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Abstract
This study aims to examine the performance of artificial neural network (ANN) model based on 1137 datasets of super-

large (1.0–2.5 m in equivalent diameter) and long (40.2–99 m) piles collected over 37 real projects in the past 10 years in

Mekong Delta. Five key input parameters including the load, the displacement, the Standard Penetration Test value of the

base soil, the distance between the loading point and pile toe, and the axial stiffness are identified via assessing the results

of field load tests. Key innovations of this study are (i) use of large database to evaluate the effect that random selection of

training and testing datasets can have on the predicted outcomes of ANN modelling, (ii) a simple approach using multiple

learning rates to enhance training process, (iii) clarification of the role that the selected input factors can play in the base

resistance, and (iv) new empirical relationships between the pile load and settlement. The results show that the random

selection of training and testing datasets can affect significantly the predicted results, for example, the confidence of

prediction can drop under 80% when an average R2[ 0.85 is required. The analysis indicates predominant role of the

displacement in governing the base resistance of piles, providing significant implication to practical designs.
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1 Introduction

Deep pile foundation has become one of the most prefer-

able options for high-rise buildings and transport infras-

tructure (e.g., bridges and heavy freight rail tracks) around

the world as it can carry massive loads in a relatively

limited area. While it is well understood that the axial

bearing capacity of a pile is mainly contributed by its shaft

friction and base (or toe) resistance, immense effort has

gone to establishing different methods to estimate bearing

capacity of piles over the past years. Many solutions are

based on complex mathematical derivations and numerical

analysis [14, 27, 38, 41], while others employ empirical

equations derived from field tests such as Standard Pene-

tration Test (SPT value) [19, 30, 49], Cone Penetration Test

(CPT) [22, 36, 67] and field static/dynamic load tests

[10, 20, 30]. Despite these various solutions, a significant

limitation that most conventional approaches commonly

share is their limited consideration of past experience as

well as data. Indeed, empirical parameters which are nor-

mally determined based on experience of the designers are

often used to optimize predictions [11, 20, 23]; however,

there is usually a lack of systematic method to compute

these parameters properly. For example, the effect of dis-

placement on the ultimate bearing capacity of piles is

normally evaluated through field load tests, which are

usually time-consuming and highly resource demanding,

while empirical methods to ease this process have not been

established very well. This context thus remains a need for

novel approaches that can incorporate experience-based

factors as well as the valuable existing data, and thereby
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generate user-friendly processes for enhanced practical

designs.

In recent years, the use of data-based techniques such as

machine learning (ML) to predict geotechnical issues has

received increasing attentions [26, 64, 68, 72]. Of numer-

ous emerging ML techniques, artificial neural networks

(ANN) is the most common approach to develop fore-

casting models of various geotechnical issues such as slope

stability [40], soil properties [29, 48], bearing capacity

[7, 28], deep excavation [2, 71], mining [12, 57], tunnelling

[59], jet grouting [58], among others. As strictly developed

based on existing data, the quality and size of data play a

pivotal role in building ANN models. Nevertheless, one of

the major issues in the past ANN modelling of pile foun-

dations was the use of relatively limited data (i.e., common

number of trained data points\ 175) covering a variety of

pile shapes, materials and construction methods (see

Table 1). This can lead to low accuracy and/or reliability

when applying these ANN models to real projects because

the new inputs can easily be out of the trained range due to

data scattering. The limited data also allows only one or

several subsets of training and testing data while estab-

lishing the model, thus hindering our understanding of the

effect that data randomness can have on the confidence of

predictions. In addition, Table 1 shows that past studies

mainly addressed small and medium piles, i.e., diame-

ters\ 1.0 m and length\ 45 m, whereas larger piles were

hardly found. In fact, large and long piles are commonly

employed in alluvial and coastal regions where soft soil is

usually a significant barrier to the infrastructure develop-

ment [47]. Therefore, an ANN model established based on

a considerably large database of super-large and -deep piles

in soft soil becomes essential.

A common issue across past ANN models of pile

foundations was the use of CPT data to estimate the shaft

and base resistances of piles for input parameters while

modelling [4, 6, 43, 45, 51]. Because the CPTs are very

different from the actual working condition of piles,

especially for large and long piles (e.g., the ratio of

diameter and displacement, penetration speed, the stress

level along the shaft), the pile shaft and base resistances

computed from the sleeve and tip values measured by

CPTs can deviate significantly from their real values [63].

Further, the soil deformation based on CPTs is much larger

than that of piles, while failures of soil based on CPT data

do not represent very well the ultimate state of piles under

loading, resulting in inaccurate understanding of the

mobilizations of base and shaft resistances in pile foun-

dation. For example, Fellenius (2015) [22] indicated that

the pile toe resistance calculated from CPT results can

considerably overestimate the actual value measured in

field tests. Besides, CPTs are normally limited up to 50 m

depth [21, 62], whereas large bored piles can easily exceed

this depth, causing a lack of method to estimate the shaft

and base resistances for these long piles. These limitations

of past ANN models require a more rigorous determination

of influencing factors on the bearing capacity of piles that

can be used as the key input parameters for establishing the

model.

The major motive of this study is to overcome the above

limitations by using a large database of pile foundations to

examine and advance the application of ANN in predicting

base resistance of super-large and -deep piles, which was

not available in any past ANN models of pile foundation.

The key innovations are the random selection of training

and testing datasets derived from 1137 data points (86

Table 1 Typical past studies using artificial neural network (ANN) model for pile foundations

References Datasets/

No. piles

Equivalent

diameter D (m)

Embedded

length L (m)

Method

construction

Pile shape and

material

Max

loading

(ton)

Load test

method

Soil

experiment

[4] 50/50 0.6–1.8 6–25.1 15 bored Ro, C 235.8–964.4 SLT CPT

0.32–0.6 5.6–15.8 35 driven Ro, C 39.1–135.2 SLT CPT

[6] 33/33 0.273–0.45 11–45 27 driven P, Sq, Hs, Ro,

C, S

49–168.6 SLT CPT

0.609–0.813 8.2–75 6 driven P, S 250–686.0 SLT CPT

[43] 36/36 – 5–34.9 36 driven Ro, C, Cp 45.2–1160 PDA SPT

[51] 165/56 0.273–0.609 9.6–42.8 56 driven C, Cp 36–612.6 PDA SPT

[42] 50/50 – 3.4–33.6 50 driven Ro, Cp 50–369.2 PDA SPT

[54] 174/174 0.304–1.798 4.5–27.4 94 bored Ro, C 35.5–965.2 SLT CPT

0.25–0.9 5.5–41.8 80 driven Ro, Sq, C, Cp 29–450 SLT CPT

[61] 169/169 0.236–1.067 4.57–47.24 169 driven Hs, P, Ro, S, C 44.4–870.5 PDA –

P Pipe, Ro Round, Sq Square, Hs H-section, C Concrete, S Steel, Co Composite, Cp re-stressed Concrete, PDA Pile Driving Analyzer, SLT Static

