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Abstract: The intelligent transportation system, especially autonomous vehicles, has seen a lot of
interest among researchers owing to the tremendous work in modern artificial intelligence (AI)
techniques, especially deep neural learning. As a result of increased road accidents over the last few
decades, significant industries are moving to design and develop autonomous vehicles. Understand-
ing the surrounding environment is essential for understanding the behavior of nearby vehicles to
enable the safe navigation of autonomous vehicles in crowded traffic environments. Several datasets
are available for autonomous vehicles focusing only on structured driving environments. To develop
an intelligent vehicle that drives in real-world traffic environments, which are unstructured by nature,
there should be an availability of a dataset for an autonomous vehicle that focuses on unstructured
traffic environments. Indian Driving Lite dataset (IDD-Lite), focused on an unstructured driving
environment, was released as an online competition in NCPPRIPG 2019. This study proposed an
explainable inception-based U-Net model with Grad-CAM visualization for semantic segmenta-
tion that combines an inception-based module as an encoder for automatic extraction of features
and passes to a decoder for the reconstruction of the segmentation feature map. The black-box
nature of deep neural networks failed to build trust within consumers. Grad-CAM is used to in-
terpret the deep-learning-based inception U-Net model to increase consumer trust. The proposed
inception U-net with Grad-CAM model achieves 0.622 intersection over union (IoU) on the Indian
Driving Dataset (IDD-Lite), outperforming the state-of-the-art (SOTA) deep neural-network-based
segmentation models.

Keywords: intelligent driving; scene understanding; U-Net; inception U-Net; Grad-CAM;
explainable AI

1. Introduction

The World Health Organization (WHO) survey states that roughly 1.3 million deaths
are caused yearly because of road accidents [1]. An intelligent transportation system (ITS)
is the solution to deal with road traffic. The intelligent transportation system has seen a
lot of interest among researchers because of advancements in modern machine learning
techniques, especially deep learning [2]. An autonomous vehicle is the most essential and
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critical part of an intelligent transportation system [3]. The autonomous vehicle comprises
three significant sub-tasks, namely, vehicle detection [4], behavior prediction of nearby
vehicles [5], and vehicle control [6]. Understanding the surrounding environment is es-
sential for understanding the behavior of nearby vehicles and pedestrians to enable the
safe navigation of autonomous vehicles in crowded traffic environments. Segmentation is
the critical phase for scene understanding of the surrounding environment [7]. Semantic
segmentation for scene understanding is the pre- or post-processing step of various com-
puter vision tasks, especially in an autonomous vehicle. Semantic segmentation labels each
image pixel to a particular class, having the potential in the field of intelligent driving [8].

Despite several ongoing research works, traffic scene understanding in unstructured
environments, especially for an autonomous vehicle, is a very complex task compared with
human-level performance [9]. Before deep learning models, semantic segmentations were
based on manually hand-crafted features. Owing to recent advancements in convolutional
neural networks, it is used as a backbone in image classification tasks by reducing image
resolution to obtain a high-level feature map [10]. As CNN reduces the input image into
a tiny feature map, spatial information is lost and affects the overall performance of the
semantic segmentation task [11]. This study proposed an inception-based U-Net model
for semantic segmentation to deal with this problem. The inception module is used as
an encoder for extracting the feature map, and this feature map is passed to a decoder to
reconstruct a segmented image.

Various popular autonomous vehicle datasets are available in the literature, like
KITTI [12], LYFT [13], Apolloscape [14], and Argoverse [15], which assume a structured
environment like in developed countries. However, such an environment is not present
for driving in developing countries, especially India. Generally, traffic on Indian roads
is highly unstructured and unpredictable [16]. Indian Driving Dataset (IDD) is the first
unstructured and unpredictable driving scenarios dataset launched by NCVPRIPG 2019.

This paper focuses on accurately segmenting objects like drivable or non-drivable
areas, vehicles, human beings, and roadside objects from images taken from unstructured
traffic roads using the inception U-Net model. It is challenging to accurately segment
images from dense traffic because of unstructured roads and unpredictable driving pat-
terns, especially on Indian roads. The rationale behind using the inception U-Net model
for semantic segmentation is the hybrid combination of two widely used deep learning
architectures, namely, inception architecture by Google and U-Net architecture. The pro-
posed architecture replaced the default convolutional layer with the inception layer of
GooLe-Net [17].

