0)) ∑ F(ΩG)+
Ø°1±0+≤, which is stated in Lemma 2. In particular, to obtain the result in Lemma 2, we
assume the used PQC is expressive enough to prepare the target Gibbs state or a state
very close to it.

Lemma 2. Given the error tolerance ≤ > 0 in the optimization problem in Eq. (4.7),
suppose the truncation error of the free energy is Ø°1±0 > 0. Then we can derive a relation
between F(ΩG) and FK (Ω(µ0)) below, where µ0 is the output of the optimization and ΩG is
the Gibbs state.

F(ΩG)∑FK (µ0)∑F(ΩG)+Ø°1±0+≤.(4.14)

37



CHAPTER 4. QUANTUM GIBBS STATE PREPARATION

Proof. First, we show that left inequality in Eq. (4.14). For arbitrary density operator Ω,
we have FK (Ω)°F(Ω)> 0. To be specific,

FK (Ω)°F(Ω)=Ø°1(S(Ω)°SK (Ω))(4.15)

=°Ø°1 tr

√
1X

j=K+1

(°1) j+1
j

(Ω° I) jΩ

!
> 0(4.16)

In Eq. (4.16), we expand the von Neumann entropy into the Taylor series, i.e., S(Ω)=
°tr

≥P1
j=1

(°1) j+1
j (Ω° I) jΩ

¥
, and the result holds immediately.

Second, the right inequality in Eq. (4.14) is a direct result of the definition of truncated
free energy FK (Ω).

FK (µ0)°F(ΩG)=FK (µ0)°min
µ

FK (µ)+min
µ

FK (µ)°F(ΩG)(4.17)

∑ ≤+FK (ΩG)°F(ΩG)(4.18)

∑ ≤+Ø°1±0,(4.19)

where we use the fact that minµFK (µ)∑FK (µ0)∑minµFK (µ)+ ≤ in Eq. (4.18), and the
inequality in Eq. (4.19) is due to the truncation. Especially, we here assume the PQC
endows sufficient expressiveness to prepare the desired Gibbs state or a state very close
to it, which allows minµFK (µ)∑FK (ΩG). ⌅

Now, given the truncation order K , we derive an upper bound on the difference
between SK (Ω) and S(Ω) in the following lemma.

Lemma 3. Given a quantum state Ω, assume the truncation order of the truncated von
Neumann entropy is K 2Z+, and choose ¢ 2 (0, e°1) such that °¢ ln(¢)< 1

K+1(1°¢)K+1.
Let ±0 denote the truncation error, i.e., the difference between the von Neumann entropy
S(Ω) and its K-truncated entropy SK (Ω). Then the truncated error ±0 is upper bounded in
the sense that

±0 ∑
r

K +1
(1°¢)K+1 ,(4.20)

where r denotes the rank of density operator.

Proof. The proof proceeds by expanding the logarithm function in the entropy into
Taylor series. The upper bound of the difference between the entropy S(Ω) and its
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truncated version SK (Ω) for density Ω is given as follows,

±0 =
ØØS(Ω)°SK (Ω)

ØØ(4.21)

=
ØØØØØtr

√
1X

k=K+1

(°1)k
k

(Ω° I)kΩ

!ØØØØØ(4.22)

=
√

X

j: ∏ j∏¢
+

X

j: 0<∏ j<¢

!
1X

k=K+1

∏ j

k
(1°∏ j)k.(4.23)

In the above Eq. (4.23) we use the spectral decomposition of Ω =Pr
j=1∏ j

ØØ√ j
Æ≠

√ j
ØØ.

To give an upper bound on truncation error ±0, we give upper bounds on two terms in
Eq. (4.23). First, we consider the term with eigenvalues larger than ¢.

X

j: ∏ j∏¢

1X

k=K+1

∏ j

k
(1°∏ j)k =

X

j: ∏ j∏¢

1X

k=K+1

∑
1
k
(1°∏ j)k°

1
k
(1°∏ j)k+1

∏
(4.24)

∑
X

j: ∏ j∏¢

1X

k=K+1

1
k
(1°∏ j)k°

X

j: ∏ j∏¢

1X

k=K+1

1
k+1

(1°∏ j)k+1(4.25)

= 1
K +1

X

j: ∏ j∏¢
(1°∏ j)K+1.(4.26)

The equality in Eq. (4.24) is due to the substitution of ∏ j with 1° (1°∏ j), and the
inequality in (4.25) follows by replacing 1/k with 1/(k+1) in the right summation of
Eq. (4.24).

Then we consider the term with non-zero eigenvalues less than ¢.

X

j: 0<∏ j<¢
∏ j

1X

k=K+1

1
k
(1°∏ j)k ∑

X

j: 0<∏ j<¢
°∏ j ln(∏ j)(4.27)

∑
X

j: 0<∏ j<¢
°¢ ln(¢),(4.28)

where the inequality in Eq. (4.27) follows from replacing the series with ° ln(∏ j), since
function S(x)=°x ln(x)=P1

l=1
1
l x(1°x)l , and the second inequality is due to the fact that

S(x) increases as x increases in the interval (0, e°1).
In all, an upper bound on ±0 can be given as

±0 ∑
1

K +1
X

j: ∏ j∏¢
(1°∏ j)K+1+

X

j: 0<∏ j<¢
°¢ ln(¢)(4.29)

∑ r ·
µ
r0
r
(1°¢)K+1

K +1
+ r1

r
(°¢ ln(¢))

∂
(4.30)

∑ r ·max{
(1°¢)K+1

K +1
,°¢ ln(¢)}.(4.31)
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where r0 (r1) denotes the number of non-zero eigenvalues larger (less) than ¢. As
°¢ ln(¢)< 1

K+1(1°¢)K+1, the claim is proved. ⌅

Replacing ±0 in Eq. (4.13) with its upper bound in Eq. (4.20) immediately leads to a
bound on the relative entropy S(Ω(µ0)kΩG). Taking this bound into Lemma 1, a lower
bound on the fidelity F(Ω(µ),ΩG) is then derived, which is exactly the one in Eq. (4.8). Now,
the proof of Theorem 1 is completed. Although the choice of ¢ may be demanded when
the truncation order K is large, we could focus on a low-order loss function sufficient
to provide a high-fidelity Gibbs state approximation. We show this in more detail in
numerical experiments.

4.4 Gradient

Finding optimal parameters µopt is a major part of our variational algorithm. Both
gradient-based and gradient-free methods could be used to do the optimization. Here, we
provide analytical details on the gradient-based approach, and we refer to [13] for more
information on the optimization subroutines in variational quantum algorithms.

The choice of truncation order K could be various and depends on the required
accuracy for Gibbs state preparation. Here we mainly focus on the two-order loss function
F2(µ) as higher fidelity could be expected by the result in Theorem 1. We numerically
show the validity of this choice in the next section. Particularly, the numerical results
show we can use a two-order loss function to prepare high-fidelity Gibbs states of several
many-body Hamiltonians.

Now, we show that F2(µ) is convex, which indicates that the gradient-based method
could efficiently minimize it. We also derive the analytical expressions for its gradients
and show that these analytical gradients could also be evaluated efficiently on NISQ
devices. Especially, the same circuit for estimating F2(Ω) can also be used to calculate
their gradients.

Convexity of 2-truncated free energy Recall the definition of K-truncated entropy
SK (Ω) in Eq. (4.5), and, in this section, we take K = 2. Given truncation order 2, the loss
function F2(Ω) is defined in the following form:

(4.32) F2(µ)= tr(HΩ(µ))+Ø°1
µ
2tr(Ω(µ)2)° 1

2
tr(Ω(µ)3)° 3

2

∂
.

Notice that the functional tr(HΩ) is linear for a given Hamiltonian H and Ø > 0,
therefor the convexity of loss function F2 is determined by the convexity of the functional
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g(Ω)= 2tr(Ω2)° 1
2 tr(Ω

3)° 3
2 . Hence, to prove the convexity of F2, we only need to show the

convexity of functional g(Ω).

Lemma 4. The functional g(Ω) = 2tr(Ω2)° 1
2 tr(Ω

3)° 3
2 is convex, where Ω is a density

operator.

Proof. According to Theorem 2.10 of [28], the functional tr( f (Ω)) is convex if the asso-
ciated function f : R! R is convex. In the scenario, where F2(Ω) is given in Eq. (4.32),
the associated function of g is defined as f (x)= 2x2° 1

2 x
3° 3

2 for all x 2 [0,1]. The claim
follows from proving that f is convex, and the second order derivative f (2) of f is positive,
since

(4.33) f (2)(x)= 4°3x∏ 1 8x 2 [0,1].

Therefore, the positivity of the second order derivative of f leads to the convexity of F2(Ω)
in the set of densities operators. ⌅

Analytical gradient Here we discuss the computation of the gradient of the global
loss function F2(µ). Inspired by previous works [107, 112, 127], we compute the gradients
of the 2-truncated free energy F2 by shifting the parameters of the same circuit for
estimating F2. Note that there is an alternative method to estimate the partial derivative
with a single circuit [51], but at the cost of using an ancillary qubit.

In Fig. 4.3, the density operator Ω(µ) is prepared in the register B by performing a
sequence of unitaries U =UN ...U1 on the state |00iAB in registers AB. Each gate Um is
either fixed, e.g., a C-NOT gate, or parameterized. The parameterized gates are of the
form Um = e°iHmµm/2, where µm’s are real parameters and Hm’s are a tensor product of
Pauli matrices. Then the loss function F2 is related to parameters µ, and its gradient is
explicitly given by

rµF2(µ)=
µ
@F2(µ)
@µ1

, ...,
@F2(µ)
@µN

∂
.(4.34)

Particularly, the partial derivatives of F2 with respect to µm is

@F2(µ)
@µm

=1
2
(hKiµm+º

2
°hKiµm°º

2
)

+Ø°1[(2(hOiµm+º
2 ,µm °hOiµm°º

2 ,µm)°
3
4
(hGiµm+º

2 ,µm,µm °hGiµm°º
2 ,µm,µm)],(4.35)
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where hKi, hOi, and hGi are used to estimate tr(HΩ(µ)), tr(Ω(µ)2), and tr(Ω(µ)3), respec-
tively, and their definitions are given as follows:

hKiµÆ = tr(UÆ√A1B1U
†
Æ ·K),(4.36)

hOiµÆ,µØ = tr([≠3
l=2UÆ√AlBlU

†
Æ] ·O),(4.37)

hGiµÆ,µØ,µ∞ = tr([≠6
l=4UÆ√AlBlU

†
Æ] ·G).(4.38)

Here, we defer the definitions of notations K ,O,G and the process of deriving the gradient
to the Appendix A.4. From Eq. (4.35), we can see that the gradient can be efficiently
computed by shifting the parameters in the loss function.

1

(a) Ansatz with 6 parameters

1

(b) Ansatz with only 1 parameter

Figure 4.4: Two ansatzes for Ising chain model. These ansatzes are composed of two
registers A and B, where one ancillary qubit is set in A and 5 qubits are set in B. Notably,
the qubits in B are performed with rotations Ry(µ) and CNOT gates in (a), while only
CNOT gates in (b).

To summarize, the above results entail that the partial derivatives of our loss function
F2(µ) with respect to µ are completely determined by Eq. (4.35). This indicates that
the analytical gradient of our loss function F2(µ) can be efficiently computed on near-
term quantum devices by shifting parameters and performing measurements. With the
analytical gradients, one could apply the gradient-based methods to minimize the loss
function. Specifically, parameters µ in the unitaryU(µ) are updated towards the steepest
direction of the loss function, i.e.,

µ√ µ°¥rµF2(µ),(4.39)

where rµF2(µ) is the gradient vector and ¥ is the learning rate that determines the step
sizes. Under suitable assumptions, the loss functions converge to the global minimum
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4.4. GRADIENT

after certain iterations of the above procedure. Notice that other gradient-based methods,
e.g., stochastic gradient descent, ADAM [86], can also be used in the optimization loop of
our variational Gibbs state preparation algorithm.

(a) Ansatz with 6 parameters (b) Ansatz with only 1 parameter

Figure 4.5: Fidelity curves for the Ising chain Gibbs state preparation with different Ø. In
(a), we use the Ansatz with 6 parameters (cf. Fig. 4.4(a)); In (b), we use the Ansatz with
only 1 parameter (cf. Fig. 4.4(b)). We can see that they have almost the same performance,
which indicates only 1 parameter is enough for this task.

Figure 4.6: Semilog plot of the fidelity vs. the Ising Hamiltonian length (L) with different
Ø for the Ising chain model. Here, log2 means logarithm with base 2. We can see that the
fidelity increases exponentially with Ø growing.
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4.5 Numerical results

This section has conducted numerical experiments for preparing the Gibbs states of two
common Hamiltonian examples: the Ising chain model and XY spin-1/2 chain model.
Specifically, in subsection 4.5.1, we study the Ising chain model and show that a parame-
terized circuit with one ancillary qubit and shallow depth could be trained to produce the
Ising Gibbs state with fidelity higher than 99%, especially at higher Ø or lower inverse
temperature (Ø∏ 2). Here, we use the order-2 loss function in our learning algorithms.
Furthermore, we also give a more sophisticated ansatz with only one parameter that
can do the same thing. As the second example, in subsection 4.5.2, we study the spin
chain model. We show that our approach could achieve a fidelity higher than 95% via an
ansatz with 30 parameters for Ø∏ 1.5 for a 5-length XY spin-1/2 chain Hamiltonian. In
particular, the fidelity could also achieve 99% for the lower inverse temperature case.
In our numerical experiments, the classical parameters of the parameterized circuits
are initialized from a uniform distribution in [0,2º], and then updated via the ADAM
gradient-based method [86] until the loss function is converged.

4.5.1 Ising model

As our first example, we consider the spin 1/2 chain B of length L = 5, with the Ising
Hamiltonian

HB =°
LX

i=1
ZB,iZB,i+1(4.40)

and periodic boundary conditions (i.e., ZB,6 = ZB,1). Our goal is to prepare the correspond-
ing Gibbs state

ΩG = e°ØHB / tr(e°ØHB ).(4.41)

To prepare this state, we choose a 6-qubit parameterized circuit with nA = 1 and
nB = 5 (cf. Fig. 4.4), where A is the ancillary system that used for producing a mixed state
on system B. Here we need to note that we only use a 1-qubit ancillary system in our
ansatz, which is significantly less than [157] where nA = nB. In Fig. 4.4(a), the ansatz
consists of 6 single qubit Pauli-Y rotation operators with different classic parameters µi

(i 2 [6]) and 5 CNOT gates.
After applying this ansatz on the input zero state |0iA|05iB, we can get the output

state on system B, which is desired to get close to the Gibbs state in Eq. (4.41). The fidelity
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between this output state and the Gibbs state, in the training process with different Ø,
is depicted in Fig. 4.5(a). When Ø∏ 1.2, after 30 iterations of updating parameters, our
method can easily achieve a fidelity higher than 95%. Specifically, if Ø∏ 2, the fidelity
is higher than 99%, which indicates that our approach can almost exactly prepare the
Gibbs state in Eq. (4.41), especially at higher inverse temperatures.

We also test the preparation of the Ising Gibbs state for different length (i.e., L =
5,6,7,8,9), and all of the ansatzes are similar to Fig. 4.4(a), which only uses one additional
qubit. The curves of the logarithmic form of the fidelity between the output state ΩB

and the Gibbs state ΩG are depicted in Fig. 4.6. We can intuitively see that the larger
the Hamiltonian length is, the lower fidelity we achieve. However, we can also find that
the temperature has a significant impact on fidelity: the larger the Ø is, the higher the
fidelity is (see Proposition 6 for a detailed analysis). In particular, when Ø∏ 2, the fidelity
is already higher than 99%, for the Hamiltonian length we have listed in the figure.

An interesting experimental phenomenon in the training process is that the first
parameter µ1 in the system A is approaching º/2 while other parameters in the system
B are approaching 0. Hence, we update the ansatz to a simplified one in Fig. 4.4(b) and
implement the numerical simulations in Fig. 4.5(b). Notably, the overall performance is
almost the same as using the ansatz with 6 parameters (cf. Fig.4.5(a)). To further explore
this interesting behaviour of the Ising chain Gibbs state preparation, we analyze the
states generated using different loss functions.

Proposition 5. Given the circuit in Fig. 4.4(b) and denote ΩB(µ) its output state on system
B. For the Ising chain model, if we compute its free energy in Eq. (4.2) and our truncated
cost in Eq. (4.4), then the optimal parameters that minimize these two loss functions are
both

µ =º/2+kº,(4.42)

where k 2Z. As a result, ΩB(º/2) is the best state, under this circuit, that approaches the
Gibbs state in Eq. (4.41), with a fidelity larger than 95% for any Ø∏ 1.25.

Proof. This claim can be directly derived by computing the global minimum of both
loss functions F and F2 using the ansatz in Fig. 4.4(b). Assuming nA = 1, nB = n and
denoting the output state as |√iAB, we can easily obtain the state ΩB as

ΩB(µ)= trA(
ØØ√

Æ≠
√

ØØ
AB)(4.43)

= cos2(µ/2)
ØØ0n

Æ≠
0n

ØØ
B+sin2(µ/2)

ØØ1n
Æ≠
1n

ØØ
B .(4.44)
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To compute the derivatives of F(µ) and F2(µ), we first present their explicit expressions.

F(µ)= tr(HBΩB(µ))°Ø°1S(ΩB(µ))

=∏0a+∏1b+Ø°1 [a ln(a)+b ln(b)] ,(4.45)

F2(µ)= tr(HBΩB(µ))+Ø°1
∑
2tr(ΩB(µ)2)°

1
2
tr(ΩB(µ)3)°

3
2

∏

=∏0a+∏1b+Ø°1
∑
2a2+2b2° a3+b3

2
° 3
2

∏
,(4.46)

where we denote cos2(µ/2) by a and sin2(µ/2) by b, and ∏0 and ∏1 are the eigenvalues of
H associated with eigenvectors |0ni and |1ni, respectively.

