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ABSTRACT

Machine learning (ML) has emerged as a critical enabling tool in the sciences and industry in recent years.
Today’s machine learning algorithms can achieve outstanding performance on an expanding variety of complex
tasks—thanks to advancements in technique, the availability of enormous databases, and improved computing
power. Deep learning models are at the forefront of this advancement. However, because of their nested nonlinear
structure, these strong models are termed as “black boxes,” as they provide no information about how they arrive
at their conclusions. Such a lack of transparencies may be unacceptable in many applications, such as the medical
domain. A lot of emphasis has recently been paid to the development of methods for visualizing, explaining, and
interpreting deep learning models. The situation is substantially different in safety-critical applications. The lack of
transparency of machine learning techniques may be limiting or even disqualifying issue in this case. Significantly,
when single bad decisions can endanger human life and health (e.g., autonomous driving, medical domain) or
result in significant monetary losses (e.g., algorithmic trading), depending on an unintelligible data-driven system
may not be an option. This lack of transparency is one reason why machine learning in sectors like health is more
cautious than in the consumer, e-commerce, or entertainment industries. Explainability is the term introduced in
the preceding years. The Al model’s black box nature will become explainable with these frameworks. Especially in
the medical domain, diagnosing a particular disease through AI techniques would be less adapted for commercial
use. These models’ explainable natures will help them commercially in diagnosis decisions in the medical field.
This paper explores the different frameworks for the explainability of AT models in the medical field. The available
frameworks are compared with other parameters, and their suitability for medical fields is also discussed.

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.


http://dx.doi.org/10.32604/cmes.2022.021225
mailto:shilpa.gite@sitpune.edu.in

844 CMES, 2022, vol.133, no.3

KEYWORDS
Medical imaging; explainability; artificial intelligence; XAI

1 Introduction

Explainability plays a very important role in various fields of real-life problems [I]. Various
software based systems and frameworks are developed by researchers for the solution of the real-life
issues of society [2]. The computer vision and related fields cover a variety of problems, such as social,
technical, financial, commercial, medicinal, securities, and any other multidisciplinary issues, if any.
In addition to different computer vision techniques, some sophisticated and more efficient ways are
investigated by researchers. These include machine learning, artificial intelligence, and deep learning
techniques. The best thing with these newly developed Al algorithms, is the improved performance in
terms of different measures [3-5].

Out of the different real-life problems, medical diagnosis is the most crucial; as it directly affects
the human life [6,7]. Diagnosis of any disease should be perfect for providing the proper treatment
guidelines to a patient [8]. There are different ways to diagnose the disorder in the medical field.
Diagnosis is made from symptoms of some diseases [9]. But in many cases of infections, the generalized
symptoms are similar [10]. Thus, it is the prime requirement to use different diagnostics methodologies
for the same. Imaging diagnosis is done with traditional image processing [I 1—13], computer vision
[14-18], and sophisticated Al techniques [19-23]. There is a weird trade-off between explainability
and accuracy [24], as shown in Fig. 1.

As the accuracy increases, explainability falls down [24]. Earlier developed traditional signal
and image processing techniques give unsatisfactory results as compared to the newly developed Al
techniques [25,26]. But the tragic part related to these techniques is the lack of explainability [27-30]. It
could not explain what happens inside the algorithm. On the contrary, conventional image and signal
processing techniques explain the algorithms in a magically perfect way [31], to attract trust in the
diagnosis, but to provide lesser accuracies [32].
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Figure 1: Trade-off between explainability vs. accuracy [33]
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Therefore, researchers forced themselves to use Al techniques for medical diagnosis and related
research [34]. It created the need for explainable frameworks for Al techniques [35], in order to make
them trusted and commercially adopted for the diagnosis. This paper explains different frameworks for
the explainability of Al, machine learning, and deep learning techniques. Initially, different diagnosis
methods are discussed, consisting of symptomatic diagnosis, radiology diagnosis, and blood tests
diagnosis. Then, the pros and cons of traditional image processing and newly developed Al techniques
are presented. Out of the different frameworks of explainability, some frameworks are discussed,
including LIME [36], SHAP [37-39], What-if-too | [40—42], Rolex [43,44], Alex-360 [45,46], and so
on. A tabular comparison of different techniques applied for the different diagnosis will also be done.
Lastly, conclusion and future guidelines are presented.

1.1 Survey Methodology

Medical diagnosis is a very crucial part as the diagnoses are directly affecting the human health.
So, this survey needs the articles in the medical diagnosis field utilizing the explainable frameworks to
justify the diagnosis. To employ the trust in the diagnosis decisions in the medical field, explainable
natures of Al frameworks are needed. So the survey requires retrieving the articles in the medical
diagnosis field with XAl frameworks.

1. Google scholar, is used for searching the articles with the keywords as XAl, explainable Al,
explainability, medical, field.

2. The searched articles are refined by reading them, and keeping the articles related to medical
diagnosis using software methods like machine learning, deep learning, and Al techniques.

3. The articles with XAI frameworks are also added in the survey.
4. Some cross-references are also obtained from the finalized articles for review paper.

