

© This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

The definitive publisher version is available online at
https://doi.org/10.1016/j.neucom.2022.03.038

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2022.03.038

Highlights

Elastic Gradient Boosting Decision Tree with Adaptive Iterations
for Concept Drift Adaptation

Kun Wang, Jie Lu, Anjin Liu, Yiliao Song, Li Xiong, Guangquan Zhang

• Adaptive iterations (AdIter) method helps GBDT model to build sev-
eral ensembles with dierent adaptative iterations and select the best
prediction results by majority voting. This method helps the model to
adapt to dierent drift severities.

• A bound analysis of model under concept drift shows how the concept
drift occurs caused by data distribution changes and how the concept
drift severity inuences the model error.

• Performance of adaptive iterations (AdIter) method on synthetic and
real-world datasets shows its eciency.

Elastic Gradient Boosting Decision Tree with Adaptive

Iterations for Concept Drift Adaptation

Kun Wanga,b, Jie Lua,∗, Anjin Liua, Yiliao Songa, Li Xiongb, Guangquan
Zhanga

aUniversity of Technology Sydney, Broadway, Sydney, 2007, NSW, Australia
bShanghai University, Shangda Road 99, Shanghai, 200444, Shanghai, China

Abstract

As an excellent ensemble algorithm, Gradient Boosting Decision Tree
(GBDT) has been tested extensively with static data. However, real-world
applications often involve dynamic data streams, which suer from concept
drift problems where the data distribution changes overtime. The perfor-
mance of GBDT model is degraded when applied to predict data streams
with concept drift. Although incremental learning can help to alleviate such
degrading, nding a perfect learning rate (i.e., the iteration in GBDT) that
suits all time periods with all their dierent drift severity levels can be dif-
cult. In this paper, we convert the issue of determining an optimal learn-
ing rate into the issue of choosing the best adaptive iterations when tuning
GBDT. We theoretically prove that drift severity is closely related to the
convergence rate of model. Accordingly, we propose a novel drift adaptation
method, called adaptive iterations (AdIter), that automatically chooses the
number of iterations for dierent drift severities to improve the prediction
accuracy for data streams under concept drift. In a series of comprehensive
tests with seven state-of-the-art drift adaptation methods on both synthetic
and real-world data, AdIter yielded superior accuracy levels.

Keywords: Concept drift, Ensemble learning, Data stream, Gradient
boosting

∗Corresponding author
Email addresses: kun.wang-2@student.uts.edu.au (Kun Wang),

jie.lu@uts.edu.au (Jie Lu), anjin.liu@uts.edu.au (Anjin Liu),
yiliao.song@uts.edu.au (Yiliao Song), xiongli8@shu.edu.cn (Li Xiong),
guangquan.zhangu@uts.edu.au (Guangquan Zhang)

Preprint submitted to Neurocomputing March 20, 2023

1. Introduction

Concept drift describes changes of data distribution in data streams [1].
When a signicant drift occurs, learning models will no longer be able to per-
form the task it was designed for with sucient accuracy [2]. The practical
demand for models that are robust to concept drift is very broad, spanning
applications from general recommender systems [3] to passenger demand pre-
dictors [4]. Further, there are several dierent types of drift and within each
type, drift can occur to dierent degrees [5].

Ensemble learning method is a popular choice for concept drift handling
[6]. It describes model training schemes that combine several weak learners
to form one powerful predictive model [6]. Ensemble models tend to be
very sensitive to drift, which makes them a good general solution, but they
have not been equipped with the functions to recognize the subtler nuances
of drift. Therefore, what is needed is a more proactive method, where the
ensemble learning model is given this recognition capability and the skills to
adapt to the drift more appropriately.

Of the dierent ensemble learning strategies, the boosting methods are
known for their excellent performance. Gradient boosting is one of the most
popular boosting methods. With gradient methods, all weak learners are
initially given equal weight, which, with gradient descent, can be thought
of the learning rate in gradient descent, which is the shrinkage parameter
and minor in magnitude [7]. Weak learners are trained by minimizing the
loss function of the entire model.

However, despite the growing throng of real-world applications that gen-
erate fast-moving and fast-evolving data streams, few studies could be found
in the literature discussing how gradient boosting be applied to deal with
concept drift [8]. Recently, an online gradient boosting model is proposed
aiming at drifting data streams [9], that successfully applied the commonly-
used drift-adaptation strategies (retraining and tuning) into the gradient
boosting. A critical issue with the approach, though, is that it only provides
for a xed number of iterations in the incremental learning process. Thus,
concept drift of dierent severity is not considered.

This paper proposes adaptive iterations (AdIter) to enhance the gradient
boosting method so that it can be compatible with dierent drift sever-
ity. AdIter works with most ensemble learning methods but, in this paper,

2

we chose to implement it in the context of gradient boosting decision tree
(GBDT) as an example of a gradient boosting method. Notably, AdIter does
not induce increase higher, sometimes even reduce, the runtime complexity
of conventional GBDT and, sometimes, it can even decrease it.

The main contributions of this paper include:

• A detailed description of a strategy to adaptively select GBDT mod-
els for concept drift adaption, called elastic gradient boosting decision
tree (eGBDT) method. We accompany the description with a runtime
complexity analysis is given to verify its eciency.

• A bound analysis of a GBDT model under concept drift that shows the
inuence of drift severity on model errors.

• The adaptive iterations (AdIter) method that generates a set of eGBDT
models with dierent tuning congurations that can be used to control
the drift recovery speed. As a result, the system can adaptively choose
the best tuning iterations as new data becomes available.

The rest of this paper is organized as follows. Related work is discussed
in Section 2. Section 3 sets out the preliminary, problem statement, basic
denitions. Our proposed methods for concept drift adaptation are presented
in Section 4. The experiments and results are outlined in Section 5, and the
paper concludes in Section 6 with a brief summary of material presented and
our intentions for future work.

2. Related Work

This section summarizes the basic methods based on GBDT for data
stream learning in addition to giving an overview of existing concept drift
detection and adaptation methods.

2.1. Gradient Boosting Decision Tree for Data Stream Learning

Boosting is a popular ensemble algorithm that linearly combines high-
performing ensemble weak learners when dealing with learning tasks [10, 11].
GBDT is a typical type of boosting framework, it was proposed by [10] that
turns a set of weak learners into a strong one through ensemble.

For handling data stream, many boosting-based methods have been pro-
posed in recent years, such as: OnlineBoosting [12, 13], OnlineRUSBoost

3

[13]. But many of them are based on AdaBoost rather than gradient boost-
ing. Besides, the Streaming Gradient Boosting (SGM) algorithm works well
on stochastic data streams [11]. DART, which applies dropout method to
iteratively reduce overtting [14], is also an excellent method. However,
although they are gradient boosting-based methods, neither of them have
discuss the scenario when concept drift occurs in data stream in detail, let
alone consider dierent drift severities.

Concept drift in data stream will aect model learning, that is, the learn-
ing eciency of weak learners, which will lead to an increase in the cumulative
loss of the weak learners. Although some gradient boosting-based methods
to deal with data stream have been proposed, there are deciencies in the
self-adaptation of the GBDT model and the processing of dierent drift sever-
ities.

2.2. Concept Drift Learning Methods

In data stream mining, learning model needs to be updated to adapt to
the uncertain data distribution. Many researches focus on handling data
stream [15, 16]. Methods for dealing with concept drift is not just limited to
adjusting or updating a single classier but will integrate multiple classiers
for an optimized learning result. Currently, the ensemble learning method
has been used for stream mining tasks [17, 18]. In addition, the data stream
mining method also has a certain extension in data sample ltering [19],
clustering [20, 21], deep learning [22, 23], and class imbalance handling [24,
25].

Generally, there are two main categories of approaches for handling con-
cept drift: active approaches and passive approaches [26, 6, 27]. For the
active approaches, model updates are determined by the results of the drift
detection mechanism it contains [28, 29]. And, the commonly used drift de-
tection method is error-based, like the early proposed Drift Detection Method
(DDM) [30] and ADaptive WINdowing (ADWIN) [31]. PSCCD [32], which
detects changes using an exchangeable test, is also a good detection method.
Furthermore, new detection methods have been proposed recently, such as
EVLC [33] and MSFS [34]. However, although these methods help the learn-
ing model nd out drift and trigger update in time, few of them discuss the
dierent drift severities. On the contrary, passive approaches let the model
keep continuous learning while less care about whether drift can be detected.
According to the type of the learning model, passive approaches can also be

4

divided into two types: single classier models and ensemble classier mod-
els [35]. The very-fast decision tree (VFDT) [36] is a popular single model
for learning under concept drift. In addition, aiming to deal with changing
data stream, CVFDT [37] algorithm has been proposed and it also achieved
a good performance. Popular ensemble models proposed recently are dy-
namic weighted majority (DWM) [38], accuracy updated ensemble (AUE)
[39, 40]. Furthermore, as an excellent method, incremental learning can help
model remember and combine the knowledge of new incoming data [41]. By
applying this method, another ensemble method for handling concept drift
has been proposed, called Learn++.NSE [42]. Furthermore, based on the
ensemble network, pENsemble [43], an ensemble method, tried to vote the
local experts and prunes the one with a lower weight.

Sucient reading indicates that most of the current drift learning meth-
ods are either retrain and update the ensemble model on new concepts or
incremental learning model. However, few of them specically discuss how
to handle dierent drift severities, since a xed tuning setting is not suitable
for all concept drifts. Therefore, aiming to consider the drift severity while
adaptation for further generalization is necessary. In other words, when there
are dierent severities of concept drift in the same data stream, it is essen-
tial to have a reasonable ne-tuning. Our research is based on this problem
and designs a drift learning method that can automatically select retraining
and tuning strategies, and nd adaptive iterations to deal with dierent drift
severities.

3. Gradient Boosting Decision Tree with Concept Drift

This section begins with an investigation of the GBDT model under dif-
ferent conditions of concept drift. We have summarized the notations, as
shown in Table 1. Denitions of our identied gradient-drift learner and
local-minimum learner then follow.