The proposed inception U-Net model is a black-box by nature and is utilized to
semantically segment images from unstructured Indian roadways for an autonomous
vehicle. It is challenging to build trust commercially in an autonomous vehicle among
consumers owing to its black-box nature [18]. Explainable artificial intelligence (XAI)
techniques are used to interpret the results obtained from black-box deep learning models.
Grad-CAM is the post-hoc explainability technique primarily used in convolutional neural-
network-based models [19]. The results obtained from semantic segmentation using the
inception U-Net model are passed to Grad-CAM for post-hoc explainability to build
consumer trust.

The main contributions of this work can be summed up as follows:

• To propose the inception-based U-Net Model for semantic segmentation of images
taken from unstructured and unpredicted traffic roads;

• To assess and analyse the performance of the inception-based U-Net model with
state-of-the-art (SOTA) deep neural-network-based semantic segmentation models;

• To interpret the results obtained from the black-box inception-based U-Net model
using the Grad-CAM post-hoc explainability technique.

Semantic segmentation of images using deep neural networks is based on a U-shape-
based encoder–decoder architecture. The novelty of this research work is to replace the
convolutional layer with an inception layer to improve the performance of the proposed
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model. The inception module uses a multi-scale convolutional layer applied independently
on the input image at every stage using a different filter size, which are then concatenated
and passed to the next layer. As the human visual cortex identifies patterns at different
scales, the inception module benefits the U-Net model by extracting features from different
scales. Unfortunately, different researchers employed various deep learning techniques
on autonomous vehicles that are black-box in nature. Therefore, in this work, to fill the
aforementioned research gap, an explainable artificial intelligence (XAI) technique is used
to interpret the results obtained by the inception U-Net model using Grad-CAM post-
hoc explainability techniques. The findings of this study can be used as a guideline for
developing autonomous vehicles using the interpretable AI model for developing countries.

The remainder of the paper is structured as follows. Section 2 discusses relevant
research in the domains of autonomous vehicles and semantic segmentation. The pro-
posed architecture is seen in Section 3. Section 4 describes the Indian Driving Dataset
Lite (IDD-Lite) dataset and the experimental setup. Section 5 presents the experimental
results. Section 6 summarizes the findings, and Section 7 concludes the study and gives
future directions.

2. Related Work

Scene understanding is an important task to understand the behavior of surrounding
vehicles and pedestrians for safe and secure navigation of intelligent driving [20]. Image
segmentation is the essential phase for scene understanding of the surrounding environ-
ment. Semantic segmentation for scene understanding is the pre- or post-processing step
of various computer vision tasks [8]. Before the deep neural network evolution, classical or
traditional methods were used for semantic segmentation. Classical methods were mainly
focused on hand-crafted features like the histogram of gradient (HoG) [21] methods. These
features are passed to classifiers like the naïve Bayes, the support vector machine, and
random forest. These methods depend on hand-crafted features instead of understanding
the data structure to perform pixel-level classification for semantic segmentation [22].