2 Diagnosis Methods in Medical Field

There are two significant ways to detect diseases includes; radiology-consists of various
equipment-based imaging [47], and blood tests [48,49] consist of chemical-based tests, equipment-
based tests, and microscopic imaging tests. Fig. | shows these tests in detail. Imaging technology in
health diagnosis has revolutionized healthcare, allowing for early detection of disorders in medical
[50-52], fewer unnecessary, intrusive procedures, and improved patient outcomes.

Diagnostic imaging refers to various procedures for examining the body to get the source of an
infection causing the illness or damage and confirm a diagnosis, and any signs of a health problem
[53,54]. Specific machines and technologies can be used to make images of the activities and structures
inside your body. Depending on the body part being examined and your symptoms, your doctor will
choose which medical imaging tests are necessary. It is also used by doctors to determine how well a
patient responds to fracture or sickness treatment [55].

Many imaging examinations are simple, painless, and non-invasive [56]. However, some will ask
you to sit motionless within the machine for an extended period, which can be painful [57]. Some tests
expose you to a small amount of radiation [58]. A small camera will be attached to a thin, long tube
that will be inserted into your body for further imaging testing. A “scope” is the name for this gadget.
The scope will then be passed via a bodily entrance or passageway to allow them to examine a specific
organ, such as heart, lungs or the colon. These procedures may necessitate anesthesia.
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Fig. 2 shows different diagnoses methods in medical field.
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Figure 2: Different diagnostics in medical field

2.1 Radiology Techniques of Diagnosis
2.1.1 Magnetic Resonance Imaging (MRI) [59]

Magnetic resonance imaging (MRI) is a medical imaging method used in radiology to create
images of the body’s anatomy and physiological processes. RI scanners are having four types, namely
true open, closed, 3 T, and wide bore type.

True Open type has all sides of the MRI to be open. For people who become claustrophobic in
a standard MRI machine, it alleviates a lot of the discomfort [60]. Closed type consists of a closed
machine, also known as a classic tube machine, requires you to lie down and enter the photos. 3T
is another type of MRI in which the letter “T” stands for Tesla, a unit of measurement used by
technologists to determine the strength of magnetic fields. The 3T MRI is proven to be modern and
inventive amongst available MRIs. It is similar to a standard MRI in that it is a closed system. The 3T
MRI requires a reduced amount of time to complete and produces detailed, high-resolution images,
allows the radiologist to assess whether there is any serious medical problem [61]. Wide Bore scanner,
often known as an “open MRI,” looks similar to a closed MRI but has a larger opening [62].

2.1.2 Magnetic Resonance Angiography (MRA) [63]

This test that produces highly detailed body’s blood arteries images. MRA scans are a type of
magnetic resonance imaging (MRI). The MRA uses energy pulses of radio waves and a magnetic field
to deliver information that other techniques such as CT, X-ray, and ultrasound are not always able to
provide. MRA tests are commonly used to obtain the quality of blood flow and walls of blood vessel
in the legs, neck, brain, and kidneys. MRAs are also used by doctors for examination of calcium,
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aneurysms, and blood clots in the arteries. They may ask for a contrast dye in some cases to boost the
definition of the scan images of the blood vessels of patients.

2.1.3 CT Scan [64]

A CT scan is also known as a “cat scan” by doctors. It has a series of X-ray scans or photographs
collected from different perspectives. The images of blood arteries and soft tissues inside the body are
then created using computer software. CT scans can be used to assess the different organs such as
brain, spine, neck, abdomen, and chest. Both hard and soft tissues can be examined by this technique.
CT scans provide doctors with images that allow them to make swift medical judgments if necessary.
CT scans are routinely performed in both imaging facilities and hospitals due to their high quality.
They assist doctors in detecting injury and disorders. Previously, these injuries could be examined
through surgeries or autopsy. These techniques are non-invasive and safe, even though they employ
low quantities of radiation.

2.1.4 Ultrasound Imaging [05]

Ultrasound imaging, often known as “sonography,” is a safe technique of imaging that produces
the bodies inside images. It uses high-frequency waves rather than radiation. Therefore, it proves to be
a pregnancy-safe operation. The shape and movement of inner organs, as well as blood flow through
channels, are depicted in real-time ultrasound images. In this technique, a transducer—a handheld
instrument is placed over the skin during an ultrasound. Internally, it’s sometimes used. It sends sound
waves through soft tissue and fluids, echoing or bouncing back as they reach denser surfaces, creating
images when the object is more viscous, more ultrasound echoes back.

2.1.5 X-Rays [66]

One of the most well-known and commonly used diagnostic imaging procedures is X-rays. Doctors
use these X-rays for looking inside the human body. X-ray machines emit a high-energy beam that
cannot penetrate dense tissue or bones but can pass through other body parts. This treatment produces
an image that your doctor can use to determine whether or not you have a bone injury.

2.1.6 PET Scan [67]

PET scans are used to diagnose cancer, heart disease, and brain diseases in their early stages.
A radioactive tracer that can be injected detects sick cells. APET-CT scan combined generates 3D
pictures for a more precise diagnosis.

