
A Clustering-based Differential Evolution Boosted
by a Regularisation-based Objective Function and a

Local Refinement for Neural Network Training
Seyed Jalaleddin Mousavirad

Computer Engineering Department
Hakim Sabzevari University

Sabzevar, Iran

Amir H. Gandomi
Faculty of Engineering and IT
University of Technology Sydney

Ultimo, NSW 2007, Australia

Hassan Homayoun
Quantitative MR Imaging and Spectroscopy Group

Research Center for Cellular and Molecular Imaging
Tehran University of Medical Sciences

Tehran, Iran

Abstract—The performance of feed-forward neural networks
(FFNN) is directly dependant on the training algorithm. Con-
ventional training algorithms such as gradient-based approaches
are so popular for FFNN training, but they are susceptible
to get stuck in local optimum. To overcome this, population-
based metaheuristic algorithms such as differential evolution
(DE) are a reliable alternative. In this paper, we propose a
novel training algorithm, Reg-IDE, based on an improved DE
algorithm. Weight regularisation in conventional algorithms is
an approach to reduce the likelihood of over-fitting and enhance
generalisation. However, to the best of our knowledge, the current
DE-based trainers do not employ regularisation. This paper, first,
proposes a regularisation-based objective function to improve
the generalisation of the algorithm by adding a new term to
the objective function. Then, a region-based strategy determines
some regions in search space using a clustering algorithm and
updates the population based on the information available in each
region. In addition, quasi opposition-based learning enhances
the exploration of the algorithm. The best candidate solution
found by improved DE is then used as the initial network
weights for the Levenberg-Marquardt (LM) algorithm, as a
local refinement. Experimental results on different benchmarks
and in comparison with 26 conventional and population-based
approaches apparently demonstrate the excellent performance
of Reg-IDE.

Index Terms—Neural networks, differential evolution, regular-
isation, Levenberg-Marquardt algorithm, clustering, opposition-
based learning.

I. INTRODUCTION

Feed-forward neural networks (FFNN) are one of the most
popular architectures in artificial neural networks (ANN) to
tackle complex classification and regression problems. FFNNs
consist of simple components called neurons as well as
connections among them. In FFNN, inputs move in one
direction and pass, through hidden layers, to the output layer.
Each connection benefits from one weight, representing its
strength. Training in FFNNs is to find proper weights so that
the error between the actual and predicted outputs is min-
imised. Gradient-based approaches such as back-propagation

This work is done within 2020-2021. On the date of publication of final
version, Seyed Jalaleddin Mousavirad is affiliated with Universidade da Beira
Interior, Covilhã, Portugal, and is working on GreenStamp project.

algorithm are so popular in the literature, while they have a
tendency towards local optimum [1].

Population-based metaheuristic (PBMH) algorithms such as
differential evolution(DE) [2] and particle swarm optimisation
(PSO) [3] are a reliable alternative to tackle the problems of
conventional algorithms. Evolutionary algorithms (EA), as a
category of PBMHs, has been extensively used for FFNN
training. [4] compared BP and genetic algorithm (GA) for
FFNN training and indicated that GA is superior in terms
of effectiveness, ease-of-use and efficiency. In another study,
[5] employed a modified GA for fast training FFNNs. Their
results based on computational time indicate that the proposed
algorithm is more efficient than the conventional GA-based
training algorithm. [6] proposed a combination of GA and
BP for finding the weights in FFNN and showed that it can
outperform both GA and BP.

Another category of PBMHs is swarm intelligence al-
gorithms. [7] proposed a hybrid approach based on accel-
erated PSO using Levenberg Marquardt to obtain a faster
convergence rate. [8] suggested an opposition PSO-based
training for medical datasets. Their experiments on several
clinical datasets verified its performance. Other PBMHs which
have been employed for FFNN training include artificial bee
colony [9], imperialist competitive algorithm [10], [11], firefly
algorithm [12], grey wolf optimiser (GWO) [13], [14], ant lion
optimiser [15], dragonfly algorithm (DA) [16], sine cosine
algorithm [17], whale optimisation algorithm (WOA) [18],
grasshopper optimisation algorithm [19], and salp swarm
algorithm (SSA) [20], among others.