3.1. Preliminary and Problem Statement

Given a training set with size n, denoted as Dtrain = xi, yini=1, a GBDT
model F (x) is trained with M weak learners, where each learner is an itera-
tion. For m = 1 to M , the pseudo-residuals [10] are calculated as follows,

rim = −
[
∂ℓMSE(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

, i = 1, . . . , n. (1)

5

Train a base learner hm(x) with the value of rim and xini=1 and calculate
the multiplier γm [10] as

γm = argmin
γ

n∑

i=1

l(yi, Fm−1(xi) + γhm(xi))  
loss function

. (2)

The GBDT model is then updated by

Fm(x) = Fm−1(x) + γmhm(x). (3)

And the accumulate loss of current model is calculated as

lm = l(y, Fm(x)) = y − Fm(x). (4)

We use the absolute residual to observe the dierence between model pre-
diction and the true label. lm reects the performance of model after adding
learner hm (x). It is an indicator for us to observe the performance of weak
learner hm (x) in the model. As the iterations proceed, the loss of the model
will gradually decrease until it converges.

The next step would be to test this well-trained model on the testing set
Dtest = x′

i, y
′
ini=1 with the same chunk size and assess the resulting pre-

dictions. However, if Dtest contains concept drift, the GBDT model may
not perform well, the loss will not drop during training as it normally does,
resulting in poor performance. For streaming data, instances come at each
time point, so this learning process is based on prequential-train-test proce-
dure. For example, we train a GBDT model on data coming at time 0 to get
loss l0 from the true label and prediction results, then test the model on data
coming at time 1 and get loss l1 from the true label and prediction results.
If the data at time 1 occurs concept drift, loss l1 will increase. We refer to
this problem as rising loss aected by concept drift and state it as follows.

Problem 1. (Rising Loss Aected by Concept Drift) Suppose a GBDT
model FM(x) with M initial weak learners trained on data chunk Dtrain at
time t gets a loss lt(y, FM(x)) from true label and prediction results, or is
simply denoted as lt. When a new data chunk Dtest comes at time t + 1
occurs concept drift, the loss lt+1 of the model after testing on it is increased,
i.e.,

lt < lt+1.

where lt+1 = lt+1 (y, FM (x)). It is necessary to update the model in time to
help the loss converge normally again. Assuming the new updated model is

6

Table 1: Notations

Notations Description

x, X Data instances.
y, Y The label of data instances.
n The number of data instances, chunk size.
i The data index.
d The number of features.
D Data chunk.
F (x) A GBDT model.
F The prediction of GBDT model.
F ′(x) The updated GBDT model.
h(x), h A weak learner (iteration) of GBDT model.
M The number of initial weak learners in GBDT model.
m The index of weak learner (iteration) in GBDT model.
M The number of remaining learners after pruning.
r Pseudo residual.
γ Multiplier.
l Accumulate loss of GBDT model.
t, T t is time point, T is time-step of a stream.
L The number of added iterations.
k The index of local-minimum weak learner.
E The number of eGBDT models.
E The expectation.
V Prediction vector in AdIter.
λ Learning rate.
p The p-value in Friedman test.
P , P ′, Q Data distribution.
d(Q,P) The distance of data following Q and P distributions.
ϕ The probability density function.
α The portions of data following a distribution.
σ The ratio that the number of retraining triggered over total time-steps.
δ The probability setting in bound theory analysis.

R, R̂ R is the generalization error, R̂ is the empirical error.

F ′ (x) with a loss of lt+1′ (y, F ′ (x)), the model should satisfy the following
condition,

lt+1′(y, F ′(x))− lt ≤ 0 < lt+1 − lt. (5)

This inequality shows the ideal state of the model we expect. As previously

7

mentioned, the initial trained model at time t performs poorly at time t+ 1
due to concept drift, leading to a rising loss, that is, lt+1− lt > 0. Therefore,
to help the model adapt to drift well, we update the initial model as F ′ (x)
and hope the loss lt+1′ (y, F ′ (x)) can decrease normally as time t. The best
case is lt+1′ (y, F ′ (x))− lt ≤ 0. However, how to update the model?

Tuning is one of the wise choices to help the model recover from this
rising loss caused by concept drift, because adding in more iterations should
help the model converges. The diculty is that drift can occur at dierent
levels of severity and, without knowing the type and extent of the current
drift, we cannot know how many iterations to add. Add too many, and we
risk overtting the model. Too few and we undert. We refer to this problem
as appropriate iterations under concept drift, and state it as follows.

Problem 2. (Appropriate Iterations under Concept Drift) Consider a
GBDT model FM(x) with M weak learners trained at time t that is tested on
a data chunk Dtest with concept drift at time t+1. To allow the loss resulting
from the concept drift to reduce to pre-drift levels, L iterations (learners) will
be added to help tune the model. The problem now is how to determine an
appropriate number of iterations L. This problem is formulated as

L = argmin
L

l(y, FM+L(x)), (6)

where FM+L(x) is the model after tuning.
Given these two problems, our main research objective is to devise a drift

adaptation method that allows a GBDT model to suitably adapt to concept
drift of dierent severities.

3.2. Learners in Drift Aected GBDT Model

When concept drift occurs, performance of some weak learners will de-
crease, resulting in an increasing loss that, under normal circumstances,
would have fallen. (For easy reference, we will refer to these learners as
gradient-drift learners.) To maintain model performance, these gradient-
drift learners need to be identied and removed in time.

The rst step is identication. Given a GBDT model FM(x) with M
weak learners hm(x), 1 ≤ m ≤ M , we dene a gradient-drift learner if its
loss, i.e, E[lm] = E[l(y, hm(x))], is increasing, as per Denition 1.

Denition 1 (Gradient-Drift Learner). A gradient-drift learner is a weak
learner hm(x) satisfying

(E[ltm] ≤ E[ltm−1]) ∧ (E[lt+1
m] > E[lt+1

m−1]). (7)

8

As loss decreases before drift occurs and increases after, gradient-drift
learners follow a local-minimum learner, i.e., learners with the minimum
E(l(y, hm(x)). Hence, if we can nd this local-minimum learner, we know
the learners that follow will be the gradient-drift learners, and we can prune
them. Formally, the local-minimum learner is dened as follows:

Denition 2 (The Local-Minimum Learner). In a GBDT model FM (x) =M
m=1 hm (x) with M weak learners, m ∈ [1,M], the local-minimum learner

is a weak learner hm (x) with the minimum E (l (y, Fm (x))) ∈ [0, 1], denoted
as

hm(x) = argmin
m

E(l(y, Fm(x))), (8)

where Fm (x) is the model at the m-th iteration, Fm (x) = Fm−1(x) + hm(x).

Notably, the location, namely m, of the local-minimum learner also re-
ects the severity of concept drift. The smaller the value of m, the more
gradient-drift learners there will be that follow, and the more severe the
drift, vice versa.

With the drift severity identied, the next step is to help the model adapt.
Strategies for accomplishing this are outlined in the next section, we choose
adaptation strategies to handle gradient-drift learners, and discuss how to
deal with dierent drift severities.

4. Elastic Gradient Boosting Decision Tree with Adaptive Itera-
tions for Concept Drift Adaptation

In this section, we provide a detailed introduction of how GBDT model
selects adaptation strategies, retraining and tuning, to response to concept
drift. We then set out our adaptive iteration method, AdIter, to help the
model deal with varying drift severities.

4.1. Selecting an Appropriate Adaptation Strategy (eGBDT)

Denition 1 and 2 state that, to reduce the impact of concept drift so
as to maintain model performance, we should prune the gradient-drift learn-
ers. To solve Problem 1, we proposed elastic gradient boosting decision tree
(eGBDT) method [9]. The eGBDT can nd an optimal location of pruning
by a dened local-minimum learner and select an adaptive strategies between
retraining and tuning after pruning. Next, we briey introduce eGBDT.

9

Figure 1: (a) The process for identifying the local-minimum learner. The learners that
follow will be the gradient-drift learners and need to be pruned. Here, we assume h2 or
h3 is the local-minimum learner. (b) Selecting the right adaptation strategy. If h3 is the
local-minimum learner, new iterations (learners) h4 and h5 are added incrementally. If h2

is the local-minimum learner, a new GBDT model needs to be retrained. (c) The AdIter
method. Dealing with drift of varying severities is a matter of tuning with the appropriate
number of iterations. The nal predictions are made via majority voting (Eq. (10)).

Consider two consecutive data chunks asD1 = xi, yini=1,D2 = x′
i, y

′
ini=1,

and a GBDT model FM(x) =
M

m=1 hm(x) trained with data chunk D1 and
tested on data chunk D2. Given the local-minimum learner hk(x), the GBDT
model after pruning is Fk(x) =

k
m=1 hm(x). From here, there are two possi-

ble adaptation strategies to adapt Fk(x): retraining or tuning. The following
cases illustrate how to choose between the two strategies.

Case 1: k ≥ M denoting that no learners need to be pruned. However,
this model may be under-tting. Tuning could help to further decrease the
loss of model. The GBDT model after tuning over L iterations is Fk+L.

Case 2: 1 ≤ k < M denoting the drift is too great for the initially
trained model to combat. Therefore, we retrain a new model FM(x′).

4.2. Adaptive Iterations (AdIter) for Varying Drift Severities Adaptation

Section 4.1 shows how Problem 1 is solved by eGBDT, we now shift to
solving Problem 2, i.e., deal with concept drift of varying severities. Inspired
by the work in [44], a bound analysis of a GBDT model is provided in Ap-
pendix A to show how drift severity aects model error. The AdIter method
follows from this analysis.

The main idea of AdIter is to select the most precise from many ensemble
models rather than relying on only one to obtain the best result. Although
eGBDT itself is already an ensemble of weak learners, it is still unable to
handle concept drift with dierent severities as eGBDT uses a xed iteration

10

Algorithm 1 Adaptive Iterations (AdIter) Method
Input:
1) Stream data D

Parameter:
1) A set of eGBDT Cong, eGBDTi

parm1,...,E .
2) Initial training chunk size, chunkini.
3) Sliding chunk size, chunkslide.
4) The number of initially trained weak learner M .

