
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.”



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3153349, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, OCTOBER 2020 1

Concept Drift Detection Delay Index
Anjin Liu, Jie Lu, Fellow, IEEE , Yiliao Song, Member, IEEE , Junyu Xuan, and Guangquan Zhang

Abstract—Data streams may encounter data distribution changes, which can significantly impair the accuracy of models. Concept drift
detection tracks data distribution changes and signals when to update models. Many drift detection methods apply thresholds to
distinguish between drift or non-drift streams and to claim their method outperforms others with non-aligned drift thresholds. We
consider that selecting a proper drift threshold could be more important than developing a new drift detection algorithm, and different
drift detection algorithms may end up with very similar performance with aligned drift thresholds. To better understand this process, we
propose a novel threshold selection algorithm to align the drift thresholds of a set of algorithms so that they are all at the same
sensitivity level. Based on comprehensive experiment evaluations, we observed that several state-of-the-art drift detection algorithms
could achieve similar results by aligning their thresholds, providing a novel insight to explain how drift detection algorithms contribute to
data stream learning. We noticed that a higher detection sensitivity improves accuracy for data streams with frequent distribution
change. The evaluation results are showing that drift thresholds should not be fixed during stream learning. Rather, they should adjust
dynamically based on the prevailing conditions of the data stream.

Index Terms—data stream, data mining, concept drift, machine learning
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1 INTRODUCTION

1.1 Motivation

Conventional machine learning models assume the training
data represents the learning tasks to be completed ade-
quately and that the training data follow the same distri-
bution as the production data [1]–[3]. However, in real-
world scenarios this assumption may not hold, especially
for applications involving data stream analysis [1], [3], [4].
For example, in industrial applications the data collected
from manufacturing processes tend to be inherently nonsta-
tionary. Sensors develop faults, they age, and the precision
of their measurements can change in operating conditions
[5]. With enough drift from one concept to another, the
model becomes so inaccurate as to be effectively useless.
What drift detection mechanisms do is to identify such a
drift and to tell learning models how significant the drift is.

In the literature, performance-based drift handling algo-
rithms form the largest category of concept drift detection
[1], [4]. These algorithms focus on tracking changes in
learning model performance through error rates or other
quantitative indicators [6], [7]. If the increase in errors is
significant enough, it triggers a model update. The most
popular model of this type was designed by Gama [8]. It
consists of both a warning threshold and a drift threshold.
An independent performance monitoring system contin-
uously tracks the prediction results of the model. If the
warning threshold is reached, the system starts setting aside
newly arriving observations to form a new training set.
Should the drift threshold subsequently be reached, the
system tells the model to update itself with the new training
set.

However, the best way to define warning and drift
thresholds, so as to maximize performance, has never been
fully explored. Currently, the best practice is to define and
set them using expert knowledge [1], [9]. As a result, today’s
drift detection algorithms all have different drift thresholds
with different value ranges.

The idea that an algorithm’s drift detection threshold
contributes just as much to performance as the detection
mechanism itself raises a string of questions. How do we
know whether an algorithm is actually effective, or whether
the threshold simply needs adjusting? Is the current think-
ing that drift thresholds should be fixed during data stream
learning correct? Might it be better if they could change
dynamically to suit the prevailing condition of the data
stream? With the goal of answering all these questions, we
developed a basic idea that if we could somehow quantify
the influence of the drift threshold on a drift detection al-
gorithm, we could align multiple drift detection algorithms.
One intuitive drift detection robustness indicator is the false
alarm rate. If we could set the drift thresholds for two
drift detection algorithms H1 and H2 so that they have
the same false alarm rate when there is no drift, then we
could compare them in the presence of drift on a more equal
footing.

TABLE 1
The different recommended drift thresholds of various drift detection

algorithms implemented in skmultiflow

[10].
Detection algorithm Default threshold Threshold range

ADWIN delta = 0.002 [0,+∞)
DDM [8] out countrol level = 3 [0,+∞)
EDDM [11] fddm outcontrol = 0.9 [0, 1]
HDDM-A [12] drift confidence = 0.001 [0, 1]
HDDM-W [12] drift confidence = 0.001 [0, 1]
Page-Hinkley [13] Threshold = 50 [0,+∞)
KSWIN [14] alpha = 0.005 [0, 1]

Another critical issue is how to find the best drift thresh-
old for a drift detection algorithm during learning under
dynamic data stream. As discussed in a recent survey [1],
a properly set drift threshold is critical to stream learning
results, and the default drift threshold of a drift detection
algorithm may not provide the best possible results with ev-
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ery stream. Most often, a manual tuning process is required
to find the optimal setting. The different threshold range
problem raises an additional challenge related to this issue.
For example, the threshold range of ADWIN [15], DDM [8]
is [0,+∞) but for EDDM [11], HDDM-A, HDDM-W [12] it
is [0, 1], as summarized in Table 1. If these thresholds cannot
be aligned to remove their impact as a factor, it is difficult to
know which algorithm is the best choice for the task at hand.
Without repeated testing and turning, we cannot know
whether bad performance is the result of an incorrectly set
threshold or a poorly suited detection mechanism.

1.2 Challenges

In summary, without a way to align the thresholds of drift
detection algorithms, we are facing two challenges issues:
1) The comparison result may bias for drift detection al-
gorithms with non-aligned drift thresholds. 2) It hinders
researchers from developing adaptive drift threshold se-
lection algorithms. When considering that a drift detection
algorithm has two major components – the detection mecha-
nism and threshold selection – our ability to design a better
drift detection solution rest on our understanding of how
detection mechanisms perform with different thresholds.
The lack of a systematic way to manipulate drift thresholds
across a set of detection algorithms is hindering research
progress.

1.3 Contributions

Hence, in this paper we propose a novel schema for compar-
ing concept drift detection algorithms that consider learning
accuracy with aligned drift detection threshold. The main
components of the schema include:

• The concept drift Detection Delay Index (DD Index) –
a novel robustness scale for quantitatively comparing
and evaluating algorithms that detect concept drift
based on error rates. The DD Index helps explain
whether the difference between two drift detection
algorithms is caused by their drift thresholds or their
detection mechanisms.

• The robustness alignment algorithm – an automatic
drift threshold aligning algorithm. The proposed al-
gorithm effectively removes threshold tuning from
the process of evaluating a set of drift detection
algorithms, allowing researchers to focus solely on
how each algorithm’s robustness/sensitivity impacts
the learning process.

From a series of experiments with and without the
DD Index and threshold alignment, we find that model
validation errors and stream drift frequency are two critical
factors affecting drift threshold selection and that proper
threshold selection is critical to overall learning. In general,
high detection robustness performs well on data steams
where drifts are infrequent and vice versa. We also find
strong correlations between learning accuracy, robustness
levels, drift severity, and drift frequency, which inspires
us to believe that adaptive drift thresholds could improve
learning quality under concept drift. Hence, we contend that
drift thresholds should not be fixed, but rather should be

adjusted dynamically based on the prevailing conditions in
the current data stream.