2.1.7 Mammography [65 ]

Breast mammograms are X-raying images of the breasts. They use a low-dose X-ray to look for
diagnosis of early breast cancer. It may include small lumps that those could not be recognizable
easily. Mammograms also reveal changes in breast tissue that could indicate breast cancer at early-
stage. Digital mammography is utilized for the diagnosis of nodules of cancer that could be missed
by previous methods. Mammograms are the most effective approach to detecting early breast cancer
since they can detect it up to a year before symptoms appear.

2.1.8 Bone Density Scan [69]

This is an indirect test for diagnosing the osteoporosis. The process is also known as “bone mineral
density testing,” It determines how much bone material is present in your bones per square centimeter.
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2.1.9 Arthrogram [70]

When your joints are not functioning properly, it limits your capacity to move and creates problems
in routine tasks. So, the arthrogram can be used to diagnose joint abnormalities that may not be
detected by other types of imaging. Arthrogram, often known as “arthrography,” is a series of images
of the joints acquired with other techniques such as CT, X-ray, MRI, or fluoroscopy.

2.1.10 Myelogram [7]]

A myelogram is necessary when a clinician demands detailed imaging of the spinal canal, including
the spinal tissue, spinal cord, and surrounding nerves. A myelogram is a process in which a technician
injects contrast dye into the spinal canal while taking moving X-ray images with fluoroscopy. The
doctor will inspect the area for any abnormalities, such as tumors, infection, or inflammation, as the
dye passes through the spaces.

2.2 Chemical Blood Tests and Equipment Based Tests

A blood test determines the number of various chemicals in the body by analyzing a blood sample
[72]. Electrolytes, including sodium, potassium, and chloride, are the substances to be detected. Other
chemical components include fat contents, protein contents, glucose, and different enzymes are also
needed to be detected in the blood sample. Blood chemistry tests inform decisions about how well a
person’s organs are functioning. These organs may include kidneys, liver, and other organs.

A high chemical level in the blood can indicate sickness or be a side effect of treatment. Before,
during, and after therapy, chemical tests of blood are used to diagnose various illnesses. During the
pandemic of COVID-19, chemical tests such as RT-PCR, antigen tests achieved popularity. A binomial
model is developed for the laboratories in Northern Cyprus to standardize different parameters of the
test (SARS-CoV-2 rRT-PCR) [73].

2.3 Microscopic Imaging Tests

In significant diseases, the morphological characteristics of the blood cells are altered. The
conditions like blood cancer-leukemia [74], Thalassemia [75] certain bacterial or viral infections
require observing blood cells under a microscope. This type of diagnosis is complex, and it required
trained and experienced pathologists for the same [76].

In microscopic imaging, first, the blood sample is taken by a lab technician for analysis. After that,
blood staining is performed that outputs the blood smear (slide of blood). This slide is then observed
under a good quality microscope for morphological diagnosis, if any.

In medical imaging analysis, there is a need to divide the images into different components. A
popular example of microscopic imaging for leukemia detection, in which the image is divided into
different parts including white blood cells, red blood cells, blast cells, plasma, etc. [77]. There is a need
to have a unique categorization approach in the medical image diagnosis. It consists of inputting the
images for study and analysis. The captured images are then pre-processed to remove the noises, if any,
and enhance the image quality. The next stage is the segmentation, which outputs the region of interest
used for diagnosis purposes. This approach categorizes the input images, and accordingly, the further
classification and diagnosis are done. Commonly used features are categorized as intensity-based
features, statistical features such as entropy, gray-level co-occurrence matrix (GLCM), local binary
pattern, histogram, auto-correlation, transform features such as Gabor features, wavelet features and
so on [78].
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2.4 Requirement of Software-Based Techniques for Diagnosis

The diagnosis explained in the previous section requires a trained radiologist or a much-trained
pathologist for making the diagnosis decisions. The trusted and safest way to perform the diagnosis
is the manual intervention of trained technicians in medical imaging. Due to manual diagnosis, it is
generally time-consuming and may vary according to the technical experience of the person giving the
diagnosis decisions.

To speed up the decision capability and make it independent of the experience or technical
superiority of the person, researchers are motivated to develop automated and software-based
frameworks for the same [79].

These techniques involve traditional image processing, computer vision methods. With the
technological developments in computer vision, a new era of artificial intelligence, machine learning,
and deep understanding is started, and researchers started utilizing these frameworks for medical
imaging diagnosis [80].

2.5 Traditional Image Processing

Researchers utilize different traditional image processing techniques for medical imaging detec-
tion and disease diagnosis. These techniques include different pre-processing techniques such as pre-
filtering and noise removal [81], gray scaling [82], and initial image enhancement by edge detections
[83], morphological operations [84], etc. In addition to these techniques, some researchers propose
segmentation techniques in a broader spectrum are thresholding [85], clustering [86], etc. For the
classification of different images for detecting infections and abnormalities, different classification
algorithms are employed by researchers, such as decision tree [87], random forest [88], support vector
machine [89], and so on.

The main advantage of these systems is their fully explainable nature in diagnostic decisions.
Also, these are simple to understand and implement. There is no additional requirement for any
GPU-like equipment. Also, the measuring parameters utilizing these systems still need a word of
improvement. Therefore, researches are motivated towards the advanced Al techniques, those will
prove more efficient in terms of performance.