Output:
1) Prediction result Ŷchunkslide;

1: for eGBDTi
parm in GBDTi

parm1,...,E do
2: build eGBDT Fi(X) on Dchunkini # By Eq.(9)
3: end for
4: while D has next chunk Dchunkslide do
5: for i = 1 : E do
6: save prediction vector Vi = Fi(Dchunkslide)
7: pruning eGBDT Fi(X) on Dchunkslide and remain M learners.
8: if M < M then
9: retrain eGBDT Fi(X) on Dchunkslide

10: else
11: tuning eGBDT Fi(X) on Dchunkslide

12: end if
13: end for
14: majority vote Ŷchunkslide = MajorityVote(Ŷi) # By Eq.(10)
15: end while
16: return prediction results of all chunks Ŷchunkslide

for tuning.
Therefore, we propose AdIter, to broaden the tuning iterations setting of

GBDT by majority voting. Algorithm 1 outlines the AdIter procedure. In
more detail, the rst step is to train several eGBDT models with dierent
settings of tuning iterations. Given data sample X, Y , where Y ∈ 0, 1.
When the tuning iterations are L1, L2, · · ·, LE, we will have E numbers of
eGBDT models, expressed as

F = F1(X), F2(X), · · ·, FE(X). (9)

Denoting the outputs of Fi(X) as Yi, we use the majority voting method to

11

compute nal prediction of label Y by

Y =




0, if

∑

i

IŶi=0 ≥
∑

i

IŶi=1

1, else

. (10)

where I is the characteristic function.
Clearly, we choose mode of all the predictions of Fi(X) as the nal pre-

diction result. For example, for a binary classication task, assume we have
E = 3 eGBDT models with tuning iterations L1, L2, L3, and their predic-
tion vector (votes) are Y1 = 1, Y2 = 1, Y3 = 0, then the nal prediction is 1. If
the ground truth is 1, we consider that L1 and L2 are appropriate iterations,
but L3 is not. The process of this AdIter method is shown in Figure 1.

It is worth noting that the AdIter is designed for enhancing the gradient
boosting method so that it can be compatible with dierent drift severities.
A xed number of incrementally added iterations may not work well on data
with dierent drift severities. Therefore, we rst prune the gradient-drift
learners. This pruning process is based on the loss of weak learner. Then, we
aim to nd the most appropriate adaptive iterations by voting to help the
model become more robust on data with dierent drift severities.

4.3. Runtime Complexity Analysis

In data stream learning, the runtime complexity is a critical evaluation
criterion because of the real-time requirement of the application. In this
section, we discuss the runtime complexity of our proposed algorithm. In
general, the runtime complexity of eGBDT and AdIter methods depend on
the frequency of tuning and retrain process.

For simplicity, we denote the runtime complexity of a weak learner as
O (h), and for a base decision tree, the complexity is O (h) = O (dn log (n)),
where the d is the number of features, n is the training size. Since GBDT
trains a new learner based on the residual of the sum of previous learn-
ers, for M number of learns, the total runtime complexity is the linear

sum of all learners, that is, O
M

i=1 h


= O (Mh). For streaming data,

a new chunk of data is available at each time point (we use n′ to denote
the chunk size), and L new iterations (learners) are incrementally built for

tuning. For T time points, the overall complexity becomes O
M+TL

i=1 h

,

namely O (Mh+ TLh′), where h′ has runtime complexity O (dn′ log (n′)).

12

M is the number of learners when initializing a GBDT; T is the time-step
of a stream; L is the number of iterations appended at each time-step; h is
the complexity that training a learner on the initial training set with size n;
h′ denotes training a learner on a new arrived data chunk with size n′; h′′

denotes training on all available data with size (n+ Tn′); δ denotes the ratio
that the number of retraining triggered over the total number of time steps.

To build the GBDT on the same number of training samples (n+ Tn′)
with the same number of learners (M + TL), we have the complexity of
conventional GBDT as O ((M + TL)h′′), where each learner h′′ is trained on
the entire training set and has complexity

O ((M + TL) d (n+ Tn′) log (n+ Tn′)) =

O


Md (n+ Tn′) log (n+ Tn′)  

item1

+TLd (n+ Tn′) log (n+ Tn′)  
item2


 ,

(11)

and for tuning GBDT, the complexity is

O (Mh+ TLh′) = O


Mdn log (n)  

item′
1

+TLdn′ log

n′

  
item′

2


 . (12)

Apparently, item′
1 < item1 and item′

2 < item2, so we conclude that tuning
GBDT has lower runtime complexity than retrain GBDT for data stream
learning. This is because tuning GBDT only trains a new learner on a small
subset of the data, while retrain GBDT trains each learner on the entire
dataset.

For eGBDT with strategies selection, we denote the ratio that the num-
ber of retraining processes triggered by concept drift over the total number
of time-steps as σ, and the retraining complexity as O (Mh′). Then, for σT
times of retraining, the complexity will be O (σTMh′), and for the rest tun-
ing process, the complexity will be O ((1− σ)TLh′). Tree pruning is a linear
search that nds the minimum residual of all the learners. Since the resid-
uals are already calculated when making the predictions on new data, the
searching complexity is O (1), and for T time step, the pruning complexity
is O (T). Therefore, the overall runtime complexity is

O (Mh+ σTMh′ + (1− σ)TLh′ + T)

= O


Mh

item1

+σ(M − L)Th′  
item2

+TLh′  
item3


,

(13)

13

Table 2: Runtime Complexity Analysis

Algorithms Runtime complexity

GBDT O ((M + TL)h′′)
Appending new trees
at each time step O (Lh′)
Tuning GBDT O (Mh+ TLh′)
Pruning at each time step O (1)
Retraining GBDT O (Mh′)
eGBDT O (Mh+ σ (M − L)Th′ + TLh′)

AdIter O
E

i=1 (Mh+ σ(M − Li)Th
′ + TLih

′)


where 0 ≤ σ ≤ 1, item1 is the initialization and item2 with item3 com-
prise the drift learning complexity. For the best case, where no concept drift
occurs, namely σ = 0, eGBDT will continuous tuning and have a smaller run-
time complexity. For the worst case, which has concept drift occurred and has
GBDT retrained every time, the time complexity will be O (Mh+ TMh′).
Furthermore, since the AdIter method contains E numbers of eGBDT models
with dierent tuning iterations L1, L2, · · ·, LE in ensemble, so its runtime
complexity can be expressed by

OAdIter = O
(

E∑

i=1


Mh+ σ(M − Li)Th

′ + TLih
′
)
. (14)

Table 2 summarizes the runtime complexity of the proposed method for data
stream learning.

5. Experiments

This section gives experiment settings, synthetic and real-world datasets
description, and experiment results discussion.

5.1. Experiment Settings

The experiment is based on prequential-train-test procedure [45]. Firstly,
we compare the proposed AdIter method with four basic methods of using
GBDT to handle concept drift, with their eciencies being our main concern.

Baseline: initially train a GBDT model on the training set, then testing
it on the rest of data without any model update.

14

Retrain: gives the pre-trained GBDT model after testing, and then re-
train a new GBDT model for the next data chunk.

Tuning: incrementally adding xed new iterations on new incoming data
chunks based on the initially trained GBDT model.

eGBDT: adaptively selects retraining and tuning strategies to help GBDT
model adapt to concept drift.

In addition, we also compare the performance of our AdIter method with
seven state-of-the-art ensemble learning methods.

ARF [46]: is an classical ensemble-based concept drift learning method,
which trains the Random Forest by using the bagging and embedding a
ADWIN drift detector to deal with concept drift.

Learn++.NSE [42]: is an ensemble method for handling concept drift.
By using the bagging, several learners are trained and combined by dynam-
ically weighted majority voting.

LeverageBag [47]: aims to increase the accuracy and diversity. By
combining the bagging principle and randomizing the input and output of
learners, the adaptability of the model is improved.

OnlineBoosting [13]: transfers the conventional AdaBoost model into
the online version for data stream learning. An ADWIN detector has been
embedded to deal with concept drift.

OnlineRUSBoost [13]: is a boosting-based data stream learning method.
It uses sampling technique iteratively to enhance the learning performance
and also use ADWIN detector to handle concept drift.

OnlineBagging [12]: is a bagging-based data stream learning method,
it uses the expected accuracy of learners on the testing data to weight them,
this boosts the model robustness.

Streaming Random Patches (SRP) [48]: is an ensemble learning
method which uses the basic idea of bagging and simulates the random sub-
space to deal with data streams.

We use the default parameter setting of the compared methods, which is a
common practice. It has certain meaning since these methods are tested and
packaged in Scikit-Multiow. We have also summarized the parameters of the
state-of-the-art methods, as shown in Table 3. The parameters for eGBDT
were the same, i.e., GBDTparm = (M = 200,Depth = 4, SampleRate =
0.8,λ = 0.01), which are default parameters and will not change in our
experiment. For tuning, we xed add L = 25 iterations each time. For our
AdIter method, we aim to built E = 5 numbers of eGBDT models, and the
number of iterations of each of them were set as L1 = 25, L2 = 50, L3 =

15

75, L4 = 100, L5 = 125. We use uniform parameters for all datasets without
adjustment to verify the eciency of our method. And we also conduct a
parameter sensitivity analysis to show the robustness of our method.

Our AdIter method is implemented by Python 3.7 code, and we use the
decision tree model in the sklearn package as the weak learner. The compu-
tational environment is: Red Hat Enterprise Linux Workstation release 7.9
(Maipo), Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz. These ensemble
learning methods selected for comparison are from the Scikit-Multiow meta
module [49]. To be fair, we use all these packages with their default param-
eter settings. And all methods have the same chunk size on the same bench
mark datasets.

Table 3: Parameters of State-of-the-Art Methods

Method Weak learner Number of learners

ARF Hoeding Tree Classier 10
Learn++.NSE Decision Tree Classier 10
LeverageBag KNN Classier 15
OnlineBoosting KNN ADWIN Classier 10
OnlineRUSBoost KNN ADWIN Classier 10
OnlineBagging KNN ADWIN Classier 10
SRP Hoeding Tree Classier 101

1 To improve the running eciency, we manually set the number of learners of
SRP method as 10, keeping the same as other methods.