The rest of this paper is organised as follows. In Section
2, the problem of concept drift detection and related works
are discussed. Sections 3 and 4 introduce the DD Index and
the recursive drift threshold selection algorithm. Section 5
demonstrates how the DD Index works and evaluates the
drift threshold searching algorithm. Section 6 concludes this
study with a discussion of future work.

2 LITERATURE REVIEW

This section introduces the definition of concept drift, fol-
lowed by a review of learner-based drift detection algo-
rithms. At last, we discuss two common metrics to evaluate
the performance of a drift detection algorihtm.

2.1 Concept Drift Definition
Concept drift occurs when the distribution of a model’s
training set no longer matches the distribution of the data
currently being analysed. Most common with streaming
data or nonstationary learning environments [16]–[19]. For-
mally, concept drift is defined as follows. Consider a feature
space, denoted as X ⊆ Rn, where n is the dimensionality
of the feature space. A data instance dt = (X, y) is a pair of
feature vectorsX and a label y, where y ∈ {y1, . . . , yc} and c
is the number of classes. A data stream can be represented as
an infinite sequence of data instances. A concept drift occurs
at time t if the joint probability of X and y changes, i.e.,
pt(X, y) 6= pt+1(X, y) [4], [20], [21]. Further decomposing
p(X, y), we have p(X, y) = p(y|X) × p(X). If we only
consider problems that use X to infer y, denoted as X → y,
concept drift can be divided into two research streams:
covariate shift and concept shift [17].

• Covariate shift focuses on the drift in p(X), while
p(y|X) remains unchanged. This is more commonly
known as virtual drift [3], [4], [22].

• Concept shift focuses on the drift in p(y|X), while
p(X) remains unchanged. This is standard concept
drift, also called actual drift or decision boundary
drift [3], [4], [22].

To the best of our knowledge, no study has proven
any relationship of necessity or sufficiency between virtual
drift and actual drift without prior knowledge. However,
in practice, changes in p(X) are often strongly correlated
to p(y|X). Moreover, detecting and adapting to virtual
drift (i.e., changes in p(X)) without presumptions does
not necessarily improve learning performance. Therefore, to
avoid unnecessary drift detection for questionable benefit,
we have solely focused on actual drift.

2.2 Learner-based Algorithms
Drift detection algorithms based on error rates are dedicated
to capturing actual drift. The intuition behind this type of
algorithms is to monitor fluctuations in the error rate [23],
[24]. Gama et al. [4] categorised them as change detection
techniques, further dividing them into four subcategories:
sequential analysis, control charts, monitoring two distri-
butions, and contextual. In a more recent survey, Yu and
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TABLE 2
We merged DDM and DELM into one row because they are using the
same drift detection algorithm. The difference between is in the drift

adaption strategy. HDDM detects drift in an online mode, while STEPD
is batch mode.

Algorithm abrupt gradual regional noise statistic

DDM, DELM X X
EDDM X X X
FWDDM X X X
LLDD X X X
HDDM X X X X
STEPD X X X X

Abraham [25] added further performance indicators beyond
the error rate to the list of considerations, including the rates
of true positives and negatives, and the positive and neg-
ative predicted values. Most drift thresholds have unique
definitions making them difficult to compare directly.

One of the top referenced concept drift detection algo-
rithms is the DDM [8], which was the first algorithm to
contain defined warning and drift levels for signalling con-
cept drift. The alarms are straightforward, based on simple
increases in the error rate within a given time window.
If the error rate reaches the warning level, DDM starts
building a new learner, but continues using the old learner
for predictions until the error rate reaches the drift level.
Once the error rate exceeds the drift level, the old learner is
replaced with the new learner, as illustrated in Fig. 1.

Many subsequent algorithms have adopted a similar im-
plementation, e.g., LLDD [26], EDDM [11], HDDM [12], FW-
DDM [27], DELM [28]. However, each defines the warning
and drift level thresholds differently. For instance, ECDD’s
definitions are based on a modified EWMA chart that uses
a dynamic mean instead of the conventional static mean.
The method outlined in [29], called the Statistical Test of
Equal Proportions Detection (STEPD) detects changes in
the error rate through a statistical significance test of the
difference in the error rate in the most recent time window
with the overall error rate. The test statistic that quantifies
the change in error rate between the two windows has
been proven to conform to a standard normal distribution.
STEPD suggests a warning level of αwarn = 0.05 and a drift
level of αdrift = 0.003. We summarize the characteristics
of the most popular error-rate based drift detection algo-
rithms from five dimensions. 1) sensitivity to abrupt drift; 2)
Sensitivity to gradual drift; 3) Sensitivity to regional drift; 4)
Robust to noise; 5) Drift threshold can be defined by statistic
significant level, as shown in Table 2

Although most drift thresholds are based on some ver-
sion of a statistical hypothesis test, their recommended
significance levels are different. Additionally, there are few
drift thresholds are defined by expert knowledge. We con-
tend that a more generalized drift threshold selection pro-
cess would help users better understand the correlations
between the drift detection mechanism, the drift thresholds
and stream learning performance.

2.3 Statistical Hypothesis Testing

A statistical hypothesis test means to test a claim by mod-
elling a set of observed values as a collection of random

A ...
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the data stream
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a data stream has observations 
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reached
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B

Fig. 1. An illustration of the warn/drift-level concept drift handling frame-
work. When a true label or feedback is available, the monitoring system
evaluates the severity of the change. If learner performance drops
moderately, the system will start buffering new observations. Should
performance subsequently return to normal, the system will reset the
buffer. However, if performance continues to deteriorate such that it
reaches the drift threshold, a new learner Lnew will be built from the
buffered data.

variables with a joint probability distribution in some set of
possible joint distributions and then infer whether, accord-
ing to a threshold of probability, i.e., a significance level, the
values observed are likely or unlikely to have followed the
given probability distribution [30]–[33].

This form of testing has been widely used to determine
whether a model has become outdated due to concept
drift. The general premise is to assume a null hypothesis
that the model is working as expected and then accept or
reject the null case by comparing the model’s most recent
predictions with a set of its historical predictions. Typically,
the significance level, i.e., grounds for rejecting the null
case, is defined as a maximal allowed ”false positive rate”.
And, because controlling the risk of incorrectly rejecting
a true null hypothesis is usually the priority, Type-I and
Type-II errors are the two most commonly used metrics for
evaluating the efficacy of a hypothesis testing method [30],
[31], [34].

• A Type I error indicates that a null hypothesis was
rejected when it was, in fact, true. In other words,
this metric shows the number of false alarms raised
when there was no concept drift, but the algorithm
said there was.

• A Type II error indicates that the null hypothesis was
not rejected when it should have been. Often simply
called missing rate, this error tells us when concept
drift had occurred, but the algorithm failed to detect.