Actually, in the Ising chain model, ∏0 and ∏1 are equal (c.f. Lemma 5). Thus, deriva-
tives of F(ΩB(µ)) and F2(ΩB(µ)) with respect to µ have the following form.

@µF(µ)=
Ø°1

2
sin(µ) (ln(b)° ln(a))(4.47)

@µF2(µ)=
5Ø°1

2
sin(µ)(b°a).(4.48)

From Eqs. (4.47) (4.48), the global minimums of F and F2 are

µ = º

2
+kº 8k 2Z.(4.49)

The fidelity between ΩB(º/2) and ΩG could be derived from Proposition 6 and Lemma
5, where if we set N = 25, ¢ = 4 and Ø = 1.25 and then we get F(ΩB(º/2),ΩG) ∏ 95.3%.
Hence, we could achieve a fidelity higher than 95%, provided that Ø∏ 1.25. ⌅

Here, we need to note that this fidelity is just a lower bound, actually, when Ø= 1.2,
we have still achieved a fidelity greater than 95% for nB = 5, as demonstrated in our
experiments. And in Proposition 5, the number of qubits in system B is not limited to 5,
instead it can be any positive integer that greater than two.

Another interesting experimental result (c.f. Fig. 4.6) shows that the fidelity be-
tween the Ising chain Gibbs state ΩG and the output state ΩB of our method increases
exponentially when Ø increases. The result is shown below.

Proposition 6. Given the circuit in Fig. 4.4(b) and let ΩB(µ) be its output state on system
B. Then the fidelity between ΩB(º/2) and the Gibbs state ΩG is lower bounded. To be more
specific,

F(ΩB(º/2),ΩG)∏
1

p
1+ (N/2°1)e°Ø¢

,(4.50)
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where N is the dimension of system B, i.e., N = 2nB and ¢ is the spectral gap of the
Hamiltonian HB on system B, i.e., the discrepancy between the minimum and the second
minimum eigenvalues.

Proof. To prove this result, we assume the eigenvalues, associated with the eigenvectors
|0i, |1i, . . ., |N°1i, for the Hamiltonian H are denoted by ∏0, ∏1, . . ., ∏N°1. Specifically,
eigenvalues ∏0 and ∏N°1 are associated with eigenvectors |0ni and |1ni, respectively.
A key feature of the Ising model is that ∏0 = ∏N°1 and they are minimum among all
eigenvalues and let ¢ denote the spectral gap of the Hamiltonian HB, which implies
∏ j°∏0 ∏¢, where j 6= 0,N°1.

Let ∏̂ j denote the eigenvalues of the Gibbs state. Then, according to the definition of
Gibbs state, ∏̂ j have the following form.

∏̂ j =
e°Ø∏ j

Z
.(4.51)

where Z =PN°1
l=0 e°Ø∏l .

Next, we derive bounds on eigenvalues ∏̂0 and ∏̂N°1. Note that, in the Ising model,
eigenvalues ∏0 and ∏N°1 are equal, then the associated eigenvalues ∏̂0 = ∏̂N°1, and they
have the explicit forms in the following.

∏̂0 = ∏̂N°1 =
e°Ø∏0

Z
(4.52)

= 1
2+P

j 6=0,N°1 eØ(∏0°∏ j)
(4.53)

∏ 1
2+ (N°2)e°Ø¢

.(4.54)

Recall the output state of our algorithm is ΩB(º/2) in Proposition 5. The inequality in
Eq. (4.50) is immediately acquired by calculating the fidelity F(ΩB(º/2),ΩG):

F(ΩB(º/2),ΩG)= tr
q

Ω1/2
B (º/2)ΩGΩ1/2

B (º/2)(4.55)

= tr
q
1/
p
2 · ∏̂0 ·1/

p
2 |0nih0n|+1/

p
2 · ∏̂N°1 ·1/

p
2 |1nih1n|(4.56)

=
q
2∏̂0(4.57)

∏ 1
p
1+ (N/2°1)e°Ø¢

.(4.58)

This completes the proof. ⌅

The following lemma states some facts about the Ising model, which are helpful for
the above proofs.
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Lemma 5. Given an Ising model Hamiltonian in Eq. (4.40), the eigenvalues ∏0 and ∏N°1,
associated with eigenvectors |0nBi and |1nBi, are equal, i.e., ∏0 =∏N°1 =°L. Particularly,
the spectral gap is exactly 4 for all nB ∏ 2.

Proof. To prove that eigenvalues of |0nBi and |1nBi are equal, we compute their corre-
sponding eigenvalues of each term ZB,iZB,i+1. Notice that, for all i = 1, ...,L,

ZB,iZB,i+1|0nBi= |0nBi,(4.59)

ZB,iZB,i+1|1nBi= |1nBi.(4.60)

Hence, in the Ising model, the eigenvalues of |0nBi and |1nBi are °L.
As for the rest eigenvectors | ji, j 6= 0,N°1, their eigenvalues of ZB,iZB,i+1 are given

as follows.

ZB,iZB,i+1| ji= (°1)ki+ki+1 | ji,(4.61)

where ki and ki+1 are the bits in the i-th and (i+1)-th position of | ji. Particularly, in the
Ising model, the eigenvalue of | ji is represented as °PL

i=1(°1)kB,i+kB,i+1. To be specific,

HB| ji=°
LX

i=1
(°1)ki+ki+1 | ji.(4.62)

Overall, the eigenvalues of | ji are larger than °L, which implies the eigenvalues of |0nBi
and |1nBi are minimum.

Now we show that the spectral gap of the Ising model with more than two qubits is 4.
The minimum eigenvalue of HB is °L means that kB,i+kB,i+1 = 0/2 for all i, and hence
the ground states are |0nBi and |1nBi. If we flip one qubit of the eigenvector | ji, then two
terms like (°1)kB,i+kB,i+1 of its eigenvalues will change by 2. If we flip more qubits, then
more terms will change. Notice that the eigenvectors with an eigenvalue larger than
°L will differ from those with minimum eigenvalue at least one qubit, resulting in at
least two terms change. Then, the overall difference between the minimum and second
minimum eigenvalue is at least 4. Clearly, the difference of 4 can be obtained, and then
the spectral gap is 4. ⌅

Notably, our approach prepare Gibbs state with high accuracy when Ø is large, as the
fidelity F(ΩB(º/2),ΩG) converges fast to 1 with Ø increasing.
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Ry(✓0,5) Ry(✓1,5) Ry(✓d,5)

Ry(✓0,6) Ry(✓1,6) Ry(✓d,6)

1

Figure 4.7: The ansatz for XY spin-1/2 chain model. In this ansatz, it contains one ancilla
qubit in register A and 5 qubits in register B. Rotation gates Ry(µ) are first applied on
all qubits. Then, a basic circuit module (denoted in the dashed-line box) composed of
CNOT gates and rotation gates Ry(µ) is repeatedly applied. Here, d means repeating d
times.

4.5.2 XY spin-1/2 chain model

Our second instance is the XY spin-1/2 chain B of length L= 5, with the Hamiltonian

HB =°
LX

i=1
XB,iXB,i+1+YB,iYB,i+1(4.63)

and periodic boundary conditions (i.e., ZB,6 = ZB,1).
To prepare the spin chain Gibbs state, we first choose a 6-qubit parameterized circuit

with nA = 1 and nB = 5 (cf. Fig. 4.7), where the basic circuit module (which contains a
CNOT layer and a layer of single-qubit Pauli-Y rotation operators) is repeated d times,
and the total number of parameters of this circuit is (nA+nB)(d+1).

The fidelity between the output state of this circuit and the Gibbs state is shown
in Fig. 4.8, where different d’s are included. We see that when d ∏ 4 and Ø ∏ 1.5, our
approach can easily achieve a fidelity greater than 95% and if Ø∏ 2, the fidelity could be
higher than 98%. Furthermore, if Ø is equaling to 4, the fidelity can be even higher than
99%, which means our approach could almost generate the Gibbs state exactly in higher
Ø (or lower temperature). One possible reason that we need larger d for this instance
is that the Hamiltonian in Eq. (4.63) is not directly generated via the CNOT module.
Hence we will need multiple CNOT modules to fully entangle the state.

We need to note that the above experiments mainly focus on lower temperatures,
i.e., Ø> 1, where smaller ancillary systems and lower truncation order K = 2 are usually
sufficient to achieve a higher fidelity. In order to test our algorithm’s performance with
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(a) d = 3 (b) d = 4

(c) d = 5 (d) d = 6

Figure 4.8: Fidelity curves for the XY spin-1/2 chain Gibbs state preparation with
different Ø. The results of the fidelity obtained with different Ø are represented by
coloured lines. In (a)-(d), numerical experiments are performed using different ansatzes.
In each ansatz, the basic circuit module (cf. Fig. 4.7) is repeated different times, i.e., d.
Note that each ansatz has (nA+nB)(d+1)= 6(d+1) parameters. Here better performance
are obtained with larger d.

different truncation order K under higher temperatures (e.g., Ø < 0.5), we choose a
6-qubit parameterized circuit with nA = 3 and nB = 3 for a 3-length XY spin-1/2 chain
Hamiltonian. Here, the ansatz is similar to Fig. 4.7 and we set d = 8 to make it expressive
enough. nA = nB means the ancillary systems can cover all the Hamiltonian’s ranks. The
boxplots of the fidelity versus various truncation order K are illustrated in Fig. 4.9, where
three higher temperatures (Ø = 0.1,0.2,0.3) are included. From the results, we could
intuitively see that the larger truncation order, the higher fidelity we achieve, which is
in line with our theoretical analysis. And the phenomenon that we could still achieve a
fidelity higher than 98% even under higher temperatures indicates our hybrid algorithm
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has a powerful ability in preparing Gibbs states of certain many-body Hamiltonians.

Figure 4.9: Boxplot of the fidelity vs. the truncation order K with different Ø for the XY
spin-1/2 chain model. Here the ansatz is similar to Fig. 4.7 while nA = nB = 3. Each box
consists of 30 runs with different parameter initializations.
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5
QUANTUM ENTROPY ESTIMATION

In this chapter, we consider estimating quantum entropies of an unknown quantum
state on quantum computers. To begin with, we assume that copies of the input state Ω

can be accessed and have no constraint on the number of copies. Then, we formally state
the task of estimating the quantum entropies below.

Definition 3 (Entropy estimation). Given access to the copies of a quantum state Ω 2
C2n£2n, the aim is to estimate the von Neumann entropy S(Ω)=°tr(Ω lnΩ) and Æ-Rényi
entropy RÆ(Ω)= 1

1°Æ logtr(ΩÆ). To be more specific, find S(Ω)est and RÆ(Ω)est such that, for
any constant Æ 2 (0,1)[ (1,+1),

Pr
£ØØS(Ω)est°S(Ω)

ØØ∑ ≤
§
∏ 1°±,(5.1)

Pr[|RÆ(Ω)est°RÆ(Ω)|∑ ≤]∏ 1°±,(5.2)

where ≤ 2 (0,1) and ± 2 (0,1) denote the estimation accuracy and the failure probability,
respectively.

The main idea of our approaches is to find a Fourier series approximation of the
entropy and evaluate the Fourier series by constructing explicit quantum circuits. Overall
speaking, we establish the following: In Sec. 5.1, we propose the Fourier series as
approximations of the von Neumann and Rényi entropies, which means we decompose
the von Neumann and quantum Rényi entropy into the combination of many terms that
are easy to estimate. In Sec. 5.2, we provide explicit quantum circuits to evaluate the
Fourier series of the entropy approximations. In Sec. 5.3, combining the Fourier series
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approximation and explicit circuit schemes, we propose near-term quantum algorithms
for estimating von Neumann and quantum Rényi entropies.

5.1 Quantum entropy approximations

This section presents Fourier series approximations of S(Ω) and RÆ(Ω), i.e., a combination
of terms that can be evaluated on quantum computers.

5.1.1 Approximation of von Neumann entropy

To provide the Fourier series, we follow the method given in Lemma 37 of [140] to
contruct the Fourier series from a truncated Taylor series. Here, we use the truncated
Taylor series of S(Ω) shown below.

S(Ω)º
KX

k=1

1
k
tr

≥
Ω(I°Ω)k

¥
,(5.3)

where integer K is the truncation order determining the accuracy. The larger K gives a
more accuracy entropy S(Ω). The choice of truncation order can be determined by the
rank of the state, which can be found in an updated version of [149]. Here we give a
choice of truncation order depending on the eigenvalue lower bound.

Lemma 6. Suppose the minimal non-zero eigenvalue of state Ω is at least §, then there
exists an integer K such that

ØØØØØS(Ω)°
KX

k=1

1
k
tr(Ω(I°Ω)k)

ØØØØØ∑ ≤,(5.4)

where K 2£(log(1/≤§)/ log(1/(1°§)), and
PK

k=1
1
k ∑ log(K +1)+1.

Proof. First, we assume Ω has a spectral decomposition Ω = P
j∏ j

ØØe j
Æ≠
e j

ØØ. Then the
truncation error is given by

error =
ØØØØØ

1X

k=K+1

1
k
tr

≥
Ω(I°Ω)k

¥ØØØØØ(5.5)

=
1X

k=K+1

X

j

1
k
∏ j(1°∏ j)k(5.6)

∑
1X

k=K+1

1
k
(1°§)k(5.7)

∑ (1°§)K+1

§(K +1)
.(5.8)
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Here we have used facts that
P

j∏ j = 1 and ∏ j ∏§.
To suppress the truncation error to ≤, we choose K 2O(log(1/≤§)/ log(1/(1°§))). This

can be easily verified. As we aim to find K such that (1°§)K+1/§(K +1) ∑ ≤, we take
logarithm on both sides. Then we have

(K +1)log(1°§)° log(K +1)∑ log(≤§).(5.9)

Multiply °1 on both sides.

(K +1)log(1/(1°§))+ log(K +1)∏ log(1/≤§).(5.10)

Clearly, log(K +1)∏ 0. We then choose K such that (K +1)log(1/(1°§)) log(4/≤§), imme-
diately leading to the desired result.

Finally, we derive an upper bound on the Harmonic number
PK

k=1
1
k . Notice that

1
k
= 1

k
·1∑

Zk+1

x=k

1
x
dx+1 · ( 1

k
° 1
k+1

).(5.11)

Here, 1
k ·1 denotes the area of a rectangle. Accordingly, the R.H.S denotes the area of two

regions, one of which is determined by 1/x, varying from 1/k to 1/k+1, and the other is a
rectangle with height 1/k°1/(k+1) and width 1. Thus,

KX

k=1

1
k
∑

KX

k=1

∑Zk+1

x=k

1
x
dx+1 · ( 1

k
° 1
k+1

)
∏

(5.12)

=
ZK+1

x=1

1
x
dx+

KX

k=1
(
1
k
° 1
k+1

)(5.13)

∑ ln(K +1)+1.(5.14)

Finally, the proof is completed. ⌅

Using this Taylor series, we can find a Fourier series approximation S(Ω)est, which is
presented in Lemma 7.

Lemma 7. For arbitrary quantum state Ω 2C2n£2n , let § be the lower bound on all non-
zero eigenvalues of Ω. There exists a Fourier series S(Ω)est such that

ØØS(Ω)°S(Ω)est
ØØ∑ ≤ for

any ≤ 2 (0,1), where

S(Ω)est =
bLcX

l=0

UlX

s=Dl

KX

k=1

b(k)l
°l
s
¢

k2l
tr(Ω cos(Ω · t(s, l))).(5.15)

55



CHAPTER 5. QUANTUM ENTROPY ESTIMATION

Particularly, coefficient Ul =min{l,d l2e+Ml} and Dl =max{0,b l2c°Ml}, and
°l
s
¢
denotes the

binomial coefficient. Meanwhile, coefficients t(s, l)= (2s° l)º/2, and coefficients K ,L,Ml

are given by

K 2£

µ
log(≤§)

log(1°§)

∂
, L= ln

√
4

PK
k=1 1/k
≤

!
1
§2 , Ml =

»
ÃÃÃ

vuutln

√
4

PK
k=1 1/k
≤

!
l
2

…
ÕÕÕ
.(5.16)

For any k= 1, . . . ,K , l = 0, . . . ,bLc, the coefficients b(k)l are positive and defined inductively.
Explicitly,

b(1)l = 0, if l is even, b(1)l =
2
° l°1
(l°1)/2

¢

º2l°1l
, if l is odd, b(k+1)l =

lX

l0=0
b(k)l0 b(1)l°l0 , 8k∏ 1.

(5.17)

Moreover, overall weights of S(Ω)est is bounded as follows.

bLcX

l=0

UlX

s=Dl

KX

k=1

b(k)l
°l
s
¢

2lk
2O (log(K)) .(5.18)

Proof. To prove the result in the Lemma, we only focus on the Taylor series of the
natural logarithm. By Lemma 6, for K 2£(log(1/≤)/ log(1/(1°§)),

ØØØØØ° ln(x)°
KX

k=1

1
k
(1° x)k

ØØØØØ∑
≤

4
.(5.19)

We use the method in Lemma 37 of [140] to construct the Fourier series. The process
proceeds as three major steps: 1. Transform the Taylor series into a linear combination
of cosines. 2. Truncate the series to obtain a high-precision approximation. 3. Substitute
all cosines with complex exponents.

Step 1. As all eigenvalues ∏ of Ω in [0,1], the identity below holds.