5.2. Datasets

The AdIter method mainly focuses on the binary classication task. We
use the decision tree as the weak learner of the GBDT model. Multi-class
classication can be extended by executing several binary classication tasks
and getting the prediction results by softmax method. We tested the method
on 12 binary classes datasets, including synthetic datasets and real-world
datasets. The detailed information of these datasets are summarized in Table
4, 5, where the ratio indicates the class ratio. The synthetic datasets were:

SEAa [50]: contains 3 attributes and 2 classes. Data samples in each
attribute are numberic between 0 and 10. There are 10,000 samples in this
dataset that contains 3 times concept drift, 2,500 examples each, with dier-
ent thresholds for the concept function.

16

Table 4: Datasets Statistics

Synthetic Sample Feature Class Ratio Chunk size Drift type

SEAa 10,000 3 2 1:1 100 abrupt
RTG 10,000 10 2 1:1 100 no
RBF 10,000 10 2 1:1 100 incremental
RBFr 10,000 10 2 1:1 100 incremental
HYP 10,000 10 2 1:1 100 incremental
AGRa 10,000 9 2 1:1 100 abrupt

Table 5: Real-World Datasets

Real-world Sample Feature Class Ratio Chunk size

Electricity 45,312 8 2 0.73:1 100
Weather 25,626 8 2 0.49:1 365
Spam 9,324 500 2 0.34:1 100
Usenet1 1,500 99 2 0.87:1 40
Usenet2 1,500 99 2 0.50:1 40
Airline 539,383 7 2 0.80:1 100

RTG [51]: is generated by Random Tree Generator. By building a de-
cision tree, the split nodes come from randomly selected attributes, and
dierent classes are assigned to leaves. This dataset has 10,000 samples and
10 sample attributes.

RBF, RBFr: are generated using the Radial Basis Function (RBF) gen-
erator with 10 attributes. The parameter for the number of centroids is
adjusted to generate dierent concept drift scenarios in the data. For RBF
we generate 50 centroids and all of them are drifting with a margin equal to
0.0001, while RBF regional (RBFr) only has 10/50 drifting centroids with a
margin equal to 0.01.

HYP [50]: is generated by a hyperplane generator, which can simulate
the incremental drift. This dataset has 10,000 samples, 10 sample attributes,
and 2 classes.

AGRa [52]: simulates the data stream with abrupt drift by using the
the AGRAWAL generator. This dataset contains, 10,000 samples, 6 nominal
and 3 continuous attributes, and 2 classes.

Electricity: describes the Australian New South Wales Electricity Mar-
ket. It has 2 classes, which indicates the electricity price changes up or down

17

over time. There are totally 45,312 instances, in our experiment, we initially
set the chunk size to 100.

Weather: was compiled by the US NOAA 1. It contains 25,626 instances,
8 attributes, 2 classes. There are about 33% positive (rain) class, and 67%
negative (no rain) class. Since this dataset has an observation period of one
year, the chunk size is set to 365.

Spam [53]: is the dataset recorded by SpamAssasin which aims to deal
with the spam emails. There total 9,324 instances and 500 attributes in this
dataset. We initially set the chunk size as 100.

Usenet1, Usenet2 [53]: are two real-world datasets with simulated in-
terests drift. Each entity is a piece of news drawn from Twenty Newsgroups
Dataset. Each consists of 1,500 samples with 99 attributes. Since this dataset
has a smaller size, so we initially set the chunk size as 40.

Airline: is a prediction set of whether a given ight will be delayed from
its scheduled departure. There are 539, 383 records with 7 attributes in this
dataset. The class labels are: delayed or not delayed. The chunk size is
initially set to 100.

The datasets and the python source code of AdIter method are available
online2.

5.3. Experiment and Discussion

To assess AdIter, we ran the method on six synthetic datasets and six real-
world datasets and compared the results with the state-of-the art benchmark
methods. Details of the experiments follow.

5.3.1. Experiment 1: Retrain or tuning: Was the right strategy selected?

In this experiment, we tested the eGBDT model on the synthetic datasets
and simply ran our AdIter method. Figure 2 shows the number of learners in
pruned and resulting accuracy for each dataset. The trend lines shown paint
a good picture of eGBDT’s underlying processes. abrupt drops in accuracy,
for example, indicate a drift.

The gradient-drift learners are then pruned, which triggers the selection
of an adaptation strategy – either retraining or tuning. During the learning
process, the number of learners either increases or decreases depending on

1https://www1.ncdc.noaa.gov/pub/data/gsod/
2https://github.com/kunkun111/AdIter

18

(a) SEAa (b) AGRa

(c) HYP (d) RTG

(e) RBF (f) RBFr

Figure 2: A plot showing: the chunk accuracy, number of gradient-drift learners pruned,
and count of the remaining learners. We can see that accuracy dropped and some learners
were pruned to result in fewer learners overall. The SEAa and AGR datasets contain
simulated abrupt drift at the 25th, 50th, and 75th chunks. Because the number of the
learners remaining after the prune was less than M = 200, the retraining strategy was
triggered. By contrast, the HYP, RTG, RBF, and RBFr datasets only contain a few small
drifts. These were able to be handled by tuning.

19

T
ab

le
6:

A
cc
u
ra
cy

of
S
ix

S
y
n
th
et
ic

D
at
as
et
s
(%

)

M
et
h
o
d
s

S
E
A
a

R
T
G

R
B
F

R
B
F
r

H
Y
P

A
G
R

A
v
gR

an
k
A
v
g
S
co
re

B
a
se

78
.7
2±

2.
88

(8
)

5
9.
58

±
5.
47

(9
)
54

.1
6±

3.
16

(1
2)

73
.7
2±

3.
08

(1
1)

73
.1
4±

14
.9
7(
8)

70
.3
6
±
2
.4
5(
8
)

9.
3
3

68
.2
8

R
et
ra
in

80
.4
7
±
0
.4
9(
7
)

6
0.
42

±
5.
37

(8
)
76

.7
5±

1.
36

(6
)

75
.2
5±

1.
84

(9
)

84
.2
7±

3.
3
2(
5
)

70
.9
1
±
0
.9
4(
6
)

6.
8
3

74
.6
7

T
u
n
in
g

83
.4
0
±
0
.5
2(
5
)

6
7.
42

±
5.
49

(2
)
69

.7
2±

1.
61

(1
1)

82
.1
6±

1.
64

(5
)

84
.3
8±

5.
9
1(
4
)

77
.7
4
±
0
.6
4(
3
)

5
77

.4
7

eG
B
D
T

82
.8
7
±
0
.9
6(
6
)

6
4.
10

±
6.
63

(5
)
70

.8
6±

1.
53

(9
)

81
.0
6±

2.
02

(8
)

86
.3
4±

3.
3
2(
2
)

77
.9
0
±
1
.1
5(
2
)

5.
3
3

77
.1
8

A
d
It
er

83
.5
1
±
0
.8
6(
4
)

6
5.
96

±
6.
33

(3
)
76

.5
0±

1.
47

(7
)

82
.0
3±

1.
76

(6
)

8
6
.9
3
±
2
.5
6
(1

)
7
8
.4
2
±
1
.1
3
(1

)
3
.6
6

7
8
.8
9

A
R
F

84
.7
2±

0.
36

(3
)

6
7
.7
8
±
0
.5
(1

)
80

.2
7±

1.
57

(5
)

83
.6
8±

1.
52

(4
)

84
.5
6
±
5.
97

(3
)

77
.6
2±

1.
09

(4
)

3
.3
3

7
9
.7
7

L
ea
rn
+
+
.N

S
E

76
.4
7±

0.
7(
12

)
6
1.
16

±
6.
6(
7)

71
.6
9±

1.
17

(8
)

73
.5
8±

1.
74

(1
2)

82
.1
1
±
2
.9
2(
7
)

65
.4
3
±
1
.2
6(
12

)
9
.6
6

7
1.
7
4

L
ev
er
ag

eB
a
g

77
.7
5±

0.
61

(1
0
)
57

.6
1±

2.
53

(1
0)
90

.3
8±

1.
03

(2
)

86
.5
2±

1.
35

(2
)

56
.8
4
±
6
.6
1(
1
1)

6
7.
32

±
0
.5
1
(1
1
)
7
.6
6

7
2.
7
3

O
n
li
n
eB

o
os
ti
n
g
78

.6
6±

0.
74

(9
)

5
7.
44

±
2.
82

(1
2)
84

.4
2±

1.
14

(4
)

81
.2
8±

1.
79

(7
)

57
.1
1±

6.
7
9(
9
)

70
.1
9
±
0
.5
5(
9
)

8.
3
3

71
.5
1

O
n
li
n
eR

u
sB

o
os
t7
7
.6
4
±
0
.7
8(
1
1)

5
7.
58

±
2.
74

(1
1)
87

.3
2±

1.
22

(3
)

83
.9
0±

1.
35

(3
)

57
.1
0±

6.
6
(1
0
)

69
.2
4
±
0
.4
8(
1
0)

8
72

.1
3

O
n
li
n
eB

ag
g
in
g

8
4
.9
6
±
0
.4
4
(1

)
64

.2
7±

3.
49

(4
)
9
0
.6
0
±
0
.9
8
(1

)
8
7
.5
6
±
1
.3
2
(1

)
56

.4
1
±
6
.6
1(
1
2)

76
.4
7±

0.
39

(5
)

4
7
6.
71

S
R
P

84
.7
8±

0.
39

(2
)

6
2.
89

±
3.
82

(6
)
70

.6
2±

2.
04

(1
0)

74
.9
6±

1.
96

(1
0)

82
.1
5±

7.
8
7(
6
)

70
.8
3
±
1
.8
6(
7
)

6.
8
3

74
.3
7

20

(a) Accuracy on synthetic
datasets

(b) Accuracy on real-world
datasets

(c) F1-score on real-world
datasets

Figure 3: A box plot of the results of AdIter and four GBDT-based methods on synthetic
datasets and real-world datasets. The AdIter method got higher average accuracy and
F1-score among ve methods.

which adaptation strategy is executed. After pruning and continuous learn-
ing, model accuracy begins to improve again. Take the SEAa and AGRa
datasets – the abrupt drop in accuracy marks the onset of concept drift. A
number of learners are quickly pruned when accuracy decreases. Figure 2
(b) shows that, because the number of learners remaining after the prune fell
below the initial amount of M = 200, the decision was made to train a new
model.