Load Test
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different piles) across 37 real projects over the past

10 years in Mekong Delta and nearby areas in Vietnam

(Fig. 1). The equivalent pile diameter varied from 1.0 up to

2.5 m, while the embedded depth of these piles was from

40.2 to 99 m with the test load up to 10,910 tons, all of

which were much larger than those used in previous ANN

models for piles. A simple approach based on combining

multiple learning rates is also proposed to enhance training

process. Further, the outcomes yielded from the established

ANN models are then innovatively employed to determine

the contribution that different factors can make over the

base resistance, which advances our knowledge of pile

foundation. The study will also provide empirical equa-

tions, which do not exist in literature as well as state of the

practice, to assist practical designs. It is noteworthy that

although advanced ML combined with optimization tech-

niques can be used, this study focuses on the most funda-

mental concept of ANN model due to its simplicity and

thus a wider range of practical implications.

2 An overview of super-large and long piles
used in Mekong delta

2.1 Geological condition

Mekong Delta is a weak geology region in Vietnam with a

very thick mud deposit (Fig. 2a) from the Mekong River.

Located at the margin region of the Mekong delta and

downstream of Sai Gon River, the geology of Ho Chi Minh

City is extremely complicated with a very thick layer of

soft to very soft clay, ranging from 6 to 30 m below the

ground surface as described in Fig. 2b, resulting in con-

siderable challenges for designing foundation. This clayey

soil has an average void ratio e0 = 2.2, water content wn-

= 80% and plasticity index PI = 53 [32]. The liquid and

plastic limits are around 89% and 36%, respectively; thus

they are well classified as CH type. The unconfined com-

pressive strength (qu) of this soil varies from 20.3 to

49.1 kPa while the SPT value (N) is only around 0–2.

Medium and dense sands are about 3 m thick and dis-

tributed widely from 10 to 60 m depth. The SPT value of

this soil ranges from 8 to more than 25 blows/ft [33].

Underneath this layer is a 1.5-3 m-thick layer of stiff to

very stiff clay where qu varies from 80 to 250 kPa and SPT

value is between 25 and 50 blows/ft. Followed this layer is

a dense fine sand with the SPT value ranging from 30 to

greater 70 blows/ft.

2.2 Characteristics of pile foundation in Ho Chi
Minh city

Most pile foundation for high rise buildings in Ho Chi

Minh city is often designed to carry heavy load, i.e., from

800 to more than 3000 tons. The test load is usually

required to be 2–3 times larger than the design load,

resulting in a pile load in test cases of up to 9000 tons. For

this very large magnitude, the bored piles are normally

required to be installed up to the stiff soil layer which is

located from 60 to 100 m depth. In addition to this very

deep installation, the cross sections of these piles must be

large enough to meet the requirement of pile slenderness.

Generally, there are two common types of piles being used

in this region; they are bored piles with diameter from 1 to

2 m and rectangular barrette piles in the range

0.6 m 9 2.4 m to 1.2 m 9 2.8 m (equivalent to 2.5 m in

diameter considering the same perimeter). Given this range

of diameters plus an installation depth varying from 40.2 to

99 m, these piles can be classified as super-large and -long

piles compared to the normal range, i.e., 0.8–1.3 m in

diameter and 10-40 m in length of large piles commonly

used in past studies [1, 4, 8, 18].

Static load test (SLT) and O-cell load test (OLT) are

currently the two most common field tests used to examine

the design load and determine the ultimate load capacity of

piles. The SLT needs large space for setup, while its test

load is normally limited up to 4,500 tons. Therefore, for

test loads exceeding 4,500 tons, the OLT is often adopted

as it can be conducted in narrow space for very long piles.

To measure the development of the shaft and base resis-

tances according to loading point displacement, strain

gauges are attached to steel reinforcement bars in the cages

MKD: Mekong Delta 

Fig. 1 Location of pile foundation collected in the current study
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along the piles; however, their positions varied depending

on the distribution of soil layers as depicted in Figs. 3a and

4a. Approximately, 3 to 9 strain gauges are installed at each

cross section, depending on its shape and dimension. When

the load is applied, displacement at the loading point is

recorded over time. The axial forces are then computed

based on the measured strain of steel bars under loading.

The difference in axial forces between two adjacent cross

sections is actually the total shaft resistance that the sur-

rounding soils act on the pile segment. Furthermore, strain

gauges are installed at the tip cross section which is

0.5–1.0 m above the pile toe to measure the base resis-

tance. The two following bored and barrette piles under-

gone SLT and OLT (Figs. 3 and 4) are described as

representatives for the test pile data used to develop ANN

model in the current study.

Figure 3 shows a large diameter bored pile (1.2 m in

diameter and 80 m in length) named TP1 at Lakeside

project in District 7, Ho Chi Minh City. Soil profiles and

strain gauge arrangement are presented in Fig. 3a. The pile

toe was placed into medium dense sand with the SPT value

of 31. In this pile, strain gauges were distributed at 10

layers along the pile, while the deepest strain gauge section

was set up at the depth of 79.3 m. The ultimate load was

designed at 1100 tons, and the test load was approximately

2750 tons. The load–displacement curves of three loading

and unloading cycles are represented in Fig. 3b which

shows the pile load reaches 2750 tons at the largest vertical

displacement of 49.46 mm under the 3rd loading cycle.
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The axial load distribution and mobilized base resistance of

the pile at each loading levels are represented in Fig. 3c

and d, respectively. The data show that majority of the

shaft friction is distributed along the upper half of the pile,

i.e., around 45 m depth from the ground surface, whereas it

drops apparently over the lower half of the pile. The larger

the test load, the more non-uniform distribution the axial

load along the pile. As the displacement reaches the largest

level of 49.46 mm, the base resistance increases to

3853 kPa. These results mean that the contributions that

the shaft friction and base resistance make over the total

ultimate bearing capacity need to be estimated with respect

to the test load and the displacement variations, especially

for large-diameter and long piles.