After the evolution of deep learning techniques, especially convolutional neural net-
work like VGG [23], ResNet [24], Xception [25], and recently GooLe-Net [26], pixel-level
classification for semantic segmentation using U-shaped architectures such as VGG16-
UNet and ResNet18-UNet has achieved state-of-the-art results. Audebert et al., in 2017,
proposed the VGG16-UNet model for semantic segmentation for vehicle extraction. The
encoder layer is based on the convolutional layers of the VGG-16 model. CNN’s overall
accuracy improved by 10% when using the VGG16 pre-trained network at the cost of a
greater inference time [27]. Popular semantic segmentation architectures are encoder- and
decoder-based systems. The encoder comprises several blocks, each of which accepts an
input picture or feature map and creates a series of down-sampled feature maps that pro-
gressively detects higher-level features. The decoder network mirrors the encoder network
and gradually up-samples the encoder network’s output. Individual decoder blocks are
linked to corresponding encoder blocks by skip links to aid in the recovery of fine-grained
features lost during down-sampling. Transposed convolutions with learnable weights are
commonly used for up-sampling. VGG16 was used for feature extraction and applied to the
decoder model to reconstruct a segmentation map. VGG16 feature extractor outperforms
ResNet and E-Net. An ensemble of different feature extractors like VGG16, ResNet, and
E-net could be used to improve the performance of segmentation model [28]. While driving
on structured traffic roads, it is important to follow traffic rules for safety of autonomous
vehicles. However, such a structured traffic road environment is very useful to reduce the
complexity of the autonomous vehicle navigation system. However, in unstructured traffic
roads, there is unavailability of concrete traffic rules and absence of lane information [29].
It is a very difficult task to train an autonomous vehicle in unstructured environments
owing to the large amount of complexity involved. The success of autonomous vehicles in
developing countries is largely dependent on AI algorithms that consider the unstructured
nature of traffic.
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Advancements in artificial intelligence algorithms help to solve various critical issues
in autonomous vehicles like object detection, behavior understanding of nearby vehicles,
and vehicle control [30]. The performance of deep learning models is mainly dependent
on a large amount of annotated datasets. However, collecting large amounts of real-world
datasets for an autonomous vehicle is time-consuming and cost-ineffective. Many research
groups published open access autonomous vehicle datasets that assume a structured envi-
ronment like in developed countries to deal with the issue. However, such an environment
is not present for driving in developing countries, especially India. Generally, traffic on
Indian roads is highly unstructured and unpredictable [31]. Indian Driving Dataset (IDD)
is the first unstructured driving scenarios dataset launched by NCVPRIPG 2019.

Modified U-Net (Mod-UNet) was presented by Tiwari et al. [31] as a unique segmen-
tation model for effective vehicle segmentation into images of road traffic with crowded
and unstructured traffic patterns. The suggested model is based on the U-Net architectural
family and combines low-level and higher-level feature maps. For semantic segmentation,
the U-Net deep learning model is a well-known method. It is divided into three stages:
contraction, bottleneck, and expansion. Mod-UNet achieved IoU scores of 0.61 and 0.82
on IDD-Lite and autorickshaw dataset, respectively, at the cost of a greater inference time
compared with U-Net. Baheti et al. [32] proposed the EfficientNet-UNet model for semantic
segmentation of the IDDLite dataset. EfficientNet is combined with the U-Net model as an
encoder for extracting high-level features and a decoder for reconstructing feature maps
for segmentation. Initially, a new baseline architecture called EfficientNetB0 was built, and
it was scaled up to generate a family of EffcientNets using a compound scaling mechanism.
This method has resulted in eight EfficientNets versions, notably EfficientNetB0 through
EfficientNetB7. U-Net with EfficientNetB7 encoder achieved a greater IoU score compared
with the remaining seven EfficientsNets.

Porzi et al. [33] proposed a unique segmentation head that mixes multi-scale features
generated by a feature pyramid network (FPN) with contextual information provided by a
lightweight DeepLab-like module in real time. This seamless scene segmentation applied to
three challenging datasets, i.e., Indian Driving dataset (IDD), Mapillary vistas, and Citiscape.
The proposed architecture provides a unique CNN architecture for obtaining seamless
scene segmentation results, consisting of semantic segmentation and instance segmentation
modules operating on top of a single network backbone. The performance of seamless
scene segmentation is better compared with individual models consisting of semantic
and instance segmentation with the cost of fractional computation time. Singh et al. [34]
analyzed four object detection models, three semantic segmentation models, and three
instance segmentation models on three datasets, namely, Cityscape, BDD, and IDD. Object
detection models perform worse on IDD compared with Cityscape and BDD owing to the
unstructured nature of the IDD dataset. Instance segmentation and semantic segmentation
perform better on Cityscape and IDD compared with BDD owing to the complexity of the
BDD dataset. DeepLab3+ with a dilated residual network was proposed by Baheti et al. [35]
for semantic segmentation of the Indian Driving Dataset (IDD). It improves feature map
resolution by replacing down sampling layers with dilated convolutions. Dilated residual
networks can segment small objects while maintaining neuronal spatial accuracy, leading
to improved segmentation performance.