Much of statistical theory revolves around minimising of
one or both of these errors, although completely eliminating
either is a statistical impossibility for non-deterministic al-
gorithms. The quality of a hypothesis test can be increased
by selecting a low threshold (cut-off) value and modifying
the p-value.

3 CONCEPT DRIFT DETECTION DELAY INDEX

This section introduces the concept drift DD Index, which
quantifies the impact of the detection threshold on error
rate-based drift detection algorithms. In Section 3.1, we
explain that error rate-based drift detection is closely related
to the problem of binomial distribution estimation and that,
by changing the parameters of the distribution, binomial
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TABLE 3
Notation summary

Notation Description

W,w time window
δ concept drift margin
θ a drift threshold
H a drift detection algorithm or a hypothesis test
ε the mean of observed error rates
ε the expectation of error rate
ω a user defined drift detection robustness level

a function to measure the drift detection robustness
Ω(H, θ) level for a drift detection algorithm H

with a given threshold θ

distributions can be used to simulate changes in error rates.
Section 3.2 outlines how to empirically estimate DD Index
as a uniform criterion for drift threshold selection with
different error rate-based detection methods. The notations
are summarized in Table 3

3.1 Error Rate-based Concept Drift Detection and Bino-
mial Distribution

In this section, we first state the relationship between the
error rate and Binomial distribution. Then we introduce
the intuition behind DD Index and our drift threshold
alignment algorithm.

The problem setting is as follows. Assume we have two
chunks of data contained in two disjoint time windows W1

and W2, where

Wi = (Xt, yt+0.5)t∈wi
,

and wi is the time interval of Wi. The class label yt+0.5

indicates that the true label will be received after receiving
the feature Xt but before receiving feature Xt+1 with the
next observation. If a learning model L can correctly predict
any observation (Xt, yt+0.5), the error is counted as 0, and
1 otherwise, or simply denoted as

εt = |yt+0.5 − L(Xt)|.

Therefore, the problem of error rate-based drift detection
can be stated as follows:
Problem 1. (Error Rate-based Drift Detection) Detecting
concept drift via error rate is a task of measuring the
difference in prediction accuracy for model L between two
time windows W1 and W2. It can also be thought of as
a two-sample hypothesis test to accept or reject whether
{εt}t∈w1

and {εt}t∈w2
are drawn from the same population.

Formally, this hypothesis is expressed as

EPw1 (X,y)
(|y − L (x)|) 6= EPw2 (X,y)

(|y − L (x)|) ,

or shorten as εwi
6= εwi+1

. If the prediction errors {εt}t∈w
are i.i.d., the errors of L can be described as a sequence of
binomial trails, that is,

ε ∼ Binomial (1, ε) ,

where ε is the expectation of the error rate. In practice, ε can
be estimated by the sequence of errors in a time window w,
i.e., ε̂w = 1

|w|
∑|w|
t=1 εt.

From the drift detection perspective, a concept drift
detection algorithm should be able to identify drifts in the
error sequence. If we could generate a sequence of inde-
pendent and identically distributed binomial trails, a valid
concept drift detection algorithm must be able to identify
the drift points in the sequence unbiased. Examples of how
to simulate error rate drift through a binomial distribution
follows.
Example 1. (Error Rate Drift Simulation) Generate two se-
quence of binomial trails: one of length nvalid with a success
rate (1−ε) denoted as {εt}nvalid

t=1 and one of length ntest with
a success rate of (1−ε′) denoted as {ε′t}

ntest
t=1 . Concatenating

{εt}nvalid
t=1 and {ε′t}

ntest
t=1 gives an error sequence with a drift

margin equal to
δ = |ε− ε′|

and a drift point located at nvalid out of (nvalid + ntest).
This simulated error sequence can be used to evaluate

the robustness of a drift detection algorithm H and to
search for the best drift threshold. More details are shown
in Examples 2 and 3.
Example 2. (Drift Detection Robustness Measurement) Con-
sider a drift detection algorithm H1 and a default drift
threshold of θ1,0. Setting ε = ε′ such that no drift exists.
Using H1 with θ1,0 to detect the drift point t′. A drift point
will be found some where nvalid ≤ t′ ≤ nvalid + ntest.

Scaling the detected drift point by t′−nvalid

ntest
, we could

have a drift delay indicator, denoted as

Θε,ε′ (H1, θ1,0, nvalid, ntest) ∈ [0, 1] .

The closer the Θε,ε′ (H1, θ1, nvalid, ntest) is to 1, the more
robust H1, θ1,0 are.
Example 3. (Drift Detection Robustness Align-
ment) Again considering algorithm H1, let us set
Θε,ε′ (H1, θ1,i, nvalid, ntest)=0.99 and the search space of
the drift threshold

θ1,i ∈ {0.001, 0.002, . . . , 1} .
By iteration, we can find a θ1,i that satisfies

Θε,ε′ (H1, θ1,i, nvalid, ntest) ≥ 0.99,

and this process can be repeated for a set of drift detection
algorithms

H = {H1, . . . , Hj}
such that

Θε,ε′ (Hj , θj,i, nvalid, ntest) ≥ 0.99

for all Hj ∈ H. Thus, all algorithms in the set H are aligned
at a robustness level of 0.99 with their unique thresholds.

In general, there are two major approaches to selecting a
drift threshold in the literature. Approach one is statistical
significance level-based threshold selection. For example,
setting drift threshold based on p-value or α, such as setting
α = 0.05 as warning level and α = 0.01 as drift level.
Approach two is a heuristic method that sets the thresh-
olds based on cross-validation results or based on expert
knowledge. By contrast, we propose a Monte Carlo drift
threshold selection solution, that is, setting a desired false
alarm rate and running the given drift detection algorithm
on n synthetic binomial data streams. Then we adjust the
drift threshold recursively based on the observed false alarm
rate.
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3.2 The Concept Drift DD Index

In Section 3.1, we discussed how to leverage binomial
distribution to simulate concept drift. In this section, we
propose a scalar measurement, called the Detection Delay
Index (DD Index), to quantify the efficacy of drift detection
methods on simulate drifts.

Concept drift detection and statistical hypothesis testing
have both overlapped research objectives and evaluation
metrics. The Type-I and Type-II errors widely used in hy-
pothesis testing are also commonly used to evaluate drift
detection algorithms. One difference between drift detection
and hypothesis testing, however, is that drift detection deals
with observations received in a time span, which raises
issues over the time lag between when a drift occurs and
the time it takes to detect it. This problem, known as the
detection delay problem, is not measured by Type-I and -II
errors. As an example, consider two sets of observations W1

and W2 of equal size at 100 samples but a slight difference
in distribution. With this information alone, algorithm H1

could not detect a drift between W1 and W2. However, as
W2 receives more observations and the number of samples
increases to 150, H1 returns a drift alarm. Neither a Type-I
nor a Type-II error can reflect the 50-sample delay between
when the distributions began to deviate and when the alarm
triggered.