2.6 Advanced AI and Machine Learning

There are different machine learning, deep learning and Al approaches for medical diagnoses
proposed by researchers. Some techniques such as convolution neural network (CNN) [90], recurrent
neural network (RNN) [91], U-nets with its advanced modifications [92], deep learning algorithms
such as feed-forward [93], CNN [94], NN [95], auto-encoder [96] are employed by the researchers for
medical diagnosis.

Fig. 3 shows a simple architecture of convolutional neural network. It has primarily four layers
namely input, convolution, pooling and fully connected layer. Finally, it has an output layer. The basic
function of CNN is divided into two stages, feature extraction and classification. Feature extraction
has first three layers including input layer, convolution n layer and pooling layer. Classification consists
of fully connected layer and output layer. A typical Feedforward network is shown in Fig. 4. It has an
input layer, hidden layer and an output layer.
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Figure 4: Feedforward network [98]

There are some important architectures such as CNN, Alexnet, Resnet for deep learning diagnosis.
LeNet-5 is a 7-level convolutional network that is a first in the field. The ability to handle higher
resolution images necessitates larger and more convolutional layers, hence, this method is limited
by computational resources. Alexnet increases the depth of the layers compared to Letnet-5 [99]. It
includes eight levels, each with its own set of parameters that may be learned. The model comprises
of five layers, each of which uses Relu activation, with the exception of the output layer, which
uses a combination of max pooling and three fully connected layers [99]. The visualisation of
intermediate feature layers and the behaviour of the classifier inspired the design of ZFNet [100].
The filter sizes and stride of the convolutions are both lowered when compared to AlexNet [101].
With an increase in accuracy, Deep CNN architectures compromise the computational costs. This
is handled by Inception/Googlenet architecture [102]. VGGNet has 16 convolutional layers and a
highly homogeneous design, making it quite appealing. Skip connections, or shortcuts, are used by
residual neural networks to jump past some layers. The majority of ResNet models use double- or
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triple-layer skips with nonlinearities (ReLLU) and batch normalization in between [103]. These different
architectures of are shown in the figures below.

VGG net has typically VGG 11, VGG 16, and VGG19 architecture. A VGG 16 architecture [104]
is shown in Fig. 5. It has the first part containing a series of convolutional layers followed by maxpool
layer. It has 05 steps of the same. Finally, it has output layers.
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Figure 5: VGG16 architecture [105]

Fig. 6 shows a typical Alexnet architecture. It is shown to have an RGB input image of a particular
size. In addition to input layer, it has five convolution layers and some pooling layers as shown in
Fig. 6. After the fifth convolution layers, three fully connected layers are present, where the last fully
connected layer is the output layer.
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As indicated in Fig. 7, Resnet 50 is a variant of a typical Reset model. It has a total of 50 layers.
The model has 48 covolutional layers, 01 max pool layer and 01 average pooling layer.
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Figure 7: ResNet50 architecture [107]

It has one layer from a convolution with a kernel size of 7 % 7 and 64 distinct kernels, all with a
stride of size 2. Following that, we have max pooling with a stride size of 2. Thereisa 1 * 1, 64 kernel in
the next convolution, followed by a 3 * 3, 64 kernel, and finally a 1 % 1, 256 kernel. These three layers
are repeated three times in total, giving us nine layers in this phase. Following there is a kernel of 1
1, 128, followed by a kernel of 3 % 3, 128, and finally a kernel of 1 * 1, 512. This phase was performed
four times, giving us a total of 12 layers. Then there’s a 1 % 1, 256 kernel, followed by 3 % 3, 256 and
1 1, 1024 kernels, which are repeated six times for a total of 18 layers. Then a 1 % 1, 512 kernel was
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added, followed by two more 3 x 3, 512 and 1 * 1, 2048 kernels, for a total of nine layers. After that,
we run an average pool and finish with a fully linked layer with 1000 nodes, followed by a softmax
function, giving us one layer.

As shown in Fig. 8, the first layer is the input layer, which has a 32 x 32 x 1 feature map. Then
there’s the first convolution layer, which has six 5 x 5 filters with a stride of 1. Tanh is the activation
function employed at his layer. The final feature map is 28 x 28 x 6 in size. The average pooling layer
follows, with a filter size of 2 x 2 and a stride of 1. The feature map that resultsis 14 x 14 x 6.

Input —
32*32*1 e
Convolution Feature Map ﬁl ‘
5*5 (28°28"6) Sub- Feature Map .
Sampling (14*14°6) | Convolution ]
55
Convolution
-l A 55

Figure 8: LetNet 5 architecture [108]

The number of channels is unaffected by the pooling layer. The second convolution layer follows,
with 16 number of 5 x 5 filters and stride 1. Tanh is also the activation function. The output size has
been changed to 10 x 10 x 16. The other average pooling layer of 2 x 2 with stride 2 appears once
more. As a result, the feature map’s size was reduced to 5 x 5 x 16. The final pooling layer comprises
120 number of 5 x 5 filters with stride 1 and tanh as the activation function. The output size has
now increased to 120. The following layer is a completely linked layer with 84 neurons that outputs
84 values, and the activation function is tanh once more. The output layer, which has 10 neurons and
uses the Softmax function, is the final layer. The Softmax determines the likelihood that a data point
belongs to a specific class. After then, the maximum value is anticipated.