Differential evolution(DE) [2] is a well-established and
effective PBMH that has indicated excellent performance in
solving complex optimisation problems [21]–[25], and many
studies have been done on improving DE algorithm in recent
years [26], [27]. It takes advantage of three main operators,
including, mutation, crossover, and selection. Mutation com-
bines information among different candidate solutions, while
the responsibility of crossover is the integration of mutant
vector and target vector. Finally, the selection operator chooses
a better candidate solution between the old and new candidate

solutions to include the current population. [28] proposed a
DE algorithm for FFNN training, and indicated that it can
provide better performance than gradient-based methods. In
another work, [29] employed opposition-based learning in
combination with DE (QODE) and indicated that QODE has
a satisfactory performance compared to the competitors on
different classification problems. In one of the most recent
works, [30] employed a DE algorithm that is improved by
opposition-based learning and a region-based strategy (RDE-
OP).

One of the main features of FFNN is the ability to gen-
eralise. It has indicated that the generalisation ability of
conventional neural networks can be enhanced by regularisa-
tion [31], a method to penalise network complexity by adding
a penalty term to the loss function. Despite the efficiency of
regularisation in improving the performance of conventional
FFNNs, the applicability of the same technique to PBMHs is
less explored [32], [33]. To the best of our knowledge, there
is no research on the use of regularisation in DE-based FFNN
trainers.

In this paper, we propose a novel DE algorithm, Reg-IDE,
for FFNN training. The main characteristics of Reg-IDE are
as follows.

1) Reg-IDE introduces a new objective function for DE-
based trainer. It adds a regularisation term to increase
the generalisation.

2) Reg-IDE employs the Levenberg-Marquardt algorithm
as a local refinement to enhance the exploitation of the
algorithm.

3) Reg-IDE uses a clustering algorithm to update the pop-
ulation. It acts like a multi-parent crossover.

4) Reg-IDE adds quasi opposition-based learning to the
trainer for enhancing exploration.

Experimental results on different datasets and in compar-
ison with 26 conventional and population-based approaches
apparently demonstrate the supreme performance of Reg-IDE.

The remainder of this paper is organised as follows. Sec-
tion II briefly explains some background knowledge on neural
networks, regularisation, and DE. Section III first introduces
the main components of Reg-IDE and then the general struc-
ture. Section IV evaluates Reg-IDE on different benchmark
problems. Finally, Section V concludes the paper.

II. BACKGROUND KNOWLEDGE

A. Neural networks
Feedforward neural networks (FFNN), as a popular family

of ANNs, are a supervised pattern recognition approach which
have extensively used in a wide range of applications [34],
[35]. They consist of three main layers, including, input layer,
output layer, and hidden layers. The general architecture of an
FFNN is shown in Figure 1. In this figure, (x1, x2, ..., xn) are
input features, while (O1, O2, ..., Om) are outputs. In addition,
each node has an activation function, which shows how the
weighted sum of the inputs should transfer into the output.
This paper employs the Sigmoid function, one of the most
popular ones, defined as

δ(net) =
1

1 + e−net
. (1)

where net is the input. Each link between different layers has
a weight, representing strength between two nodes. Weights
play a crucial role in the performance of a FFNN. Therefore,
finding proper values for weights, or training, is considered as
one of the most important, yet challenging, tasks in FFNNs.
Gradient descent-based approaches (GD) are the most popular
method for training the weights.

B. Weight regularisation

Training in an FFNN that can generalise well to new data
is a complex task. An FFNN with too few neurons, and con-
sequently connections, can not learn the relationship between
inputs and outputs well, while too many neurons can lead
to over-fitting. In both cases, FFNN can not generalise well.
Broadly speaking, regularisation points out to any alteration in
the training algorithm to reduce generalisation error. L1 and
L2 regularisation techniques [36] are among the most common
types of approaches. They add a regularisation term in the loss
function of gradient-based approaches. It leads to a decrease
in the connection weights, and consequently, a simpler model.
Therefore, it can reduce over-fitting in a typical model.

C. Differential evolution

Differential Evolution (DE) [2] is a simple, yet effective,
population-based metaheuristic algorithms, which indicates a
superior performance in solving complex optimisation prob-
lems. DE begins with NP candidate solutions generated ran-
domly drawn from a uniform distribution and takes advantages
of three primary operators for updating its population, includ-
ing, mutation, crossover, and selection. Mutation generates a
mutant vector, vi = (vi,1, vi,2, ..., vi,D), as

vi = xr1 + F ∗ (xr2 − xr3), (2)

where xr1, xr2, and xr3 are three distinct randomly selected
candidate solutions from the current population, whereas F is
the scale factor.