1°∏= arcsin(sin((1°∏)º/2))
º/2

= arcsin(cos(∏º/2))
º/2

.(5.20)

Substitute ∏ with x in the L.H.S of Eq. (5.19) and 1°∏ with arcsin(cos(∏º/2))/º/2.
ØØØØØ° ln(∏)°

KX

k=1

1
k

µ
arcsin(cos(∏º/2))

º/2

∂kØØØØØ∑
≤

4
.(5.21)

Recall the Taylor series of arcsin(y), for all y 2 [°1,1],

arcsin(y)=
1X

l=0

(2l)!
4l(l!)2(2l+1)

y2l+1 = y+ y3

6
+ 3y5

40
+ . . .(5.22)
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Using the Taylor series of arcsin(y), we deduce the Taylor series of (arcsin(y)/º/2)k, given
by

µ
arcsin(y)

º/2

∂k
=

1X

l=0
b(k)l yl .(5.23)

Particularly, the coefficients b(k)l could be inductively computed. Specifically speaking,

µ
arcsin(y)

º/2

∂k+1
=

µ
arcsin(y)

º/2

∂k √
1X

l=0
b(1)l yl

!
.(5.24)

For k = 1, all b(1)l correspond to the coefficients of the Taylor series of arcsin times 2
º .

That is,

b(1)2l = 0, b12l+1 =
2
º

(2l)!
4l(l!)2(2l+1)

= 2/º
4l(2l+1)

√
2l
l

!
.(5.25)

For general k, suppose all coefficients b(k)l are obtained, then the coefficients b(k+1)l are
computed as follows:

b(k+1)l =
lX

l0=0
b(k)l0 b(1)l°l0 .(5.26)

So, we could inductively compute all coefficients b(k)l using Eqs. (5.25)-(5.26).

Consequently, we have deducted a series to approximate ° ln(∏).

ØØØØØ° ln(∏)°
KX

k=1

1
k

1X

l=0
b(k)l cosl(∏º/2)

ØØØØØ∑
≤

4
.(5.27)

Step 2. Now, we truncate the series in Eq. (5.27) to obtain a high-precision approxi-
mation series.

First, we truncate the infinity series at order L= ln
µ
4

PK
k=1 1/k
≤

∂
1
§2 . Next, we show the
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truncation error.
ØØØØØ

1X

l=dLe
b(k)l cosl(∏º/2)

ØØØØØ∑
1X

l=dLe
b(k)l

ØØØcosl(∏º/2)
ØØØ(5.28)

∑ cosL(∏º/2)
1X

l=dLe
b(k)l(5.29)

∑ cosL(∏º/2)(5.30)

= sinL((1°∏)º/2)(5.31)

∑ (1°∏2)L(5.32)

∑ e°∏2L(5.33)

∑ e°§
2L(5.34)

∑ ≤

4
PK

k=1 1/k
.(5.35)

Here, we have used facts that b(k)l ∏ 0,
P1

l=1 b
(k)
l = 1, sin((1°±)º/2)∑ 1°±2 for all ± 2 (0,1),

(1°±)∑ e°±, and ∏ 2 [§,1].
As shown above, the truncated series could act well as an approximation.

ØØØØØ° ln(∏)°
KX

k=1

1
k

bLcX

l=0
b(k)l cosl(∏º/2)

ØØØØØ∑
≤

2
.(5.36)

Step 3. Now, we use the equality cos(z)= eiz+e°iz

2 to rewrite the series in Eq. (5.36).

KX

k=1

1
k

bLcX

l=0
b(k)l

∑
ei∏º/2+ e°i∏º/2

2

∏l
=

KX

k=1

1
k

bLcX

l=0
b(k)l 2°l

lX

s=0

√
l
s

!
ei(2s°l)∏º/2.(5.37)

Particularly, this series could be further truncated by using the property of binomial
distribution. By Chernoff ’s inequality, we have

lX

s=dl/2e+Ml

2°l
√
l
s

!
∑ e°

2M2
l

l .(5.38)

Setting Ml =
&s

ln
µ
4

PK
k=1 1/k
≤

∂
l
2

'
, suppose that Ml ∑ bl/2c, then we could find that

bl/2c°MlX

s=0
2°l

√
l
s

!
=

lX

s=dl/2e+Ml

2°l
√
l
s

!
∑ e°

2M2
l

l ∑ ≤

4
PK

k=1 1/k
.(5.39)

Eventually, we have obtained the desired series, shown below, up to precision ≤.

bLcX

l=0

dl/2e+MlX

s=bl/2c°Ml

√
KX

k=1

b(k)l
k

!
2°l

√
l
s

!
ei(2s°l)∏º/2.(5.40)
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The claimed result follows immediately from the formula of entropy.
In addition, the sum of all coefficients is bounded. This is because

bLcX

l=0

dl/2e+MlX

s=bl/2c°Ml

√
KX

k=1

b(k)l
k

!
2°l

√
l
s

!
∑

bLcX

l=0

√
KX

k=1

b(k)l
k

!
(5.41)

∑
KX

k=1

1
k

(5.42)

∑ ln(K +1)+1.(5.43)

Here we have used facts that 2°l
Pl

s=0
°l
s
¢
= 1,

P1
l=0 b

(k)
l =

≥
arcsin(1)

º/2

¥k
= 1, and the result in

Lemma 6. ⌅

5.1.2 Approximation of Æ-Rényi entropy

As for the quantum Æ-Rényi entropy, the estimation task can be simplified. Notice the
expression RÆ(Ω), we only need to focus on the quantity tr(ΩÆ) and derive the desired
estimate via calculation after obtaining the estimate of tr(ΩÆ). Next, we construct the
Fourier series approximation to tr(ΩÆ). Moreover, we display how the estimation error of
tr(ΩÆ) propagates to the Æ-Rényi entropy.

To begin with, we write tr(ΩÆ)= tr(Ω ·ΩØ), where Ø=Æ°1. Recall the Taylor series of
the power function xØ over the interval x 2 (0,2).

xØ =
1X

k=0

√
Ø

k

!
(x°1)k,(5.44)

where
°Ø
k
¢
=Qk

j=1
Ø° j+1

j = Ø(Ø°1)...(Ø°k+1)
k! is the generalized binomial coefficient.

Clearly, truncating the infinity series of xØ would lead to the desired Taylor series.
While, for different Ø, the truncation order K will be various. To get such an order, we
need more information about the generalized binomial coefficients. Thus we show the
bounds on the generalized binomial coefficient below.

Proposition 7. For any constant Ø 2 (°1,0)[ (0,+1), there exists a bound on the gener-
alized binomial coefficient

°Ø
k
¢
.

1. For Ø 2 (°1,0) and any integer k∏ 1, |
°Ø
k
¢
|∑ |Ø|.

2. For Ø 2 (0,1] and any k ∏ 2,
ØØØ
°Ø
k
¢ØØØ ∑

∑
1+

Ø ln (k+1)
k2

+Ø°1
k

∏k
. Particularly, |

°Ø
k
¢
| ∑ 1

e , if

k 2≠(1).
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3. For Ø 2 (1,+1) and k ∏ Ø+1,
ØØØ
°Ø
k
¢ØØØ ∑

"
1+ Ø ln (Ø+1)2

k +2
k

#k

. Particularly, |
°Ø
k
¢
| ∑ 1, if

k 2≠((Ø+1)2).

Moreover, for an integer K, the sum
PK

k=1

ØØØ
°Ø
k
¢ØØØ is bounded.

KX

k=1

ØØØØØ

√
Ø

k

!ØØØØØ∑

8
>><
>>:

O
≥
K + e2(Ø+1)2Ø ·

h
ln(de

2
Ø (Ø+1)2e+1)+1

i
° e

2
Ø (Ø+1)2

¥
, if Ø 2 (1,+1),

O(K), if Ø 2 (0,1],
O

°
|Ø|K

¢
, if Ø 2 (°1,0).

(5.45)

Proof. Case 1: Ø 2 (1,+1).
We consider an integer k such that k°1∏Ø. We use [Ø] to denote the maximal integer

that is less than Ø.
ØØØØØ

√
Ø

k

!ØØØØØ=
Ø|Ø°1| · |Ø°2| · . . . · |Ø°k+1|

k!
(5.46)

= Ø

k
· |Ø°1|

1
· |Ø°2|

2
· . . . |Ø°k+1|

k°1
·(5.47)

∑

2
4

Ø
k +|Ø1 °1|+ . . .+| Ø

[Ø] °1|+ . . .+| Ø
k°1 °1|

k

3
5
k

(5.48)

=

2
4

Ø
k + (Ø1 °1)+ . . .+ ( Ø

[Ø] °1)+ . . .+ (1° Ø
k°1)

k

3
5
k

(5.49)

=
"
Ø(1+ 1

2 + . . .+ 1
[Ø] +

1
k )° [Ø]+ (k°1° [Ø])°Ø( 1

[Ø]+1 + . . .+ 1
k°1)

k

#k

(5.50)

=

2
4
2Ø(1+ 1

2 + . . .+ 1
[Ø] )+

Ø
k ° [Ø]+ (k°1° [Ø])°Ø(1+ 1

2 + . . .+ 1
k°1)

k

3
5
k

.(5.51)

In the first inequality, we use the inequality of arithmetic and geometric means.
Notice that sum

Pk
l=1

1
k is a Harmonic number. By the properties of Harmonic num-

bers, we have

1+ 1
2
+ . . .+ 1

[Ø]
∑ ln([Ø]+1)+1∑ ln(Ø+1)+1,(5.52)

1+ 1
2
+ . . .+ 1

k°1
∏ ln(k).(5.53)
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With these properties, we derive a new bound on the generalized binomial coefficient.
ØØØØØ

√
Ø

k

!ØØØØØ∑
"
2Ø(ln(Ø+1)+1)+ Ø

k °2[Ø]+k°1°Ø ln(k)
k

#k

(5.54)

∑
∑
1+ 2Ø(ln(Ø+1)+1)°2(Ø°1)°Ø ln(k)

k

∏k
(5.55)

=

2
41+

Ø ln (Ø+1)2
k +2
k

3
5
k

.(5.56)

Let k∏ e
2
Ø (Ø+1)2, then we have Ø ln (Ø+1)2

k +2∑ 0. Then |
°Ø
k
¢
|will decrease exponentially

fast as k increases. As a result, it suffices to bound the generalized binomial coefficient
using k= de

2
Ø (Ø+1)2e, i.e., |

°Ø
k
¢
|∑ 1.

For an integer K ∏ de
2
Ø (Ø+1)2e, we can derive a bound on the sum

PK
k=1 |

°Ø
k
¢
|. Note

that for k∏ de
2
Ø (Ø+1)2e, the generalized coefficient

°Ø
k
¢
has a bound 1.

KX

k=1

ØØØØØ

√
Ø

k

!ØØØØØ∑
de

2
Ø (Ø+1)2eX

k=1

2
41+

Ø ln (Ø+1)2
k +2
k

3
5
k

+K °de
2
Ø (Ø+1)2e(5.57)

∑
de

2
Ø (Ø+1)2eX

k=1
exp

µ
Ø ln

(Ø+1)2

k
+2

∂
+K °de

2
Ø (Ø+1)2e(5.58)

=
de

2
Ø (Ø+1)2eX

k=1
e2 ·

∑
(Ø+1)2

k

∏Ø

+K °de
2
Ø (Ø+1)2e.(5.59)

In the second inequality, we use the inequality exp(x)∏ 1+ x for all x∏ 0.
Next, we give a bound.

de
2
Ø (Ø+1)2eX

k=1
e2 ·

∑
(Ø+1)2

k

∏Ø

= e2 · (Ø+1)2Ø
de

2
Ø (Ø+1)2eX

k=1
k°Ø(5.60)

< e2 · (Ø+1)2Ø
de

2
Ø (Ø+1)2eX

k=1

1
k

(5.61)

∑ e2 · (Ø+1)2Ø
h
ln(de

2
Ø (Ø+1)2e+1)+1

i
.(5.62)

In the first inequality, we use the fact that k°Ø < k°1 as Ø> 1.
Consequently, we readily obtain a bound for the sum.

KX

k=1

ØØØØØ

√
Ø

k

!ØØØØØ∑ e2 · (Ø+1)2Ø ·
h
ln(de

2
Ø (Ø+1)2e+1)+1

i
+K ° e

2
Ø (Ø+1)2.(5.63)
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Case 2: Ø 2 (0,1].
Recall the form of the generalized binomial coefficient.

ØØØØØ

√
Ø

k

!ØØØØØ=
Ø(1°Ø) . . . (k°1°Ø)

k!
(5.64)

= Ø

k
· (1°Ø) . . . (1° Ø

k°1
)(5.65)

∑
" Ø

k + (1°Ø)+ . . .+ (1° Ø
k°1)

k

#k

(5.66)

=
" Ø

k + (k°1)°Ø(1+ 1
2 + . . .+ 1

k°1)
k

#k

(5.67)

∑
" Ø

k + (k°1)°Ø ln(k)
k

#k

(5.68)

=
"
1+

Ø
k °1°Ø ln(k)

k

#k

(5.69)

∑
∑
1+ Ø[ln(k+1)+1° ln(k)]°Ø ln(k)°1

k

∏k
(5.70)

=
"
1+

Ø ln (k+1)
k2 +Ø°1
k

#k

.(5.71)

The first inequality is due to the inequality of arithmetic and geometric means. The
second and third are the results of applying the properties of the Harmonic series.

Notice that for any integer k∏ 4, the numerator Ø ln (k+1)
k2 +Ø°1<Ø°1<°1. Hence,

we can derive a bound by setting k∏ 4.
ØØØØØ

√
Ø

k

!ØØØØØ∑
"
1+

Ø ln (k+1)
k2 +Ø°1
k

#k

∑ 1
e
.(5.72)

Immediately, the bound on the sum is given as O(K).
Case 3: Ø 2 (°1,0).
For any integer k, the bound on the generalized coefficient is given as follows.

ØØØØØ

√
Ø

k

!ØØØØØ=
(°Ø)(1°Ø) . . . (k°1°Ø)

k!
(5.73)

∑ (°Ø)(2) . . . (k)
k!

(5.74)

=°Ø.(5.75)

Again, the bound on the sum is O(|Ø|K). ⌅
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With the bounds on
°Ø
k
¢
in Proposition 7, we are able to develop the Taylor series

approximation to tr(ΩÆ).

Proposition 8. For any constant Æ 2 (0,1)[ (1,+1) and ª 2 (0,1), there exists an integer
K such that, for any quantum state Ω with eigenvalue lower bound §,

ØØØØØtr(Ω
Æ)°1°

KX

k=1

√
Ø

k

!
tr

≥
Ω(Ω° I)k

¥ØØØØØ∑ ª.(5.76)

Particular, the choice of integer K is shown below.

K 2

8
<
:

max{≠(Æ2),≠(log(§ª)/ log(1°§))} if Æ 2 (2,+1),

≠(log(§ª)/ log(1°§)) if Æ 2 (0,1)[ (1,2].
(5.77)

Proof. Let Ω =P
j p j

ØØe j
Æ≠
e j

ØØ be the Schmidt decomposition of Ω, and expand ΩØ into the
Taylor series.

∞∞∞∞∞Ω
Æ°Ω°

KX

k=1

√
Ø

k

!
Ω(Ω° Isupp)k

∞∞∞∞∞=
∞∞∞∞∞

1X

k=K+1

√
Ø

k

!
X

j
p j(p j°1)k

ØØe j
Æ≠
e j

ØØ
∞∞∞∞∞(5.78)

∑
1X

k=K+1

ØØØØØ

√
Ø

k

!ØØØØØ (1°§)k(5.79)

∑ (1°§)K+1

§
.(5.80)

By Proposition 7, we can find an integer K such that |
°Ø
k
¢
|∑ 1 for all k∏K .

Furthermore, letting K ∏ log(§ª)/ log(1°ª), we can verify that (1°§)K+1/§∑ ª. ⌅

Now we can give a Fourier series approximation of RÆ(Ω).

Lemma 8. Consider a quantum state Ω 2C2n£2n. Let § 2 (0,1) be a lower bound on all
non-zero eigenvalues. For any Æ 2 (0,1)[(1,+1), there exists an estimate RÆ(Ω)est of RÆ(Ω)
up to precision ≤. To be specific,

RÆ(Ω)est =
1

1°Æ
logFÆ(Ω),(5.81)

and FÆ(Ω) satisfies |FÆ(Ω)° tr(ΩÆ)|∑ ª, where

FÆ(Ω)= 1+
bLcX

l=0

UlX

s=Dl

√
KX

k=1
(°1)kb(k)l

√
Æ°1
k

!!
2°l

√
l
s

!
tr(Ω ·cos(Ωt(s, l))).(5.82)
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In particular, the relation between ≤ and ª is given in Eq. (5.106), and definition of all
b(k)l are given in Eq. (5.17). And the parameters of FÆ(Ω) are given as follows. Coefficient
t(s, l)= (2s°l)º

2 , and Ul =min{l,d l2e+Ml} and Dl =max{0,b l2c°Ml}. Moreover,

K =£

µ
log(§ª)

log(1°§)
+Æ2

∂
, L= ln

√
4

PK
k=1 |

°Æ°1
k

¢
|

ª

!
1
§2 , Ml =

»
ÃÃÃÃ

vuutln

√
4

PK
k=1 |

°Æ°1
k

¢
|

ª

!
l
2

…
ÕÕÕÕ
.

(5.83)

And the overall weights of FÆ(Ω) are bounded by
PK

k=1 |
°Æ°1

k
¢
|, and bounds on

PK
k=1 |

°Æ°1
k

¢
|

are given in Table 5.1.

Æ Bound on
PK

k=1 |
°Æ°1

k
¢
|

(0,1) O(|Æ°1|K)
(1,2] O(K)

(2,+1) O
≥
K + e2(Æ)2Æ°2 ·

h
ln(de 2

Æ°1 (Æ)2e+1)+1
i
° e

2
Æ°1 (Æ)2

¥

Table 5.1: Upper bound on the overall weights.