RNN is the recurrent neural network specially designed to deal with the sequential data. It also
follows a typical architecture consisting an input layer, hidden layer, and the output layer as indicated
in Fig. 9. It takes a word ‘I’ and combines it with ‘i—1’. The same is followed for the word ‘1 + 1’. Hence
it is called as the recurrent network.

The convolutional neural network ZFNet is a classic convolutional neural network as shown in
Fig. 10. Visualizing intermediate feature layers and the classifier’s operation inspired the design. The
filter widths and stride of the convolutions are both lowered when compared to AlexNet. ZF Net
utilized 7 x 7 filters, whereas AlexNet used 11 x 11 filters. The idea is that by employing larger
filters, we lose a lot of pixel information, which we can keep by utilizing smaller filter sizes in the early
convolutional layers. As we go deeper, the number of filters increases. The activation of this network
was also done with ReLUs, and it was trained using batch stochastic gradient descent.
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In medical diagnosis, more effective deep learning networks, such as Transfer Learning (TL),
Ensemble Learning (EL), Convolutional Neural Networks (CNNs), Graph Neural Networks
(GNNS), and Explainable Deep Learning Neural Network (xDNNs), perform better. Transfer
learning is a machine learning technique in which a model created for one job is utilized as the
basis for a model on a different task [111]. Graph Neural Networks (GNNSs) are a type of deep
learning algorithm that is used to infer data from graphs. GNNs are neural networks that can be
applied directly to graphs, making node-level, edge-level, and graph-level prediction jobs simple [112].
Ensembling learning could also prove to be efficient in deep learning applications. The technique of
joining multiple learning algorithms to acquire their combined performance is known as ensembling.
Individual deep learning models demonstrated competent in the majority of applications, but there is
always the possibility of using a collection of deep learning models to complete the same task as an
ensembling technique [113].
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During the detection and diagnosis of a certain disease via image processing methods, image
capturing plays a vital role. Due to some noises and other infections, images may result in wrong
predications. So, there are certain pre-processing methods to be applied after image capturing to
enhance the sample quality. Generally, gray-scaling, pre-filtering, morphological operations, edge
detections are used for pre-processing of samples to enhance its quality for obtaining correct results
of disease predications [1 14].

In early 2019, spread of COVID-19 increased worldwide. Many countries faced different type’s
crisis due to this situation. To estimate the parameters and assess the effect of control efforts, the
SEIDR epidemic model is utilized. This analysis shows the severity of disease [1 15]. Different diagnosis
methods are studied and introduced by the researchers such as transfer learning, ensemble learning,
unsupervised learning and semi-supervised learning, convolutional neural networks, graph neural
networks, explainable deep neural networks. Different deep learning networks such as CNNs, RNNss,
GNNs, and xXDNNs could enhance the diagnosis performance and accuracy [116,117]. Moreover,
some approaches optimize the performance of deep learning and machine learning models especially in
the crucial diagnosis of COVID-19. Extreme Machine Learning (ELM) with Sine-Cosine optimization
[118], Biogeography Based Optimization (BBO) [119], Chimp Optimization Algorithm (ChOA) [120]
have proven to be fairly optimizing the performance of machine and deep learning models for COVID-
19 diagnosis.

A very popular classical term “calibration” is also applied with machine learning. There are
differences in the probability distribution predicted and observed during the training process. A
model’s calibration is done to minimize these differences and improvement in the performance
of machine learning model. Basic methods of calibration are Sigmoid, and isotonic. In addition,
calibration is based on different rules [121].

These approaches are proven to offer remarkable improvements in accuracies and other measuring
parameters, as compared to traditional image processing techniques. In spite of the good accuracies,
these techniques are not used commercially for different diagnosis purposes. The major cause is the
un-explainability of these algorithms. It is very hard to get, what happens inside the black- box of these
frameworks. Therefore, there is a need to have explainability and interpretability in these algorithms,
in order to support the decision of diagnosis. In the medical domain, the know-how of the diagnostic
decision is the prime requirement, to provide the trust in the detection of abnormality. An artificial
intelligence generalized methodology is presented in the Section 3, with its black-box nature.

3 Artificial Intelligence

A generalized structure of a machine learning model is shown in Fig. I1. Training data is
considered to have the “requests” and the “spam requests”. Spamming is to send unsolicited messages
to a certain large group of persons through emails. There are many other ways of spamming including
instant messaging, news-groups, search engine, blogs and so on. Spam email is becoming a bigger
problem every year, accounting for more than 77 percent of all global email traffic [122]. Out of
the messages supplied at the input, spams are to be detected. The same is supplied to the AI model,
showing it as a black box. The model consists of an input layer, two hidden layer, and an output layer.
The Convolutional Neural Network (CNN) performs the classification of the input data after going
through the learning stage. The result is the prediction related to the problem. The prediction in this
case gives a good accuracy, but at the cost of black box nature of the classifier model. In the cases like
medical diagnosis, it is very important to know the basis of diagnosis. The know-how of the model’s
working from inside should be clearly understood, in order to have the trust in prediction of diagnosis.
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Therefore, the black-box-model needs to be explained from inside to explore that, how the decision
of diagnosis is made. The explainable models are used in these cases. There is a popular three-stage
model for the explainability (XAI) of Al models.