Figure 4 shows a typical barrette pile under O-cell load

test, i.e., TP2 in the 461 m-high (81 floors) Landmark 81
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Fig. 3 Lakeside project: a soil profile and static load test of bored pile TP2, b static load–displacement, c axial load distribution, d displacement-

mobilized base resistance
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building which was the highest building in Vietnam (i.e.,

one of top 10 tallest buildings in the world constructed in

2018). This pile had a cross section of 1.0 m 9 1.8 m with

its toe in dense sand at a depth of 80 m. Strain gauges were

installed at 12 different levels along the pile as presented in

Fig. 4a. The strain gauges to measure the base resistance

were installed at a distance of 1.0 m from the pile toe. It is

noteworthy that unlike static load test, the loading point in

this pile test was located at the O-cell which positioned at a

depth of 65 m from the ground surface as shown in Fig. 4a.

The design and test loads for this pile were 4000 and 9319

tons, respectively. Figure 4b shows the load–displacement

curves where the largest downward and upward displace-

ments at loading point are 17.27 mm and 18.21 mm,

respectively. Figure 4c shows the axial load distribution in

the pile with the applied load at the O-Cell point. Mobi-

lization of the base resistance according to the downward

displacement at the loading point is reported in Fig. 4d.
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Fig. 4 Landmark 81 project: a soil profile and O-cell load test of bored pile TP2, b O-cell load–displacement, c axial load distribution,

d displacement-mobilized base resistance
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The base resistance reached 2794 kPa at the displacement

of 17.27 mm.

3 Artificial neural network model and data
collection

3.1 Artificial neural networks (ANNs)

A typical ANN model includes the input, hidden and output

layers that imitates the information processing system of

the nervous system in the human brain to identify and

predict characteristics of a problem based on its given

dataset [9]. In all these layers, the nodes (i.e., neurons) are

reasonably arranged and communicate with each other

through weighted connections. Each neuron adopts an

activation function that aims to receive information from

prior neurons, process and transmit signals to subsequent

neurons or output of the network. Performance of an ANN

model can be evaluated by comparing the predicted results

with real data via several assessment factors such as the

coefficient of determination (R2), mean squared error and

absolute errors [43, 45, 55]. Back-propagation is the most

common algorithm widely used for training ANN models

[16] due to its simplicity while ensuring high degree of

accuracy in predicting data behaviour. The current study

also adopted the back-propagation approach, while the

gradient descent was employed to optimize the error and

obtain the global minimum.

3.2 Data collection and features

The current ANN model was developed based on a data-

base consisted of 1137 sets which were collected from load

tests of 86 super-large and long bored piles at various

projects in Mekong Delta, Vietnam. Basic information

such as the location, size and loading parameters of these

piles is summarized in Table 2. These collected piles had

different cross-sectional dimensions, ranging from 1.0 to

2.0 m in diameter for bored piles and 0.6 m 9 2.4 m to

1.2 m 9 2.8 m in rectangular shape for barrette piles. The

embedded length varied from 40.2 to 99 m and the test

load was up to 10,910 tons by O-cell load test and 4513

tons by static load test. The distribution of pile dimension

including the cross section and embedded length is depic-

ted in Fig. 5, while a summary of the data range of the piles

is provided in Table 3. Apparently, the current database of

piles is much more comprehensive and rigorous compared

to most past studies using ANN models to predict bearing

capacity of pile foundations [4, 6, 42, 43, 51, 54, 61].

Moreover, all the piles are ranged from large to super-large

size including only two types, i.e., 75% bored piles and

25% barrette piles (Fig. 5a). These unique features of the

current database will ensure a more robust and reliable

development of ANN model to predict behaviour of pile

foundation.

The average SPT values at pile toe were used to feature

soil properties. It is important to consider the failure zone

of soil below the pile toe to obtain the average SPT values.

Meyerhof (1976) [41] recommended the failure zone to be

10D above and 4D below the pile toe (D is the equivalent

diameter of pile). According to [19], the failure zone under

pile toe of small diameter piles was in the range of 2D to

8D depending on physical properties of soil layers above

the pile toe. For lager diameter piles, the failure zone

extends to 1D below pile toe as proposed by [5]. In this

study, the average SPT values in 1D zone below the pile

toe was used because of the large diameter bored piles. The

range of SPT values is shown in Table 3.

4 Model development

4.1 Model inputs and outputs

As the main objective of this study is to predict the

mobilized base resistance of piles based on ANN approach,

the input parameters are identified as those directly influ-

ence behaviour of the base resistance considering the load

test data (e.g., Figs. 3 and 4). It can be determined that the

base resistance mainly varies with 5 major different

parameters which are the applied load (P), displacement of

loading point (Dp), axial stiffness (AE), SPT values (N) of

the soil beneath the pile toe and the distance from loading

point to the pile toe (Lp). The pile test data (e.g., Figs. 3

and 4) show that increasing the applied load P and the

corresponding displacement Dp will cause the base resis-

tance to increase; thus they were considered as two primary

input parameters in the current model. It is apparent that

stiffness of the soil beneath the pile toe will play an

important role in governing the mobilized base resistance,

i.e., the larger the SPT value, the larger the base resistance.

In other word, the SPT value must be included in the

influencing factors while establishing the ANN model.

Furthermore, the distance between the loading point to the

pile toe is a crucial parameter because varying this distance

will result in different load distribution along the pile, thus

affecting the base resistance. Figure 6 shows that the

mobilized base resistance (i.e., Qb/(P/A)) increases when

the distance Lp decreases. In particularly this ratio rises

swiftly from around 10% to more than 30% when Lp
becomes less than 10 m. This observation, in fact, cor-

roborates well previous data for large diameter bored piles

[1, 10, 17, 38, 44]. The longer the distance, the harder the

base resistance can be mobilized. Note also that for bored

piles, the distance between loading point and pile toe is
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Table 2 Summary of pile data used in the current ANN model development

No. Project name Test pile

name

Pile

type

Diameter/size(m) Pile length L

(m)

Type

test

LP
(m)

NGS Pt/Pd

(ton)

Dp(max)

(mm)

Qb(max)

(kPa)