Proof. We focus on constructing a Fourier series approximation to ΩØ, where Ø=Æ°1.
By Lemma 8, we can find a Taylor series in Eq. (5.76) that approximates to ΩØ with the

error (1°§)K+1/§. Setting K =£
≥

log(§ª)
log(1°§) +Æ2

¥
, the approximation error is suppressed

to ª/4.
We show the process of constructing the Fourier series in three steps.
Step 1. For simplicity, we only consider the eigenvalue ∏ instead of state Ω. Notice

that

∏°1=
arcsin(sin( (∏°1)º2 ))

º
2

=°arcsin(cos(∏º/2))
º/2

.(5.84)

Take the relation in Eq. (5.84) into the series in Eq. (5.76), then we can find an approxi-
mation to tr(ΩÆ).

tr(ΩÆ)= tr(Ω ·ΩØ)º 1+
KX

k=1

√
Ø

k

!
(°1)k tr

√
Ω

µ
arcsin(cos(Ωº/2))

º/2

∂k!
.(5.85)

Next, expand the function (arcsin(y)/º/2)k into the Taylor series, which is given in
the following formula.

(arcsin(y)/º/2)k =
1X

l=0
b(k)l yl .(5.86)

64



5.1. QUANTUM ENTROPY APPROXIMATIONS

The coefficients b(k)l can be efficiently calculated.
Then, tr(ΩÆ) could be written as follows.

tr(ΩÆ)º 1+
KX

k=1

√
Ø

k

!
(°1)k

1X

l=0
b(k)l tr

≥
Ω ·cos(Ωº/2)l

¥
(5.87)

= 1+
KX

k=1

√
Ø

k

!
(°1)k

1X

l=0
b(k)l tr

√
Ω ·

µ
e°iΩº/2+ eiΩº/2

2

∂l!
(5.88)

= 1+
KX

k=1

√
Ø

k

!
(°1)k

1X

l=0
b(k)l

lX

s=0

°l
s
¢

2l
tr

≥
Ω · eiΩ(2s°l)º/2

¥
.(5.89)

Consequently, we could truncate the above series to obtain an approximation of tr(ΩÆ) at
order L.

tr(ΩÆ)º 1+
KX

k=1

√
Ø

k

!
(°1)k

bLcX

l=0
b(k)l

lX

s=0

°l
s
¢

2l
tr

µ
Ω ·cos

µ
Ω
(2s° l)º

2

∂∂
.(5.90)

By setting L= ln
µ
4

PK
k=1 |(

Ø
k)|

ª

∂
1
§2 , we would obtain a series approximating to tr(ΩÆ) up to

precision ª/2. This is because, for any non-zero eigenvalue ∏, we have
ØØØØØ

1X

l=dLe
b(k)l cosl(∏º/2)

ØØØØØ∑
1X

l=dLe
b(k)l

ØØØcosl(∏º/2)
ØØØ(5.91)

∑ cosL(∏º/2)
1X

l=dLe
b(k)l(5.92)

∑ cosL(∏º/2)(5.93)

= sinL((1°∏)º/2)(5.94)

∑ (1°∏2)L(5.95)

∑ e°∏2L(5.96)

∑ e°§
2L(5.97)

∑ ª

4
PK

k=1 |
°Ø
k
¢
|
.(5.98)

Here, we have used facts that b(k)l ∏ 0,
P1

l=1 b
(k)
l = 1, sin((1°±)º/2)∑ 1°±2 for all ± 2 (0,1),

(1°±)∑ e°±, and ∏ 2 [§,1].
Step 3. Now, we use the equality cos(z)= eiz+e°iz

2 to rewrite the series in Eq. (5.90).

KX

k=1
(°1)k

√
Ø

k

!
bLcX

l=0
b(k)l

∑
ei∏º/2+ e°i∏º/2

2
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=

KX

k=1
(°1)k

√
Ø

k

!
bLcX

l=0
b(k)l 2°l

lX

s=0

√
l
s

!
ei(2s°l)∏º/2.(5.99)
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Particularly, this series could be further truncated by using the property of binomial
distribution. By Chernoff ’s inequality, we have

lX

s=dl/2e+Ml

2°l
√
l
s

!
∑ e°

2M2
l

l .(5.100)

Setting Ml =
&s

ln
µ
4

PK
k=1 |(

Ø
k)|

≤

∂
l
2

'
, suppose that Ml ∑ bl/2c, then we could find that

bl/2c°MlX

s=0
2°l

√
l
s

!
=

lX

s=dl/2e+Ml

2°l
√
l
s

!
∑ e°

2M2
l

l ∑ ª

4
PK

k=1 |
°Ø
k
¢
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Eventually, we have obtained the desired series FÆ(Ω), shown below, up to precision ª.

FÆ(Ω)= 1+
bLcX

l=0

dl/2e+MlX

s=bl/2c°Ml

√
KX

k=1
(°1)kb(k)l

√
Ø

k

!!
2°l

√
l
s

!
ei(2s°l)∏º/2.(5.102)

The claimed result follows immediately from the formula of entropy.
In addition, the sum of all coefficients is bounded. This is because

bLcX

l=0

dl/2e+MlX

s=bl/2c°Ml

KX

k=1

ØØØØØ(°1)
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ØØØØØ
KX

k=1
b(k)l
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!ØØØØØ∑
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!ØØØØØ .(5.103)

Here we have used facts that 2°l
Pl

s=0
°l
s
¢
= 1,

P1
l=0 b

(k)
l =

≥
arcsin(1)

º/2

¥k
= 1.

By Proposition 7, we can find the upper bound on the sum of generalized coefficients
as claimed.

⌅

5.1.3 Approximation error analysis

Here, we discuss the relation between ª and ≤. Let Étr(ΩÆ) be an estimate of tr(ΩÆ) up to
error ª, i.e., |Étr(ΩÆ)°tr(ΩÆ)|∑ ª. Then the difference between the corresponding logarithms
is given below.

ØØØØ
1

1°Æ
log Étr(ΩÆ)° 1

1°Æ
logtr(ΩÆ)

ØØØØ=
1

|1°Æ|

ØØØØØlog
Étr(ΩÆ)
tr(ΩÆ)

ØØØØØ=
1

|1°Æ|

ØØØØØlog
√
1+

Étr(ΩÆ)° tr(ΩÆ)
tr(ΩÆ)

!ØØØØØ .

(5.104)

Notice that | log(1+ x)|∑ 2|x| for any x 2 [°0.5,1]. Then we can assume that
Étr(ΩÆ)°tr(ΩÆ)

tr(ΩÆ)
falls in the interval [°0.5,1] and hence we have

ØØØØ
1

1°Æ
logtr(ΩÆ)° 1

1°Æ
log Étr(ΩÆ)

ØØØØ∑
2

|1°Æ|

ØØØØØ
Étr(ΩÆ)° tr(ΩÆ)

tr(ΩÆ)

ØØØØØ∑
2ª

|1°Æ||tr(ΩÆ)| .(5.105)
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Moreover, since tr(ΩÆ)∏ [tr(Ω2)]Æ°1 for all Æ 2 (0,1)[ (2,+1), and tr(ΩÆ)∏ tr(Ω2) for all
Æ 2 (1,2], we can determine ª upon receiving ≤. Explicitly, ª is given by

ª=

8
<
:

|1°Æ|[tr(Ω2)]Æ°1
2 ≤, 8Æ 2 (0,1)[ (2,+1),

|1°Æ|tr(Ω2)
2 ≤, 8Æ 2 (1,2].

(5.106)

Remark 8 The Swap test [47] can evaluate the term tr(Ω2) efficiently. As a result,
the 2-Rényi entropy can be obtained via Swap test as well. If let rΩ be the rank of
state Ω, we can substitute tr(Ω2) with 1/rΩ due to the fact that tr(Ω2) ∏ 1/rΩ. In these
cases, the estimation accuracy ª could be polynomially small if Ω is low-rank or tr(Ω2) is
polynomially small.

Now, we have provided estimates for the von Neumann and Æ-Rényi entropy in
Lemma 7 & 8. Especially, these estimates can be obtained by evaluating the Fourier
series in Eq. (5.15) & (5.82) on quantum computers. To achieve this purpose, we proceed
to devise quantum circuits to estimate quantity tr(Ω cos(Ω · t(s, l))).

5.2 Quantum circuit construction

In this section, we first show a scheme to estimate the term tr(Ω cos(Ωt)). We also demon-
strate the validity and estimate the cost of primitive single/two-qubit gates. Then we
discuss compressing the circuit width. In the end, we discuss a crucial subroutine that
can simulate the exponentiation of the Swap operator.

5.2.1 Circuit scheme

For simplicity, we first consider estimating tr(Ω cos(Ωt)) with small t. Based on the circuit
of iterative quantum phase estimation [40, 62, 87], the circuit for this purpose is depicted
in Figure 5.1. Please note that we denote the top first qubit of the circuit as the measure
register. The first state Ω is prepared in the main register, and other copies are prepared
on the ancillary registers.

In Figure 5.1, qubit |0ih0| and two copies of state Ω are input into the circuit. Then two
Hadamarad gates are applied to the measure register, sandwiching a controlled operation
operation c-e°iSt, i.e., the exponentiation of the Swap operator, where S denotes the Swap
operator. In the end of the circuit, the measurement occurs on the measure register along
the eigenbasis of the Pauli matrix Z. Particularly, the measurement outcomes lead to the
value of tr(Ω cos(Ωt)). More precisely, tr(Ω cos(Ωt))ºPr[0]°Pr[1], where Pr[0/1] denotes
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|0ih0| H • H

Ω /
e°iSt

Ω /

Figure 5.1: For a short time t, we first prepare a ground state |0ih0| in the measure
register, and prepare states Ω in the main register the ancillary register, respectively.
Subsequently, perform the controlled unitary operator e°iSt on state Ω≠Ω. At the end of
the circuit, we measure along the eigenbasis of Pauli Z, which would immediately lead
to an estimate for tr(Ω cos(Ωt)) up to precision O(t2).

the probability of observing outcome 0/1, respectively. And the estimation accuracy is
shown in the result below.

Proposition 9. Let V denote the unitary corresponding to the circuit in Figure 5.1. For
any quantum state Ω and a small parameter t 2 (°1,1), the average of measurement
results is close to tr(Ω cos(Ωt)). Explicitly,

ØØØtr(Ω cos(Ωt))° tr
≥≥
V (|0ih0|≠Ω≠2)V †

¥
Z0

¥ØØØ∑ 2t2.(5.107)

Here, Z0 equals to Z≠ I≠ I, which indicates measuring the measure register along Pauli
Z’s eigenbasis.

Proof. To demonstrate the validity, we focus on the state of the measure register and
the main register. Notice that, after the controlled operation, the initial state evolves
into the following form.

1
2

h
|0ih0|≠Ω≠2+|1ih1|≠ e°iStΩ≠2eiSt

i
+ 1
2

h
|0ih1|≠Ω≠2eiSt+|1ih0|≠ e°iStΩ≠2

i
.(5.108)

Next, trace out the appended copy of Ω. For instance, a part of Eq. (5.108) is traced as
follows.

|1ih0|≠ tranc
≥
e°iStΩ≠2

¥
= |1ih0|≠ tranc

°
(cos(t)I° isin(t)S)Ω≠2¢= |1ih0|≠ (cos(t)I° isin(t)Ω)Ω.

(5.109)

Notation tranc means tracing out the appended copy of Ω. Here, we have used facts
that e°iSt = cos(t)I° isin(t)S and tranc(SΩ≠æ)= Ωæ. A similar result could be derived for
|0ih1|≠Ω≠2eiSt.
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We bound the difference between (cos(t)I° isin(t)Ω)Ω and e°iΩtΩ.

di f f erence=
∞∞∞
h
e°iΩt° (cos(t)I° isin(t)Ω)

i
Ω
∞∞∞
tr

(5.110)

=
∞∞∞∞∞(1°cos(t))Ω° i(t°sin(t))Ω2+
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k!
Ω

∞∞∞∞∞
tr

∑ 2sin2(t/2)+|t°sin(t)|+
p
2 t2

2
∑ 2t2,

where we have used inequalities |x° sin(x)| ∑ x2/2 and |sin(x)| ∑ x, and the inequality
kP

k∏2 (°iΩt)k/k!ktr ∑
p
2 t2/2 (The proof can be found in Appendix A.1). Again, a similar

result can be found for Ω≠2eiSt and ΩeiΩt.
Note that the measurement outcome is

Pr[0]°Pr[1]=
tr

°
e°iStΩ≠2¢+ tr

°
Ω≠2eiSt

¢

2
=

tr
°
tranc(e°iStΩ≠2)

¢
+ tr

°
tranc(Ω≠2eiSt)
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2
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(5.111)

Recall we have shown that
∞∞tranc(e°iStΩ≠2)° e°iΩtΩ

∞∞
tr ∑ 2t2 and

∞∞tranc(Ω≠2eiSt)°ΩeiΩt
∞∞
tr ∑

2t2. Besides, tr(Ω cos(Ωt))= [tr(e°iΩtΩ)+ tr(ΩeiΩt)]/2. Immediately, we derive the result

ØØPr[0]°Pr[1]° tr(Ω cos(Ωt))
ØØ∑ 2t2.(5.112)

⌅

Now we have shown that the circuit in Figure 5.1 can be used to estimate the term
tr(Ω cos(Ωt)), especially when t is small. Regarding a large t, we use a circuit similar to

|0ih0| H • • · · · • H
Ω1 /

e°iS12¢t
e°iS13¢t

· · ·

e°iS1,Q+1¢t
Ω2 / · · ·
Ω3 / · · ·
...

...
...

...
ΩQ+1 / · · ·

Figure 5.2: For general time t, the circuit could be inductively constructed. The operator
e°iS¢t is sequentially applied on the main register and different ancillary registers,
conditional on the measure register. Here, we append Q ancillary states and use Q times
of e°iS¢t. For clear, we label states on different register by 1,2,3,Q+1, and the script of
the swap operator indicates the registers that swap operator acts on.
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that in Figure 5.1. Particularly, we divide the parameter t into several small pieces ¢t
and run c-e°iS¢t sequentially. The corresponding circuit is depicted in Figure 5.2, where
we run Q controlled operations, and the parameter ¢t is small.

Based on the result in Proposition 9, we can readily derive the result for estimating
tr(Ω cos(Ωt)) with a large t 2R.

Proposition 10. For any quantum state Ω 2C2n£2n and t 2R, there is a quantum circuit
that can estimate the quantity tr(Ω cos(Ωt)) with precision ≤. The number of needed copies
of state is O(t2/≤).

Proof. Suppose we divide the parameter t into Q pieces and the parameter in the Swap
operator becomes ¢t= t/Q. In the circuit, we need Q ancillary register and the state in
each ancillary register is Ω. For each interval of length ¢t, the resulting error in the
current state of the measure register and main register is at most 2¢t2 by Proposition
9. Easily, we can deduce the accumulating error, i.e., Q£2¢t2 ∑ 2t2/Q. To suppress the
overall accumulating errors, we set Q = d2t2≤ e. Consequently, the final error is at most ≤.

Moreover, the number of used copies is (Q+1)=O(t2/≤). ⌅

Proposition 10 has shown that we can use the circuit in Figure 5.2 to estimate the
Fourier series. While there are some remaining issues. One is that the large circuit width
may be a huge burden in practice. Another is to simulate the exponentiation of the Swap
operator. The solutions to overcome these issues are discussed in the following sections.

5.2.2 Circuit width circumvent

In Figure 5.2, there are Q+1 copies of Ω prepared at the beginning, while the interaction
only occurs between two copies at a time. For instance, copy Ω1 only interacts with the
ancillary register being state Ω2. Once the controlled operation c-e°iS12¢t is completed,
the occupied ancillary register is relieved. At that time, copy Ω3 is employed for the next
interaction. Hence, interactions occur alternatively between the measure register and
main register and different ancillary registers.

Notice that the relieved ancillary register will no longer affect the state of the rest
registers. Thus, we can measure the relieved register and reuse it for preparing a
new state by the qubit reset technique. Although measuring the ancillary register will
change the state in other registers, on average, their state is the reduced version of
the whole system, which allows us to focus on the reduced state. Using qubit reset
means that we can measure subsets of the qubits and reinitialize them [45]. In the past
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5.2. QUANTUM CIRCUIT CONSTRUCTION

decade, many experimental methods have been developed to actively reset the qubits
on superconducting qubits [45, 54, 59, 101, 121, 125]. Recently, the qubit reset also
applies to design quantum algorithms [52, 73, 96, 120, 159] with reduced circuit width.
Particularly, [159] uses qubit reset to devise quantum circuits for estimating tr(Ωk) with
k 2N, which can contribute to the problem of quantum Rényi entropy [123] estimation.

Here, we use the qubit reset to compression the width of the circuit in Figure 5.2.
In this case, we only need one ancillary register. Specifically, we prepare the state
Ω1≠Ω2 on the main register and ancillary register in the beginning. Then the interaction
occurs between them. Once the interaction ends, the ancillary register is measured.
Subsequently, the ancillary register is readily reset to state Ω3. And then, the interaction
occurs again. The same procedure of measuring and the reset repeats Q times in all. The
corresponding circuit using qubit reset can be found in Figure 5.3.

|0ih0| H • • • . . . • H

Ω1 /
e°iS¢t e°iS¢t e°iS¢t

. . .
e°iS¢t

Ω2 / Ω3 Ω4 . . .ΩQ+1

Figure 5.3: A quantum circuit for estimating tr(Ω cos(Ωt)) using qubit reset. The break
and a state Ω in the wire means implementing qubit reset.

5.2.3 A subroutine

In this section, we devise a circuit to simulate the exponentiation of the Swap operator
by the technique for simulating a linear combination of unitaries in [16]. Note that
the unitary e°iS¢t can be written as a linear combination of unitaries, i.e., e°iS¢t =
cos(¢t)I2n° isin(¢t)S. The index of identity means the number of qubits that the identity
acts on. To break down the exponentiation of the Swap operator, we need to build up the
module W first, which is shown in Figure 5.4. The first two qubits in state |00i are newly
added ancillary qubits.