An efficient way of evaluating detection delays is an
open problem. Currently, the best method is a rudimen-
tary observation count, denoted as ncount. But, beyond its
obvious tedium, this type of approach can only be used if
the user knows there is a drift. Hence, in any pre-emptive
strategy, if no drift occurs, the count becomes infinite and in-
comparable. Additionally, counts and rates, like Type-I and
Type-II errors, cannot be integrated as one measurement,
further complicating the evaluation process.

The intuition of the DD Index is to resolve the short-
comings with counting the number of delayed observations
by predefining an upper limit for the counting process
to stop. This upper limit is denoted as ntest. Further, as
discussed in Example 2, the delay between when the drift
occurs and when it is detected can be counted in terms
of the number of observations. Accordingly, ncount can be
scaled in the interval [0, 1] by ncount

ntest
to create a scaled drift

delay indicator, denoted as Θε,ε′ (Hi, θi,j , nvalid, ntest).
A value of 0 indicates that the drift was detected at the
exact time the drift occurred. The indicator moves toward 1
with each additional observation it takes to detect the drift,
reaching 1 if no drift has been detected after ntest observa-
tions. Since nvalid and ntest are both hyperparameters and
all drift detection algorithms use them when calculating
Θε,ε′ (Hi, θi,j , nvalid, ntest), we have shortened the nota-
tion to Θε,ε′ (Hi, θi,j). More details on the impacts of nvalid
and ntest on the algorithms are evaluated and discussed in
the Experiments section.

Notably, estimating the scaled delay indicator only once
may carry a high bias. Nor may one estimation be enough
to accurately reflect the Type-I and -II error rates. Therefore,
according to the law of large numbers, the drift detection
process is repeated a sufficiently large number of times to
ensure the average of the scaled delay indicators comes close
to the expected value. The settings of the simulated error

sequences stay the same in each repetition, i.e., drift point:
nvalid + ntest and drift severity |ε− ε′|; only the random
seed changes. Thus, the formal definition of DD index is:
Definition 1. (Detection Delay Index) Given a drift detection
algorithm Hi and a drift threshold θi,j , the DD Index of the
change in error rate from ε to ε′ is the expectation of the
scaled delay indicator, denoted as

Ωε,ε′ (Hi, θi,j) = E (Θε,ε′ (Hi, θi,j)) .

Since the DD Index is a measure of robustness, for
simplicity, we use the same notation Ω to represent both
the DD Index and robustness levels. Admittedly, the DD
Index does not entirely replace Type-I and Type-II errors as
an evaluation metric, but what it does provide some extra
and necessary information regarding false alarm rates and
missing detection rates. For example, if a drift detection
algorithm Hi has a high Type-I error with a threshold
of θi,j , which means it has a high false alarm, the DD
Index Ωε,ε′ (Hi, θi,j) will be close to 0. In this case, setting
|ε− ε′| = 0 will simulate a stationary error sequence.
Whereas, if Hi has high Type-II errors with the threshold
θi,j , i.e., a high missing rate, the DD Index Ωε,ε′ (Hi, θi,j)
will be close to 1. Here, |ε− ε′| should be set to > 0 to
simulate a nonstationary error sequence. According to the
strong law of large numbers (Kolmogorov’s law), we have
the sample average converges almost surely to the expected
value

lim
nrun→∞

1

nrun

nrun∑
k=1

Θk
ε,ε′(Hi, θi,j)

a.s.−−→ E (Θε,ε′ (Hi, θi,j)) ,

where nrun is a sufficiently large number. The DD Index
and the law of large numbers are the core components of
our robustness alignment algorithm. The implementation
algorithm to calculate DD Index is shown in Algorithm 1.

The required parameters for Algorithm 1 are the drift
detection algorithm H and its drift threshold θ. The initial
error rate ε simulates the performance of a learning model.
The drift error rate ε′ simulates its performance after con-
cept drift. The initial lengths of the error sequence nvalid
and drift error sequence ntest control the length of the error
sequence before and after concept drift. The number of
repeating tests nrun tells the algorithm how many times
to run the detection process to compute the average DD
Index. Following the law of large numbers, nrun should
be a sufficiently large number. Considering the runtime
complexity of the algorithm, we set nrun = 5000 as a
default.

The basic workflow is to use a binomial distribution to
simulate a sequence of prediction errors made by a learning
model (Lines 3, 4). The probability of the model making a
successful prediction is then changed to simulate a change
in the model’s error rate. The number of observations re-
quired to detect the drift is then counted and normalised
against the total number of available observations (Lines
5-13). This counting process is then repeated a sufficiently
large number of times to provide a relatively accurate aver-
age estimate of the DD Index (Lines 1, 2, 14-17).
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Algorithm 1: Concept Drift DD Index
input : 1. drift detection algorithm, H

2. drift threshold, θ
3. validation error rate, ε
4. test error rate, ε′

5. validation error sequence size, nvalid = 80
6. test error sequence size, ntest = 200
7. number of repeating tests, nrun = 5000

output: 1. DD Index value, Ωε,ε′(H, θ)

1 Initialise the DD Index, Θε,ε
′ (H, θ) = 0;

2 for k in range (nrun) do
3 Generate validation sequence, {εi}nvalid

i=1 , that
εi ∼ Binomial(1, ε);

4 Generate test sequence, {ε′j}ntest
j=1 , that

ε′j ∼ Binomial(1, ε′);
5 Input {εi}nvalid

i=1 to H ;
6 Initialise ncount = ntest;
7 for j in range (ntest) do
8 Input ε′j to H ;
9 if H is in drift status then

10 delay counter ncount = j;
11 break;
12 end
13 end
14 Θε,ε′(H, θ) = Θε,ε′(H, θ) + ncount

ntest
;

15 end
16 Ωε,ε′(H, θ) = 1

nrun
Θε,ε′(H, θ);

17 Return Ωε,ε′(H, θ)

4 DRIFT THRESHOLD ALIGNMENT

4.1 The Recursive Drift Threshold Alignment Algorithm

The intuition of robustness alignment is to iteratively search
a drift threshold θi,j for a drift detection algorithm Hi

so that Ωε,ε′ (Hi, θi,j) equals a desired robustness level ω.
However, implementing this idea in reality is not quite so
straightforward. Hence, in this section, we discuss some of
the problems and solutions to robustness alignment with
the DD Index.

The first issue that needs to be addressed is how to
define the search space of a drift threshold θi,j . Since a
search space for θi,j could be infinite, e.g., θi,j ∈ R[0, 1],
continuous domains need to be converted into discrete
sets. There are three parameters that can be used for this
conversion. They are: the maximum robustness threshold
value θmaxRob, the minimum robustness threshold value
θminRob, and the threshold search gap θgap. The parameters
θmaxRob, θminRob control the upper and lower bounds of
the search space. To define them more specifically, consider
a drift threshold value of θi,j ∈ R[0, 1]. If a drift detection
algorithm Hi has a maximum robustness of θi,j = 1, i.e.,
no drift should be reported under any circumstances, then
θmaxRob = 1. By the same token, θminRob = 0 means that
when θi,j = 0, the drift detection algorithm Hi will report
drift even no drift existed. The threshold searching gap θgap
controls the discretisation level of the drift threshold θi,j .
A simple example of using θmaxRob, θminRob and θgap to
generate a finite discrete set is

{θminRob, θminRob + θgap, θminRob + 2× θgap, . . . , θmaxRob} ,

which would give a threshold searching set of size

nθ =

⌈
θmaxRob − θminRob

θgap

⌉
.