1 Lakeside TP2 Bored 1.2 80.0 SLT 80.0 10 2750/

1100

49.46 3853

2 Acent Plaza PTB Bored 1.0 70.3 SLT 70.3 8 1170/

900

54.72 3654

3 PTA Bored 1.2 80.3 SLT 80.3 8 1950/

1300

45.43 3562

4 Friendship

Tower

TP1 Bored 1.5 79.0 SLT 79.0 10 3000/

1500

33.04 1684

5 TP2 Bored 1.2 64.0 SLT 64.0 10 3150/

1050

42.59 4069

6 Viet Gia Phu TP02 Bored 1.2 80.0 SLT 80.0 8 2640/

1200

59.15 8538

7 TP04 Bored 1.2 80.0 SLT 80.0 8 3000/

1200

39.91 2208

8 Dai Quang

Minh

TP01 Bored 1.5 72.2 SLT 72.2 11 3000/

1500

20.64 426

9 TP02 Barrette 0.8 9 2.8 62.2 SLT 62.2 9 3400/

1700

24.09 515

10 TP03 Barrette 0.8 9 2.8 62.2 SLT 62.2 10 4000/

2000

28.05 575

11 Phuc Dat TP01 Bored 1.2 62.3 SLT 62.3 8 2700/

1200

34.12 893

12 TP02 Bored 1.0 52.3 SLT 52.3 7 1800/

800

27.75 966

13 Van Xuan CTN1200-

1

Bored 1.2 75.0 SLT 75.0 16 2000/

1000

23.68 429

14 CTN1500-

1

Bored 1.5 75.0 SLT 75.0 16 2700/

1350

28.12 143

15 CTN1500-

2

Bored 1.5 75.0 SLT 75.0 14 2700/

1350

25.10 126

16 CTN1500-

3

Bored 1.5 75.0 SLT 75.0 14 2700/

1350

25.00 236

17 Tan Cang-Sai

Gon

BR1 Barrette 0.8 9 2.8 65.0 SLT 65.0 11 4500/

1800

17.73 1194

18 BR2 Barrette 0.8 9 2.8 65.0 SLT 65.0 10 4500/

1300

29.63 741

19 HCM

Apartment

TP4 Bored 1.2 70.0 SLT 70.0 8 3120/

1200

58.03 142

20 HCM Urban

Railway

TBP02 Bored 1.5 76.1 SLT 76.1 15 2720/

1350

23.45 890

21 TBP03 Bored 1.2 73.6 SLT 73.6 13 1967/

1000

34.21 1029

22 Landmark 81 TP1 Barrette 1.0 9 2.8 85.0 OLT 23.3 10 8370/

3600

41.44 4507

23 TP2 Barrette 1.0 9 2.8 80.0 OLT 22.2 12 9318/

4000

17.27 2794

24 Lim III Tower TP1 Barrette 0.6 9 2.4 40.2 SLT 40.2 6 2400/

1200

14.32 1047

25 TP2 Barrette 0.8 9 2.8 63.0 OLT 16.0 10 7756/

4000

43.94 1619

26 E-Town TP1 Bored 1.8 66.0 OLT 20.0 11 5154/

2500

28.62 251

Acta Geotechnica

123



Table 2 (continued)

No. Project name Test pile

name

Pile

type

Diameter/size(m) Pile length L

(m)

Type

test

LP
(m)

NGS Pt/Pd

(ton)

Dp(max)

(mm)

Qb(max)

(kPa)

27 Hilton TP1 Barrette 1.2 9 2.8 80.0 OLT 18.0 10 9598/

3900

13.62 500

28 TP2 Barrette 1.0 9 2.8 80.0 OLT 22.0 9 5922/

3000

188.00 2500

29 Lancaster TP1 Barrette 0.8 9 2.8 62.2 OLT 15.0 11 5352/

2380

138.20 2261

30 Lim Tower P1 Bored 1.2 67.0 SLT 67.0 13 2250/

900

43.38 1946

31 P2 Bored 1.2 67.0 SLT 67.0 13 2250/

900

43.75 1884

32 Vietcombak

Tower

TNBR3A Barrette 1.0 9 2.8 70.8 SLT 70.8 11 3705/

2470

16.77 404

33 TBP2 Bored 1.5 70.8 SLT 70.8 11 2604/

1400

90.76 3402

34 Astral City TP2-BS1 Bored 1.2 65.0 SLT 65.0 8 1837/

1020

22.75 831

35 TP2-BS2 Bored 1.2 65.0 SLT 65.0 8 2245/

1020

33.21 1229

36 Sunrise City TP3 Barrette 0.8 9 2.8 68.0 SLT 68.0 9 2740/

1350

30.55 446

37 Vieting Bank TP3 Bored 1.2 45.0 OLT 3.7 6 6182/- 60.67 5024

38 TP4 Barrette 1.0 9 2.8 45.5 OLT 4.4 7 6448/- 123.3 8590

39 TP5 Bored 2.0 57.2 OLT 10.4 7 11,250/- 17.90 4590

40 Satra Tax Plaza TP1 Barrette 1.0 9 2.8 80.5 OLT 18.0 12 10,910/

3840

14.44 600

41 TP2 Barrette 1.2 9 2.8 80.3 OLT 17.0 11 8500/

4250

13.28 686

42 Etown TP1 Bored 1.2 77.8 SLT 77.8 9 2500/

1015

33.00 309

43 Hung Thinh TP1 Bored 1.0 65.5 SLT 65.5 6 2070/

920

32.53 350

44 TP2a Bored 1.2 66.4 SLT 66.4 5 2678/

1190

34.02 1121

45 TP3 Bored 1.5 67.1 SLT 67.1 6 3480/

1740

35.55 568

46 GREEN

TOWERS

TP1 Bored 1.5 63.8 SLT 63.8 5 3500/

1765

37.90 4505

47 TP2 Bored 1.5 65.0 SLT 65.0 5 4412/

1765

50.36 3682

48 TP3 Bored 1.2 61.1 SLT 61.1 5 2400/

1200

31.93 1349

49 TP4 Bored 1.0 63.0 SLT 63.0 5 2250/

900

28.93 6011

50 Hai Phong

Pullman

TP1 Bored 1.2 59.0 SLT 59.0 7 2500/

1000

44.12 5068

51 KingCrown TP1-1 Bored 1.5 79.5 OLT 21.0 11 3700/

1850

32.44 2450

52 TP1-2 Bored 1.5 78.4 OLT 27.0 11 3700/

1850

7.68 436

52 TP2-1 Bored 1.2 75.5 OLT 26.8 11 2700/

1350

9.54 593
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Table 2 (continued)

No. Project name Test pile

name

Pile

type

Diameter/size(m) Pile length L

(m)

Type

test

LP
(m)

NGS Pt/Pd

(ton)

Dp(max)

(mm)

Qb(max)

(kPa)