First, the R1 gate is a rotation gate, the oc-R2 gate means that act the rotation gate
R2 on the target qubit when the control qubit is in the state |0i. The two single qubit
rotations R1 and R2 are defined as follows:
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|0ih0| R1

|0ih0| R2

select(S)

R†
2

Ω /
Ω / W

Figure 5.4: Quantum circuit for implementing the module W .

R1|0i=
Æ

2
|0i+

s

1° Æ2

4
|1i,(5.113)

R2|0i=

s
cos(¢t)

Æ
|0i+

s
|sin(¢t)|

Æ
|1i,(5.114)

where Æ = cos(¢t)+ |sin(¢t)| < 2. Here, we assume time ¢t is small enough so that
cos(¢t)> 0.

Second, the select(S) gate implements the operation (°i ·sgn)S on Ω≠Ω conditionally,
which is defined as follows:

select(S)= |0ih0|≠ I2n+|1ih1|≠ (°i ·sgn)S,(5.115)

where sgn denotes the sign of ¢t. The detailed structure can be found in Appendix A.5.
Third, we define a circuit module W as shown in Figure 5.4. At this stage, the module

can be written as:

W =R†
2select(S)(oc°R2)R1.(5.116)

Let P = |00ih00| be the operator that projects onto the subspace spanned by |00i,
where |00i are the ancillary qubits in Figure 5.4. Then, define a unitary operator

A =°W(I2°2P)W†(I2°2P)W .(5.117)

Here, the notation I2°2P denotes the operator that reflects along the vectors that are
orthogonal to the ancillary qubits |00i. As a result, the unitary A can simulate e°iS¢t.

Proposition 11. For arbitrary parameter ¢t 2 (°1,1), define two rotations R1 and R2

as in Eqs. (5.113)-(5.114). Define a circuit module W as in Figure 5.4 and a unitary
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|0ih0| H • • • • • • • • • • H

|0ih0| R1 X Z • X R†
1 Z R1

|0ih0| R2

select(S)

R†
2 Z R2

select(S)†

R†
2 Z R2

select(S)

R†
2

Ω /

Ω /
controlled°W controlled°W† controlled°W controlled°A

Figure 5.5: This figure depicts the resulting circuit by substituting c-e°iS¢t with the
circuit of controlled-A (dashed box) in Figure 5.1. The dotted circuit is the controlled-W
circuit, in which the c-R1 and oc-R2 are the 1-controlled R1 gate (apply R1 on the target
qubit if the control qubit in state |1i) and 0-controlled R2 gate (apply R2 on the target
qubit if the control qubit in state |0i), respectively. The definitions of R1 & R2 can be
found in Eqs. (5.113)-(5.114). The circuits between dotted boxes are known as reflectors.
Denote that all elements in the circuit can be broken down into single/two-qubits gates,
please refer to Appendix A.5 for details.

A =°W(I2°2P)W†(I2°2P)W, where P = |00ih00|, and I2 denotes the identity acting on
|00i. Then the unitary e°iS¢t can be simulated in the sense that

P≠ e°iS¢t = PAP.(5.118)

Proof. First, we can easily show that

PAP = 3PWP°4PWPW†PWP.(5.119)

Particularly, an important property of W is

h00|W |00i= 1
2
(cos(¢t)I2n° isin(¢t)S)=

1
2
e°iS¢t.(5.120)

Then,

PWP = 1
2
P≠ e°iS¢t,(5.121)

PWPW†PWP = 1
4
PWP.(5.122)

Last, the result immediately follows.
⌅
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Using the circuit of A to substitute e°iS¢t would lead to the desired quantum circuits
for estimating the Fourier series. We provide one example in Figure 5.5, where the circuit
of A is used once. We also estimate the number of needed primitive gates and qubits in
the following.

Proposition 12. For any quantum state Ω 2 C2n£2n, and time t 2 R, there is a quan-
tum circuit to estimate the quantity tr(Ω cos(Ωt)) up to precision ≤. The total amount of
single/two-qubit gates is O(nt2/≤).

Proof. The validity follows immediately from Proposition 10 and Proposition 11 and the
gate decomposition of controlled e°iS¢t in Appendix A.5. ⌅

By Proposition 12, we can estimate tr(Ω cos(Ωt)) using O(t2/≤) primitive gates. In
consequence, we can estimate the Fourier series by primitive gates as well.

5.3 Quantum entropy estimation

In this section, we present the quantum algorithms for estimating the von Neumann
and Æ-Rényi entropy. The key idea is to run the devised quantum circuits to evaluate the
Fourier series in Lemma 7 (for von Neumann entropy) and Lemma 8 (for Rényi entropy).
To be more specific, we construct an unbiased estimator by evaluating the Fourier series
via the circuits and classical post-processing the measurement outcomes. In particular,
in post-processing, we use the importance sampling technique. Moreover, we analyze the
correctness and cost of our algorithms.

Quantum algorithm for von Neumann entropy estimation The workflow for
estimating S(Ω) is depicted in Algorithm 6. First, we set a constant § as a lower bound
on all non-zero eigenvalues of the input state Ω. Then, upon receiving the required
precision ≤ and failure probability ±, we determine the Fourier series according to
Lemma 7. After that, we construct an unbiased estimator by the importance sampling
technique. Specifically, we randomly select each term of the Fourier series, where the
probability is proportional to the corresponding weight. The average of the selected
terms in expectation is proportional to the target quantity. And the proportional factor
is easy to calculate. Finally, we evaluate all selected terms via quantum circuits and
post-processing the measurement outcomes to reveal the desired estimates.
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Algorithm 6 Quantum algorithm for von Neumann entropy estimation
Input: Constants ≤,±,§ 2 (0,1), and copies of state Ω 2C2n£2n .
Output: Estimate of the von Neumann entropy S(Ω).
1: Compute coefficients L, K , Ml , and b(k)l as given in Lemma 7.
2: Compute kfk`1, as given in Eq. (5.124).
3: Set estimation error "= ≤/kfk`1.
4: Set integer N =PbLc

l=0(2Ml +1).
5: Define a distribution as in Eq. (5.125).
6: Set integer B= #Samples as in Eq. (5.127).
7: Sample B pairs of (s1, l1), . . ., (sB, lB).
8: Set j = 1 and sum= 0.
9: while j ∑B do

10: Set Q = d(2s j° l j)2º2/4"e.
11: Prepare Q+1 copies of Ω.
12: Estimate tr(Ω cos(Ω(2s j ° l j))º/2) with precision " and probability 1° ±/2N via

quantum circuits, given in Sec. 5.2.
13: Store the obtained estimate est j.
14: Update sum√ sum+est j and j√ j+1.
15: end while
16: return kfk`1 £sum/B.

Theorem 2. Consider a quantum state Ω 2 C2n£2n. Let § be the lower bound on all
non-zero eigenvalues of Ω. Suppose we have free access to copies of Ω, then Algorithm 6
outputs an estimate of the von Neumann entropy S(Ω) up to precision ≤, succeeding with
probability at least 1°±. In addition, the total amount of the needed copies of Ω and
single/two-qubit gates are, in the worst case, eO

°
1/≤5§2¢ and eO(n/≤3§2), respectively.1

Proof. Correctness analysis.
We rephrase the Fourier series in Lemma 7 as follows.

F(Ω)=
bLcX

l=0

UlX

s=Dl

f (s, l)tr
µ
Ω cos

µ
Ω
(2s° l)º

2

∂∂
.(5.123)

Coefficients f (s, l) are given by

f (s, l)=
√

KX

k=1

b(k)l
k

! °l
s
¢

2l
, 8s, l.(5.124)

Let f be a vector that consists of f (s, l). Then the `1-norm of f is bounded by O(log(K))
i.e., kfk`1 2O (log(K)) (cf. Lemma 7).

1The notation eO hides the logarithmic factors.
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Next, define an importance sampling as follows:

R= tr
µ
Ω cos

µ
Ω
(2s° l)º

2

∂∂
with prob.

f (s, l)
kfk`1

.(5.125)

The random variable R indicates that each Fourier term associated with (s, l) is sampled
with probability proportional to its weight f (s, l). Then, the Fourier series could be
rewritten as an expectation of R.

F(Ω)= kfk`1 ·E [R] .(5.126)

Hence, we derive an unbiased estimator F(Ω) for S(Ω).
Cost analysis.
Note that the sample mean could estimate the expectation, and the estimation

accuracy replies on the number of samples. Specifically, by Chebyshev’s inequality,
O(Var/≤2) samples are sufficient to derive an estimate of the expectation with precision ≤

and high probability, where Var denotes the variance, and ≤ is the precision. Meanwhile,
the probability could be boosted to 1°± at the cost of an additional multiplicative factor
O(log(1/±)) according to Chernoff bounds. Alternatively, by Hoeffding’s inequality, we
only need O(log(1/±)/≤2) samples to derive an estimate with precision ≤ and probability
larger than 1°±.

Regarding random variable R, the variance is less than 1. To estimate F(Ω) with pre-
cision ≤, we set the estimation precision for E[R] as "= ≤/kfk`1 and set failure probability
as ±/2. As a result, the number of needed samples is

#Samples=O
µ
1
"2

log
µ
2
±

∂∂
=O

√
kfk2`1
≤2

log
µ
2
±

∂!
.(5.127)

It means that there are at most #Samples terms needing to estimate via quantum
circuits.

On the other hand, notice that the Fourier series F(Ω) consists of N =PL
l=0(2Ml +1)

terms in all. Hence, it suffices to estimate each term with probability 1°±/2N. In this
way, the overall failure probability is at most ± by union bound.

When estimating the Fourier series, we need to measure the resultant state after
evolving the input state Ω by the circuits (e.g., please refer to Figures 5.2 & 5.3 & 5.5).
Note that the measurement outcome is evaluated nondeterministically, which implies
that the estimation could fail. To suppress the failure probability to ±, we suffice to
evaluate each term with a failure probability at most ±/2N. In consequence, for each
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term, the number of needed measurements is

#Measurements=O
µ
log(2N/±)

"2

∂
.(5.128)

Immediately, the total number of measurements for estimating the Fourier series is at
most

Cm = #Sample£#Measurements=O

√
kfk4`1
≤4

log
µ
2
±

∂
log

µ
N
±

∂!
= eO

µ
1
≤4

∂
.(5.129)

Now, we consider the cost on the number of state Ω. Recall that, when estimating
tr(Ω cos(Ωt)), performing once measurement costs eO(t2/≤) copies of Ω by Proposition 10.
For the Fourier series F(Ω), the largest time is O(ML)=O

≥
ln

≥
ln(K)

≤

¥
1
§

¥
. At the same time,

we have to measure Cm times in the entropy estimation. Then the number of overall
copies is at most

CΩ =Cm£ eO(M2
L/")=Cm£ eO

µ
ln2

µ
ln(K)

≤

∂
1

"§2

∂
= eO

µ
1

≤5§2

∂
.(5.130)

At last, consider the costs on the number of quantum gates. By Proposition 12, for
tr(Ω cos(Ωt)), it costs O(nt2/≤) primitive single/two-qubit gates to construct the circuit.
Meanwhile, we consider the largest evolution time O(ML). Then the total amount of gate
for the entropy estimation, in the worst case, is

Cg = #Sample£ eO(nM2
L/")= eO

≥ n
≤3§2

¥
.(5.131)

⌅

Quantum algorithm for quantum Rényi entropy estimation The quantum algo-
rithm for the Rényi entropy is similar to that of the von Neumann entropy estimation.
The main difference is that we evaluate the Fourier series approximation of tr(ΩÆ). Now,
we show the workflow in Algorithm 7, which derives an unbiased estimator for tr(ΩÆ)
and an estimate for RÆ(Ω). For clarity, we use ≤ and ª to denote the estimation precision
of RÆ(Ω) and tr(ΩÆ), respectively.

In the workflow, first, upon receiving the inputs, we find a Fourier series that can
approximate the trace of the state’s power function tr(ΩÆ) by Lemma 8. Then we proceed
to evaluate the Fourier series by the quantum circuits and the classical post-processing.
Note that we also employ the importance sampling to construct an unbiased estimator.
Afterwards, we could readily derive the estimate of RÆ(Ω).
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Algorithm 7 Quantum algorithm for Æ-Rényi entropy estimation
Input: Constants ≤,±,§ 2 (0,1), and copies of state Ω 2C2n£2n , and Æ 2 (0,1)[ (1,1).
Output: Estimate of the Æ-Rényi entropy RÆ(Ω).
1: Set estimation precision ª for estimating tr(ΩÆ), as given in Eq. (5.106).
2: Compute coefficients L, K , Ml , and b(k)l as given in Lemma 8.

3: Compute coefficients f (s, l)=
≥PK

k=1 b
(k)
l (°1)k

°Ø
k
¢¥ (ls)

2l , 8s, l.
4: Compute the `1 norm of f, which is the vector consisting of all f (s, l).
5: Set a parameter "= ª/kfk`1.
6: Set integer N =PbLc

l=0(2Ml +1).
7: Define a distribution: R= tr

≥
Ω cos

≥
Ω (2s°l)º

2

¥¥
with prob. | f (s,l)|

kfk`1
.

8: Set integer B= #Samples=O
µ
kfk2`1
ª2

log
°2
±

¢∂
.

9: Sample B pairs of (s1, l1), . . ., (sB, lB) via the distribution.
10: Set j = 1 and sum= 0.
11: while j ∑B do
12: Set Q = d(2s j° l j)2º2/4"e.
13: Prepare Q+1 copies of Ω.
14: Estimate tr(Ω cos(Ω(2s j ° l j))º/2) with precision " and probability 1° ±/2N via

quantum circuits, given in Sec. 5.2.
15: Store the obtained estimate est j.
16: Update sum√ sum+est j and j√ j+1.
17: end while
18: return log(1+kfk`1 £sum/B)/(1°Æ).

Theorem 3. Consider a quantum state Ω 2 C2n£2n. Let § be the lower bound on all
non-zero eigenvalues of Ω. Suppose we have access to copies of Ω, then Algorithm 7 outputs
an estimate of Æ-Rényi entropy RÆ(Ω) up to precision ≤, succeeding with probability at
least 1°±. Furthermore, the total amount of the needed copies of Ω and single/two-qubit
gates, in the worst case, are shown in the Table 5.2.

Æ Copy cost Gate cost

(0,1)[ (2,+1) eO
√ ≥PK

k=1 |(Æ°1k )|
¥5

|1°Æ|5[tr(Ω2)]5(Æ°1)(≤)5§2

!
eO

√
n
≥PK

k=1 |(Æ°1k )|
¥3

|1°Æ|3[tr(Ω2)]3(Æ°1)(≤)3§2

!

(1,2] eO
√ ≥PK

k=1 |(Æ°1k )|
¥5

|1°Æ|5[tr(Ω2)]5(≤)5§2

!
eO

√
3
≥PK

k=1 |(Æ°1k )|
¥3

|1°Æ|3[tr(Ω2)]3(≤)3§2

!

Table 5.2: Cost estimation of Algorithm 7

Proof. Correctness analysis.
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Recall the relation between RÆ(Ω) and tr(ΩÆ). Thus, we focus on analyzing the esti-
mation of tr(ΩÆ). For this purpose, we write the Fourier series FÆ(Ω) as follows.

FÆ(Ω)= 1+
bLcX

l=0

UlX

s=Dl

f (s, l)tr
µ
Ω cos

µ
Ω
(2s° l)º

2

∂∂
.(5.132)

Coefficients f (s, l) are given by

f (s, l)=
√

KX

k=1
b(k)l (°1)k

√
Ø

k

!! °l
s
¢

2l
, 8s, l.(5.133)

where Ø=Æ°1. Let f be a vector that consists of f (s, l). Then the `1-norm of f is bounded,
i.e., kfk`1 2O

≥PK
k=1 |

°Ø
k
¢
|
¥
. In addition, the bound on

PK
k=1 |

°Ø
k
¢
| can be found in Lemma 8.

Next, define an importance sampling as follows:

R= tr
µ
Ω cos

µ
Ω
(2s° l)º

2

∂∂
with prob.

| f (s, l)|
kfk`1

.(5.134)

The random variable R indicates that each Fourier term associated with (s, l) is sampled
with probability proportional to its weight f (s, l). Then, the Fourier series could be
rewritten as an expectation of R.

F(Ω)= 1+kfk`1 ·E [R] .(5.135)

Cost analysis.
Note that the sample mean could estimate the expectation. The estimation accuracy

replies on the number of samples. By Chebyshev’s inequality, O(Var/≤2) samples are
sufficient to derive an estimate of the expectation with precision ≤ and high probability,
where Var denotes the variance, and ≤ is the precision. Meanwhile, the probability could
be boosted to 1°± at the cost of an additional multiplicative factor O(log(1/±)) according
to Chernoff bounds. Alternatively, by Hoeffding’s inequality, we only need O(log(1/±)/≤2)
samples to derive an estimate with precision ≤ and probability larger than 1°±.

Regarding random variable R, the variance is less than 1. We set the precision as
"= ª/kfk`1 and failure probability ±/2. Then the number of required samples is

#Samples=O
µ
1
"2

log
µ
2
±

∂∂
=O

√
kfk2`1
ª2

log
µ
2
±

∂!
.(5.136)

It means that there are at most #Samples terms needing to estimate via quantum
circuits.
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On the other hand, notice that the Fourier series F(Ω) consists of N =PL
l=0(2Ml +1)

terms in all. Hence, it suffices to estimate each term with probability 1°±/2N. In this
way, the overall failure probability is at most ± by union bound.

When estimating the Fourier series, we need to measure the resultant state after
evolving the input state Ω by the circuits (e.g., please refer to Figure 5.2). Note that
the measurement outcome is evaluated nondeterministically, which implies that the
estimation could fail. To suppress the failure probability to ±, we suffice to evaluate each
term with a failure probability at most ±/2N. In consequence, for each term, the number
of needed measurements is

#Measurements=O
µ
log(2N/±)

"2

∂
.(5.137)

Immediately, the total number of measurements is at most

Cm = #Sample£#Measurements=O

√
kfk4`1
ª4

log
µ
2
±

∂
log

µ
N
±

∂!
.(5.138)

Now, we consider the number of copies of state Ω. Note that running the circuit once

costs eO(t2/≤) by Proposition 10. Here, the largest time is O(ML) = O
µ
ln

µ
4

PK
k=1 |(

Ø
k)|

ª

∂
1
§

∂
.