The deep-learning-based encoder and decoder model used for semantic segmenta-
tion of images from unstructured Indian roads for autonomous vehicles is black-box by
nature [36]. It is challenging to build trust commercially in an autonomous vehicle among
consumers because of its black-box nature. Explainable artificial intelligence (XAI) tech-
niques are used to interpret the results obtained from black-box deep learning models [37].
Grad-CAM is the post-hoc explainability technique primarily used in the convolutional-
neural-network-based model. Gradient-weighted class activation mapping (Grad-CAM)
employs gradients from any target idea to construct a crude localization map emphasizing
key regions in the picture for concept prediction. Grad-CAM may be used with a broad
variety of CNN model families.
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According to the literature, unstructured traffic datasets for autonomous vehicles are
the least researched dataset. At the time of writing, no experiments have been conducted
to interpret the results of an AI model applied to an unstructured traffic dataset using
the GradCAM post-hoc explainability model. This research proposed an inception-based
U-net model with Grad-CAM for interpreting semantic segmentation of images taken from
unstructured traffic roads. The inception module is used as an encoder for extracting the
feature map, and this feature map is passed to the decoder to reconstruct the segmented
image. Grad-CAM is used to visualize the results obtained from the employed models in
order to interpret and explain the results.

3. Proposed Methods

Inception U-Net with Grad-CAM is proposed for semantic segmentation of input
images captured on unstructured Indian roads for autonomous vehicles.

3.1. Inception U-Net Architecture

The proposed inception U-Net model is a hybrid model combining two state-of-the-art
(SOTA) deep learning models, the inception architecture of Google and U-Net architecture.
Inception layers of GoogLe-Net replace the convolutional layers in the U-Net model. The
detailed architecture of Inception-UNet is presented in Figure 1. Using the inception
module, the proposed model used a contracting and expanding architecture proposed in
U-Net architecture with a bottleneck in the middle. Each layer on the contracting side
consists of the inception layer, followed by max-pooling. On the other hand, each layer on
the expanding side consists of the concatenation of the inception module and features from
a corresponding layer of the contracting side, followed by up-sampling [38].

The number of filters increased by double at each layer on the contracting side and
reduced by half at each layer on expanding side. The height and width of the input and
output images are the same. At the output of the expanding side, the convolutional layer is
used, followed by the softmax activation function, to perform pixel-level classification to
obtain a binary segmentation image as output [38].

3.2. Inception Module

The inception module used filters of different sizes at the same level to make the
network broader instead of deeper. The inception module is illustrated in Figure 2. The
naïve inception module performs convolution on input with three filters (1 × 1, 3 × 3,
5 × 5). Max-pooling was performed additionally. The results of each are concatenated and
sent to the next stage. An extra 1 × 1 convolution is added before the 3 × 3 convolution
to make the inception module with a reduced dimension. Moreover, 1 × 1 convolution is
added before 5 × 5 convolution, and 3 × 3 convolution is added after 5 × 5 convolution.
Lastly, 5 × 5 convolution is replaced by 3 × 3 convolution. The inception module achieves
state-of-the-art results with this multi-scale model training [39].

The rationale behind using an inception module in the U-Net segmentation model is to
approximate an optimal local sparse structure in convolution layers. The inception module
allows the use of multiple filter sizes for a single image block, which then concatenates and
passes to the next layer to extract meaningful features from the input image block.

3.3. Gradient-Weighted Class Activation Map (Grad-CAM)

Gradient-weighted class activation map (Grad-CAM) creates a heat map of the input
image that highlights the essential parts of an image by utilizing the gradients of the final
convolutional layer’s target. It takes the feature maps from the final layer and weights each
channel by the gradient of the class concerning the channel. It reflects how strongly the in-
put image activates specific channels based on their importance concerning the class. There
is no need to retrain the model or change the current architecture [40]. However, IDDLite
is a multiclass segmentation image dataset where each image consists of multiple objects
that need to be segmented. There are seven classes: drivable, non-drivable, living things,
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vehicles, roadside objects, and far objects. GradCAM is used as post-hoc explainability to
visualize heat map of final convolutional layer for each class.
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4. Experimental Setup

This section discusses the Indian Driving Dataset (IDD-Lite), the training process of the
inception U-Net model, and the performance measures used to evaluate the performance
of our model.