Crossover is responsible to incorporate the mutant vector
with the target vector. Binomial crossover is used in this paper,
which is defined as

ui,j =

{
vi,j rand(0, 1) ≤ CR or j == jrand

xi,j otherwise
, (3)

where i = 1, ..., NP , j = 1, ..., D, CR means the crossover
rate, and jrand is a random number between 1 and NP . the last
operator is called selection, which select the better individual
from the trial and target vectors.

III. REG-IDE ALGORITHM

This paper proposes a novel training algorithm, Reg-IDE,
for finding the optimal weights in an FFNN. To this end,
first, a regularisation term is added to the objective function to
improve generalisation. Also, Reg-IDE benefits from a local
refinement as a local search in the final phase, a region-based

Fig. 1. General architecture of an FFNN network.

Fig. 2. Representation of a candidate solution in Reg-IDE algorithm.

strategy to increase the exploitation of the algorithm, and
opposition-based learning for enhancing the exploration. In
the following, first, we explain the main components of the
Reg-IDE algorithm. Then, we detail how it proceeds.

A. Representation

Our approach benefits from a one-dimensional array to
encode the weights and biases of FFNN as indicated in
Figure 2. The length of the array is equal to the total number
of weights and biases.

B. Regularisation-based objective function

This paper introduces a novel objective function based on
regularisation for FFNN training. To the best of our knowl-
edge, all objective functions for DE-based FFNN training has
used error between the actual and predicted outputs [9], [14],
[37]. In this paper, we propose to add a regularisation term to
the objective function as

f =
100

P

P∑
p=1

ξ(xp) +
λ

2m

∑
||W ||2, (4)

with

ξ(xp) =

{
1 if op 6= dp

0 otherwise
, (5)

where dp and op means the actual and predicted outputs,
respectively, and m is the total number of samples. λ is called
regularisation parameter which can be considered as a hyper-
parameter. Regularisation term can penalize large value of the
weights and biases.

If λ is too large to be selected, a lot of weights will be
close to zeros which will make the FFNN simpler and prone
to under-fitting. In contrast, If λ is selected too small, in
practice, the role of regularisation term will be eliminated.
If λ is selected good enough, it will deteriorate some weights
that can overcome over-fitting.

C. Levenberg-Marquardt algorithm

Reg-IDE employs Levenberg-Marquardt(LM)
algorithm [38], [39] as a local refinement in the last
phase. The LM algorithm is one of the most effective
conventional training algorithms for FFNNs. It commences
with random weights and aims to mitigate the error function
by modifying the network weights as

wt+1 = wt − (JT
t Jt + µI)−1Jk

t Et, (6)

with

Et =

N∑
i=1

(di − yi)2, (7)

where J means the Jacobian matrix of the error vector Et,
JT shows its transpose, I is the identity matrix of the same
dimensions as the Hessian JpJ , N signifies the number
of instances, di is the actual output, and yi the predicted
output. Also, JkE is the gradient of the error function E,
and µ indicates a dumping factor that is altered during the
optimisation process. It is worthwile to mention that the LM
method reaches the the optimum faster in comparison to
other conventional algorithms such as back-propagation with
momentum [40], [41].

D. Region-based strategy

Reg-IDE benefits from a clustering algorithm to construct
the regions. To this end, we employed k-means algorithm [42]
as a popular clustering algorithm. The number of clusters is
determined as a random number between 2 and

√
NP . Cluster

centres can be considered as a multi-parent crossover since
the cluster centre is the total of candidate solutions located in
one cluster. Reg-IDE employs cluster centres for updating the
current population using a generic population-based algorithm
(GPBA) proposed in [43]. Population-updating in Reg-IDE is
based on a GPBA strategy as:

• Selection: randomly choose some candidate solutions
from the current population. This corresponds to choosing
initial points in the k-means algorithm.

• Generation: generate m candidate solutions (set A). Reg-
IDE creates the new candidate solutions using the k-
means algorithm, and each cluster centre determines a
new candidate solution.