54 Vinhomes

Bason

TN1 Barrette 0.8 9 2.8 60.0 OLT 12.0 8 4210/

2200

119.00 4084

55 TN2 Bored 1.2 60.0 SLT 60.0 8 3000/

1200

51.50 4820

56 TN3 Bored 1.5 60.0 OLT 8.1 10 2650/

1600

228.00 5400

57 TN4 Bored 1.0 55.0 SLT 55.0 7 2000/

800

52.82 5100

58 TN6 Barrette 0.8 9 2.8 69.0 OLT 10.5 8 6412/

3000

130.50 6248

59 TN7 Bored 1.5 69.0 OLT 12.1 10 4250/

2000

48.20 3200

60 The Sun BP-140 Bored 1.2 80.3 SLT 80.3 11 4000/

2000

33.96 647

61 TP1 Bored 1.8 92.0 OLT 23.0 14 8742/

4000

15.51 5304

62 TP2 Bored 1.5 90.0 OLT 19.0 13 6404/

3000

32.84 3768

63 TP3 Bored 1.2 80.0 OLT 17.0 10 4214/

1900

7.48 450

64 TP4 Bored 1.5 99.0 OLT 21.5 14 4916/

3000

5.77 960

65 TP5 Bored 1.5 99.0 OLT 20.0 14 6654/

3000

10.72 5939

66 Vincom A TNBR3A Barrette 0.8 9 2.8 58.0 SLT 58.0 12 2925/

910

32.43 728

67 Alpha 4 P-50 Bored 1.2 50.0 SLT 50.0 5 975/650 5.27 820

68 P-127 Bored 1.2 64.0 SLT 64.0 8 1575/

1050

15.52 180

69 P-14 Bored 1.2 66.0 SLT 66.0 7 1575/

1050

11.28 265

70 Lancaster

Lincoln

TP01 Bored 1.5 85.0 OLT 25.0 15 4328/

2000

10.59 968

71 TP03 Bored 1.5 85.0 OLT 23.6 15 8492/

2100

33.75 3203

72 Sai Gon – Ba

Son

TP1 Bored 1.5 87.0 OLT 16.0 13 5200/

2000

23.30 1382

73 TP3 Bored 1.8 87.0 OLT 13.0 13 6000/

3000

8.20 502

74 TP4 Bored 1.5 87.0 OLT 13.0 13 4000/

2000

10.20 701

75 Nexus TP1 Bored 1.5 72.7 SLT 72.6 9 4513/

2803

30.04 1239

76 Eximbank

Building

TP1 Barrette 0.8 9 2.8 65.3 OLT 16.4 8 5964/

2500

10.08 1323

77 TP2 Barrette 0.8 9 2.8 85.3 OLT 15.7 10 6510/

2500

9.60 860

78 German House P9 Bored 1.5 72.8 OLT 19.5 11 2918/

1510

10.43 980

79 P40 Bored 2.0 79.8 OLT 14.2 9 4742/

2090

6.89 457
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actually the length of the pile as the loading point is located

at the pile head, whereas this distance is the O-Cell point to

the pile toe. The distribution of Lp in the current study is

shown in Fig. 7.

It is important to note that the effect of pile size was

included through the axial stiffness which was computed

based on Young’s modulus of the pile material and the

cross-sectional area [35]. In addition, the pile length is

reflected via the distance between the loading point and the

Table 2 (continued)

No. Project name Test pile

name

Pile

type

Diameter/size(m) Pile length L

(m)

Type

test

LP
(m)

NGS Pt/Pd

(ton)

Dp(max)

(mm)

Qb(max)

(kPa)

80 Empire City TSBP1-

MU4

Bored 1.2 62.2 SLT 62.2 9 2600/

1300

28.71 836

81 TSBP4-

MU4

Bored 1.2 62.2 SLT 62.2 9 2600/

1300

28.47 764

82 TSBP1-

MU7

Bored 1.2 62.2 SLT 62.2 7 2500/

1300

25.64 746

83 TSBP4-

MU7

Bored 1.2 62.2 SLT 62.2 7 2500/

1250

28.69 985

84 TSBP7-

MU7

Bored 1.2 62.2 SLT 62.2 7 3250/

1250

50.27 3565

85 Song viet TP1 Bored 1.2 75.3 SLT 75.3 10 2300/

1150

36.04 788

86 TP4-1 Bored 1.2 60.3 SLT 60.3 9 2300/

1150

22.90 613

SLT static load test, OLT O-cell load test, Lp distance between loading point and pile toe, NSG the number of strain gauge levels, Pd the design

load, Pt the test load, Dp displacement at loading point, Qb base resistance

Table 3 The range of pile features

Diameter/size

(m)

Pile

length

L (m)

Pt

(ton)

Dp

(max)

(mm)

Qb

(max)

(kPa)

SPT of

base

soil

Min 0.8/0.6 9 2.4 40.2 975 5.77 126 70

Max 2.0/1.2 9 2.8 99.0 10,910 130.5 8590 26
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Fig. 6 Mobilized base resistance of bored piles according to different

distance between loading point and pile toe at the displacement of

around 20 mm
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pile toe, as described earlier. The shaft friction between soil

and pile can certainly affect the load distributed at pile toe,

which varies with soil properties along the pile. For sim-

plicity, the current study only considered the contribution

of base soil to the load distribution, while the effect of

friction that the soils around piles can have been assumed

to be included through the displacement–load characteris-

tics incorporated in the current model. Unlike traditional

methods where specific relationship between individual

parameters needs to be quantified, ANN approach can

capture and quantify the influence of parameters on each

other via their multiple forth and back interactions

designed through its network and algorithm.

4.2 Data division and reprocessing

In the current model, 1137 datasets were used for devel-

oping and testing the ANN model. The available data is

randomly divided into two subsets including a training

dataset for model calibration and an independent testing

dataset for model verification. Specifically, 966 data points

(85%) were used for training and the remanding 171 data

points (15%) were used for testing. The major innovation

in the current data processing was that the study constantly

repeated the training and testing process for 250 different

random selections from the entire database and then the

probability analysis was applied to evaluate the results.

Most previous studies assumed homogenous data and

randomly selected training and testing datasets at only one

or few times [4, 45, 46, 51, 55], resulting in incomplete

understanding of how the random distribution of data can

affect the prediction outcomes. Specifically, the questions

of whether the established model would provide identical

predictions over different subsets of training and testing

data, and how this random division can affect the predic-

tion confidence have not been clarified. Indeed, for any

data collected from real construction sites, the variation in

data properties is usually significant, requiring an investi-

gation on the probability of outcome distribution while

varying data selection.