To optimise the searching process, a recursive searching
algorithm is designed to leverage the monotonicity of the
drift thresholds and detection robustness. As such, the al-
gorithm only needs to compute Ωε,ε′ (Hi, θi,j) for log2 (nθ)
times rather than nθ times. The idea behind the recursion
is to devise a method of solving a problem where the solu-
tion depends on solutions to smaller instances of the same
problem. Such issues can generally be solved by iteration,
but this requires both identifying and indexing the smaller
instances at the time of programming.

The detection robustness of a drift detection algorithm
in terms of its drift threshold can be represented as a
monotonic function. Given two threshold values θi, 1 and
θi, 2 for Hi, if θi, 1 ≤ θi, 2, then Hi must have either

Ωε,ε′ (Hi, θi,1) ≤ Ωε,ε′ (Hi, θi,2)

or
Ωε,ε′ (Hi, θi,1) ≥ Ωε,ε′ (Hi, θi,2) .

The monotonically increasing function in our proposed re-
cursive threshold searching algorithm is described below.
For brevity, we have spared a duplicate description of
the decreasing case, which simply reverses the values of
θminRob, θmaxRob.

With the discretisation strategy and assumption of
monotonicity, the search task can be completed with a
divide-and-conquer approach:

Searching for θi,j in (θminRob, θmaxRob, θgap)

such that Ωε,ε′ (Hi, θi,j) = ω

by searching for θi,j in(
θminRob,

θmaxRob + θminRob
2

, θgap

)
,

if Ωε,ε′ (Hi, θminRob)<ω<Ωε,ε′
(
Hi,

θmaxRob+θminRob

2

)
. Oth-

erwise, searching for θi,j in(
θmaxRob + θminRob

2
, θmaxRob, θgap

)
.

Note that the above subproblems have the same for-
mulation as the original search problem. As a result, only
Ωε,ε′

(
Hi,

θmaxRob+θminRob

2

)
needs to be computed and only

θmaxRob to θmaxRob+θminRob

2 (or θminRob to θmaxRob+θminRob

2 )
needs to be updated in each recursion. As a result, we have
the recursion stop conditions are:
Condition 1 – Desired threshold found:

Ωε,ε′ (Hi, θminRob) = ω or Ωε,ε′ (Hi, θmaxRob) = ω

Condition 2 – Search space limitation reached:

θmaxRob − θminRob ≤ θgap
Condition 3 – Search space out of range:

Ωε,ε′ (Hi, θminRob) > ω or Ωε,ε′ (Hi, θmaxRob) < ω

If the threshold is found (Condition 1), the algorithm returns
θminRob if Ωε,ε′ (Hi, θminRob) = ω, and θmaxRob otherwise.
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Algorithm 2: Recursive Threshold Searching for
Robustness Alignment

input : 1. default parameters for Alg. 1 (H , ε, ε′, nvalid,
ntest, nrun)
2. threshold searching space,
{θminRob, θmaxRob, θgap}
3. desired robustness level, ω

output: 1. the threshold θi,j , so that Ωε,ε′ (Hi, θi,j) = ω

1 if recursion stop condition 1-3 then
2 return corresponding θi,j ;
3 end
4 if Ωε,ε′

(
Hi,

θmaxRob+θminRob
2

)
> ω then

5 Return recursive search θi,j in(
θminRob,

θmaxRob+θminRob
2

, θgap
)

;
6 else
7 Return recursive search θi,j in(

θmaxRob+θminRob
2

, θmaxRob, θgap
)

;
8 end

If the space has been fully searched (Condition 2), the
algorithm returns θmaxRob. Out of range errors (Condition
3) raise a range of warnings. The pseudocode is given in
Algorithm 2.

5 EXPERIMENTS AND ANALYSIS

To evaluate the DD Index and the robustness alignment
algorithm, we conducted four experiments. The first two
experiments in Section 5.1 were designed to analyse the
effectiveness of the DD Index in selecting appropriate drift
thresholds for a range of different drift detection algorithms
so as to align their robustness. The third experiment in
Section 5.2 tests how different drift detection algorithms
perform under different concept drift conditions in terms of
different robustness level. The fourth experiment in Section
5.3 tests the usefulness of the robustness alignment algo-
rithm for evaluating the strengths and weaknesses of several
drift detection algorithms on benchmark datasets. All the
implementation codes and datasets are available online 1.

Dataset Setting: We evaluated the proposed DD index
on three groups of datasets (4 toy datasets, 5 Synthetic
benchmarks and 4 real-world benchmarks) Toy Datasets
include a Bernoulli trail sequence dataset with vary success
rate, a moon shape drifting dataset, a circle shape drift-
ing dataset and a blob shape drifting dataset. Synthetic
Benchmarks are SEA generator [35], Rotating Hyperplane
generator [36], AGR (AGRAWAL) [37] generator, RTG
(Random Tree Generator) and RBF generator. Real-world
Benchmarks are Electricity Price Dataset (Elec), NAOO
Weather Dataset (Weather), Spam Filtering Dataset (Spam),
Airline Delay Dataset (Airline).

Algorithm Setting: The compared algorithms were AD-
WIN, DDM, EDDM, HDDM-A, HDDM-W, Page-Hinkley,
KSWIN implemented in skmultiflow with their default drift
thresholds [10]. We chose these algorithms because they are
all implemented in the Python package skmultiflow [10]
(version 0.5.3) removing programming quality as a factor in

1. https://github.com/Anjin-Liu/TKDE2020-DDIndex

the results. It also makes the experiments easier to reproduce
the drift detection accuracy.

5.1 Illustration and Demonstration of DD Index
Experiment 1. Drift Detection on Bernoulli Trail Se-
quence with Default Drift Threshold. This experiment
was designed to evaluate how various drift detection al-
gorithms perform on binomial trails with their default
parameters. First, we generated several pairs of binomial
trail sequences {εi}nvalid

i=1 ∼ Bseq (1, 1− ε, nvalid) and
{εj}ntest

j=1 ∼ Bseq (1, 1− ε′, ntest) to simulate the prequen-
tial prediction errors of a learning model, where 0 represents
a correct prediction, 1 represents an incorrect prediction,
and ε denotes the expected error rate. Initially, we set
ε = ε′ to measure the general performance and robustness
of each algorithm. Then we slightly increased the difference
between ε and ε′ to evaluate detection sensitivity. Thus,
the results illustrate the sensitivity and robustness of each
drift detection mechanisms in terms of the drift margin, i.e.,
|ε − ε′|. When the drift margin is low, i.e., when the drift is
hard to detect, we would expect to see the DD Index value
at close to 1, and close to 0 when the drift margin is high,
i.e., the drift is easy to detect.