From this experiment, we can nd the drift severity by observing the
number of remaining learners after pruning. Also, as shown in Figure 2,
the blue dashed line represents the initial number of learners in the model,
and the red line represents the number of learners remaining after pruning.
When the number of learners in the model is less than the initial number,
this means that the model has not adapted to the new data, and we believe
that a serious concept drift has occurred at this moment, which is obvious
on the AGRa datasets. Otherwise, it means that the drift is relatively slight.
Then, we simply ran our AdIter method and recorded the true and false rates
of the results, as shown in Table 7.

5.3.2. Experiment 2: How accurate is the AdIter method with synthetic drift?

In this experiment, we compared AdIter’s accuracy with the four GBDT-
based baselines and the six synthetic datasets. We ran each method on
each dataset 30 times with dierent random seeds. Table 6 records the
mean accuracy and standard deviations. The average runtime of all the
methods, without optimizing the code, was 2s (Baseline), 119s (Retrain),
31s (Tuning), 23s (eGBDT), and 264s (AdIter) as measured in WallTime.

21

(a) SEAa (b) RTG

(c) RBF (d) RBFr

(e) AGRa (f) HYP

Figure 4: Average chunk accuracy with the synthetic datasets. On the AGRa and HYP
datasets, AdIter adapted well to both abrupt drift and incremental drift.

22

Table 7: True Positive Rate and False Positive Rate

Datasets True positive rate False positive rate

SEAa 90.42±1.1 27.64±2.1
RTG 64.60±14.5 37.54±15.9
RBF 75.69±5.8 24.65±6.5
RBFr 81.06±5.4 18.53±5.2
AGRa 87.00±3.8 13.13±2.1
HYP 78.09±1.7 21.23±1.8

Electricity 84.12±0.3 27.02±0.4
Weather 90.38±0.08 42.14±0.2
Spam 95.34±0.2 9.9±0.6
Usenet1 74.09±0.6 29.91±0.4
Usenet2 46.25±0.9 8.0±0.4
Airline 53.74±0.2 26.49±0.1

Obviousy, eGBDT saves more running time than tuning. It should be noted
that the AdIter method is an ensemble of dierent tuning iterations of 5
eGBDT models, which consumes running time. However, if it is an ensemble
of more tuning models, it will consume more time. Of these ve methods,
AdIter had the average ranking of 3.66 and accuracy of 78.89%, as shown in
Figure 3(a). Therefore, our AdIter method has advantages in eciency and
performance.

The performance of AdIter is dierent for dierent drift types. In dealing
with abrupt drift which occurs in the AGRa dataset, the eciency of AdIter
(78.42%) can be seen in comparison with the other methods. For incremental
drift, AdIter gets the highest accuracy on HYP (86.93%) dataset. But for
RBFr (82.03%) dataset, our method does not perform well compared to ARF
and OnlineBagging, and needs further improvement. This is also reected
in the chunk accuracy comparison shown in Figure 4. The method performs
relatively not well on synthetic data, mainly because the drift pattern on the
data set is single. Although AdIter did not perform quite as well on the other
datasets, it was still more accurate than most baselines.

5.3.3. Experiment 3: How accurate is AdIter with real-world drift?

In this assessment, we used the six real-world datasets and evaluated
the results in terms of accuracy, average macro F1-score, and MCC score.
The experiments were implemented in the sklearn package, and the results

23

T
ab

le
8:

A
cc
u
ra
cy

of
S
ix

R
ea
l-
W
or
ld

D
at
as
et
s
(%

)

M
et
h
o
d
s

E
le
ct
ri
ci
ty

W
ea
th
er

A
ir
li
n
e

U
se
n
et
1

U
se
n
et
2

S
p
a
m

A
v
g
R
a
n
k
A
v
g
S
co
re

B
a
se

65
.1
6±

0.
07

(1
0
)
7
4.
20

±
0.
17

(8
)

56
.7
6±

0.
42

(1
0)

54
.0
6±

1.
07

(1
2)

24
.7
9±

0.
0(
1
2)

54
.6
8±

0.
1
3(
12

)
10

.6
6

5
4.
94

R
et
ra
in

77
.8
2
±
0
.0
8(
4
)

7
7.
06

±
0.
07

(6
)

71
.3
8±

0.
15

(2
)

75
.2
6±

0.
22

(2
)

88
.1
4±

0.
1(
9
)

60
.8
0±

0.
0
2(
5)

4.
66

75
.0
7

T
u
n
in
g

78
.1
3
±
0
.2
(3
)

7
9.
15

±
0.
1(
2)

61
.9
9±

0.
5(
5)

70
.0
3±

0.
45

(5
)

92
.9
3±

0.
22

(2
)

59
.1
6±

0.
3
(7
)

4
73

.5
6

eG
B
D
T

76
.0
1
±
0
.3
7(
5
)

7
8.
66

±
0.
17

(4
)

68
.9
0±

0.
58

(3
)

72
.8
5±

0.
71

(3
)

92
.2
6±

0.
47

(3
)

63
.3
3±

0.
1
1(
4)

3.
66

75
.3
3

A
d
It
er

79
.3
8
±
0
.1
2(
2
)

7
9
.6
1
±
0
.0
5
(1

)
7
1
.9
7
±
0
.3
8
(1

)
7
6
.7
1
±
0
.2
9
(1

)
9
4
.0
2
±
0
.2
1
(1

)
64

.7
0±

0.
05

(3
)

1
.5

7
7
.7
3

A
R
F

7
9
.9
0
±
0
.1
8
(1

)
78

.7
9±

0.
26

(3
)

66
.0
6±

1.
05

(4
)

70
.7
3±

0.
58

(4
)

91
.7
6
±
0.
25

(4
)

6
6
.8
1
±
0
.0
7
(1

)
2.
83

75
.6
7

L
ea
rn
+
+
.N

S
E

74
.3
4±

0.
34

(7
)

7
0.
23

±
0.
1(
12

)
53

.8
3±

0.
44

(1
1)

64
.9
7±

0.
35

(9
)

86
.8
8
±
0.
75

(1
0)

5
7.
5
8±

0
.0
3
(8
)

9.
5

6
7.
97

L
ev
er
ag

eB
a
g

61
.7
9±

0.
11

(1
2
)
71

.0
6±

0.
06

(1
0)

59
.8
8±

0.
43

(9
)

65
.7
2±

0.
54

(8
)

88
.8
4
±
0.
1(
7
)

5
5.
5
9±

0
.0
(1
1)

9.
5

6
7.
14

O
n
li
n
eB

o
os
ti
n
g
65

.2
5±

0.
22

(9
)

7
1.
56

±
0.
28

(9
)

61
.1
5±

1.
3(
6)

64
.7
1±

1.
78

(1
0)

88
.1
7±

0.
43

(8
)

55
.7
0±

0.
6
(1
0)

8.
66

67
.7
5

O
n
li
n
eR

u
sB

o
os
t6
4
.3
4
±
0
.2
5(
1
1)

7
0.
85

±
0.
24

(1
1)

60
.6
2±

1.
49

(7
)

66
.8
9±

1.
18

(7
)

89
.7
5±

0.
3(
6
)

56
.2
0±

1.
1
2(
9)

8.
5

68
.1
0

O
n
li
n
eB

ag
g
in
g

69
.5
5
±
0
.0
9(
8
)

7
7.
88

±
0.
11

(5
)

53
.7
8±

1.
24

(1
2)

59
.5
5±

1.
0(
11

)
90

.8
8±

0.
11

(5
)

59
.3
2±

0.
0
3(
6)

7.
83

68
.4
9

S
R
P

75
.3
1±

0.
81

(6
)

7
6.
46

±
0.
85

(7
)

60
.5
1±

1.
94

(8
)

68
.2
8±

0.
76

(6
)

84
.5
6±

0.
57

(1
1)

66
.5
6±

0.
0
7(
2)

6.
66

71
.9
4

24

T
ab

le
9:

A
v
er
ag
e
M
ac
ro

F
1-
sc
or
e
of

S
ix

R
ea
l-
W
or
ld

D
at
as
et
s
(%

)

M
et
h
o
d
s

E
le
ct
ri
ci
ty

W
ea
th
er

A
ir
li
n
e

U
se
n
et
1

U
se
n
et
2

S
p
a
m

A
v
g
R
a
n
k
A
v
g
S
co
re

B
a
se

65
.1
6±

0.
07

(9
)

6
8.
27

±
0.
22

(8
)

51
.0
7±

0.
78

(1
1)

53
.7
8±

0.
87

(1
0)

19
.8
6±

0.
0(
1
2)

46
.1
9±

0.
1
8(
12

)
10

.3
3

5
0.
72

R
et
ra
in

77
.1
7
±
0
.0
9(
4
)

7
2.
70

±
0.
08

(6
)

71
.3
2±

0.
16

(2
)

68
.8
3±

0.
22

(2
)

83
.7
1±

0.
14

(8
)

59
.9
9±

0.
0
2(
5)

4.
5

72
.2
8

T
u
n
in
g

77
.5
8
±
0
.2
1(
3
)

7
5.
33

±
0.
12

(2
)

61
.8
8±

0.
51

(5
)

62
.3
2±

0.
45

(5
)

90
.8
1±

0.
28

(2
)

58
.6
8±

0.
3
2(
6)

3.
83

71
.1
0

eG
B
D
T

75
.3
6
±
0
.4
8(
5
)

7
4.
10

±
0.
25

(5
)

68
.8
6±

0.
6(
3)

65
.1
7±

0.
9(
3)

90
.0
2±

0.
59

(3
)

62
.2
9±

0.
1
2(
4)

3.
83

72
.6
3

A
d
It
er

78
.7
4
±
0
.1
3(
2
)

7
5
.4
2
±
0
.0
8
(1

)
7
1
.9
5
±
0
.3
8
(1

)
7
0
.5
1
±
0
.4
2
(1

)
9
2
.0
9
±
0
.2
8
(1

)
63

.6
7±

0.
06

(3
)