The input and output variables are scaled in a unit range

to eliminate their dimension and ensure that all variables

receive equal attention during training [54]. The scaling

range is normally chosen with respect to the ultimate limits

of activation function used in the hidden layers, for

instance, the scaling range between -1 and 1 when the tanh

function is used, while the range from 0 to 1 is normally

used for the sigmoid function. While there might be some

advanced activation functions developed in recent times

(Shen et al. 2022) [60], our preliminary investigations on 4

common activation functions including Sigmoid, Tanh,

ReLU and Leaky ReLU showed that the Sigmoid function

provided the most accurate and relevant outcomes (i.e.,

R2 = 0.96 in training phase), given the fundamental form

of ANN. The Sigmoid function was hence adopted in this

study with scaling process given by:

xn ¼
x� xmin

xmax � xmin

ð1Þ

where xn, xmin and xmax are the normalized (scaled), the

minimum and maximum values of variable x.

4.3 Determination of model architecture

The performance of an ANN model essentially depends on

its designed network architecture, therefore, defining the

optimum network architecture is vital to establish an

effective ANN model. The network architecture includes

the number of hidden layers associated with their nodes

and optimum weights. Hornik, Stinchcombe, and White

[31] indicated that an ANN model with one hidden layer

can approximate any continuous function. In designing

ANN architectures, Lawrence [37] recommended that

increasing the number of hidden layers should be the last

option, whereas optimizing the number of hidden nodes

(Nhn) can enhance performance of the ANN model more

effectively. The optimal Nhn depends on the numbers of

input and output variables as proposed in previous studies

(Table 4). However, the predictive performance of an ANN

model is commonly evaluated through the coefficient of

determination (R2) as well as the root mean squared error

(RMSE), therefore, the trial-and-error approach [54] can be

used to determine the best predictive performance. In other

words, the current study examined various network archi-

tectures with different numbers of hidden nodes using the

same input and output data to find out the best architecture.

This optimum architecture was then applied to different

random sets of data to investigate the probability distri-

bution of predicted outcomes.
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In this work, an ANN model with one hidden layer was

adopted for network construction as presented in Fig. 8,

while Nhn were varied from 5 to 40 nodes to determine the

optimal network architecture. Several previous studies

[2, 53] were based on the error of training datasets to select

optimal network architecture; however, it is noteworthy

that the error in testing or validating datasets is always the

main target of a predictive model. An optimal model does

not only have the capacity of minimizing the error during

testing data due to overfitting or underfitting, but also has

the simplest structure (i.e., less input parameters as well as

nodes) for reduced computational cost. Figure 9 presents

the influence of the Nhn on the predictive performance of

the ANN model. For the simple networks in which the Nhn

is less than 10, the largest value of R2 in training and

testing datasets were relatively small, i.e., only 0.889 and

0.805, respectively. When Nhn increases and exceeds 30,

the value of R2 in training datasets rises considerably to

0.969 and 0.983 for Nhn = 30 and 40, respectively. In the

meantime, the value of R2 in testing datasets drops sig-

nificantly from 0.899 to around 0.8 when Nhn increases

from 20 to 40, indicating the over-fitting of the model when

Nhn is too large. This means that the network with 20

hidden nodes where the values of R2 in the training and

testing data were large and close to each other can be

considered as the best performing model. In fact, the time

for training the 40-hidden node system was also approxi-

mately double the time used for 20-hidden node compu-

tation; thus the network with 20 hidden nodes was selected

for further analysis in this study. This, in fact, disagrees

with the previous empirical equations shown in Table 4.

4.4 Criteria of termination

During training process, it is crucial to decide when to stop

the training as this can critically affect the performance and

reliability of an ANN model. Therefore, it requires rigorous

training strategy and supporting techniques to avoid over-

fitting which usually happens if model training is

excessive. In contrast, the insufficient model training will

lead to inaccurate outcomes and/or under-fitting. There are

many techniques to determine when to stop training pro-

cess as discussed in previous studies [56], meanwhile

cross-validation techniques can be used to mitigate over-

fitting issue [46]. In the current work, the coefficients of

determination R2 calculated from the actual and predicted

values of pile base resistance in both training and testing

datasets were considered to terminate the training process.

The training dataset was then used to modify the connec-

tion weights, while the testing dataset was used to evaluate

performance of the trained network. The values of R2 at

various loops in training and testing data were obtained,

and the training process was terminated only when the R2

value of testing data was unchanged or begun to decrease.

4.5 Optimizing learning rate for enhanced
training process

The initial connection weights of the model were randomly

generated in the range from 0 to 1 and the optimal weights

were obtained by training the network to reach the lowest

prediction error. The training cycles to achieve termination

criteria and the lowest prediction error depended on the

learning rate (LR), which determined the size of the cor-

rective steps that the model can take to optimize the error

in each back-propagation. Shahin [54] shows that an LR of

0.2 is normally the minimum for an accepted error in

predicting driven piles and drilled shafts. Alkroosh [3]

indicated the optimum LR of 0.08 for minimal prediction

errors through training their ANN model using a LR

ranging from 0.05 to 0.6. A high LR can shorten the iter-

ation number of the training process, but can be difficult to

achieve the global minimum. On the other hand, a smaller

LR can make the training time-consuming and become

stuck in the local minimum. In this study, the trial-and-

error approach was used to determine the appropriate val-

ues of LR for the network training. An LR in the range from

0.005 to 0.05 was assumed for training the ANN models

consisting of 20 hidden nodes, while the initial weights

matrix was kept identical across different cases.

The training results using different LR values are shown

in Fig. 10. The network training did not converge when

LR[ 0.05. When LR was large, i.e., from 0.03 from 0.05,

the convergence rate of training was great in the first

cycles, resulting in an R2 value of 0.942 within the first 2

million loops. However, the convergence rate significantly

dropped in later cycles, causing R2 unchanged at 0.952

despite the training running through more than 4 million

additional loops. For the lower values of LR, i.e., 0.005 and

0.01, the convergence rate in the first 2 million training

cycles was medium to achieve an R2 value of 0.931 and

0.907, respectively. This rate remained unchanged in the

Table 4 The recommended numbers of hidden nodes in past studies

References Numbers of hidden nodes

[13] 2Ni þ 1

[52] NoþNi

2

[39]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni � No

p

[50] 2þNo�Niþ0:5No� No
2þNið Þ�3

NoþNi

[66] 2Ni

3

[34] 2Ni

Ni numbers of input variables, No numbers of output variables
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next 3 million training episodes with R2 rising to 0.959 and

0.957, respectively. In the later loops, R2 increased slowly

and reached the largest value of 0.966 after around 10

million loops. It is noteworthy that the smaller the LR

value, the larger the ultimate level of R2. Figure 10 shows

that the LR of 0.01 (blue line) was the optimal value for

training the current network as it needed less training loops

to reach the largest value of R2.