• Substitution: select m candidate solutions (set B) from
the current population for substitution. Reg-IDE chooses
m randomly selected candidate solution.

• Update: from the combination set A ∪B, choose the m
best candidate solutions as B̄. The new population is then
achieved as (P −B) ∪ B̄.

Reg-IDE does not employ clustering algorithm in each itera-
tion. In other words, clustering algorithms periodically is done,
based on a parameter called clustering period, similar to the
scheme proposed in [30], [44].

E. Opposition-based strategy

To further improvement, Reg-IDE employs an opposition-
based learning (OBL) [45] for initialisation and updating. The
opposition number of x is defined as

x̄i = ai + bi − xi, (8)

where a and b is the lower and upper bounds, respectively,
and i means the i-th dimension of x. This paper uses quasi
OBL(QOBL) strategy [46], rather than standard OBL, since
quasi-opposition numbers are more likely to converge to the
solution [46]. Quasi-opposition number is defined as

x̌i = rand

[
ai + bi

2
, ai + bi − xi

]
, (9)

where rand[m,n] creates a uniform random number in the
range of m and n.

In the initialisation step, Reg-IDE, first, creates a population
Pop randomly, and then, a corresponding population, Opop is
generated using the QOBL strategy. Finally, the best candidate
solutions are selected based on the combination of Pop and
OPop.

A similar mechanism is employed in the updating step. After
region-based strategy, a new population Opop is generated
using QOBL strategy and with a probability (jumping rate)
Jr between 0 and 0.4 [46]. Afterwards, the best candidate
solutions among the combination of Pop and OPop form the
new population.

F. Algorithm

Our proposed algorithm, Reg-IDE, proposes weight regu-
larisation for DE-based FFNN training, which is booted by a
local refinement, a region-based strategy, and quasi-opposition
based learning. Reg-IDE proceeds in the following steps:

1) Initialise the parameters including population size Npop,
the maximum number of function evaluations NFEmax,
the maximum number of iterations for the LM algorithm
itermax, the jumping rate Jr, clustering period CP , and
regularisation parameter λ . Set the current number of

function evaluations NFE = 0, and the current iteration
iter = 1.

2) Generate the initial population (Pop) using uniformly
distributed random numbers.

3) Calculate the objective function of each candidate solu-
tion in Pop using Eq. (4).

4) Generate a new population (OPop) using QOBL strat-
egy.

5) Calculate the objective function of each candidate solu-
tion in OPop using Eq. (4).

6) Select NP best candidate solutions from Pop ∪ OPop
as initial population.

7) Set NFE = NFE + 2×Npop

8) For each candidate solution, perform Steps 9 to 12.
9) Apply mutation operator.

10) Apply mutation operator.
11) Calculate the objective function using Eq. (4)
12) Apply selection operator.
13) Set NFE = NFE +Npop.
14) If rem(iter, CP == 0), go to Step 15, otherwise go to

Step 20.
15) Randomly generate k as random number between 2 and√

NP .
16) Perform k-means clustering and select cluster centres as

set A.
17) Select k individuals randomly from current population

as set B.
18) From A ∪B, select best k individuals as B̄.
19) Select new population as (P −B) ∪ B̄.
20) If rand(0, 1) < Jr, go to Step 21, otherwise go to

Step 25.
21) Generate a new population (OPop) using QOBL strat-

egy.
22) Calculate the objective function of each candidate solu-

tion in OPop using Eq. (4).
23) Select NP best candidate solutions from Pop ∪ OPop

as the current population.
24) Set NFE = NFE +Npop.
25) Set iter = iter + 1.
26) If NFE > NFEmax go to Step 27, otherwise go to

Step 8.
27) Initialise ω (initial weights for LM algorithm) as the

best candidate solution in the current population and set
current iteration iter = 0.

28) Compute the Jacobian J , the approximated Hessian
JTJ , and the error Et.

29) Update the weights using Equ. (6).
30) Recalculate Et.
31) if iter < itermax go to Step 27, otherwise the algorithm

has terminated.

IV. EXPERIMENTAL RESULTS

To evaluate our proposed Reg-IDE algorithm, we fulfil some
experiments on different datasets with diverse characteristics

from the UCI machine learning repository1, namely
• Iris: this dataset is one of the most popular classification

datasets in the literature. It has 150 samples and 4
features, placed in 3 classes.