To evaluate drift detection algorithms with different
sizes of the validation errors and to examine how the es-
timation of the model’s error rate impact the drift detection
accuracy. we fixed the validation error rate ε at 0.15 and
changed the test error rate within the predefined error grid
ε′ ∈ {0.15, 0.25, . . . , 0.95}. ntest was fixed to 200 and nvalid
was changed within the set nvalid ∈ {0, 30, 80, 130, 180}.
Findings and Discussion. The results of Experiment 1 are
plotted in Fig. 2. All algorithms were able to identify the
simulated changes in the Bernoulli trail sequences and,
overall, the general trends were in line with expectations,
in that the DD Index scores decreased as the severity of the
drift increased. Further, each algorithm, with their default
settings, performed very differently. Two interesting points
are worth mentioning.

• Fig. 2 shows the unmatched robustness levels of the
different algorithms with their default drift thresh-
olds. With the exception of DDM and EDDM, all
other algorithms have a robustness level of 1. How-
ever, we do not believe this means they all have
the same robustness. Rather, it is more likely that
ntest = 200 is not a large enough number of ob-
servations to distinguish a nuanced difference in
performance. Another way of thinking about this
is that the drift threshold may be set too high/low
to detect very frequent drifts. As an example, if a
data stream has two slightly different concepts, A,B
and these two concepts switch approximately every
150 time points (i.e., 1-150 is concept A, 151-300 is
conceptB, 301-450 is conceptA and so on), an overly
robust threshold will mean the detection mechanism
cannot identify the drifts.

• Also, from Fig. 2, we find that the validation size
must not be 0. Fig. 2 (a) clearly illustrates that AD-
WIN, HDDM, Page-Hinkley and KSWIN could not
detect a drift no matter how large the drift margin
is. The fluctuating error rates of DDM and EDDM
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indicate some kind of reaction, but, frankly, it is hard
to explain their performance. This tells us that if we
do not validate a given model L on its training data
and then input the validation errors into the drift
detection algorithm H , the algorithm may lose its
power.

Experiment 2. Drift Detection on Binomial Trail Sequence
with DD Index. In this experiment, we first leverage the
DD Index to find the drift thresholds for all drift detection
algorithm in terms of a given desired robustness level ω. In-
tuitively, high sensitiveness on drift could be accompanied
by high false alarms. An ideal drift detection has to meet the
desired false alarms rates first then as sensitive as possible.

In the experiment result, we would expect to see the
robustness level of all algorithms are close to a predefined
target value, that is, the robustness level is the same at
ε′ = ε. Then we would be able to compare their drift
detection sensitivity.

We conducted the experiment according to the control
variate method. The objectives, the fixed parameters, the
varied parameters and pointers to the results are shown in
Table 4. Next, we aligned the robustness levels of each of the
algorithms using the search spaces shown in Table 5.
Findings and Discussion. The results for Scenarios 1-3 are
shown in Fig. 3 and Tables 6, 7, from which we made the
following observations:

• Fig. 3 shows the aligned robustness for all evaluated
drift detection algorithms. From the results, it is clear
that the drift thresholds selected via Algorithm 2
perform as intended. HDDM-W and Page-Hinkley
emerge with the most competitive drift detection
sensitivity.

• Tables 6 and 7 show us the drift threshold values
corresponding to the different DD Index (robustness
levels) – the difference between the two being the val-
idation error rates (ε = 0.15 for Table 6 and ε = 0.35
for Table 7). Both tables show a trend that the detec-
tion DD Index scores hold true to their indications –
that is that less robust thresholds score lower on the
scale. ADWIN, for instance, with a DDI of ω = 0.99
scores a delta = 0.611 but a delta = 2.257 at a
DDI of ω = 0.8. The negative correlation between
the robustness level and threshold value of DDM
and Page-Hinkley sees a lower threshold value for
these two methods, which is perfectly in keeping
with design because the larger the threshold value,
the lower the robustness.

• The last worthy mention is that, as the validation
error rates increased from 0.15 to 0.35, the robustness
levels decreased for ADWIN, the HDDM family,
Page-Hinkley and KSWIN, yet increased for DDM
and EDDM. Looking at Table 6 and 7, ADWIN
with a delta = 0.611 reached a robustness level of
ω = 0.99 at ε = 0.15, but only 0.95 ≤ ω ≤ 0.99
at delta = 0.611 and ε = 0.35. This phenomenon
suggests that error rates can influence the way a drift
detection algorithm will react, once again reinforcing
our argument that fixing the drift threshold in stone
is not the soundest strategy.

5.2 Stream Learning on Toy Datasets with Simulated
Concept Drift

Experiment 3. Varying Detection Parameters and Drift
Scenarios with Toy Streams. In this experiment, we focus
on investigating how the robustness and sensitivity of drift
detection algorithms impacts learning performance. The
intuition is to generate a set of data streams with predefined
drift frequencies and severities, and then observe the results
when incremental learning with drift detection is applied to
those streams. To avoid the influence of warning levels, we
set both the warning and drift thresholds to the same value
so that no warnings are triggered.

We expect to see that algorithms with fixed drift thresh-
olds perform differently on data streams with different drift
frequencies and severities. To this end, this experiment has
two goals: first, to affirm our contention that drift thresholds
should be updated dynamically; second, to gather insights
into the conditions and signals that should trigger thresh-
olds to change.

We chose GaussianNB imported from sklearn as the
default learning model because it has a fast processing speed
and a partial fit option. The minimum training window size
wmin was set to 200. The same drift detection algorithms
were evaluated as in Experiments 1 and 2.

Once the training buffer reached wmin, we performed
cross-validation to generate validation errors and randomly
selected nvalid = 80 errors as initial inputs for the drift
detection algorithms. The drift thresholds were selected
by the robustness alignment algorithm from within ω ∈
{0.99, 0.95, . . . , 0.8}.

Concept drifts were simulated via p (X) shifting. A
parameter δ drawn from δ ∈ {0, 0, 0.2, 0.4, 0.6, 0.8, 1}
controlled the severity of the drifts and to simulate dif-
ferent drift frequencies we generated 50 streams of dif-
ferent concept sizes (the length of a stable concept) from
{300, 800, 1300, 1800, 2300} for each dataset and setting
of δ. The mean results are reported for evaluation. Drift
frequency is the reciprocal of the concept size.

An example of the toy datasets is shown in Fig. 4.
Each has 22 dimensions – 2 informative dimensions and 20
noisy – to increase the learning difficulty by increasing the
number of data instances required for the learning model to
converge. We did this because if a model can quickly and
easily learn a dataset with only a small number of samples,
the best option for maintaining good performance would
be to simply retrain the model whenever a new data batch,
rendering drift adaptation somewhat moot.
Findings and Discussion. The results, shown in Figs. 5-
7, are means from 150 runs (50 runs with each of the 3
datasets). Overall, the results provide strong evidence to
support our conjecture that a fixed drift threshold performs
differently in different drift situations. We had two major
findings from this experiment.