Many past studies [3, 45, 46, 54] used only one value of

LR in the network training, which can lead to the

aforementioned limitations such as excessive training time

and local minimum. A recent review study [70] shows that a

fixed value of LR does not always work well. To overcome

these problems, a relevant combination of multiple LR

values in the training process was investigated in this study.

Specifically, high LR values (i.e., 0.05 and 0.03) were

employed in the first training episodes to quickly achieve

the near global minimum on the error surface. In the next

cycles, lower LR values (i.e., 0.01 and 0.005) were used to
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Fig. 8 Architecture of the current ANN model
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reach the lowest global minimal. The results shown in

Fig. 10 indicated that the proposed combination signifi-

cantly improved the training time. The network training

obtained the largest value of R2 = 0.966 only after 6 million

loops compared to 10 million loops needed for training the

network with a constant LR value (i.e., LR = 0.01 and

0.005). This approach is more effective with the slope of

error reduction maintained at large corrective steps and thus

can be well considered while designing an ANN model.

5 Results and discussion

5.1 Performance of ANN model

The reliability of ANN models in predicting the mobilized

base resistance of the current piles is presented in Fig. 11.

It can be seen that the random division of database into

training and testing sets has a huge influence on the

obtained results. Different cases of random data division

resulted in different degrees of accuracy despite the same

model features (e.g., model architecture, multiple learning

rates of 0.05–0.03–0.01–0.005 and criteria of termination)

being used. In 250 investigated random cases, the optimal

R2 values of training and testing datasets varied in a wide

range, i.e., from 0.91 to 0.98 and 0.80 to 0.96, respectively.

This proves that the investigation on the prospective range

of predicted outcomes that the random data division can

result in is vital to the confidence of using ANN model in

practice. One cannot conclude about the predicted results

with only one or few random cases, for example, R2 in the

testing cases can drop to low level, i.e., 0.8 that requires a

serious attention.

Figure 12 shows the probability distribution of the

computed R2. In 250 random cases, the most common

values of R2 in the training and testing datasets were

around 0.96 and 0.89, respectively, which can be used as

representative to evaluate the ANN model performance.

The obtained random results indicate that the probability

distribution of the R2 error in training and testing datasets

is similar to a left (negative)—skewed distribution [15, 65]

where the left side of the peak R2 receives more distribu-

tion compared to the right side. This is understandable as it

would certainly become harder to achieve a precision that

is larger than the peak level (e.g., 0.96 in training), espe-

cially for the present real and large database, resulting in a

drop in distribution on the right side. The distribution of R2

is more uniform in the testing data (Fig. 12b); in fact, most

R2 values are allocated around 0.89 (from 0.87 to 0.91).

However, the number of predictions with R2 value[ 0.91

decreases more apparently compared to the opposite side

(i.e., R2\ 0.87). Besides, the red solid lines in Fig. 12

demonstrate the cumulative probability of the R2 value,

which shows that R2 develops more steeply in training

compared to testing data. Overall, for a required R2[ 0.85

with a confidence of 80% in testing cases, the current ANN

model can be considered acceptable, however for a higher

degree of confidence, more effort is certainly required.

Figure 13 shows representative predicted base resistance

using the current ANN model (one hidden layer, Nhn = 20
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and multiple LR = 0.05 ? 0.03 ? 0.01 ? 0.005 for this

computation) in comparison with the measured values. The

obtained R2 values are approximately 0.96 for training data

and 0.89 for testing, indicating an acceptable accuracy of

the model. Most of the predicted points agree relatively well

with the measured values, while a few data points (i.e.,

around Qb = 1000–1200 kPa) show significant deviation.

This can be attributed to a certain data inconsistency that

usually happens with data collection at real sites, especially

a large amount of data used in the current study. The results

proved that the proposed 5 input parameters, i.e., the load

(P), displacement of loading point (Dp), axial stiffness (AE),

SPT values (N) of the soil, distance from loading point to

the pile toe (Lp) were relevant to develop an ANN model to

estimate the mobilized base resistance of bored piles.

5.2 Influencing factors to the base resistance
of piles based on the prediction outcomes

Sensitivity analysis was carried out to identify the influence

of individual input variables on the predicted results as well

as the performance of ANN model. Garson [24] firstly,

proposed a simple technique, namely weights method, to

determine the relative importance (RI) of the input vari-

ables in one-hidden layer neural network by examining the

connection weights of the trained network. The weights

method fundamentally involves a procedure of partitioning

the hidden—output connection weights of each hidden

neuron h into components associated with each input

neuron i as shown in Eq. (2). The detailed procedures and

algorithm of this method can be found elsewhere [25],

which can be described by:

RI %ð Þi ¼
Pnh

h¼1 Qih
Pnh

h¼1

Pni
i¼1 Qih

� 100 ð2Þ

in which

Qih ¼
Wihj j

Pni
i¼1 Wihj j

withWih ¼ wih � who

where o denoted the output neuron and w is the connection

weights.

Figure 14 shows the results obtained from the sensitivity

analysis. It is interesting that the displacement has the most

dominant effect (i.e., 28.3% relative importance to the

predicted outcome) on the mobilized base resistance fol-

lowed by the load-pile toe distance and the SPT value of

soil beneath the pile. The load P has the least significant

influence with only about 10.5% relative importance. This

can be explained by the fact that the magnitude of dis-

placement had included both the effects of the load P and

the soil–pile interaction, thus its role was exacerbated,

whereas the contribution of the load became less signifi-

cant. It can be seen that the distance Lp also has a great

impact on the base resistance, which suggested the

importance of considering this parameter when estimating

the pile base resistance. The deeper the pile is, the harder
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the base resistance can increase. SPT value of the soil at the

pile toe has a medium effect on the base resistance com-

pared to other factors. This is understandable as most of

large diameter bored piles were based on stiff soil layers

where the SPT values were large and in relatively similar

range.

5.3 Empirical estimate of displacement
and mobilized base resistance

In order to facilitate the practical application of the current

model outcomes, all the data points representing the rela-

tionship between the mobilized base resistance and the

loading point displacement were combined and their

empirical relationships were developed. Specifically,

empirical relationships between the loading point dis-

placement Dp (mm) and pressure P/A (ton/m2) were

established differently for the static and O-cell load tests

based on the measured data. The hyperbolic function which

is widely used to describe the nonlinear behaviours of pile

load–displacement curve [38, 69] was adopted. The fitting

curves are shown in Fig. 15a for static load tests and

Fig. 15b for O-cell load tests. These expressions of the pile

pressure (P/A) are depicted in Eqs. (3) and (4) for static

load and O-cell load tests as follows.