4.1. Dataset

The results of the proposed architecture were evaluated using an IDDLite dataset. IDD-
Lite, a semantic segmentation dataset on unstructured and unpredictable driving situations,
is provided by the Indian Institute of Information Technology (IIIT) in Hyderabad, India.
IDD-Lite, a lite version of the same dataset with the same level of statistics as IDD, has been
provided for the resource-constrained scenario. The IDD-Lite dataset includes 1404 training
samples, 204 validation samples, and 408 testing samples that depict realistic Indian driving
scenarios like complex obstructions, fuzzy road boundaries, a diverse range of vehicles
and pedestrians, varying lighting conditions, and a disregard for traffic rules. The dataset
is divided into seven categories: driving, non-driving, live beings, cars, roadside items,
distance objects, and sky. Figure 3 illustrates various representative samples from this
collection, as well as their corresponding ground truths.
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4.2. Model Training

In the model training, each image from IDD-Lite is first resized to 128 × 256. Input
dimensions for model training are 128 × 256 × 3, where 3 represents the RGB channels, and
output dimensions are 128 × 256 × 8, where 8 represents the classes. The IDD-Lite dataset
includes 1404 training samples and 204 validation samples. The inception U-Net model was
trained for 50 epochs, and one epoch took approximately 1 h and 20 min. The learning rate
of the proposed model training was 0.001. Next, we used the Adam optimizer to optimize
categorical cross-entropy loss functions. The segmentation model is implemented by Keras,
and an experiment was conducted on NVidia K80 GPU. Table 1 shows the performance
measures on training samples.

Table 1. Performance of inception U-Net on the IDD-Lite training dataset.

Model Accuracy Specificity Sensitivity F-Score Mean IoU

Inception U-Net 0.983 0.990 0.870 0.879 0.798

4.3. Performance Measures

Accuracy, specificity, sensitivity, F-score, and intersection over union are the five met-
rics used to evaluate the results of semantic segmentation models [31]. Each performance
metric is explored further below.

• Accuracy: It is the ratio of addition of true positives (TP) and true negatives (TN)
with addition of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). The formula of accuracy is presented in (1).

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(1)

• Sensitivity: It is the ratio of true positives and the summation of false negatives and
true positives. The formula of sensitivity is presented in (2).
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Sensitivity =
TP

(FN + TP)
(2)

• Specificity: It is the ratio of true negatives (TN) and the addition of true negatives (TN)
and false positives (FP). The formula of specificity is presented in (3).

Specificity =
TN

(TN + FP)
(3)

• F-score: It is the harmonic mean of recall and precision. The formula of F-score is
presented in (4).

F-Score =
2 × TN

(2 × TN + FP + FN)
(4)

• Intersection over union (IoU): It is the average overlap between the predicted and
ground truth divided by the union area between the predicted and ground truth. The
formula of IoU is presented in (5).

IoU score =
Areaofoverlap
Areaofunion

(5)

5. Results

The proposed inception U-Net model was evaluated through experiments to validate
the results. The results of the inception U-Net model are compared with state-of-the-art
models, namely, U-Net, UNet-ResNet18, UNet-ResNet34, SegNet, and E-Net. Performance
evaluation of the proposed inception U-Net model and state-of-the-art models based on
accuracy, specificity, sensitivity, f-score, and intersection over union is illustrated in Tables 2
and 3, respectively. Table 4 illustrates a comparative analysis of the proposed model with
state-of-the-art-models (SOTA) based on mIoU. Graphical comparative analysis of the pro-
posed inception U-Net model with state-of-the-art models, namely UNet, UNet-ResNet18,
UNet-ResNet34, SegNet, and E-Net, is presented in Figure 4. Class-wise performance of
inception U-Net based on intersection over union on the IDD-Lite dataset is illustrated in
Table 5.

Table 2. Performance evaluation of inception U-Net on the IDD-Lite validation dataset.

Model Accuracy Specificity Sensitivity F-Score Mean IoU

Inception U-Net 0.958 0.975 0.728 0.740 0.622

Table 3. Performance evaluation of state-of-the-art-models (SOTA) on the IDD-Lite validation
dataset [31].