1
.5

7
5
.3
9

A
R
F

7
9
.2
2
±
0
.1
9
(1

)
74

.2
0±

0.
36

(3
)

65
.7
7±

1.
11

(4
)

58
.4
9±

1.
14

(8
)

88
.7
5
±
0.
38

(4
)

6
5
.2
6
±
0
.1
4
(1

)
3.
5

71
.9
4

L
ea
rn
+
+
.N

S
E

73
.7
7±

0.
35

(7
)

6
7.
06

±
0.
11

(9
)

48
.8
4±

0.
5(
12

)
51

.3
2±

0.
39

(1
1)

83
.4
2
±
0.
82

(9
)

5
7.
2
4±

0
.0
3
(8
)

9.
33

6
3.
60

L
ev
er
ag

eB
a
g

60
.2
4±

0.
11

(1
2
)
66

.2
5±

0.
06

(1
1)

59
.7
8±

0.
43

(9
)

62
.7
2±

0.
45

(4
)

84
.3
7
±
0.
11

(7
)

5
4.
9
9±

0
.0
(9
)

8.
66

6
4.
72

O
n
li
n
eB

o
os
ti
n
g
63

.8
7±

0.
24

(1
0
)
6
5.
86

±
0.
38

(1
2)

61
.1
0±

1.
31

(6
)

59
.9
6±

1.
37

(7
)

83
.1
4±

0.
68

(1
0)

54
.9
8±

0.
7
3(
10

)
9.
16

64
.8
1

O
n
li
n
eR

u
sB

o
os
t6
3
.3
9
±
0
.2
6(
1
1)

6
6.
67

±
0.
26

(1
0)

60
.3
3±

1.
5(
7)

61
.7
4±

1.
17

(6
)

85
.6
4±

0.
4(
6
)

54
.6
5±

0.
3
7(
11

)
8.
5

65
.4
0

O
n
li
n
eB

ag
g
in
g

68
.4
6
±
0
.1
(8
)

7
4.
11

±
0.
13

(4
)

52
.9
7±

1.
37

(1
0)

55
.2
6±

0.
61

(9
)

87
.4
8±

0.
16

(5
)

58
.2
5±

0.
0
3(
7)

7.
16

66
.0
8

S
R
P

73
.9
9±

0.
87

(6
)

7
0.
24

±
1.
39

(7
)

59
.8
7±

2.
14

(8
)

47
.1
3±

2.
64

(1
2)

76
.0
4±

1.
13

(1
1)

64
.4
8±

0.
0
8(
2)

7.
66

65
.2
9

25

(a) Electricity (b) Weather

(c) Airline (d) Usenet1

(e) Usenet2 (f) Spam

Figure 5: AdIter’s prequential accuracy with the six real-world datasets. AdIter was the
most accurate method on all datasets except for Airline, where ARF showed the best
performance.

26

T
ab

le
10
:
M
C
C

S
co
re

of
S
ix

R
ea
l-
W
or
ld

D
at
as
et
s
(%

)

M
et
h
o
d
s

E
le
ct
ri
ci
ty

W
ea
th
er

A
ir
li
n
e

U
se
n
et
1

U
se
n
et
2

S
p
a
m

A
v
g
R
a
n
k
A
v
g
S
co
re

B
a
se

33
.1
9±

0.
06

(9
)

3
8.
25

±
0.
42

(8
)

12
.6
2±

1.
0(
10

)
15

.8
0±

0.
91

(9
)

0.
0±

0.
0
(1
2)

2.
61

±
0
.2
4
(1
2
)

10
1
7.
0
7

R
et
ra
in

54
.4
0
±
0
.1
9(
4
)

4
6.
14

±
0.
16

(6
)

42
.6
5±

0.
32

(2
)

40
.6
8±

0.
55

(2
)

67
.5
1±

0.
28

(8
)

20
.1
2±

0.
0
4(
5)

4.
5

45
.2
5

T
u
n
in
g

55
.1
7
±
0
.4
2(
3
)

5
1.
29

±
0.
25

(2
)

23
.7
7±

1.
04

(5
)

27
.2
0±

1.
06

(4
)

81
.7
9±

0.
57

(2
)

17
.3
7±

0.
6
5(
6)

3.
66

42
.7
6

eG
B
D
T

50
.8
8
±
0
.9
2(
5
)

4
9.
59

±
0.
45

(4
)

37
.8
6±

1.
27

(3
)

34
.0
5±

1.
87

(3
)

80
.3
2±

1.
17

(3
)

25
.0
2±

0.
2
3(
4)

3.
66

46
.2
8

A
d
It
er

57
.5
8
±
0
.2
6(
2
)

5
2
.0
2
±
0
.1
4
(1

)
4
4
.1
1
±
0
.7
7
(1

)
4
4
.4
1
±
0
.7
8
(1

)
8
4
.2
3
±
0
.5
5
(1

)
27

.8
1±

0.
12

(3
)

1
.5

5
1
.6
9

A
R
F

5
8
.6
1
±
0
.3
8
(1

)
49

.8
8±

0.
66

(3
)

31
.7
2±

2.
15

(4
)

26
.4
4±

1.
9(
5)

77
.5
6
±
0.
75

(4
)

3
1
.9
7
±
0
.2
1
(1

)
3

46
.0
3

L
ea
rn
+
+
.N

S
E

47
.5
6±

0.
71

(7
)

3
4.
26

±
0.
22

(9
)

5.
27

±
1.
07

(1
2)

8.
90

±
0.
95

(1
2)

67
.4
2
±
1
.5
(9
)

1
4.
52

±
0
.0
6
(8
)

9.
5

2
9.
65

L
ev
er
ag

eB
a
g

20
.7
7±

0.
23

(1
2
)
32

.7
7±

0.
13

(1
1)

19
.5
9±

0.
87

(9
)

25
.8
1±

0.
85

(6
)

69
.0
5
±
0.
26

(7
)

9
.9
8
±
0.
01

(9
)

9
29

.6
6

O
n
li
n
eB

o
os
ti
n
g
28

.0
2±

0.
47

(1
0
)
3
2.
60

±
0.
7(
12

)
22

.6
7±

2.
66

(6
)

20
.2
1±

2.
67

(8
)

66
.8
5±

1.
3(
1
0)

9.
9
6±

1.
46

(1
0)

9.
33

30
.0
5

O
n
li
n
eR

u
sB

o
os
t2
6
.8
0
±
0
.5
3(
1
1)

3
3.
39

±
0.
52

(1
0)

20
.7
8±

3.
01

(7
)

23
.7
9±

2.
32

(7
)

71
.6
0±

0.
82

(6
)

9.
4
4±

0.
75

(1
1)

8.
66

30
.9
6

O
n
li
n
eB

ag
g
in
g

37
.1
0
±
0
.2
(8
)

4
8.
59

±
0.
26

(5
)

6.
55

±
2.
62

(1
1)

10
.6
8±

1.
21

(1
1)

75
.0
6±

0.
32

(5
)

16
.8
2±

0.
0
7(
7)

7.
83

32
.4
6

S
R
P

48
.9
1±

1.
71

(6
)

4
3.
48

±
2.
32

(7
)

20
.3
8±

4.
04

(8
)

15
.5
1±

5.
85

(1
0)

54
.9
7±

1.
9(
1
1)

31
.5
1±

0.
1
6(
2)

7.
33

35
.7
9

27

Table 11: Friedman Test of AdIter with Seven Methods

Methods p-value Signicance

ARF 0.63735 p > 0.05
Learn++.NSE 0.00002 p < 0.05
LeverageBag 0.00097 p < 0.05
OnlineBoost 0.00016 p < 0.05
OnlineRUSBoost 0.00097 p < 0.05
OnlineBagging 0.00468 p < 0.05
SRP 0.00468 p < 0.05

compared to seven benchmark methods, as listed in Tables 8, 9, 10.
In comparison to our proposed GBDT-based methods, Figure 3 (b)(c)

shows AdIter’s better average accuracy (77.73%), and average F1-score (75.39%).
Further, among other seven ensemble learning methods, AdIter returned the
highest average rank (1.5), and also yielded the highest MCC score, which
indicates how well each method copes with class imbalances.

To examine AdIter’s performance in greater detail, we then calculated
the prequential accuracy of each method and plotted the results, as shown
in Figure 5. Again, for F1-score and MCC score, the AdIter method also
got the highest average ranking as 1.5, followed by ARF method. AdIter
surpassed the rest with high prequential accuracy and robustness along the
entire timeline.

Our next assessment metric for this experiment, was signicance as cal-
culated through the Friedman test. The results are shown in Table 11.
Although there was no signicant dierence between AdIter and the ARF
method, AdIter’s bottom line results were better. In addition, according to
the research in [54, 55], we draw a critical dierence (CD) diagram to show
the signicance of our proposed method, as shown in Figure 6. After repeat-
ing 30 times experiments on each dataset. Our proposed AdIter may not
perform ideal on synthetic datasets, but it shows a better performance on
the real-world data.

Also, we provide the ROC-AUC analysis to demonstrate the eciency
of AdIter, as shown in Figure 7. The AUC score of our AdIter method is
realtively lower than ARF method in some synthetic datasets. Although the
AUC score of our AdIter method on synthetic datasets is lower than that
of ARF method, it is relatively higher on real-world data, which also show

28

(a) Performance on synthetic data (b) Performance on real-world data

Figure 6: An illustrations of the signicance of AdIter’s performance. We choose 12
datasets and repeated 30 times experiments on each of them. On synthetic datasets, the
performance of AdIter method does not have high signicance. However, it shows a better
performance on real-world datasets.

the performance of our method. Overall, these results shows that AdIter has
certain potential and competitiveness, and is worthy of further research.

5.3.4. Sensitivity Analysis

As mentioned, the number of incremental iterations (learners) added by
AdIter method was set to L1 = 25, L2 = 50, L3 = 75, L4 = 100, L5 =
125, resulting in 5 eGBDT models. This parameter has an obvious impact
on model performance, and therefore warrants a sensitivity analysis. We
established ve groups according to each of the above settings, as shown in
Table 12, and tested the model on all benchmark datasets and calculate the
prediction results. The resulting accuracy and F1-scores, pictured in Figure
8, show that values for both metrics rose as the number of iterations increased
with most datasets. We used the parameter setting that gave the best results
with the above experiments.