P

A
¼ 2175Dp

20:5 þ 0:39Dp
ð3Þ

P

A
¼ 4000Dp

19:5 þ 0:81Dp
ð4Þ

Although there is a certain deviation between the results

estimated by the proposed equations and field data, they are

a fast approach that enables practical engineers to roughly

estimate the pile load with respect to a given pile

displacement.

Consequently, the above empirical relationships were

employed to estimate the vertical displacement of the load

point which was then be used to estimate the base resis-

tance using the validated ANN model. The resulting charts

representing the variation of the base resistance with dif-

ferent degrees of point load displacement and the distance

Lp are shown in Figs. 16 and 17 for bored piles and barrette

piles tested by the static and O-cell loading methods. It is

noted that these charts describe the common practical

context of piles where 3 typical parameters including the

embedded length, cross section and SPT values (N) of pile

are usually considered. For piles tested by static load, the

displacement less than 50 mm was employed to investigate

the mobilized base resistance by the trained network. The

number of data points with the displacement higher than

50 mm were relatively small (Fig. 15a), so the prediction

using the trained network for displacement larger than

50 mm can reduce the reliability. Similar consideration

was also applied to the piles tested by O-cell load where the

vertical displacement of loading points was less than

20 mm (Fig. 15b).

The obtained results in Figs. 16 and indicate that the

mobilized base resistance considerably depends on the

displacement and embedded length of piles. There are

nonlinear relationships of the pile base resistance with the

pile head displacement. For those piles tested by static load

and the pile head displacement lower than 20 mm during

the innital loading steps, the base resistance was hardly

mobilized; in fact, its incremental rate only begins to

increase when the displacement[ 20 mm. The mobilized

base resistance increases rapidly as the displacement

exceeds 25 mm. Besides, the longer the pile, the slower the

mobilization of base resistance considering the same

magnitude of displacement. At a similar displacement of

40 mm, the piles installed at 10 m deeper would result in

10%-20% lower mobilization of base resistance. For the

piles tested by O-Cell load, the distance from loading point

to pile toe was significantly shorter, the base resistance

begins to increase signficantly when the

Fig. 15 Empirical correlations between the loading point displace-

ment Dp (mm) and pressure P/A (ton/m2) of large diameter bored pile:

a for static load tests, b O-cell load tests
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displacement[ 5 mm, which occured much earlier com-

pared to the cases under static loading. Figure 16c and 17a

show that for bored piles with D = 1.5 m, the base resis-

tance at a vertical displacement of 16 mm in O-cell load

test equals to that of 50 mm displacement in static load

test. This indicates a huge influence that the distance

betweet the loading point and pile toe can have on the

mobilized base resistance. Moreover, Figs. 16 and 17 show

that the dimension of pile cross section also influences the

mobilized base resistance. At a vertical displacement of

20 mm, the base resistance of barrette piles with the cross-

sectional dimension of 0.8 9 2.8 m and 1.0 9 2.8 m was

10%-15% lower than that of bored piles having a diameter

of 1.5 m.

6 Conclusions and practical implications

The current study used 1,137 datasets of super-large and

long bored piles collected across 37 real projects to develop

an ANN model to predict base resistance of piles. Salient
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findings in terms of model development and prediction

results can be highlighted as follows.

1. A relevant combination of multiple leaning rates, e.g.,

descending order of LR (i.e., fast-to-slow) from 0.05 to

0.005 in the training process was proved to improve the

training time as well as avoiding the issue with local

minimum significantly. For example, using the com-

bined different values of LR can save 40% the time for

training compared to constant LR approach.

2. The random selection of training and testing datasets

can affect considerably the predicted results, for

example, R2 in the testing cases can drop from 0.95

to 0.8 using the same model features. Therefore, one

cannot conclude well about the confidence of the

predicted results if only one or few random cases are

selected. The model results based on 250 random

divisions of data showed that the probability distribu-

tion of R2 was likely to follow a left (negative)-skewed

form with much more dispersion in training processes.

3. The sensitivity analysis of the input parameters indi-

cated that the displacement Dp has the most dominant

effect on the mobilized base resistance (28.3%)

followed by the load-pile toe distance (Lp) and the

SPT value (N) of soil beneath the pile. The load P has

the least impact with only about 10.5% relative

importance. These five different input parameters

could be considered relevant to develop an ANN

model to predict the base resistance of super-large and

long piles.

4. The mobilized base resistance at the displacement of

20 mm rose swiftly from around 10% to more than

30% when Lp became less than 10 m. The base

resistance of the piles in O-Cell tests begun to develop

much earlier compared to static tests. Empirical

equations and design charts were also proposed for

practical engineers to estimate the settlement and base

resistance of piles based on the outcomes from the

current ANN model

It is important to note that while the current findings

were established based on the data of bored and barrette

piles, they can bring significant values to a broader context

of pilling foundations such as cement columns and driven

piles where the base resistance and bearing capacity share

the same mechanism. For example, the 5 key parameters

and their contributions to the base resistance of piles can be

applied to different types of pile foundation, whereas the

effect of data randomness should be considered in general

application of ANN techniques.

Acknowledgements The Authors acknowledge the support from

various local companies and partners such as Hoang Binh Construc-

tion Group, FECON South JSC., Bachy Soletanche VN, among others

around Mekong Delta while collecting and analysing field data for

model development in this study.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Data availability The datasets generated during and/or analysed dur-

ing the current study are available from the corresponding author on

reasonable request.

References

1. Al-Atroush ME, Hefny A, Zaghloul Y, Sorour T (2020) Behavior

of a large diameter bored pile in drained and undrained condi-

tions: comparative analysis. Geosciences 10(7):261

2. Aljanabi KR, Al-Azzawi OM (2021) Neural network application

in forecasting maximum wall deflection in homogenous clay. Int

J Geo-Eng 12(1):1–18

3. Alkroosh I, Nikraz H (2011) Simulating pile load-settlement

behavior from CPT data using intelligent computing. Central Eur

J Eng 1(3):295–305

4. Alkroosh IS, Bahadori M, Nikraz H, Bahadori A (2015)

Regressive approach for predicting bearing capacity of bored

piles from cone penetration test data. J Rock Mech Geotech Eng

7(5):584–592

5. Alsamman OM (1995) The use of CPT for calculating axial

capacity of drilled shafts. Doctoral thesis. University of Illinois at

Urbana-Champaign

6. Ardalan H, Eslami A, Nariman-Zadeh N (2009) Piles shaft

capacity from CPT and CPTu data by polynomial neural net-

works and genetic algorithms. Comput Geotech 36(4):616–625
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