As shown above, we have to run circuits Cm times in the entropy estimation, then the
number of overall copies is at most

CΩ =Cm£ eO
√
ln2

√PK
k=1 |

°Ø
k
¢
|

≤

!
1

"§2

!
= eO

√kfk5`1
ª5§2

!
.(5.139)

By Proposition 12, for tr(Ω cos(Ωt)), the number of primitive single/two-qubit gates
scales O(nt2/≤). Here, the overall gate counts for the entropy estimation, in the worst
case, is

Cg = #Sample£O(nM2
L/")= eO

√
nkfk3`1
ª3§2

!
.(5.140)

Finally, using the relation between ª and ≤ in Eq. (5.106), we can finish the proof for
the claimed. ⌅

Remark 9 From results in Theorems 2 & 3, we can easily see that the costs of our algo-
rithms scale polynomially in 1/§, where § is the lower bound on all non-zero eigenvalues.
If § is polynomially tiny, i.e., §=≠(1/pol y(n)), the number of needed quantum states
and primitive gates could be polynomially large. Hence, our algorithms can apply to
large states once the states satisfy the aforementioned assumption. For example, it may
happen when a large state has a low rank.
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5.4 Numerical results

In this section, we conduct the numerical simulation to demonstrate the effectiveness
and correctness of our algorithms. Specifically, we estimate S(Ω) and R2(Ω) for several
randomly generated single-qubit state Ω. And, we estimate the entropy of a single-
qubit state under the effect of depolarizing noises and amplitude damping noises. All
simulation experiments are operated on Paddle Quantum platform.

5.4.1 Effectiveness and correctness

To begin with, we generate a single-qubit mixed state at random and denote it by Ω =√
0.48786 0.0094
0.0094 0.51214

!
. As the eigenvalues of Ω are larger than 0.35, we set the eigenvalue

lower bound as §= 0.35 (as long as smaller than the minimum non-zero eigenvalue of
the state Ω). In the experiment, we set the error tolerance ≤= 0.2,0.4, respectively. The
results are depicted in Figure 5.6.

In Figure 5.6, the coloured curves represent the estimates of the entropy with the
error tolerance 0.2,0.4. The shadowed areas represent standard deviation. Clearly, both
blue and orange curves fluctuate around the black dashed line, but the blue curve (≤= 0.2)
is closer. In addition to that, the shadowed areas converge as the number of sampled
points increases, meaning the estimation gets precise. Hence, we could conclude that our
method could estimate the entropy precisely with a large number of sampled points and
small error tolerance ≤.

Next, we show the effectiveness with more quantum states. We randomly generate
four more single-qubit mixed states to match the lower bound§ equal to 0.35. All selected
density matrices are shown below.

Ω1 =
√
0.37336237 °0.02597119
°0.02597119 0.62663763

!
,Ω2 =

√
0.42050704 °0.08174482
°0.08174482 0.57949296

!
,(5.141)

Ω3 =
√
0.58221067 °0.04587666
°0.04587666 0.41778933

!
,Ω4 =

√
0.42932114 °0.02696812
°0.02696812 0.57067886

!
.(5.142)

We set the number of sampled points as 100 and error tolerance ≤= 0.2. The correspond-
ing results are illustrated in Figure 5.7.

In Figure 5.7, the blue bar is the true quantum entropy corresponding to S(Ω) and
R2(Ω). The red bar is the value calculated by the Fourier series (cf. Lemmas 7 & 8). The
green bar denotes the estimate of the entropy by our approach. Clearly, the red and
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(a) Estimated von Neumann entropy.

(b) Estimated 2-Rényi entropy.

Figure 5.6: In (a) and (b), the black dashed line represents the actual entropy of quantum
state Ω. The blue and orange curves are average entropy over 20 repeats for ≤ equal to
0.2 and 0.4, respectively. The shadowed area stands for standard deviation.

green bars are very close to the blue bar for different states. Thus, the experimental
results show that our approach could find high-precision estimates for generated states,
implying the validity of the Fourier series and our algorithms.

5.4.2 Robustness

We also study the performance of our approach under the effect of noises. Specifically, we
consider a single qubit quantum state Ω and single-qubit amplitude damping channel
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(a) Estimated von Neumann entropy.

(b) Estimated Rényi entropy.

Figure 5.7: The results for 4 randomly generated states. In (a) and (b), the blue bar is
the real quantum entropy, the Estimated Entropy 1 stands for the entropy corresponding
to the Fourier series approximation, and the Estimated Entropy 2 is the average entropy
(100 sample points, repeat 20 times) calculated by our approach. In addition, the error
bar represents the standard deviation.

Namp
p (Ω) and depolarizing channel Ndepl

p (Ω). The noisy quantum channels are given by

Namp
p (Ω) :=D0ΩD†

0+D1ΩD†
1,(5.143)

Ndepl
p (Ω) :=E0ΩE†

0+E1ΩE†
1+E2ΩE†

2+E3ΩE†
3,(5.144)

where

D0 =
"
1 0
0

p
1° p

#
,D1 =

"
0 pp
0 0

#
,E0 =

p
1° p I,E1 =

r
p
3
X ,E2 =

r
p
3
Y ,E3 =

r
p
3
Z.
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Here, the parameter p 2 [0,1] is the noise level. Notation I stands for identity operator,
and X ,Y ,Z are Pauli matrices.

In the experiment, the input the quantum state is Ω =
√
0.5398 °0.1217
°0.1217 0.4602

!
. We set

the noise level p as 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.15, respectively. And we set the
error tolerance ≤= 0.2 and eigenvalue lower bound §= 0.35 and take 100 sample points.
The results are shown in Figure 5.8.

(a) S(Ω) with amplitude damping noises. (b) S(Ω) with depolarizing noises.

(c) R2(Ω) with amplitude damping noises. (d) R2(Ω) with depolarizing noises.

Figure 5.8: Figures (a) and (b) represent results for von Neumann entropy, and (c)
and (d) represent the results for 2-Rényi entropy. The green curves link the average
estimated entropy at different noise levels. The black dashed line represents the actual
von Neumann entropy of quantum state Ω.

In Figure 5.8, (a) and (b) ((c) and (d)) are the box plots of S(Ω) (R2(Ω)) corresponding
to amplitude damping noise and depolarizing noise, respectively. The black dashed line
represents the true value of the entropy. The green curve represents the estimates of
the entropy. As shown, all plots fluctuate around the black dashed line. Hence, we can
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confidently announce that our algorithm is robust to intermediate amplitude damping
and depolarizing noises.

In addition, the green curve in (b) and (d) is closer to the black dashed line than (a)
and (c). Thus it implies that our algorithm performs better under depolarizing noises
than amplitude damping noises for these chosen states.

5.5 Comparison to literature

The following discusses the differences between our results and the previous related
works [2, 36, 56, 66, 100, 159].

First, algorithms of [36, 56, 66, 100] require an oracle for preparing the purification
of the input state. In other words, one has to find such quantum circuits for preparing
the purification before performing the entropy estimation task. However, implementing
the oracle for an unknown quantum state via quantum circuits is not easy in general. In
contrast, our algorithm no longer require the oracle for implementing the circuits and
only require access to the copies of the states, making our algorithms more practical
than that of [36, 56, 66, 100].

Second, compared to [2, 56, 66, 100], our algorithms could be more resource-efficient
when the large state’s minimal nonzero eigenvalue is polynomially small. The costs in
previous works [56, 66, 100] are characterized in terms of the times of querying the
oracle, depending on the dimension of the state. Meanwhile, the copy cost of [2] is expo-
nentially large. In comparison, by Theorem 2 & 3, the copy costs of our algorithms scale
polynomially with respect to the number of qubits n when parameter §=≠(1/pol y(n)).

Third, the approach in [159] can estimate the quantum Rényi entropy RÆ(Æ) when the
parameter Æ is integer. In comparison, our approach is more general, i.e., our approach
can apply to the case when Æ is an integer or non-integer.

5.6 Applications

Given the importance of quantum entropies, our algorithms will have various applica-
tions in science and engineering. Here, we discuss the applications in low-rank quantum
states, quantum Gibbs state preparation and entanglement entropy estimation.

State preparation quality assessment. The class of low-rank quantum states is par-
ticularly significant in physical experiments, forming a realistic model of quantum states
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prepared in the lab [27]. For instance, one important task is to prepare pure quantum
states. In general, the prepared state tends to have rapidly decaying eigenvalues such
that a low-rank state can well approximate it. If the low-rank state’s quantum entropy
(disorder) can be quantified, we can assess the quality of the state preparation. Note
that the generated state has a small number of significant eigenvalues, and the rests
are close to zero. In this case, the generated state’s eigenvalues with exponential scaling
in the qubit counts can be ignored. Thus it is reasonable to assume that the minimal
non-zero eigenvalue of the low-rank state is polynomially small in the worst case. At
that time, the low-rank states satisfy the condition of applying our algorithms. Hence
our algorithms can be applied to assess the quality of state preparation in the lab.

Gibbs state preparation. Quantum Gibbs states or thermal states are of signifi-
cant importance to quantum simulation [35], quantum machine learning [18, 85], and
quantum optimizaiton [133], etc. Several recent works [36, 148] have proposed to use
variational quantum algorithms to prepare the quantum Gibbs states. The core idea of
these works is to train a parameterized quantum circuit (PQC) to generate a parameter-
ized state Ω(µ) matching the global minimum of the system’s free energy. Specifically, the
task is to minimize the loss function L(µ)= tr(HΩ(µ))°Ø°1S(Ω(µ)) by a gradient-descent
method, where the notation H denotes the system’s Hamiltonian, and Ø denotes the
inverse temperature. One feasible scheme for estimating the gradient is the difference
method, which demands efficient loss evaluation. As the loss evaluation involves the
von Neumann entropy estimation, our algorithm could be employed for the gradient
estimation. Besides, the PQC can be considered as a method to generate quantum state,
which guarantees that we have the access to the target state freely.

Entanglement entropy estimation Quantum entanglement is a fundamental con-
cept in quantum physics. It also is a central resource in quantum information many
quantum information applications such as teleportation, super-dense coding, and quan-
tum key distribution [46]. Thus, developing methods for entanglement quantification
will be of great importance to the study in these fields. Notice that the entropy of entan-
glement [14] is the ideal entanglement measure for quantifying bipartite entanglement
since the rate of the transformation between any bipartite pure state |√iAB and two-
qubit singlet is given by its entropy of entanglement, i.e., von Neumann entropy of
the subsystem S(trB(

ØØ√
Æ≠

√
ØØ
AB)). Hence, our approach can be employed to measure the

entanglement via the von Neumann entropy estimation.
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6
CONCLUSION AND FUTURE WORK

In this dissertation, we developed an understanding of quantum Hamiltonian learn-
ing concerning the implementation in practice. Especially, we consider two closely related
problems and provide concrete algorithms as solutions.

Specifically, in chapter 3, we proposed a hybrid quantum-classical Hamiltonian
learning algorithm that employs a gradient-descent method to find the desired interaction
coefficients. We achieved this purpose by unifying the variational quantum algorithms
(VQAs) with the strategy proposed in [5]. To this end, we developed several subroutines:
log-partition function estimation, stochastic variational quantum eigensolver (SVQE),
and gradient estimation.

In SVQE, we proposed a method to learn the full/partial spectrum of the Hamiltonian
and used the importance sampling to circumvent the resources in the loss evaluation.
In the log-partition function, we proposed a method that combines the parameterized
quantum circuits and convex optimization to find the global minimum of the free energy
as well as compute the log-partition function. In gradient estimation, we presented a
procedure to compute the gradient of the objective function costing polynomially many
resources.

We conducted numerical experiments to demonstrate the effectiveness of our ap-
proach with randomly generated Hamiltonians and selected many-body Hamiltonians.
In consequence, we showed that learning the full spectrum of Hamiltonians in the learn-
ing process could produce high-precision estimates of the desired interaction coefficients.
Moreover, we also showed that partially learning several smallest eigenvalues of Ising
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Hamiltonians could derive estimates up to a precision of 0.05.

In chapter 4, we provided hardware-efficient variational algorithms for quantum
Gibbs state preparation with NISQ devices. We designed loss functions to approximate
the free energy of a given Hamiltonian by utilizing the truncated Taylor series of the
von Neumann entropy. By minimizing the loss functions, the parameterized quantum
circuits could be trained to learn the Gibbs state via variational algorithms since the
Gibbs state minimizes free energy. In particular, we showed that both the loss functions
and their gradients could be evaluated on NISQ devices, thus allowing us to implement
the hybrid quantum-classical optimization via either gradient-based or gradient-free
optimization methods.

Moreover, we showed that our method could efficiently prepare the Gibbs states via
analytical evidence and numerical experiments. We further showed that our variational
algorithms work efficiently for many-body models, including the Ising chain and spin
chain. In particular, we showed that the preparation of the Ising Gibbs state could be
done efficiently and accurately via shallow parameterized quantum circuits with only
one parameter and one additional qubit.

In chapter 5, we provided quantum algorithms based on the Fourier series for esti-
mating the von Neumann entropy and Æ-Rényi entropy using independent copies of the
state. The key of our algorithms is the quantum circuits that can efficiently evaluate the
terms of the Fourier series and classically post-processing the measurement outcomes.
Especially, quantum circuits are composed of primitive single/two-qubit gates. The design
of quantum circuits synthesizes several quantum tools, such as iterative quantum phase
estimation, the exponentiation of quantum state, qubit reset, and the linear combination
of unitaries.

The notable property of our algorithm is that the circuits does not use oracles,
which makes our circuit more friendly to NISQ devices than the oracle-based quantum
algorithms. Besides, our circuits are only determined by parameters § and ≤, allowing
the same quantum circuits to estimate multiple different quantum states. Furthermore,
when the input state’s minimal non-zero eigenvalues are polynomially scaling in the
qubit counts, i.e., §=≠(1/pol y(n)), our algorithms only use polynomially many copies
and thus have potential applications to large states processing. Given these merits, our
algorithm may be expected to complete the entropy estimation task on the near and
intermediate future quantum computing devices.

We believe our approaches for Hamiltonian learning, quantum Gibbs state prepara-
tion, and quantum entropy estimation would shed light on near-term quantum applica-
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tions. Our SVQE algorithm might enrich the VQE family in the fields of molecules and
materials. As many problems in computer science can be framed as partition function
problems (e.g., counting colouring), our method may also contribute to these fields. Given
that many problems of practical interest are related to Gibbs state and quantum entropy,
it is natural to devise more quantum algorithms that are friendly to NISQ devices to
solve problems related to quantum entropies. These problems could be in the areas of
optimization (combinatorial optimization problems [133], semi-definite programs [24]),
quantum machine learning (Hamiltonian learning [147]), many-body physics, quantum
chemistry, etc. We also hope our results will advance the applications of NISQ devices in
the study of condensed matter physics, high-energy physics, and gravity and black holes
theory [11, 41].

Beyond the potential applications mentioned above, other problems regarding our
algorithms have not been resolved in this dissertation. The most important is the barren
plateau problem. Despite numerical results imply that our algorithms are successful
in small problems, solving large problems will always be the ultimate goal. However,
recent researches found out that VQA for large-scaled problems may encounter the
so-called barren plateau phenomena [33, 102, 105, 145], where the cost landscape is
too flat, leading to find the optimal parameters in an unacceptable time. A theoretical
analysis of barren plateaus is provided in Appendix A.6.

In the meantime, exponential computational resources may be incurred, which is
not suitable for demonstrating the superiority of quantum computing over classical
computing. For example, suppose a gradient-descent method is employed in VQA, which
exploits a PQC with deep depth. In that case, the gradient will vanish exponentially
fast since the magnitude of the gradient decreases with exponential scaling in the qubit
counts [105].

Even though it is quite challenging to solve the barren plateaus, recent progress in
VQA shows the hope of success in the future. For instance, [97] shows that the tensor
network-based machine learning model does not exhibit barren plateaus for local cost
function. The absence of barren plateau has been shown in the quantum convolution
neural network [115]. For quantum generative models, [84] discusses the usage of Rényi
divergence of order two can avoid the barren plateau in thermal state learning and
Hamiltonian learning tasks. These works imply that certain parameterized quantum
circuits and cost function may escape from the barren plateaus. Moreover, there are
strategies [61] focus on finding clever initial parameters to tackle the barren plateau.
However, the aforementioned strategies cannot solve the barren plateaus in complete.
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Hence, much more effort must be paid in future work.
Overall speaking, we provide concrete algorithms to solve Hamiltonian learning

problems, which will be effective upon more robust quantum computers are available. We
hope this dissertation could provide insights into the Hamiltonian learning problems and
the application of the variational quantum algorithm. We wish our methods could find
further applications in quantum physics and chemistry and beyond quantum computing.
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A.1 Supplementary proofs

Proofs for Eqs. (3.7)-(3.8) Consider a Hamiltonian H 2 CN£N and a constant Ø> 0,
then the system’s free energy is given by F(Ω)= tr(HΩ)°Ø°1S(Ω). Recall the fact [111]
that

(A.1) S(Ω)∑°
NX

j=1
Ω j j logΩ j j,

where Ω j j are the diagonal elements of quantum state Ω. Using this fact, for any state Ω,
we can find a lower bound on free energy in the sense that

F(Ω)∏ tr(HΩ)+Ø°1
NX

j=1
Ω j j logΩ j j.(A.2)

On the other hand, letU be a unitary such that H =U§U†, where §= diag(∏1, ...,∏N ) is
a diagonal matrix. Let eΩ = diag(Ω11, ...,ΩNN) be the diagonal matrix consisting of Ω’s di-
agonal elements and let æ=U†eΩU . It is easy to verify that tr(HΩ)= tr(§æ). Furthermore,
taking this relation into Eq. (A.2)’s right hand side, we can find that

F(Ω)∏ tr(§æ)°Ø°1S(æ).(A.3)

Notice that Eq. (A.3)’s right-hand side is equal to F(eΩ), then we have

F(Ω)∏ F(eΩ).(A.4)
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The inequality in Eq. (A.4) shows that free energy’s global optimum is commuting with
the Hamiltonian H.