Figure 11: Generalized frameworks of classification with Al model

There are many machine learning approaches in which it is difficult to get interpretability and
explainability directly. These approaches should also require some special XAl techniques for their
model’s predictability [123].

3.1 Three Stage Framework of XAI [124]

Fig. 12 shows the three stages of XAl framework, with the first stage as explainable building
process, the second stage as explainable decisions, and the third stage having an explainable decision
process. The stage-wise explanation of the framework is given below.
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Figure 12: Three stage framework of explainable artificial intelligence [124]
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3.1.1 Stage 1 (Facilitates Acceptance)

The initial stage of explainability assists in forming a multidisciplinary team of specialists in their
domains who are familiar with the Al they are developing. Offline explainability techniques are critical
for future Al acceptance and provide possibilities to improve the system.

3.1.2 Stage 2 (Fosters Trust with Users and Supervisors)

Trust is considered to be the most crucial in business, day-to-day life and especially in the medicine
diagnosis. The autonomous system and a “micro-controlled” system by its users provide the distinction
among each other that is considered to be the trust. The more administration a system demands, the
more people it necessitates, and thus the lower it is worth.

When a system does not surprise us, trust is developed when it behaves as per mental model of
ours. A system whose users are aware of its limitations is likely to be more beneficial than one whose
results are judged unreliable. Any model may be built faster with explanations. That is where the ability
to explain Al decisions comes into play. This explains the second stage of the XAI model.

3.1.3 Stage 3( Enables Interoperability with Business Logic)

Stages 1 and 2 are intended to assist humans in gaining a mental understanding of how Als
operate. This allows people to consider how Als work critically and when to believe and accept their
outputs, projections, or suggestions. If you want to scale this up, you’ll need to create business logic
that will apply the same “reasoning” to a large number of Als over time. Interoperability between Als
and other software, particularly business logic software, is the focus of Stage 3.

This is especially crucial when business logic must oversee a large number of increasing Al

instances. For example, continual certifiability or collaborative automation between machine learning-
based Als and business rules.

4 Different Frameworks of XAI
4.1 LIME Model [125]

Explanations that can be interpreted locally and are model agnostic-LIME is a technology
developed by the University of Washington researchers to get good transparency into about the
happenings inside the algorithm. Fig. 13 shows the simple model of LIME.

Observations for
building local linear
model

Model Agnostic

| Explanation |
Applied t
machilnele::nr:ynn L’ME # Features indicating the

model prediction of the
observations

Test Observations #

Figure 13: LIME model
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As the dimensions are increasing, it is getting difficult to maintain the local authenticity for the
models. On the other hand, LIME deals with the far more manageable problem of the discovery of a
model replicating the original model in a local manner.

LIME considers interpretability in both the optimization process and the concept of interpretable
representation, allowing for the inclusion of domain specific and task-specific criteria of interpretabil-
ity. LIME is a modular method for accurately and comprehensibly explaining any model’s predictions.
The researchers proposed SP-LIME, used for selecting prominent and non-repetitive predictions that
give users a model’s global picture. It accepts the test observations from the AI model. It has three
steps, including local, model agnostic, and interpretable ways.

4.2 What-If-Tool [ 126]

The What-If Tool, developed by the TensorFlow team, is an interactive visual interface for
visualizing the datasets and understanding the TensorFlow models’ outputs in a better way, for
analyzing the models that have been used. The What-If Tool may be used with XGBoost, and Scikit
Learn models in addition to TensorFlow models. The performance of a model can be viewed on a
dataset via this tool when it has been deployed.

It allows people to study, evaluate, and compare machine learning models, allowing them to
comprehend a classification or regression model better. Everyone from a developer to a product
manager to a researcher to a student can use it because of its user-friendly interface and lack of need
for sophisticated coding.

Additionally, the dataset may be sliced by features and performance compared across several slices,
exposing which subsets of data the model performs best or worst on, which is especially useful for ML
fairness studies. The tool aims to provide individuals with a simple, perceptive, and influential way
to experiment with a trained machine learning model on a set of data using simply a visual interface.
Fig. 14 shows the things to be performed by the What-If Tool.

4.3 DeepLIFT [127]

This method assigns contribution scores based on the difference between each neuron’s activity
and its “reference activation.” DeepLIFT considers both positive and negative contributions sepa-
rately, and it can also show dependencies that other methods miss. In a single backward pass, scores
can be computed quickly.

DeepLIFT discusses the difference between an output and a “reference” output, in terms of the
difference between an input and a “reference” input. The ‘reference’ input is the default or ‘neutral’
input selected based on what is appropriate for the task at hand.