Model Accuracy Specificity Sensitivity F-Score Mean IoU

U-Net 0.9203 0.9500 0.8534 0.7056 0.6031

UNet-ResNet34 0.9398 0.9484 0.8617 0.7635 0.6174

UNet-ResNet18 0.9356 0.9469 0.8472 0.7485 0.5981

E-Net 0.9321 0.9395 0.8669 0.7229 0.566

SegNet 0.8971 0.8975 0.8896 0.4705 0.3076
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Table 4. Comparative analysis of the proposed model with state-of-the-art-models (SOTA) on the
IDD-Lite validation dataset based on mIoU.

Model Proposed
Model

DRN
Res
Net
50

[37]

UNet
Res
Net
34

[31]

U
Net
[31]

UNet
Res
Net
18

[31]

DRN
Res
Net
18

[37]

E-Net
[31]

ERF
Net
[37]

mIoU 0.622 0.618 0.617 0.603 0.598 0.585 0.566 0.554
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Table 5. Class-wise performance of inception U-Net based on IoU on the IDD-Lite validation dataset.

C1:
Drivable

C2:
Non-

Drivable

C3:
Living
Things

C4:
Vehicles

C5:
Roadside
Objects

C6:
Far

Objects

C7:
Sky mIoU

0.923 0.333 0.371 0.664 0.404 0.712 0.950 0.622

The IoU, accuracy, specificity, sensitivity, and F-score of the proposed inception U-Net
model are 0.622, 0.958, 0.975, 0.728, and 0.740, respectively. The IoU metric assesses the
performance of semantic segmentation models. The mIoUscore of inception U-Net is 0.622,
which is greater than the state-of-the-art segmentation models.
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Grad-CAM is the post-hoc explainability technique used to interpret the results ob-
tained from the inception U-Net Model. Grad-CAM creates a heat map of the input image
that highlights an image’s essential parts by utilizing the final convolutional gradients. It
takes the feature maps from the final layer and weights each channel by the gradient of the
class concerning the channel. Figure 5 illustrates the sample input image and segmented
output obtained from the inception U-Net model. The same sample image was passed
through Grad-CAM post-hoc explainability techniques and created the final convolutional
output with a heat map for each class. There are seven classes: drivable, non-drivable, living
things, vehicles, roadside objects, and far objects. Figure 6 illustrates the final convolution
output with a heatmap for each class.
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6. Discussions

Semantic segmentation of traffic images is essential for scene understanding to under-
stand the behavior of nearby vehicles and pedestrians for safe navigation of the autonomous
vehicle. Industries like LYFT, WYMO, and Argoverse release publicly available datasets
to help researchers to work on them. These datasets are collected in developed countries
where there are structured traffic roads. Traffic in developing countries like India is un-
structured and unpredictable. IDD released a dataset collected on Indian unstructured and
unpredictable roads.
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This research applied inception U-Net on the IDD-Lite dataset for semantic segmenta-
tion and passed predicted results through Grad-CAM for interpreting results. The inception
U-Net model was compared with ResNet-UNet models, E-Net, and DRN_ResNet models.
The performance measures of the inception U-Net model on the training dataset are listed
in the table.

The IoU score and pixel-wise accuracy of the proposed model using the training
dataset are 0.798 and 0.983, respectively, which is better compared with the state-of-the-art
(SOTA) models. The performance evaluation of the proposed models and state-of-the-art
models on the validation dataset is illustrated in Tables 2 and 3, respectively. The IoU is
0.622 and pixel-wise accuracy is 0.958 for the validation dataset. It is observed that the
inception U-Net model has a better IoU and accuracy compared with the state-of-the-art
models, namely, U-Net, UNet-ResNet34, UNet-ResNet18, E-Net, and SegNet. Table 4
compares the proposed model with the SOTA models using the IDD-Lite validation dataset
and mIoU. The proposed model was evaluated against several SOTA models built on
IoU, including UNet-ResNet34, UNet-ResNet18, DRN-ResNet18, DRN-ResNet50, and
ERF Net. The proposed model outperforms the SOTA U-shaped semantic segmentation
models in terms of the IoU score. In the U-Net model, residual networks serve as the
framework for the ResNet-UNet model. However, the DRN-ResNet-UNet model employs
a dilated residual network, an enhanced residual network, as the backbone. Additionally,
the convolution layer in the U-Net model is replaced with a multi scale inception model in
the proposed model.