• Breast Cancer: this dataset includes 699 samples, 9
features, and 2 classes.

• Liver: this binary clinical dataset from BUPA Medical
Research Ltd. includes 345 instances and 7 features

• Pima: this clinical classification dataset is considered a
challenging problem with 768 samples, 2 classes, and 8
features.

• Seed: this agricultural dataset has seven geometrical fea-
tures of wheat kernels such as area, perimeter, asymmetry
coefficient, length of kernel groove, placed in three dif-
ferent categories with 210 samples.

• Vertebral: this clinical dataset has bio-mechanical fea-
tures such as lumbar lordosis angle and sacral slope,
belonging to 3 classes with 310 samples.

This paper does not focus on the optimal FFNN architecture.
Therefore, we follow [47], [48] and assign the number of
neurons in the hidden layer to 2 × N + 1 where N is the
number of inputs. For evaluation, we employed k-fold cross-
validation (k is set to 10), where the dataset is partitioned to k
sections, one section for testing and k−1 sections for training.
This process is repeated k times so that each section is used
once as a test dataset.

We compare Reg-IDE with a diverse range of conventional
and PBMH algorithms. The number of function evaluations
for all PBMHs is set to 25,000 [49], similar to the number
of iterations for all conventional algorithms. The population
size for all PBMHs is set to 50. For Reg-IDE, the crossover
probability, scaling factor, and jumping rate are assumed 0.9,
0.5, and 0.3, respectively. Also, the clustering period and
regularisation parameter are selected as 10 and 0.1, receptively.
For the other algorithms, we used default parameters values
borrowed from the cited publications.

In the first experiment, we compare Reg-IDE with 12
conventional algorithms including gradient descent with mo-
mentum backpropagation (GDM) [50], gradient descent with
adaptive learning rate backpropagation (GDA) [36], gradient
descent with momentum and adaptive learning rate back-
propagation (GDMA) [51], conjugate gradient backpropa-
gation with Fletcher-Reeves updates (CG-FR) [52], conju-
gate gradient backpropagation with Polak-Ribiere updates
(CG-PR) [53], [54], conjugate gradient backpropagation with
Powell-Beale restarts (CG-PBR) [55], BFGS quasi-Newton
backpropagation (BFGS) [56], Levenberg-Marquardt back-
propagation (LM) [38], [39], one-step secant backpropaga-
tion (OSS) [57], resilient backpropagation (RP) [58], scaled
conjugate gradient backpropagation (SCG) [59], and Bayesian
regularisation backpropagation(BR) [60]. Table I compares the
results based on mean and standard deviation as well as the
average rank. It is clear that in all datasets, Reg-IDE achieved
the highest classification accuracy, and consequently, the first

1https://archive.ics.uci.edu/ml/index.php

rank. Therefore, it outperforms other conventional algorithms
with a wide margin.

The next experiment compares Reg-IDE with 14 population-
based training algorithms, including DE [28], QODE [29],
RDE-OP [30], PSO [61], ABC [9], ICA [10], FA [12],
GWO [13], ALO [15], DA [16], SCA [62], WOA [18],
GOA [19], and SSA [63]. We selected DE for comparison
since our algorithm is based on this algorithm. Also, QODE
and RDE-OP are selected since both are among the most recent
DE-based trainers. In addition, algorithms such as PSO and
ABC are among well-established trainers, whilst some others
such as WOA and SSA are more recent.

Table II shows the results of Reg-IDE compared to other
PBMH-based training algorithms. As it can be seen, Reg-
IDE gives the best accuracy in 3 cases , and the second-best
performance in 2 cases. Overall, Reg-IDE achieves the best
average rank (1.67), while the second average rank is 4.67,
indicating a wide margin in accuracy improvement. On the Iris
dataset, Reg-IDE achieves the first rank with a classification
accuracy enhancement of 1.33% compared to the second-best
algorithms. On the Pima dataset, Reg-IDE improves accuracy
slightly, more than 0.35%. Also, on seed dataset, Reg-IDE
could improve accuracy dramatically, more than 8%. Finally,
on Cancer and Liver datasets, Reg-IDE achieves slightly worse
results.