• The relationship between drift frequency and accu-
racy is not neglectable. Fig. 5 shows how remarkably
the accuracy of different algorithm changes at dif-
ferent concept sizes. For example, EDDM was the
best performer with very frequent drifts, and yet the
worst with less frequent drifts.
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Fig. 2. Robustness evaluation on ADWIN, DDM, EDDM, HDDM-A, HDDM-W, Page-Hinkley, KSWIN with their default drift thresholds.
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Fig. 3. Robustness evaluation on ADWIN, DDM, EDDM, HDDM-A, HDDM-W, Page-Hinkley, KSWIN with aligned drift threshold.

TABLE 4
Parameter setting scenarios for Experiment 2.

Objectives Fixed Parameters Varying Parameters Results

Setting 1: To show the efficacy of aligning the robustness of the
algorithms with DD Index, and to show the sensitivity of each
algorithm once the robustness has been aligned.

ε = 0.15, nvalid = 80,
ntest = 200

ε′ ∈ {0.15, . . . , 0.95}, ω ∈
{0.99, . . . , 0.8}

Fig. 3

Setting 2: To show the drift threshold values for each algorithm
with aligned robustness levels.

ε = ε′ = 0.15, nvalid =
80, ntest = 200

ω ∈ {0.99, . . . , 0.8} Table. 6

Setting 3: To show the drift threshold values of each algorithm
with aligned robustness levels and to show how the validation
and test error rates affect the threshold selection.

ε = ε′ = 0.35, nvalid =
80, ntest = 200

ω ∈ {0.99, . . . , 0.8} Table. 7

TABLE 5
The parameter search space for each algorithm. All search gaps were

θgap = 0.001.

Algorithm Parameter Name θMaxRob θMinRob

ADWIN delta 0.001 10
DDM out control level 10 0.001
EDDM fddm outcontrol 0.001 10
HDDM-A drift confidence 0.001 1
HDDM-W drift confidence 0.001 1
Page-Hinkley Threshold 100 0.001
KSWIN alpha 0.001 1

• For some algorithms, robustness levels have the
opposite effect on classification accuracy depending
on the drift frequency. Figs. 5 (b) and (e) show
that increasing the robustness level caused classifi-
cation accuracy to decrease in streams with frequent
drifts, but to increase in streams with only occasional
drifts. ADWIN, the HDDM family, Page-Hinkley
and KSWIN all show this same pattern. However,
DDM and EDDM do not, which may be because the
drift thresholds in these methods consider the real-
time standard deviation of the error sequence. This
behaviour is highly interesting as a basic proxy of
dynamic threshold selection.
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Fig. 4. The toy datasets with simulated concept drift. The feature space
is shifted at each time point through a drift severity parameter δ. Subfig-
ure (a) is the moon shape dataset, (b) is the circle shapes, and (c) is the
blob shapes.

Fig. 6 shows the number of concept drifts detected. As
the results show, at the same robustness level, the false
alarm rate increases as the concept size increases, i.e., as
drifts become less frequent. Thus, performance would im-
prove if the drift threshold could adapt to the prevailing
drift frequency.

Fig. 7 plots MinMaxScaled classification accuracy at dif-
ferent concept sizes versus different robustness levels. The
results show classification accuracy tends to peak along a
sliding scale from low robustness to high robustness as the
concept size increases. For example, at a concept size of
300, the highest (mean) accuracy among all the algorithm
occurred at ω = 0.85, while, with a concept size of 800,
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TABLE 6
Robustness alignment with a validation and test error rate of ε = ε′ = 0.15. All algorithms had a DD Index of > 0.99 with their default drift

threshold, except EDDM < 0.8 and DDM between 0.85 and 0.90.

ADWIN DDM EDDM HDDM-A HDDM-W Page-Hinkley KSWIN

Default 0.002 3.000 0.900 0.001 0.001 50.000 0.005
ω = 0.99 0.611 5.415 0.495 0.004 0.007 11.639 0.013
ω = 0.95 1.160 3.580 0.652 0.019 0.018 9.055 0.053
ω = 0.90 1.601 3.026 0.740 0.029 0.028 7.797 0.120
ω = 0.85 1.932 2.740 0.802 0.053 0.036 6.999 0.173
ω = 0.80 2.257 2.560 0.853 0.076 0.045 6.358 0.242

TABLE 7
Robustness alignment result with validation, test error rates ε = ε′ = 0.35. The purpose of this experiment is to show the impact of the drift

threshold on the validation and test error rates. ADWIN, HDDM-A, HDDM-W, Page-Hinkley and KSWIN became less robust as the validation error
rates increased, while DDM and EDDM grew more robust.

ADWIN DDM EDDM HDDM-A HDDM-W Page-Hinkley KSWIN

Default 0.002 3.000 0.900 0.001 0.001 50.000 0.005
ω = 0.99 0.413 3.821 0.528 0.001 0.001 16.514 0.001
ω = 0.95 0.892 2.947 0.631 0.008 0.002 12.854 0.004
ω = 0.90 1.286 2.595 0.687 0.018 0.006 11.003 0.013
ω = 0.85 1.614 2.410 0.725 0.027 0.009 9.783 0.033
ω = 0.80 1.910 2.279 0.753 0.037 0.013 8.842 0.054

accuracy peaked at ω = 0.9, and at ω = 0.95 with a
concept size of 2300. Notably, with large concept sizes,
accuracy begins to decrease after a certain robustness level.
As Fig. 7 (a) with a concept size of 2300 shows, classification
accuracy decreased significantly at ω = 0.99 after peaking
at ω = 0.95.

5.3 Stream Learning on Benchmark datasets

Experiment 4. Varying Drift Detection Parameters with
Benchmark Datasets. With this experiment, we investi-
gated whether toy datasets and the benchmark concept drift
evaluation datasets share the same accuracy vs. robustness
patterns. The basic settings are the same as Experiment 3.
The main difference is that we used two groups of bench-
mark datasets – one group of synthetic datasets with syn-
thetic drift (SynthData-SynthDrift) and one group of real-
world datasets with unknown drift (RealData-UnknDrift).
We would expect to see similar accuracy vs. robustness
patterns with the synthetic datasets as the ones we found
in Experiment 3. Additionally, we would like to confirm
whether there is always a drift threshold that outperforms
the default drift threshold.
Findings and Discussion. The learning accuracies with the
default and the best drift thresholds appear in Tables 8 and
9. We were not able to discern the accuracy vs. robustness
patterns for small concept sizes, since all the synthetic
datasets have a large fixed concept size. However, we can
see the DD Index scores of the best results vary from dataset
to dataset. Although the results do not show exactly what
the correlation is, they do show that one exists. And, when
comparing the accuracy values for the Default and Best
columns, we find that varying the drift thresholds improves
the classification results, which proves our contention that
the drift threshold should be dynamically adjusted based on
the historical frequency and severity of drifts in data stream
rather than using a fixed threshold the whole time.