According to the above discussion, we can rewrite the optimization program of finding
free energy’s minimal value as follows

min
Ω

F(Ω)=min
p

NX

j=1
∏ j p j+Ø°1

NX

j=1
p j log p j,(A.5)

where p represents an arbitrary probability distribution. Eq. (A.5)’s right-hand side can
be solved using the Lagrange multiplier method, and the optimum is given below:

p§ = 1
Z
(e°Ø∏1, ..., e°Ø∏N ),(A.6)

with Z :=PN
j=1 e

°Ø∏ j .
Finally, the equalities in Eqs. (9)-(10) can be proved by taking p§ into Eq. (A.5)’s

right-hand side and computing the minimal value.

Proof for Proposition 1

Lemma 9. For any parameterized Hamiltonian H(∫)=Pm
`=1∫`E` with E` 2 {X ,Y ,Z, I}≠n,

we have

“H(∫) “∑
p
m · “∫ “2 .(A.7)

where k ·k denotes the spectral norm and k ·k2 is the `2-norm.

Proof. Let U be the unitary that diagonalizes the Hamiltonian H(∫), and then we can
use the following form to represent H(∫).

H(∫)=
NX

j=1
∏ j ·U

ØØ√ j
Æ≠

√ j
ØØU†,(A.8)

where |√1i, ..., |√Ni are the computational basis.
Typically, each eigenvalue is represented as follows:

∏ j = h√ j|U†H(∫)U |√ ji(A.9)

=
mX

`=1
∫`h√ j|U†E`U |√ ji(A.10)

Then, applying the Cauchy-Schwarz inequality leads to an upper bound on each eigen-
value:

(∏ j)2 ∑
mX

`=1
(∫`)2 ·

mX

`=1
(h√ j|U†E`U |√ ji)2.(A.11)
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Meanwhile, recalling that all E` are Pauli matrix tensor product, we can obtain an upper
bound below:

(∏ j)2 ∑m
mX

`=1
(∫`)2.(A.12)

Ranging j in {1, ...,N} in Eq. (A.12), the maximal eigenvalue is upper bounded by
p
m k∫k2, validating the claim. ⌅

Proof. Since the expression
PN

j=1 p j∏ j is regarded as an expectation, then we can es-
timate it by the sample mean with high accuracy and probability. To be specific, let X
denote a random variable that takes value ∏ j with probability p j. Then, this expression
can be written as

E[X ]=
NX

j=1
p j∏ j.(A.13)

Furthermore, recall Chebyshev’s inequality, then we have

Pr
°
|X̄ °E[X ]|∑ ≤

¢
∏ 1° Var[X ]

T≤2
.(A.14)

where X̄ = 1
T (X1+X2+ ...+XT) and Var[X ] is the variance of X . Technically, we can set

large T to increase the probability. Here, we only need to choose T such that

Var[X ]
T≤2

= 2
3
.(A.15)

Note that the second moment E[X2] bounds the variance Var[X ]. Meanwhile, the
second moment of X is bounded by the squared spectral norm of H, shown below.

E[X2]=
NX

j=1
p j(∏ j)2(A.16)

∑
NX

j=1
p jkH(∫)k2(A.17)

= kH(∫)k2.(A.18)

The inequality is due to the fact that each eigenvalue is less than the spectral norm.
Apply Lemma 9, then we will obtain an bound on T:

T = 3Var[X ]
2≤2

∑ 3E[X2]
2≤2

∑
3mk∫k22

2≤2
.(A.19)

Lastly, according to the Chernoff bound, we can boost the probability to 1°¥ for any
¥> 0 by repeatedly computing the sample mean O(log(1/¥)) times and taking the median
of all sample means. ⌅
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Proof for Proposition 2

Lemma 10. Consider a parameterized Hamiltonian H(∫)=Pm
`=1∫`E` with E` 2 {X ,Y ,Z, I}≠n.

For any unitary U and state |√i, estimating the value h√|U†H(∫)U |√i up to precision ≤

with probability at least 1°¥ requires a sample complexity of

O

√
mk∫k21 log(m/¥)

≤2

!
.(A.20)

Proof. First, we rewrite the value h√|U†H(∫)U |√i as follows:

h√|U†H(∫)U |√i=
mX

`=1
∫`h√|U†E`U |√i.(A.21)

Second, we count the required number of measurements to estimate the value
h√|U†E`U |√i up to precision ≤/k∫k1 with probability at least 1°¥/m, where k · k1 de-
notes the `1-norm. Since the Pauli operator, E`, has eigenvalues ±1, we can partition
E`’s eigenvectors into two sets, corresponding to positive and negative eigenvalues,
respectively. For convenience, we call the measurement outcome corresponding to eigen-
value 1 as the positive measurement outcome and the rest as the negative measurement
outcome. We define a random variable X in the sense that

X =
(

1, Pr[Positive measurement outcome]
°1, Pr[Negative measurement outcome]

(A.22)

It is easy to verify that E[X ] = h√|U†E`U |√i. Thus, an approach to compute value
h√|U†E`U |√i is computing an estimate for the expectation E[X ]. Meanwhile, consider
that E[X2]∑ 1, then the required number of samples is O(k∫k21 log(m/¥)/≤2).

Lastly, for h√|U†H(∫)U |√i, the estimate’s maximal error is k∫k1 ·≤/k∫k1 = ≤. By union
bound, the overall failure probability is less than m ·¥/m= ¥. Thus, the claim is proved.
⌅

Proof. Let Y denote a random variable that takes value h√ j|U†(µ)H(∫)U(µ)|√ ji with
probability q j, then the objective function M(µ) can be rewritten as

E[Y ]=M(µ).(A.23)

By Chebyshev’s inequality, the expectation can be computed by taking enough samples
of Y and averaging them. Note that the variance of Y determines the number of samples,
and the absolute value Y is less than the spectral norm kH(∫)k, i.e., |Y |∑ kH(∫)k. Along
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with Lemma 9, it is easy to see that the required number of Y ’s samples for obtaining an
estimate with error ≤/2 and probability larger than 2/3 is T =O(mk∫k22/≤2). Furthermore,
by Chernoff bounds, the probability can be improved to 1°¥/2 at an additional cost of
multiplicative factor of D =O(log(1/¥)).

On the other hand, each sample Y ’s value has to be determined by performing
the measurement. Since |√ ji is a computational basis, hence Y can take at most 2n

different values. To ensure the probability for estimating E[Y ] larger than 1°¥, the
probability of each estimate h√ j|U†(µ)H(∫)U(µ)|√ ji only needs to be at least 1°¥/2n+1.
By union bound, the overall failure probability is at most ¥/2+¥ · TD

2n+1 < ¥ (For large
Hamiltonians, the number of samples TD can be significantly less than dimension 2n).
Besides, according to Lemma 10, h√ j|U†(µ)H(∫)U(µ)|√ ji’s estimate within accuracy ≤/2
and probability 1°¥/2n+1 requires a sample complexity of O(mk∫k21(n+ log(m/¥))/≤2).
Thus, the overall number of measurements is the product of the number of samples TD =
O(mk∫k22 log(1/¥)/≤2) and each sample’s sample complexity O(mk∫k21(n+ log(m/¥))/≤2). In
other words, the objective function M(µ)’s estimate within error ≤ and probability 1°¥

requires a sample complexity of

O

√
TD ·

mk∫k21(n+ log(m/¥))
≤2

!
=O

√
m2k∫k21k∫k

2
2 log(1/¥)(n+ log(m/¥))

≤4

!
.

⌅

Proof for Proposition 3

Lemma 11. Let b∏= (b∏1, ..., b∏N) denote the estimated eigenvalues from SVQE and define
a function G(p) as follows:

G(p)=
NX

j=1
p jb∏ j+Ø°1

NX

j=1
p j log p j.(A.24)

Let bp§ be the global optimal point of G(p), that is, for any probability distribution p, we
have G(bp§)∑G(p). Meanwhile, suppose p§ is the global optimal point of C(p). Then, we
have

|G(bp§)°C(p§)|∑max
©
Ebp§[|b∏°∏|],Ep§[|b∏°∏|]

™
,(A.25)

where

Ebp§[|b∏°∏|]=
NX

j=1
bp§
j |b∏ j°∏ j|,(A.26)

Ep§[|b∏°∏|]=
NX

j=1
p§
j |b∏ j°∏ j|.(A.27)
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Proof. Since functions C(p) and G(p) reach their global minimums at points p§ and bp§

respectively, then we have

C(bp§)∏C(p§),(A.28)

G(bp§)∑G(p§).(A.29)

Besides, we also have another relation:

|C(p)°G(p)| =
NX

j=1
p j|(b∏ j°∏ j)|,(A.30)

where k ·k1 denotes the maximum norm.
Combining the above inequalities, we have the following result:

C(p§)∑C(bp§)∑G(bp§)+Ebp§[|b∏°∏|]∑G(p§)+Ebp§[|b∏°∏|]∑C(p§)+Ebp§[|b∏°∏|]+Ep§[|b∏°∏|].
(A.31)

Then the inequality in Eq. (A.25) is proved. ⌅

Proof. Recalling the expressions of C(p§) and G(bp§) in Eqs. (12) & (A.24), it is easy to
verify the following inequalities:

F(ΩØ(∫))=C(p§),(A.32)

F(Ω§
Ø)=G(bp§).(A.33)

where F denotes the free energy, i.e., F(Ω)= tr(HΩ)°Ø°1S(Ω).
Using the result in Lemma 11, we will obtain the following inequality.

|F(Ω§
Ø)°F(ΩØ(∫))| = |G(bp§)°C(p§)|∑max

©
Ebp§[|b∏°∏|],Ep§[|b∏°∏|]

™
.(A.34)

In the meanwhile, a property of the free energy says that

F(Ω§
Ø)= F(ΩØ(∫))+Ø°1S(Ω§

ØkΩØ(∫)).(A.35)

where S(Ω§
ØkΩØ(∫)) is the relative entropy. Rewriting the above equation as follows:

F(Ω§
Ø)°F(ΩØ(∫))=Ø°1S(Ω§

ØkΩØ(∫)).(A.36)

Combining the relations in Eqs. (A.34) and (A.36), we obtain the following inequality:

S(Ω§
ØkΩØ(∫))∑Ømax

©
Ebp§[|b∏°∏|],Ep§[|b∏°∏|]

™
.(A.37)

Lastly, according to Pinsker’s inequality, the above inequality immediately leads to a
bound on the trace distance between ΩØ and Ω§

Ø in the sense that

D(Ω§
Ø,ΩØ(∫))∑

q
2S(Ω§

Ø
kΩØ(∫)) ∑

q
2Ømax

©
Ebp§[|b∏°∏|],Ep§[|b∏°∏|]

™
.(A.38)

The the claimed is proved. ⌅
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Proof for Proposition 4

Proof. Let Z` denote the random variable that takes value h√ j|U†(µ)E`U(µ)|√ ji with
probability bp§

j , for all `= 1, ...,m. Then we have

E[Z`]=
NX

j=1
bp§
j · h√ j|U†(µ)E`U(µ)|√ ji.(A.39)

Thus partial derivative can be computed in the following way
@L(∫)
@∫`

º°ØE[Z`]+Øe`.(A.40)

It implies that the estimate’s error can be set as ≤/Ø to ensure the gradient’s maximal
error less than ≤.

Next, we determine the number of samples such that the overall failure probability
for estimating the gradient is less than ±. Since the gradient has m partial derivatives,
corresping to E[Z`], thus it suffices to estimate each with probability larger than 1°±/m.
Meanwhile, each mean E[Z`] can be computed by sampling. Notice that all |Z`| ∑ 1,
by Chebyshev’s inequality, then it suffices to take K =O(Ø2/≤2) samples to compute an
estimate for each E[Z`] with precision ≤/2Ø and probability larger than 2/3. Furthermore,
by Chernoff bounds, the probability can be improved to 1°¥/2m at an additional cost of
multiplicative factor of D =O(log(2m/¥)). It is worth pointing out that, for each variable
Z`, the samples are taken according to the same probability distribution bp§, thus it is
natural to use the sampled states |√tsji (cf. Algorithm 4) to compute all means E[Z`].
Then the total number of samples is KD =O(Ø2 log(m/¥)/≤2).

On the other hand, each value h√ j|U†(µ)E`U(µ)|√ ji in Eq. (A.39) has to be computed
by performing the measurement. Note that there are 2n values h√ j|U†(µ)E`U(µ)|√ ji
in all. To ensure the mean estimate’s failure probability less than ¥/2m, it suffices to
suppress each value’s failure probability to ¥/2n+1m. Following the same discussion in
Lemma 10, the estimate for value h√ j|U†(µ)E`U(µ)|√ ji can be computed up to precision
≤/2Ø using O(Ø2 log(2n+1m/¥)/≤2) measurements.

Regarding the failure probability, by union bound, the overall failure probabil-
ity is at most m · (¥/2m+KD · ¥/2n+1m), where KD is the number of samples KD =
O(Ø2 log(m/¥)/≤2). Especially, for larger Hamiltonians, the number of measurements is
usually less than the dimension 2n. Thus, the overall failre probability is less than ¥.

Lastly, the total number of measurements is given below:

m ·KD ·O(Ø2 log(2n+1m/¥)/≤2)=O(mØ4 log(m/¥) log(2n+1m/¥)/≤4).(A.41)

⌅
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Proof for Eq. (5.110)

Lemma 12. For any quantum state Ω, time t> 0, and integer K > 1, the trace norm of
P

k∏K
(°iΩt)k

k! is bounded by
p
2 tK /K !.

Proof. Suppose Ω has a spectral decomposition

Ω =
X

j
∏ j

ØØe j
Æ≠
e j

ØØ .(A.42)

As the trace norm is the sum of all singular values, we could deduce that
∞∞∞∞∞

X

k∏K

(°iΩt)k

k!

∞∞∞∞∞
tr
=

∞∞∞∞∞
X

j

X

k∏K

(°i∏ j t)k

k!
ØØe j

Æ≠
e j

ØØ
∞∞∞∞∞
tr

(A.43)

=
X

j

ØØØØØ
X

k∏K

(°i∏ j t)k

k!

ØØØØØ(A.44)

∑
X

j

p
2 (∏ j t)K

K !
(A.45)

∑
X

j

p
2∏ j(t)K

K !
(A.46)

∑
p
2 tK

K !
.(A.47)

Here, we have used facts that
ØØØØ
P

k∏K
(°i∏ j t)k

k!

ØØØØ∑
p
2 (∏ j t)K

K ! for all ∏ j, and
P

j∏ j = 1.

To complete the proof, we show that, for any x 2R and integer K > 1,
ØØØØØe

°ix°
K°1X

k=0

(°ix)k

k!

ØØØØØ∑
p
2 |x|K
K !

.(A.48)

Given arbitrary integer K > 0, we use Euler’s formula and expand the triangle functions
to the Taylor series. The error is given by

eix°
KX

k=1

(ix)k

k!
= cos(x)+ isin(x)°

"
X
p
(i)2p+1

x2p+1

(2p+1)!
+

X
p
(i)2p

x2p

(2p)!

#
(A.49)

= cos(x)+ isin(x)°
"
i
X
p
(°1)p x2p+1

(2p+1)!
+

X
p
(°1)p x2p

(2p)!

#
(A.50)

=
"
cos(x)°

X
p
(°1)p x2p

(2p)!

#
+ i

"
sin(x)°

X
p
(°1)p x2p+1

(2p+1)!

#
,(A.51)

where 1∑ p∑ [K /2].
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HIGHER-ORDER TRUNCATIONS

Notice that
P

p(°1)p x2p+1
(2p+1)! and

P
p(°1)p x2p

(2p)! are truncated Taylor series of sin(x) and
cos(x) up to order K , respectively. By the Taylor’s theorem, we have

cos(x)°
X
p
(°1)p x2p

(2p)!
= cos(K+1)(≥)

(K +1)!
xK+1,(A.52)

sin(x)°
X
p
(°1)p x2p+1

(2p+1)!
= sin(K+1)(ª)

(K +1)!
xK+1.(A.53)

where ≥ and ª are some values between 0 and x. Immediately, we have
ØØØØØcos(x)°

X
p
(°1)p x2p

(2p)!

ØØØØØ∑
|x|K+1

(K +1)!
,(A.54)

ØØØØØsin(x)°
X
p
(°1)p x2p+1

(2p+1)!

ØØØØØ∑
|x|K+1

(K +1)!
.(A.55)

Finally, the result immediately follows, and the proof is finished. ⌅

A.2 Variational algorithm for Gibbs state preparation
with higher-order truncations

Here we present a variational algorithm for preparing the Gibbs state with K-truncated
free energy. To illustrate our algorithm, we give some notations first. We let At jBt j denote
the registers that store the states for estimating tr(Ωt), where t j 2ßt and ßt includes all
the indices of these registers.

A.3 Estimation of the higher-order gradients

Lemma S13. Given a parameterized density operator Ω(µ), we have the following equality,

@µm tr(Ω(µ)3)= 3@µm,1 tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2),(A.56)

where @µm,1 means the derivative is computed with respective to µm of the state stored
in 1-th register, Ω j(µ) is the state stored in j-th register, and S1 = SWAP12 ≠ I3 and
S2 = I1≠SWAP23, and the SWAPi j is the operator that swaps the state stored in i-th
and j-th register.