In the last experiment, we assess the effect of regularisation
on the weights. To this end, a frequency distribution of the
weights for the Iris dataset, as a representative, on all folds
are provided in Figure 3 and 4. It can be seen that the
regularisation term significantly reduces the weight range.

Overall, our proposed RDE-OP algorithm thus provides
superlative performance compared to the other 26 training
algorithms.

Fig. 3. Frequency distribution of the weights in the proposed algorithm
without regularisation term.

V. CONCLUSION

Training is one of the most important parts of feed-forward
neural networks (FFNN) since the performance of FFNNs is
directly dependent on the training algorithms. Conventional
algorithms such as gradient-based algorithms are extensively
used in the literature, but they are prone to some difficulties
such as getting stuck in the local optimum. In this paper, we

TABLE I
10CV CLASSIFICATION ACCURACY FOR ALL DATASETS FOR CONVENTIONAL ALGORITHMS IN COMPARISON TO REG-IDE

Algorithms Iris Cancer Liver Pima Seed Vertebral avg. rank

GDM
mean 92.00 92.99 59.47 67.98 47.62 76.13
stddev 8.20 7.60 15.05 13.03 29.95 9.15
rank 12 11 12 13 13 12 12.17

GDA
mean 94.67 95.90 58.24 75.91 82.38 80.65
stddev 5.26 2.04 6.53 4.52 6.75 5.27
rank 10 10 13 9 9.5 10 10.25

GDMA
mean 82.67 90.47 60.66 73.20 80.00 72.90
stddev 16.98 5.94 13.99 6.74 16.47 17.62
rank 13 13 11 12 12 13 12.33

CG-FR
mean 95.33 96.19 60.86 76.69 86.67 83.87
stddev 4.50 1.72 8.29 6.20 9.73 7.60
rank 7.5 7 10 5 5.5 4 6.50

CG-PR
mean 96.00 97.07 65.18 75.12 85.24 80.97
stddev 6.44 1.39 8.47 3.57 9.90 4.92
rank 4 2 8 11 8 8.5 6.92

CG-PBR
mean 94.00 96.49 67.18 76.04 88.10 82.90
stddev 5.84 2.95 9.09 5.06 7.86 6.09
rank 11 5 3 7 3.5 6 5.92

BFGS
mean 95.33 96.92 65.22 76.70 86.67 84.19
stddev 4.50 1.28 7.06 3.11 9.73 5.98
rank 7.5 3 7 4 5.5 3 5.00

LM
mean 96.67 96.04 65.55 76.04 88.10 83.55
stddev 4.71 2.51 10.44 4.66 7.53 7.04
rank 2 9 6 8 3.5 5 5.58

OSS
mean 95.33 96.34 64.89 76.58 86.67 80.97
stddev 4.50 2.21 8.01 4.30 5.85 8.93
rank 7.5 6 9 6 7 8.5 7.33

RP
mean 95.33 96.05 65.82 76.83 80.48 78.39
stddev 5.49 2.47 5.21 4.50 9.38 5.05
rank 7.5 8 5 3 11 11 7.58

SCG
mean 96.00 96.63 66.97 78.52 82.38 82.26
stddev 8.43 2.09 9.60 3.05 9.54 8.50
rank 4 4 4 2 9.5 7 5.08

BR
mean 96.00 91.81 70.71 75.89 90.95 84.52
stddev 7.17 3.82 6.93 5.37 7.60 6.94
rank 4 12 2 10 2 2 5.33

Reg-IDE
mean 99.33 98.39 76.27 80.60 92.86 86.77
stddev 2.11 2.24 4.03 4.15 4.05 5.37
rank 1 1 1 1 1 1 1.00

Fig. 4. Frequency distribution of the weights in the proposed algorithm with
regularisation term.

have proposed a novel differential evolution (DE) algorithm for
FFNN training. To this end, first, we introduce a regularisation-
based objective function for the DE-based training algorithm.
Then, we employ a Levenberg-Marquardt algorithm, as a
local refinement, for enhancing the exploitation. In addition,
our proposed algorithm benefits from two other strategies:
1) a region-based strategy to improve exploitation using a
clustering algorithm, and 2) quasi opposition-based learn-
ing to enhance exploration. Our extensive experiments on

different classification problems and in comparison to 26
training algorithms indicate that Reg-IDE is a competitive
training algorithm. In the future, we intend to extend the
proposed algorithm so that it can find the proper architecture as
well as hyper-parameters, simultaneously. Also, extending the
algorithm to deep neural networks and solving more complex
problems are under investigation.