Class-wise intersection over the union of inception U-Net is presented in Table 5. It is
observed that the intersection over the union is better for drivable areas than other classes.
This drivable area is the region of interest for safe, autonomous vehicle navigation. The
sample input image and corresponding segmented output, along with ground truth, are
presented in Figure 5. Class-wise final layer output passed through Grad-CAM is presented
in Figure 6. Gram-CAM takes the feature maps from the final layer and weights each
channel by the gradient of the class concerning the channel. It reflects how strongly the
input image activates specific channels based on their importance concerning the class.
Figure 6b,c show the results of Grad-CAM for the drivable class and non-drivable class. It
is observed that the region of interest (ROI) for class drivable is segmented accurately. This
drivable region is very important to consider for safe navigation of autonomous vehicles
in dense traffic. Figure 6d,e show the results of Grad-CAM for the living things class and
vehicles class, respectively. Accurate segmentation of living things and vehicles in the
nearby scene is very important to avoid accident. Figure 6f,g show the results of Grad-CAM
for road-side object class and far distant object class, respectively. This region of road-side
object and far distant object is very important for long-term planning of autonomous
vehicle navigation.

The IoU of the the inception U-Net model followed by those of UNet-ResNet34, U-Net,
UNet-ResNet18, E-Net, and SegNet are 0.622, 0.6174, 0.6031, 0.5981, 0.566, and 0.3076,
respectively. It is observed that the inception U-Net model outperforms the state-of-the-art
(SOTA) U-shaped encoder–decoder segmentation models based on IoU. The performance
of semantic segmentation models is assessed by accuracy, sensitivity, specificity, and f-
score in addition to intersection over union (IoU), as it involves pixel-level classification.
The accuracy of the inception U-Net model followed by those of UNet-ResNet34, UNet-
ResNet18, E-Net, U-Net, and SegNet are 0.958, 0.9398, 0.9356, 0.9321, 0.9203, and 0.8971,
respectively. In terms of accuracy and specificity, inception U-Net outperforms the state-
of-the-art (SOTA) U-shaped encoder–decoder segmentation models. However, in terms
of sensitivity and F-score, SegNet and UNet-ResNet34 surpass other the segmentation
models, respectively.

The inception U-Net model is not computationally effective as the number of trainable
parameters is in the millions. Training time and inference time are more due to a huge
amount of trainable parameters. During training of the inception U-Net model, it focuses on
relevant as well as non-relevant activations that lead to wastage of computational resources.
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7. Conclusions and Future Directions

Behavior understanding of surrounding road side objects is very important for the
design and development of an autonomous vehicle. In the literature, the semantic seg-
mentation technique is generally used to segment images from surrounding traffic scenes
to understand the behavior of roadside objects. Previous work revealed that the imple-
mentation of semantic segmentation models based on U-Net architecture was encouraging.
However, deep learning models are black boxes, so it can be difficult to communicate
their results to the end users. Therefore, in this work, for the first time, XAI is used to
understand the results of deep learning models applied to segment traffic scene captured
on unstructured traffic roads.

In this paper, inception U-Net with Grad-CAM is used for semantic segmentation
of unstructured and unpredictable IDD-Lite datasets. Intersection over union (IoU) is an
important performance measure to evaluate the performance of segmentation models. The
inception U-Net model achieves 0.622 intersections over union (IoU). The results are passed
through Grad-CAM to explain the inception U-Net model’s results. It is observed that
the inception U-Net model’s performance is better compared with the state-of-the-art seg-
mentation models. The design and development of autonomous vehicles employing XAI
has become critical to commercial success. Interpretation of the proposed inception U-Net
model using Grad-CAM will help autonomous vehicles in achieving commercial success.
In the future, the attention-based inception U-Net model can be used to make it compu-
tationally effective. The attention-based inception U-Net model only focuses on relevant
activations, while training avoids non-relevant activation. The attention-based inception
U-Net avoids wastage of computation resource and makes it computationally effective.
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