6 CONCLUSIONS AND FUTURE WORK

With the DD Index, we can align the drift thresholds across
a set of algorithms so that they all have the same robustness
level. As a result, threshold selection could be removed as a
factor from the comparison, leaving a clear space to reveal
the problems or, benefits of the drift detection mechanism
itself. A series of experiments confirm that adaptively se-
lect drift thresholds is better than using a fixed threshold.
Additionally, both validation errors and the frequency of
drifts in a stream must be considered for a good threshold
selection. These findings pave the way to a more intelligent
drift threshold selection paradigm, where drift thresholds
dynamically adjust in line with learning performance on the
current data stream.

Our next step with the DD Index is to leverage histor-
ical drift information in the threshold update process. For
example, a learning model built on a small training set may
have a very high variance, and, as a result, a drift detection
algorithm might raise false alarms more frequently in the
history. Efforts to further understand the nature of these
relationships will feature in our continued investigations of
the correlations between learning models and drift detection
algorithms.
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Fig. 5. Learning accuracy with different drift scenarios. Concept size: subfigures (a)-(c) 300 (frequent drift); (d)-(f) 2300 (occasional drift). Drift
threshold: (a) & (d) default; (b) & (e) DD Index-aligned (circled observation points indicate the accuracy and robustness levels when using the
method’s default drift threshold); (c) & (f) highest accuracy among all robustness levels. These results demonstrate that drift threshold selection
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Fig. 6. Number of drifts detected. Subfigure (a) shows the number of drifts detected with the concept size of 300; (b) is 2300. Circles observation
points indicate the number of drifts detected using the default drift threshold. The black dashed lines mark the ground truth number of drifts. In
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concept size increases, i.e., as drifts become less frequent. Thus, performance would improve if the drift threshold could adapt to the prevailing drift
frequency.
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Fig. 7. The impacts of concept size and robustness levels on stream learning accuracy. Subfigure (a) shows MinMaxScaled accuracy with different
concept sizes versus different robustness levels, calculated as Accscaled = Acc−Accmin

Accmax−Accmin
. We use MinMaxScaled accuracy to zoom the

changes in the accuracy with different robustness level. (b) shows the number of drifts detected at different concept sizes versus different robustness
levels. These results show that there are strong correlations between learning accuracy, robustness level and concept sizes (drift frequency).

TABLE 8
Classification accuracy with the ADWIN, DDM, and EDDM detection methods. The Default column shows the classification accuracy using the

default drift threshold. The Best and the DD Index (DDI) columns show the best classification accuracy and corresponding the DD Index within the
range ω ∈ {0.99, . . . , 0.8}. The shaded DDI values signal where the Default threshold outperformed the Best threshold. In every case, we see a

DDI of either 0.99 or 0.8, which suggests that the actual robustness required to align the data steam falls outside the predefined range of
ω ∈ {0.99, . . . , 0.8}

ADWIN DDM EDDM
Default Best DDI Default Best DDI Default Best DDI

AGR 0.713 0.726 0.990 0.713 0.718 0.800 0.651 0.664 0.950
HYP 0.869 0.831 0.990 0.861 0.869 0.950 0.861 0.869 0.800
RBF 0.715 0.706 0.990 0.715 0.717 0.900 0.678 0.715 0.800
RTG 0.668 0.667 0.800 0.668 0.668 0.950 0.653 0.668 0.800
SEA 0.847 0.851 0.950 0.833 0.862 0.850 0.844 0.847 0.900
Airline 0.620 0.620 0.990 0.620 0.630 0.900 0.620 0.610 0.990
Elec 0.790 0.830 0.850 0.820 0.830 0.800 0.830 0.770 0.800
Spam 0.920 0.940 0.850 0.920 0.930 0.900 0.930 0.940 0.850
Weather 0.700 0.720 0.950 0.700 0.730 0.850 0.740 0.700 0.800

TABLE 9
Data stream classification accuracy with the HDDM-A, HDDM-W, KSWIN and PageHinkley detection methods.

HDDM-A HDDM-W KSWIN PageHinkley
Default Best DDI Default Best DDI Default Best DDI Default Best DDI

AGR 0.724 0.731 0.950 0.725 0.724 0.990 0.720 0.720 0.990 0.714 0.725 0.950
HYP 0.869 0.869 0.990 0.865 0.865 0.990 0.861 0.869 0.990 0.869 0.861 0.990
RBF 0.715 0.716 0.950 0.699 0.698 0.990 0.694 0.715 0.990 0.715 0.716 0.990
RTG 0.668 0.668 0.990 0.663 0.663 0.990 0.657 0.660 0.990 0.668 0.665 0.990
SEA 0.861 0.859 0.990 0.859 0.865 0.850 0.848 0.851 0.900 0.856 0.867 0.990
Airline 0.630 0.630 0.990 0.620 0.620 0.990 0.610 0.620 0.990 0.630 0.620 0.990
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Spam 0.920 0.930 0.950 0.920 0.930 0.800 0.920 0.930 0.850 0.920 0.940 0.850
Weather 0.720 0.730 0.850 0.730 0.740 0.800 0.670 0.710 0.850 0.700 0.730 0.850

with adaptive windowing,” in Proceedings of the Seventh SIAM
International Conference on Data Mining. Minneapolis, MN, USA:
SIAM, 2007, pp. 443–448.

[16] J. Lu, A. Liu, Y. Song, and G. Zhang, “Data-driven decision
support under concept drift in streamed big data,” Complex &
Intelligent Systems, vol. 6, no. 1, pp. 157–163, 2020.

[17] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla,
and F. Herrera, “A unifying view on dataset shift in classification,”
Pattern Recognit., vol. 45, no. 1, pp. 521–530, 2012.

[18] Y. Song, J. Lu, A. Liu, H. Lu, and G. Zhang, “A segment-based drift
adaptation method for data streams,” IEEE Trans. Neural Netw.
Learn. Syst., 2021.

[19] Y. Song, J. Lu, H. Lu, and G. Zhang, “Learning data streams with
changing distributions and temporal dependency,” IEEE Trans.
Neural Netw. Learn. Syst., 2021.

[20] N. Lu, J. Lu, G. Zhang, and R. L. De Mantaras, “A concept drift-

tolerant case-base editing technique,” Artificial Intelligence, vol.
230, pp. 108–133, 2016.

[21] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift
detection and density synchronized drift adaptation,” in Proceed-
ings of the Twenty-sixth International Joint Conference on Artificial
Intelligence, Melbourne, Australia, 2017, pp. 2280–2286.

[22] S. Ramı́rez-Gallego, B. Krawczyk, S. Garcı́a, M. Woźniak, and
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