REFERENCES

[1] S. J. Mousavirad, G. Schaefer, S. M. J. Jalali, and I. Korovin, “A bench-
mark of recent population-based metaheuristic algorithms for multi-
layer neural network training,” in Genetic and Evolutionary Computation
Conference Companion, 2020, pp. 1402–1408.

[2] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE
International Conference on Evolutionary Computation, 1998, pp. 69–
73.

[4] R. S. Sexton and J. N. Gupta, “Comparative evaluation of genetic al-
gorithm and backpropagation for training neural networks,” Information
sciences, vol. 129, no. 1-4, pp. 45–59, 2000.

[5] D. Kim, H. Kim, and D. Chung, “A modified genetic algorithm for
fast training neural networks,” in International Symposium on Neural
Networks. Springer, 2005, pp. 660–665.

[6] S. Ding, C. Su, and J. Yu, “An optimizing bp neural network algorithm
based on genetic algorithm,” Artificial intelligence review, vol. 36, no. 2,
pp. 153–162, 2011.

TABLE II
10CV CLASSIFICATION ACCURACY FOR ALL DATASETS FOR POPULATION-BASED TRAINING ALGORITHMS IN COMPARISON TO REG-IDE

Algorithms Iris Cancer Liver Pima Seed Vertebral avg. rank

DE
mean 92 97.36 67.81 76.94 70.00 85.16
stddev 5.26 2.06 8.21 4.97 11.01 5.31
rank 11.5 12 13 13 13 9 11.92

QODE
mean 95.33 98.10 76.82 79.55 67.62 88.39
stddev 6.32 0.99 9.46 4.95 3.01 8.76
rank 7 4.5 1 3 14.5 1 5.17

RDE-OP
mean 96.67 98.82 75.63 80.21 67.62 86.77
stddev 6.48 1.67 6.45 5.73 4.92 4.42
rank 4.5 1 3 2 14.5 3 4.67

PSO
mean 96.00 97.95 73.36 77.60 78.10 86.45
stddev 5.62 1.72 6.28 3.24 11.92 8.02
rank 6 8 5 10 6 5 6.67

ABC
mean 84.67 97.95 70.75 78.26 72.38 82.90
stddev 9.45 1.03 6.47 4.45 8.03 5.70
rank 15 7 9 7 8.5 10 9.41

ICA
mean 96.67 97.22 72.39 79.42 84.76 86.77
stddev 4.71 1.46 11.99 5.77 10.24 4.67
rank 4.5 13 7 4 2 3 5.58

FA
mean 92.00 97.66 73.55 78.90 72.38 85.81
stddev 5.26 1.97 12.64 4.35 14.69 6.12
rank 11.5 10 4 6 8.5 6.5 7.75

GWO
mean 93.33 98.10 73.01 67.45 78.10 81.94
stddev 4.44 1.39 9.74 2.79 10.09 7.93
rank 9 3 6 15 5 13.5 8.58

ALO
mean 94.67 98.10 71.06 78.12 80.48 85.48
stddev 2.81 0.99 6.20 5.89 8.53 4.37
rank 8 4.5 8 8 4 8 6.75

DA
mean 92.67 97.51 70.42 77.85 70.48 81.94
stddev 5.84 1.83 7.01 5.40 7.03 5.31
rank 10 11 11 9 11.5 13.5 11.00

SCA
mean 90.67 97.08 65.50 74.47 71.43 82.26
stddev 7.83 1.82 5.96 4.20 8.98 10.67
rank 13 14 14 14 10 12 12.83

WOA
mean 87.33 97.07 62.87 76.95 70.48 79.03
stddev 8.58 1.96 6.40 3.65 8.92 10.99
rank 14 15 15 12 11.5 15 13.75

GOA
mean 98.00 98.09 70.73 79.03 84.29 82.58
stddev 3.22 1.84 6.45 3.72 12.10 6.49
rank 2.5 6 10 5 3 11 6.25

SSA
mean 98.00 97.80 69.85 77.34 77.62 85.81
stddev 3.22 2.42 7.78 6.50 9.27 7.16
rank 2.5 9 12 11 7 6.5 8.00

Reg-IDE
mean 99.33 98.39 76.27 80.60 92.86 86.77
stddev 2.11 2.24 4.03 4.15 4.05 5.37
rank 1 2 2 1 1 3 1.67

[7] N. M. Nawi, M. Rehman, M. A. Aziz, T. Herawan, J. H. Abawajy et al.,
“An accelerated particle swarm optimization based levenberg marquardt
back propagation algorithm,” in International Conference on Neural
Information Processing. Springer, 2014, pp. 245–253.