Table 12: Parameter Setting for Sensitivity Analysis I

Index Parameter setting (M = 200, E=5)

1 L1 = 5, L2 = 10, L3 = 15, L4 = 20, L5 = 25
2 L1 = 10, L2 = 20, L3 = 30, L4 = 40, L5 = 50
3 L1 = 15, L2 = 30, L3 = 45, L4 = 60, L5 = 75
4 L1 = 20, L2 = 40, L3 = 60, L4 = 80, L5 = 100
5 L1 = 25, L2 = 50, L3 = 75, L4 = 100, L5 = 125

Besides, we have added another two groups of sensitivity analysis. In the
rst group, we x the number of initial trained learners M = 200 and the

29

(a) SEAa (b) RTG (c) RBF

(d) RBFr (e) AGRa (f) HYP

(g) Electricity (h) Weather (i) Usenet1

(j) Usenet2 (k) Airline (l) Spam

Figure 7: An illustration of ROC-AUC to show AdIter’s eciency. Our AdIter method
achieves higher AUC scores on some synthetic and real-world datasets.

30

Table 13: Parameter Setting for Sensitivity Analysis II

Index Group 1 (M = 200, L = 125) Group 2 (L = 125, E = 5)

1 L1 = 5, L2 = 10, · · ·, L25 = 125 M = 50
2 L1 = 10, L2 = 20, · · ·, L12 = 120 M = 100
3 L1 = 15, L2 = 30, · · ·, L8 = 120 M = 150
4 L1 = 20, L2 = 40, · · ·, L6 = 120 M = 200
5 L1 = 25, L2 = 50, · · ·, L5 = 125 M = 250

(a) Accuracy on synthetic
datasets

(b) Accuracy on real-world
datasets

(c) F1-score on real-world
datasets

Figure 8: Sensitivity analysis for AdIter with all benchmark datasets, accuracy and F1-
score are collected. Model performance improves as the number of iterations increase.

maximum adaptive iterations as L = 125. We adjust the number of eGBDTs
by setting dierent gaps of adaptive iteration. In the second group, we x
the maximum adaptive iteration as L = 125 and the number of eGBDTs
as E = 5. We adjust the number of initial trained learners. We adjust the
number of initial trained learners. These two groups of parameter setting are
shown in Table 13. We test the AdIter on the SEAa dataset and record the
accuracy and runtime, as shown in Figure 9. From these gures, the runtime
is sensitive by adjust the number of eGBDTs in the AdIter, but the accuracy
has not change much. It reects the robustness of our method. Therefore,
in order to improve operation eciency, we chose parameters that needs a
relatively short runtime to set.

5.3.5. Dimensionality and Structural Complexity Analysis

The Spam datasets, one of the real-world datasets, have 500 features. To
further analyse the performance of AdIter, we also add new features to the
SEAa dataset to simulate this experiment, and we have added an experiment
to show the impact of dimensionality and structural complexity. First, we
add new features to the SEAa dataset to simulate this experiment. We

31

(a) Group 1 (b) Group 2

Figure 9: Accuracy and runtime with parameter settings in Group 1 and Group 2.

sequentially add 20 features to the SEAa dataset to construct a new data set
and conduct experiments in turn and record the running time. We use this
to judge the impact of dimensionality on model performance. Second, we
sequentially increase the number of eGBDT models in AdIter and conduct
experiments to record the running time respectively. The results are shown
in Figure 10.

(a) Runtime aected by dimen-
sionality

(b) Runtime aected by struc-
tural complexity

Figure 10: Analysis of AdIter aected by dimensionality and structural complexity. AdIter
is more sensitive to the inuence of structural complexity, but performs more eciently
for higher dimensional data.

5.3.6. Discussion of Limitations

One of the main limitations of AdIter is its runtime. The eGBDT method
is substantially faster, can adapt to drift, and it reduces memory consump-
tion by pruning the learners after the last learner. By comparison, the AdIter
method takes a relatively long run time. However, it delivers better perfor-
mance.

32

In terms of concept drift adaptation, AdIter was ranked highest on aver-
age, which shows its potential and competitiveness. Further, AdIter is not
designed specically for GBDT models; it can be applied to any ensemble
learning model. However, it did not deliver the best performance on every
single datasets, especially agging with the SEAa, RBF, and Airline datasets.
With these, there was no signicant dierence to ARF. From this, we learned
that it is not enough to simply adapt the model by setting the number of it-
erations. With drift severity of an uncertain nature, an outstanding strategy
is still needed and time consumption is also a concern. In addition, extreme
verication latency will also impact the performance of AdIter. Tackling
these issues will be a priority as our follow-up research goals.

6. Conclusions and Further Study

In this paper, we propose the AdIter method for swift adaptation to
concept drift. As the basis of AdIter, eGBDT helps GBDT model select
the optimal adaptation strategy from either retraining or tuning. From a
theoretical perspective, the greater the drift severity, the lower the model
performance. Hence, to better recover from the accuracy losses associated
with concept drift, AdIter helps models determine the number of additional
iterations needed to return to pre-drift loss levels. Several eGBDT models
are trained with some varying tuning iterations, and a nal decision is made
via a majority voting process. Overall, AdIter results in a more robust and
accurate model, as demonstrated in a series of experiments with both real-
world and synthetic datasets.

Although we set this paper in the context of a GBDT model, AdIter is
compatible with many other ensemble learning models. For our future work,
we will continue to improve the AdIter method to deal with data streams by
optimizing some of the parameter settings and dealing with extreme veri-
cation latency to enhance its adaptability, eciency, and robustness.

Declaration of Interest

The authors declare that they have no known competing nancial inter-
ests or personal relationships that could have appeared to inuence the work
reported in this paper.

33

Acknowledgment

This work was supported by the Australian Research Council through
the Discovery Project under Grant No. DP190101733.

Appendix A.

Consider three continuous data chunks D1, D2, D3, the rst data chunk
D1 follows the probability distribution P , which represents the old concept.
However, in the second data chunk D2, not only has α portion of data follow
the probability distribution P ; 1 − α portion of data that follow the proba-
bility distribution Q. Thus, the probability distribution of data chunk D2 is
expressed as

P ′ = αP + (1− α)Q. (A.1)

This formulation indicates that concept drift has occurred.
The third data chunk D3 reects a totally new concept that fully follows

the probability distribution Q. Further, assume F (x) is the model prediction
result, yP is the true label of data chunk D1, yP ′ is the true label of data
chunk D2. We use ϕP (x),ϕP ′(x),ϕQ(x) as the probability density function
as distribution P , P ′, Q the data chunks follow, and the Eq. (A.1) can be
written as

∫
ϕP ′(x)dx =

∫
αϕP (x)dx+

∫
(1− α)ϕQ(x)dx. (A.2)

Thus, the generalization error for D1 is

RP (F (x)) = Ex∼P [lP] =

∫
l (x)ϕP (x)dx, (A.3)

where RP (F (x)) = RP (yP , F (x)), and lP = l (yP , F (x)). The generalization
error for D2 is

RP ′ (F (x)) = Ex∼P ′ [lP ′] =

∫
l (x)ϕP ′(x)dx, (A.4)

where RP ′ (F (x)) = RP ′(yP ′ , F (x)), and lP ′ = l (yP ′ , F (x)). And The empir-
ical error on D2 is

RP ′ (F (x)) =
1

n

n∑

i=1

l (h(xi)− yi) . (A.5)

34

Inspired by [44], rewriting the generalization error on D2, we have

RP ′ (F (x)) =RP ′ (F (x)) +RP (F (x))−RP (F (x)) +RP (yP ′ , F (x))

−RP (yP ′ , F (x))

=RP (F (x)) + (RP ′ (F (x))−RP (yP ′ , F (x)))

+ (−RP (F (x)) +RP (yP ′ , F (x)))

=RP (yP , F (x)) +

∫
l (yP ′ , F (x)) (ϕP ′(x)− ϕP (x)) dx

+

∫
[l (yP ′ , F (x))− l (yP , F (x))]ϕP (x)dx

=RP (yP , F (x)) +

∫
l (yP ′ , F (x)) (αϕP (x) + (1− α)ϕQ(x)− ϕP (x)) dx

+

∫
[l (yP ′ , F (x))− l (yP , F (x))]ϕP (x)dx

=RP (yP , F (x)) + (1− α) d (Q,P)

+

∫
[l (yP ′ , F (x))− l (yP , F (x))]ϕP (x)dx.

(A.6)

According to the bound theory of boosting [56], for any δ > 0, with prob-
ability at least 1 − δ, the bound of the GBDT model F (x) with M weak
learners under concept drift can be written as

RP ′ (yP ′ , F (x)) ≤ RP (yP , F (x)) +

√
log 1

δ

2n
+ (1− α) d (Q,P) + ∆, (A.7)

where n is the number of samples, ∆ =

[l(yP ′ , F (x))− l(yP , F (x))]ϕP (x)dx.

In this formula, (1− α) d (Q,P) represents the dierence between the
data distributions at two consecutive timestamps. The more obvious the
dierence, the greater the possibility of data drift. Moreover, these dierences
will aect ∆, which directly reects the extent to which the loss changes
before and after drift. The greater the change, the greater the severity of
the drift. Once determined, the learning strategy of the model needs to be
adjusted accordingly to suit that level of drift severity.

References

[1] A. Liu, J. Lu, G. Zhang, Diverse instance-weighting ensemble based on
region drift disagreement for concept drift adaptation, IEEE Transac-
tions on Neural Networks and Learning Systems 32 (1) (2020) 293–307.

35

[2] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under
concept drift: A review, IEEE Transactions on Knowledge and Data
Engineering 31 (12) (2018) 2346–2363.

[3] J. Vinagre, A. M. Jorge, J. Gama, Online gradient boosting for incre-
mental recommender systems, in: International Conference on Discovery
Science, Springer, Limassol, Cyprus, 2018, pp. 209–223.