Proof. To prove the claim, we need the following result, which we give the proof later.

tr(Ω1≠Ω2≠Ω3 ·S1S2)= tr(Ω2≠Ω1≠Ω3 ·S1S2)= tr(Ω3≠Ω2≠Ω1 ·S1S2).(A.57)
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Algorithm 8 Variational quantum Gibbs state preparation with truncation order K
1: Input: choose the ansatz of unitary U(µ), tolerance ", truncation order K , and initial

parameters of µ;
2: Compute coefficients C0, C1,..., CK according to Eq. (4.6).
3: Prepare initial states |00i in registers AB and apply U(µ) to these states.
4: Measure and compute tr(HΩB1) and compute the loss function L1 = tr(HΩB1);
5: Measure the overlap tr(

Q
t22ß2 ΩBt2

) via Destructive Swap Test and compute the loss
function L2 =°Ø°1C1 tr(

Q
t22ß2 ΩBt2

);
6: Measure the overlap tr(

Q
tk2ßk ΩBtk

) via higher order state overlap estimation and
compute the loss function Lk =°Ø°1Ck°1 tr(

Q
tk2ßk ΩBtk

) for each k 2 {3, ...,K +1}.
7: Perform optimization of FK (µ)=

PK+1
k=1 Lk°Ø°1C0 and update parameters of µ;

8: Repeat 3-7 until the loss function FK (µ) converges with tolerance ";
9: Output the state Ωout = trAU(µ) |00ih00|ABU(µ)†.

Let Ω1(µ)= Ω2(µ)= Ω3(µ)= Ω(µ), then the claimed is proved in the following,

@

@µm
tr(Ω(µ)3)= @

@µm
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2)(A.58)

= @

@µm,1
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2)

+ @

@µm,2
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2)

+ @

@µm,3
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2)(A.59)

= @

@µm,1
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2)

+ @

@µm,2
tr(Ω2(µ)≠Ω1(µ)≠Ω3(µ) ·S1S2)

+ @

@µm,3
tr(Ω3(µ)≠Ω2(µ)≠Ω1(µ) ·S1S2)(A.60)

= 3
@

@µm,1
tr(Ω1(µ)≠Ω2(µ)≠Ω3(µ) ·S1S2),(A.61)

where the equality is Eq. (A.59) is the result of chain rule, and we use the relation in
Eq. (A.57) to derive the equality in Eq. (A.60).

Now we prove the equality in Eq. (A.57).

Let Ω1 =
P

j p j
ØØ¡ j

Æ≠
¡ j

ØØ, Ω2 =
P

l ql
ØØ√l

Æ≠
√l

ØØ, and Ω3 =
P

k rk |ªkihªk|. We have the fol-
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lowing equalities.

tr(Ω1≠Ω2≠Ω3 ·S1S2)=
X

jlk
p jqlrk

≠
√l

ØØ¡ j
Æ≠

ªk
ØØ√l

Æ≠
¡ j

ØØªk
Æ
,(A.62)

tr(Ω2≠Ω1≠Ω3 ·S1S2)=
X

jlk
p jqlrk

≠
¡ j

ØØ√l
Æ≠

ªk
ØØ¡ j

Æ≠
√l

ØØªk
Æ
,(A.63)

tr(Ω3≠Ω2≠Ω1 ·S1S2)=
X

jlk
p jqlrk

≠
√l

ØØªk
Æ≠

¡ j
ØØ√l

Æ≠
ªk

ØØ¡ j
Æ
.(A.64)

Comparing Eqs. (A.62)-(A.64), the equality in Eq. (A.57) is proved. ⌅

A.4 Supplementary discussion for optimization

To simplify the notations, let L1 denote tr(HΩ(µ)), L2 denote 2Ø°1 tr(Ω(µ)2), and L3

denote °Ø°1

2 tr(Ω(µ)3). Using these notations, our loss function can be rewritten as F2(µ)=
L1+L2+L3° 3Ø°1

2 , and the gradient of F2(µ) can be rewritten as follow:

rµF2(µ)=rµL1+rµL2+rµL3.(A.65)

Therefore, the gradient of FK (µ) can be estimated via computing the gradients of L j,
j = 1,2,3. Specifically, rµL j, j = 2,3, can be computed using the destructive SWAP test
and higher order state overlap estimation, respectively. As for rµL1, it can be estimated
by measurement directly.

Next, we show that the gradients of L j ’s can be computed by shifting the parameters
µ of the circuit. The partial derivatives of each L j have the following forms,

@L1

@µm
= @

@µm
tr(UN ...U1 |0ih0|U†

1...U
†
N · (I≠H)),(A.66)

@L2

@µm
= 2Ø°1 @

@µm
tr((UN ...U1 |0ih0|U†

1...U
†
N)

≠2 ·W1),(A.67)

@L3

@µm
=°Ø°1

2
@

@µm
tr((UN ...U1 |0ih0|U†

1...U
†
N)

≠3 ·W2),(A.68)

whereW1 denotes the operator SWAPB2B3≠IA2A3 ,W2 denotes the operator (SWAPB4B5≠
IA4A5A6B6) · (SWAPB5B6 ≠ IA4B4A5A6), and the operator SWAPBjBl is a swap operator
acting on registers Bj and Bl .

To further simplify notations, we absorb all gates before and afterUm into the density
operator and measurement operator, respectively. To be more specific, let √AlBl denote
the density operatorUm°1...U1 |00ih00|AlBl U

†
1...U

†
m°1 in register AlBl , for l = 1, ...,6. And
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we define observable operators K , O, G as follows

K =U†
m+1...U

†
N(IA1 ≠HB1)UN ...Um+1.(A.69)

O = (U†
m+1...U

†
N)

≠2W1(UN ...Um+1)≠2,(A.70)

G = (Um+1...U†
N)

≠3W2(UN ...Um+1)≠3.(A.71)

Then partial derivatives in Eqs. (A.66)-(A.68) can be rewritten as

@L1

@µm
= @

@µm
tr(Um(µm)√A1B1U

†
m(µm) ·K),(A.72)

@L2

@µm
=2Ø°1 @

@µm
tr(Um√A2B2U

†
m(µm)≠Um√A3B3U

†
m(µm) ·O),(A.73)

@L3

@µm
=° Ø°1

2
@

@µm
tr(Um√A4B4U

†
m(µm)≠Um√A5B5U

†
m(µm)≠Um√A6B6U

†
m(µm) ·G).(A.74)

Now, we derive the analytical forms of the derivatives of each L j, j = 1,2,3. Notice
that the trainable unitary U(µ) is a sequence of unitaries Um(µm) and each unitary
Um(µm)= e°iµmHm/2. The partial derivative of U(µ) can be explicitly given as follows,

@U(µ)
@µm

=UN(µN)...
@Um(µm)

@µm
...U1(µ1),(A.75)

=° i
2
UN(µN)...HmUm...U1(µ1).(A.76)

Using the expression of @µmU(µ) in Eq. (A.76), and some facts, including an identity
i[Hm,M] = Um(°º/2)MU†

m(°º/2)°Um(º/2)MU†
m(º/2), which holds true for arbitrary

matrix M, the symmetry of the operator O, and an equality @µm tr(Ω(µ)3)= 3@µm1 tr(Ω1(µ)≠
Ω2(µ)≠Ω3(µ) ·S1S2) (c.f. Lemma S13 in Appendix A.3), where S1 =SWAP12≠ I3 and S2 =
I1≠SWAP23, the gradients of each L j can be estimated using the following formulas,

@L1

@µm
= 1

2
(hKiµm+º

2
°hKiµm°º

2
),(A.77)

@L2

@µm
= 2Ø°1

≥
hOiµm+º

2 ,µm °hOiµm°º
2 ,µm

¥
,(A.78)

@L3

@µm
=°3Ø°1

4

≥
hGiµm+º

2 ,µm,µm °hGiµm°º
2 ,µm,µm

¥
,(A.79)

where the notation hX ia,b is defined below,

hKiµÆ = tr
≥
UÆ√A1B1U

†
Æ ·K

¥
,(A.80)

hOiµÆ,µØ = tr
≥
UÆ√A2B2U

†
Æ≠UØ√A3B3U

†
Ø
·O

¥
,(A.81)

hGiµÆ,µØ,µ∞ = tr
≥
UÆ√A4B4U

†
Æ≠UØ√A5B5U

†
Ø
≠U∞√A6B6U

†
∞ ·G

¥
.(A.82)
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A.5 Gate decomposition

This section decomposes the quantum gates in Figure 5.5 into primitive single/two-
qubit gates. We primarily consider decomposing controlled gates c-select(S), and anti-
controlled gates oc-R2.

Circuit of oc-R2. Here, we let R2 = Ry(µ2). By the relation that XRy(°µ)X = Ry(µ),
we can decompose oc-Ry(µ2) as shown in Figure A.1.

X • • X

Ry(µ2) Ry(°µ2/2) Ry(°µ2/2)

Figure A.1: Quantum circuit for anti-controlled rotation oc-R2.

Circuit of c° select(S). Notice that select(S) is a product of two operations: P1 =
(|0ih0|+ (°isgn(t) |1ih1|)≠ I2n and P2 = |0ih0|≠ I2n+|1ih1|≠S. Hence, the c-select(S) is to
separately apply c-P1/P2. One key component of c-P1 is the controlled phase gate c-S,
which consists of T gate, CNOT, and Rz. The decomposition is depicted in Figure A.2.

T • •

Rz(º/2) Rz(°º/4) Rz(°º/4)

Figure A.2: Quantum circuit for controlled phase gate c-S.

As for the c-P2 gate, we first append one more measure register |0i and then use
Toffoli and CNOT gates. Note that the decomposition of Toffoli gate can be found in [111].
In consequence, our circuit is composed of primitive single/two-qubit gates.

Ultimately, combining the circuits of c-P1/P2 leads to the circuit for c-select(S), which
is depicted in Figure A.3.

A.6 Barren plateaus

Barren plateaus phenomena [105] mean that the search direction is exponentially small
in the landscape of the loss function. In the next, we explain how gradients vanish
exponentially fast with scaling in the number of qubits.
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• • • •
• • S Z

|0ih0| • • •
•

Ω •
•

• •
Ω • •

• •

Figure A.3: Quantum circuit for implementing controlled select(S). Here we take three-
qubit state Ω as example. The circuit appends one qubit |0i. The decomposition of the c-S
is given in Figure A.2. Particularly, the c-Z gate is applied only when t> 0.

Note that for a fixed circuit template, the randomness nature arises from randomly
choosing parameters. We, therefore, focus on computing the expectation and the variance
of the gradient.

Expectation deduction. We focus on unitaries U1:k and Uk+1:L and their random-
ness, respectively.

For remark, the choices of U1:k and Uk+1:L are independent of each other. Hence, we
write the probability distribution of U(µ) in terms of the independence.

µ(U)=µ(U1:k)£µ(Uk+1:L).(A.83)

Here µ denotes the Haar measure.

Then the expectation of loss L(µ̂k,+) can be written as

E[L(µ̂k,+)]=
Z

D
L(µ̂k,+)dµ(U)

(A.84)

= tr
∑
U†

k(
º

2
) ·

Z

D1:k

U†
k+1:LHUk+1:Ldµ(Uk+1:L) ·Uk(

º

2
) ·

Z

Dk+1:L
U1:k

ØØ0n
Æ≠
0n

ØØU†
1:kdµ(U1:k)

∏
.

(A.85)

By the left- and right-invariant property of the Haar measure, we have

U†
k(

º

2
) ·

Z

D1:k

U†
k+1:LHUk+1:Ldµ(Uk+1:L) ·Uk(

º

2
)=

Z

D1:k

U†
k+1:LHUk+1:Ldµ(Uk+1:L).(A.86)
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Consequently, the expectation is simplified as

E[L(µ̂k,+)]= tr
∑Z

D1:k

U†
k+1:LHUk+1:Ldµ(Uk+1:L) ·

Z

Dk+1:L
U1:k

ØØ0n
Æ≠
0n

ØØU†
1:kdµ(U1:k)

∏
.

(A.87)

We can readily derive a similar result for E[L(µ̂k,°)], i.e.,

E[L(µ̂k,°)]= tr
∑Z

D1:k

U†
k+1:LHUk+1:Ldµ(Uk+1:L) ·

Z

Dk+1:L
U1:k

ØØ0n
Æ≠
0n

ØØU†
1:kdµ(U1:k)

∏
.

(A.88)

Ultimately, the expectation of the gradient is zero, as shown above.

Remark 10 In the above deduction, we have assumed that quantum circuits Uk+1:L can
reach the invariant property of the Haar measure. We can also assume U1:k satisfy the
invariant property as well. Particularly, the invariant property is shown below.

Z

D
dµ(U) f (U)=

Z
dµ(U) f (VU)=

Z
dµ(U) f (UV ),(A.89)

for any f (U) and V 2 D, where the integration domain is implicitly denoted by D.
However, it would cost exponentially many resources for quantum circuits to satisfy this
property. To overcome this issue, we can assume the quantum circuits satisfy t-design,
where only modest polynomial resources are required for a restricted class of f (U).

Variance deduction. Now, we consider computing the variance of the gradient.

Var
∑
@L(µ)
@µk

∏
= 1

4
E

h°
L(µ̂k,+)°L(µ̂k,°)

¢2i= 1
4
E

£
L2(µ̂k,+)°2L(µ̂k,+)L(µ̂k,°)+L2(µ̂k,°)

§
.

(A.90)

Without loss of generality, we focus on computing E[L(µ̂k,+)L(µ̂k,°)].
Phase 1. We rewrite L(µ̂k,+)L(µ̂k,°) and assume U1:k satisfies 2-design.

L(µ̂k,+)L(µ̂k,°)= h0n|U†(µ̂k,+)HU(µ̂k,+)|0ni · h0n|U†(µ̂k,°)HU(µ̂k,°)|0ni(A.91)

= tr
h
HU(µ̂k,+)

ØØ0n
Æ≠
0n

ØØU†(µ̂k,°)HU(µ̂k,°)
ØØ0n

Æ≠
0n

ØØU†(µ̂k,+)
i

(A.92)

= tr
h
U1:kAU†

1:kBU1:kCU†
1:kD

i
,(A.93)

where

A =
ØØ0n

Æ≠
0n

ØØ , B=U†
k(
°º

2
)U†

k+1:LHUk+1:LUk(
°º

2
),(A.94)

C =
ØØ0n

Æ≠
0n

ØØ , D =U†
k(

º

2
)U†

k+1:LHUk+1:LUk(
º

2
).(A.95)
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Then the expectation E[L(µ̂k,+)L(µ̂k,°)] is reduced to
Z

dµ(U1:k)£
Z

dµ(Uk+1:L)tr
h
U1:kAU†

1:kBU1:kCU†
1:kD

i
.(A.96)

According to Lemma 2 of [33], if the circuits U1:k satisfy 2-design, the integration over
the domain of U1:k is

tr(A)tr(C)tr(BD)+ tr(AC)tr(B)tr(D)
4n°1

° tr(AC)tr(BD)+ tr(A)tr(B)tr(C)tr(D)
2n(4n°1)

.(A.97)

As a result, the expectation is

E
£
L(µ̂k,+)L(µ̂k,°)

§
=

Z
dµ(Uk+1:L)

h
tr(U†

k+1:LHUk+1:LHkU†
k+1:LHUk+1:LHk)+ [tr(H)]2

i
(A.98)

£
µ

1
4n°1

° 1
2n(4n°1)

∂

=
R
dµ(Uk+1:L)tr(U†

k+1:LHUk+1:LHkU†
k+1:LHUk+1:LHk)+ [tr(H)]2

2n(2n+1)
.(A.99)

Moreover, the expectations of rests are given below,

E
£
L(µ̂k,+)L(µ̂k,+)

§
=E

£
L(µ̂k,°)L(µ̂k,°)

§
= tr(H2)+ [tr(H)]2

4n°1
° tr(H2)+ [tr(H)]2

2n(4n°1)
= tr(H2)+ [tr(H)]2

2n(2n+1)
.

(A.100)

Eventually, the variance of the gradient is computed as follows.

Var
∑

@

@µk
L(µk)

∏
=

1
2

"
tr(H2)+ [tr(H)]2

2n(2n+1)
°

R
dµ(Uk+1:L)tr(U†

k+1:LHUk+1:LHkU†
k+1:LHUk+1:LHk)+ [tr(H)]2

2n(2n+1)

#
(A.101)

=
tr(H2)°

R
dµ(Uk+1:L)tr(U†

k+1:LHUk+1:LHkU†
k+1:LHUk+1:LHk)

2n+1(2n+1)
.

(A.102)

Phase 2. We also assume the circuits Uk+1:L satisfy 2-design.
Z

dµ(Uk+1:L)tr(Uk+1:LHkU†
k+1:LHUk+1:LHkU†

k+1:LH)(A.103)

=
tr(Hk)tr(Hk)tr(H2)+ tr(H2

k)[tr(H)]2

4n°1
°
tr(H2

k)tr(H
2)+ [tr(Hk)tr(H)]2

2n(4n°1)
(A.104)

= 2n[tr(H)]2

4n°1
° 2n tr(H2)
2n(4n°1)

= 2n[tr(H)]2° tr(H2)
4n°1

.(A.105)
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In this case, the variance is

Var
∑

@

@µk
L(µk)

∏
= 1

2n+1(2n+1)

∑
tr(H2)° 2n[tr(H)]2° tr(H2)

4n°1

∏
(A.106)

= 2n tr(H2)° tr(H)2

2(2n+1)(4n°1)
.(A.107)

For many-body Hamiltonian, tr(H)= 0 since the Hamiltonians usually only consist of
Pauli strings, which are traceless.

Remark 11 Let H =P
l µlHl , where Hl are different Pauli strings. Then the trace tr(H2)

has a bound.

tr(H2)= tr

√
X

l
µ2
l H

2
l +

X

k,l:k 6=l
µlµkHlHk

!
= 2n

X

l
µ2
l .(A.108)

As a result, the variance bound is given by
4n

P
l µ

2
l

2(2n+1)(4n°1) .
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