4.4 Skater [128]

It is a single framework that enables Model Interpretation for all types of models to assist in
developing interpretable machine learning systems, which are frequently required for applications
related to real-world. Skater is a free, Python library which is open-source that deconstructs the learned
structures of a model that could be, otherwise considered to be a black box over a global, and a local
scale.
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Figure 14: Things could be performed by What-If-Tool (modified after: https://towardsdatascience.
com/using-what-if-tool-to-investigate-machine-learning-models-913c¢7d4118f)

4.5 SHAP [129]

The Shapley Value SHAP, also known as Shapley Additive explanations, is the average marginal
contribution of a feature value across all probable coalitions. SHAP’s goal is to figure out how
much each attribute contributes to the prediction of an instance x in order to explain it. The SHAP
explanation technique, which is based on coalitional game theory, is used to calculate Shapley values.
A data instance’s feature values serve as coalition members. Shapley values describe how to distribute
the “payout” (= forecast) of a fairway across its various features. A player might be an individual or a
group of components.

Pixels are grouped into super-pixels, amongst which the predictions are spread for explaining an
image. One of SHAP’s contributions is the Shapley value explanation, which is depicted as an additive
feature attribution approach, a linear model.

The formula for SHAP is explained in equation

g =+ b7 M)

where, g is the model of explanation, z'€{0, 1}"-coalition vector, M-the maximum size of the coalition,
and ¢je R is the feature attribution for j* feature, the Shapley values.

Coalitions are simply featured combinations that are employed for the estimation of the Shapley
value of a particular feature. This will prove to be a uniform way of explaining the output of any
machine learning model.
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SHAP combines game theory and local explanations, bringing together multiple earlier methods
and proposing the first additive feature attribution approach based on expectations that are both
reliable and local accurate.

Shapley values are the only solution that satisfies the properties of Efficiency, Symmetry, Dummy,
and Additivity. SHAP identifies three categories of people who are desired:

Local accuracy:

S =g() =g+ D ¢x, ()

If, ¢, = Ex (f (x)) and set all x; to 1, this is the efficiency property of Shapley,

FO=t+X e =E(f0)+2 ¢ 3)

Missingness: An attribution of zero is given to the missing feature. In the equation, a value of zero
indicates the missing feature. The missingness attribute assigns missing features a Shapley value of 0.
For continuous qualities, this is considered to be a significant practice.

x,=0=¢=0 4)

Consistency:
Letf, () = f(h (), 2 =0.
For all inputs, lies between 0 and 1;

f. @) 1, (Z/v) > (@) =/ (Z/\/) (5)
¢ (f,x) = ¢ (f,x) (6)

According to the consistency property, Shapley values vary according to the changes in the
contribution of a feature value, independently of other features.

4.6 AIX360 [130]

This is an open-source tool for analyzing and explaining datasets and machine learning models
that is free to use. The AI Explainability 360 package is a Python package that offers a vast
number of algorithms and proxy explainability measures for many parts of explanations. The AIX360
website has a glossary of words used in the taxonomy and a guidance sheet for users who are not
professionals in explainable Al. The AIX360 toolkit intends to provide a consistent, flexible, and user-
friendly programming interface and accompanying software architecture to meet the wide range of
explainability methodologies required by various stakeholders. The idea is to appeal to data scientists
and algorithm engineers, who may not be experts in explainability.

4.7 Activation Atlases [131]

Activation Atlases, developed by Google in partnership with OpenAl, was a revolutionary
technique for visualizing the interactions amongst the neural networks, and also the way to grow with
knowledge and layers depth. This method was created to investigate convolutional vision networks’
inner workings and obtain a human-interpretable outline of concepts contained within the network’s
hidden layers. Individual neurons were the focus of early feature visualization research. By gathering
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and showing hundreds of thousands of examples of neurons interacting, activation atlases advance
from observing individual neurons to visualizing the space those neurons collectively represent.

Humans can use activation atlases to find unanticipated problems in neural networks, where the
network depends on erroneous correlations to categorize images, or where repeating a feature between
two classes’ results in unexpected flaws. Humans can even “attack” the model by manipulating photos
to fool it using this knowledge. Activation atlases performed better than expected, indicating that
neural network activations may prove significant to humans. Hence, the interpretability in vision
models can be achieved in a meaningful way.

4.8 Rulex Explainable AI [132]

Rolex is a firm that provides easy-to-understand and apply first-order conditional logic rules. The
Logic Learning Machine (LLM), Rolex’s main machine learning algorithm, works entirely differently
from traditional Al. The solution is built to generate conditional logic rules that forecast the best
decision option in straightforward language that process specialists can understand right away. Every
prediction is self-explanatory, thanks to Rolex rules. Rolex rules, unlike decision trees and other rule-
generating algorithms, are stateless and overlapping.

4.9 GradCAM [133,134]

Gradient-weighted Class Activation Mapping (Grad-CAM) produces a coarse localization map
highlighting the essential regions in the image for predicting the idea by using the gradients of any
target concept flowing into the final convolutional layer [135]. It is a generalization of Class Activation
Mapping (CAM), where CAM needs the use of a global average pooling layer on completely CNN
models, whereas CAM can be used on CNN models with fully linked layers. Fig. 15 explains the
overview of Grad-CAM explainability framework.