[4] A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius,
J. Gama, Bright-drift-aware demand predictions for taxi networks, IEEE
Transactions on Knowledge and Data Engineering 32 (2) (2018) 234–245.

[5] Y. Song, J. Lu, A. Liu, H. Lu, G. Zhang, A segment-based drift adapta-
tion method for data streams, IEEE Transactions on Neural Networks
and Learning Systems (2021). doi:10.1109/tnnls.2021.3062062.

[6] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, M. Woźniak, En-
semble learning for data stream analysis: A survey, Information Fusion
37 (2017) 132–156.

[7] J. H. Friedman, Stochastic gradient boosting, Computational Statistics
& Data Analysis 38 (4) (2002) 367–378.

[8] J. Lu, A. Liu, Y. Song, G. Zhang, Data-driven decision support under
concept drift in streamed big data, Complex & Intelligent Systems 6 (1)
(2020) 157–163.

[9] K. Wang, A. Liu, J. Lu, G. Zhang, L. Xiong, An elastic gradient boosting
decision tree for concept drift learning, in: Australasian Joint Conference
on Articial Intelligence, Springer, 2020, pp. 420–432.

[10] J. H. Friedman, Greedy function approximation: A gradient boosting
machine, Annals of Statistics (2001) 1189–1232.

[11] H. Hu, W. Sun, A. Venkatraman, M. Hebert, A. Bagnell, Gradient
boosting on stochastic data streams, in: A. Singh, J. Zhu (Eds.), Pro-
ceedings of the 20th International Conference on Articial Intelligence
and Statistics, Vol. 54 of Proceedings of Machine Learning Research,
PMLR, Fort Lauderdale, FL, USA, 2017, pp. 595–603.

36

[12] N. C. Oza, Online bagging and boosting, in: 2005 IEEE International
Conference on Systems, Man and Cybernetics, Vol. 3, IEEE, Waikoloa,
Hawaii, USA, 2005, pp. 2340–2345.

[13] B. Wang, J. Pineau, Online bagging and boosting for imbalanced data
streams, IEEE Transactions on Knowledge and Data Engineering 28 (12)
(2016) 3353–3366.

[14] R. K. Vinayak, R. Gilad-Bachrach, Dart: Dropouts meet multiple ad-
ditive regression trees, in: Articial Intelligence and Statistics, PMLR,
2015, pp. 489–497.

[15] H. Yu, J. Lu, G. Zhang, An online robust support vector regression for
data streams, IEEE Transactions on Knowledge and Data Engineering
34 (1) (2020) 150–163.

[16] H. Yu, J. Lu, G. Zhang, Continuous support vector regression for non-
stationary streaming data, IEEE Transactions on Cybernetics (2020)
1–14doi:10.1109/TCYB.2020.3015266.

[17] S. Pan, K. Wu, Y. Zhang, X. Li, Classier ensemble for uncertain data
stream classication, in: Pacic-Asia Conference on Knowledge Discov-
ery and Data Mining, Springer, Hyderabad, India, 2010, pp. 488–495.

[18] S. Pan, J. Wu, X. Zhu, C. Zhang, Graph ensemble boosting for imbal-
anced noisy graph stream classication, IEEE Transactions on Cyber-
netics 45 (5) (2014) 954–968.

[19] F. Dong, J. Lu, Y. Song, F. Liu, G. Zhang, A drift region-based data
sample ltering method, IEEE Transactions on Cybernetics (2021).
doi:10.1109/TCYB.2021.3051406.

[20] J. Shao, Y. Tan, L. Gao, Q. Yang, C. Plant, I. Assent, Synchronization-
based clustering on evolving data stream, Information Sciences 501
(2019) 573–587.

[21] Y. Song, J. Lu, H. Lu, G. Zhang, Fuzzy clustering-based adaptive re-
gression for drifting data streams, IEEE Transactions on Fuzzy Systems
28 (3) (2019) 544–557.

37

[22] M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, W. Ding, Automatic
construction of multi-layer perceptron network from streaming exam-
ples, in: Proceedings of the 28th ACM International Conference on In-
formation and Knowledge Management, ACM, Beijing, China, 2019, pp.
1171–1180.

[23] M. Pratama, A. Ashfahani, A. Hady, Weakly supervised deep learning
approach in streaming environments, in: 2019 IEEE International Con-
ference on Big Data, IEEE, Los Angeles, CA, USA, 2019, pp. 1195–1202.

[24] S. Wang, L. L. Minku, N. Chawla, X. Yao, Learning in the presence of
class imbalance and concept drift, Neurocomputing 343 (2019) 1–2.

[25] S. Ren, B. Liao, W. Zhu, Z. Li, W. Liu, K. Li, The gradual resam-
pling ensemble for mining imbalanced data streams with concept drift,
Neurocomputing 286 (2018) 150–166.

[26] N. Lu, J. Lu, G. Zhang, R. L. De Mantaras, A concept drift-tolerant
case-base editing technique, Articial Intelligence 230 (2016) 108–133.

[27] V. Losing, B. Hammer, H. Wersing, KNN classier with self adjusting
memory for heterogeneous concept drift, in: 2016 IEEE 16th Interna-
tional Conference on Data Mining, IEEE, Barcelona, Spain, 2016, pp.
291–300.

[28] I. Zliobaitė, A. Bifet, B. Pfahringer, G. Holmes, Active learning with
drifting streaming data, IEEE Transactions on Neural Networks and
Learning Systems 25 (1) (2013) 27–39.

[29] J. Shan, H. Zhang, W. Liu, Q. Liu, Online active learning ensemble
framework for drifted data streams, IEEE Transactions on Neural Net-
works and Learning Systems 30 (2) (2018) 486–498.

[30] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detec-
tion, in: Brazilian Symposium on Articial Intelligence, Springer, Sao
Luis, Brazil, 2004, pp. 286–295.

[31] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive
windowing, in: Proceedings of the 2007 SIAM International Conference
on Data Mining, SIAM, Minnesota, USA, 2007, pp. 443–448.

38

[32] N. Mozafari, S. Hashemi, A. Hamzeh, A precise statistical approach
for concept change detection in unlabeled data streams, Computers &
Mathematics with Applications 62 (4) (2011) 1655–1669.

[33] R. Razavi-Far, E. Hallaji, M. Saif, G. Ditzler, A novelty detector and ex-
treme verication latency model for nonstationary environments, IEEE
Transactions on Industrial Electronics 66 (1) (2019) 561–570.

[34] E. Hallaji, R. Razavi-Far, M. Saif, Detection of dalicious SCADA com-
munications via multi-subspace feature selection, in: 2020 International
Joint Conference on Neural Networks, IEEE, 2020, pp. 1–8.

[35] G. Ditzler, M. Roveri, C. Alippi, R. Polikar, Learning in nonstationary
environments: A survey, IEEE Computational Intelligence Magazine
10 (4) (2015) 12–25.

[36] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceed-
ings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2000, pp. 71–80.

[37] G. Hulten, L. Spencer, P. M. Domingos, Mining time-changing data
streams, in: Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2001, pp.
97–106.

[38] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: An ensemble
method for drifting concepts, Journal of Machine Learning Research 8
(2007) 2755–2790.

[39] D. Brzezinski, J. Stefanowski, Accuracy updated ensemble for data
streams eith concept drift, in: International Conference on Hybrid Arti-
cial Intelligence Systems, Springer, Wroclaw, Poland, 2011, pp. 155–163.

[40] D. Brzezinski, J. Stefanowski, Reacting to dierent types of concept
drift: The accuracy updated ensemble algorithm, IEEE Transactions on
Neural Networks and Learning Systems 25 (1) (2013) 81–94.

[41] J. Gama, I. Zliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey
on concept drift adaptation, ACM Computing Surveys (CSUR) 46 (4)
(2014) 1–37.

39

[42] R. Elwell, R. Polikar, Incremental learning of concept drift in nonsta-
tionary environments, IEEE Transactions on Neural Networks 22 (10)
(2011) 1517–1531.

[43] M. Pratama, W. Pedrycz, E. Lughofer, Evolving ensemble fuzzy classi-
er, IEEE Transactions on Fuzzy Systems 26 (5) (2018) 2552–2567.

[44] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. W.
Vaughan, A theory of learning from dierent domains, Machine Learning
79 (1-2) (2010) 151–175.

[45] Y. Song, J. Lu, H. Lu, G. Zhang, Fuzzy clustering-based adaptive re-
gression for drifting data streams, IEEE Transactions on Fuzzy Systems
28 (3) (2020) 544–557.

[46] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, T. Abdessalem, Adaptive random forests for
evolving data stream classication, Machine Learning 106 (9-10) (2017)
1469–1495.

[47] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving
data streams, in: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, 2010,
pp. 135–150.

[48] H. M. Gomes, J. Read, A. Bifet, Streaming random patches for evolving
data stream classication, in: IEEE International Conference on Data
Mining, IEEE, 2019, pp. 240–249.

[49] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-multiow: A multi-
output streaming framework, Journal of Machine Learning Research
19 (72) (2018) 1–5.

[50] W. N. Street, Y. Kim, A streaming ensemble algorithm (SEA) for large-
scale classication, in: Proceedings of the 7th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ACM,
New York, USA, 2001, pp. 377–382.

[51] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceed-
ings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, New York, USA, 2000, pp. 71–80.

40

[52] R. Agrawal, T. Imielinski, A. Swami, Database mining: A performance
perspective, IEEE Transactions on Knowledge and Data Engineering
5 (6) (1993) 914–925.

[53] I. Katakis, G. Tsoumakas, I. Vlahavas, Tracking recurring contexts using
ensemble classiers: An application to email ltering, Knowledge and
Information Systems 22 (3) (2010) 371–391.

[54] E. Hallaji, R. Razavi-Far, M. Saif, Dlin: Deep ladder im-
putation network, IEEE Transactions on Cybernetics (2021) 1–
13doi:10.1109/TCYB.2021.3054878.

[55] E. Hallaji, R. Razavi-Far, V. Palade, M. Saif, Adversarial learning on
incomplete and imbalanced medical data for robust survival prediction
of liver transplant patients, IEEE Access 9 (2021) 73641–73650.

[56] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of machine
learning, MIT press, 2018.

41