Guided Back | .
propagation Gradianis
Roctified
Guided Grad-CAM Convolution
Input feature map
Gradiants
= 1 Grad-CAM

Backpropagation till convoluti

RNN/LSTM + Fully
‘convolutional layers

Visual question-
answering

Figure 15: Overview of Grad-CAM [136, Re-drawn after in draw.io]
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The image is fed into the network with a target class and the activation maps for the layers of
interest are obtained. The coarse Grad-CAM saliency map is computed by back-propagating a one-
hot signal with the desired class set to 1 to the rectified convolutional feature maps of interest.

Table 1 shows various frameworks applied by different researchers to different medical diagnoses.

Table 1: XAI Frameworks applied to various medical diagnoses

Reference CAD framework XAI model Application

[137] Inception-v3 Taylor, guided back-propagation Ophthalmic diagnosis deep
(GBP), and shapley additive
explanations (SHAP)

[138] CNN Gradient input, guided Alzheimer’s classification

back-propagation, layer-wise
relevance propagation (LRP) and
occlusion
[139] CNN Guided back-propagation (GBP) Brain tumor grading
[12] and gradient-weighted class
activation mapping (Grad-CAM)

[11]

[140] DNN Integrated gradients Diabetic Retinopathy

[141] CNN (VGGle, Expressive gradients (EG) Age-related macular
GoogleNet) algorithm degeneration (AMD)

[142] DNN Inception-v3 Attribution based XAI Ophthalmic diagnosis

[143] DCNN, AlexNet model Integrated gradients attribution estrogen receptor status from
method and the smooth-grad breast MRI
noise reduction algorithm

[144] DCNN, AlexNet [16]  Gradient based Breast mass classification
and a GoogLeNet [22]
[145] Deep learning clinical ~ Grad-CAM and Kernel SHAP ~ Dermoscopic
practice
[146] CNN Visualizing feature maps Skin lesion classification
[147] Enhanced fully Guided back-propagation POLYP SEGMENTATION
convonutional neural
network (EFCN)
[148] CNN MD:Net Medical imaging diagnosis
[149] Deep CNN Shape Attentive U-Net cardiac bi-ventricular volume
(SAUNet) estimation
[150] Deep-learning model ~ Auto-ASD-Network Autism spectrum disorder
ASD-DiagNet (combination of SVM and DNN
models)

[151] 6-layer DCNN Grad-CAM Model COVID-19 diagnosis
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5 Discussion and Future Ahead

It is critical to examine the characteristics of a black-box that can make the wrong judgment for
the wrong cause. It is a big problem that might wreak havoc on the system’s performance once it is
deployed in the real world. The majority of the methods, particularly the attribution-based ones, are
open-source implementations. Explainability, and particularly the attribution methodologies that may
be used for a number of business use cases, is gaining commercial interest.

Deep learning models, particularly those employed for medical diagnosis, have made tremendous
progress in explaining their decisions. Understanding the aspects that influence a decision can help
model designers address reliability challenges, allowing end-users to acquire trust and make better
decisions. Almost all of these techniques are aimed at determining local explainability. The majority
of deep learning interpretability algorithms use picture classification to generate saliency maps, which
highlight the influence of distinct image regions.

The LIME and SHAP methods for visualizing feature interactions and feature importance are by
far the most comprehensive and dominant across the literature methods for explaining any black-box
model. Grad-CAM, the visual explainability, is getting quite good popularity in terms of explainability
and interpretability in recent years.

Apart from the fair explainability of currently developed Al algorithms, certain important aspects
are to be considered for the improvement in the trust-worthiness of the medical diagnoses. First thing
in line with this is the decision time and the clinical expert’s opinion about accuracies in the diagnosis.
It needs to be performed to enhance trust in the implementation and diagnosis. Expert opinion is to
be considered in the exploration of the explainability frameworks that may justify the need for the
modifications and improvements in the XAl algorithm, if any.

Another line of research could be to combine several modalities in the decision-making process,
such as medical pictures and patient records, and attribute model decisions to each of them. This
can be used to imitate a clinician’s diagnostic procedure, where photographs and physical parameters
of a patient are used to make a decision. Though explainable frameworks are spreading the trust in
the medical diagnosis, it still requires a significant amount of exploration in order to adopt them
commercially.

6 Conclusion

Medical diagnosis is always very crucial, as depending upon accurate diagnosis, the treatment
guidelines are given by the doctors. Symptomatic diagnostics are confusing in many ways, as in
most maladies, the symptoms are generally similar. Therefore, imaging tests and blood tests prove
to be the better options for the correct diagnosis. Imaging tests always require manual predictions
in order to ensure the trust. Manual diagnosis depends on the experience and technical knowledge
of the radiologists or pathologists. To provide supportive diagnostics related to the medical field,
researchers developed some software frameworks. These frameworks employed image processing,
computer vision, and Al techniques, which proved to be more accurate but are unexplainable in
nature. In continuation with this, researchers proposed some frameworks for explaining the black-box
model of artificial intelligence, machine learning, and deep learning algorithms. The most popular
frameworks of XAI are described in this survey. These include LIME, SHAP, what-if-tool, AIX360,
activation atlases, Rulex XAI, Grad-CAM, etc. These frameworks are proposed and employed by
the researchers to explain the black-box nature of Al models. In any case, it could be believed that
explainable artificial intelligence still has many untapped potential areas to examine in the next years.
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