[8] T. Si and R. Dutta, “Partial opposition-based particle swarm optimizer
in artificial neural network training for medical data classification,”
International Journal of Information Technology & Decision Making,
vol. 18, no. 5, pp. 1717–1750, 2019.

[9] D. Karaboga, B. Akay, and C. Ozturk, “Artificial bee colony (ABC)
optimization algorithm for training feed-forward neural networks,” in
International Conference on Modeling Decisions for Artificial Intelli-
gence, 2007, pp. 318–329.

[10] H. Duan and L. Huang, “Imperialist competitive algorithm optimized ar-
tificial neural networks for ucav global path planning,” Neurocomputing,
vol. 125, pp. 166–171, 2014.

[11] S. J. Mousavirad, A. A. Bidgoli, H. Ebrahimpour-Komleh, and G. Schae-
fer, “A memetic imperialist competitive algorithm with chaotic maps
for multi-layer neural network training,” International Journal of Bio-
Inspired Computation, vol. 14, no. 4, pp. 227–236, 2019.

[12] S. Mandal, G. Saha, and R. K. Pal, “Neural network training using firefly
algorithm,” Global Journal on Advancement in Engineering and Science
(GJAES), vol. 1, no. 1, pp. 7–11, 2015.

[13] S. Mirjalili, “How effective is the grey wolf optimizer in training multi-
layer perceptrons,” Applied Intelligence, vol. 43, no. 1, pp. 150–161,
2015.

[14] S. Amirsadri, S. J. Mousavirad, and H. Ebrahimpour-Komleh, “A Levy

flight-based grey wolf optimizer combined with back-propagation algo-
rithm for neural network training,” Neural Computing and Applications,
vol. 30, no. 12, pp. 3707–3720, 2018.

[15] W. Yamany, A. Tharwat, M. F. Hassanin, T. Gaber, A. E. Hassanien,
and T.-H. Kim, “A new multi-layer perceptrons trainer based on ant
lion optimization algorithm,” in Fourth international conference on
information science and industrial applications. IEEE, 2015, pp. 40–
45.

[16] M. Khishe and A. Safari, “Classification of sonar targets using an
MLP neural network trained by dragonfly algorithm,” Wireless Personal
Communications, vol. 108, no. 4, pp. 2241–2260, 2019.

[17] S. Mirjalili, “SCA: a sine cosine algorithm for solving optimization
problems,” Knowledge-Based Systems, vol. 96, pp. 120–133, 2016.

[18] I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing connection weights in
neural networks using the whale optimization algorithm,” Soft Comput-
ing, vol. 22, no. 1, pp. 1–15, 2018.

[19] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, “An efficient hybrid
multilayer perceptron neural network with grasshopper optimization,”
Soft Computing, vol. 23, no. 17, pp. 7941–7958, 2019.

[20] A. A. Abusnaina, S. Ahmad, R. Jarrar, and M. Mafarja, “Training
neural networks using salp swarm algorithm for pattern classification,”
in Proceedings of the 2nd International Conference on Future Networks
and Distributed Systems, 2018, pp. 1–6.

[21] S. J. Mousavirad, D. Zabihzadeh, D. Oliva, M. Perez-Cisneros, and
G. Schaefer, “A grouping differential evolution algorithm boosted by
attraction and repulsion strategies for masi entropy-based multi-level

image segmentation,” Entropy, vol. 24, no. 1, p. 8, 2021.
[22] S. J. Mousavirad, A. Asilian Bidgoli, and S. Rahnamayan, “Tackling

deceptive optimization problems using opposition-based DE with center-
based Latin hypercube initialization,” in 14th International Conference
on Computer Science and Education, 2019.

[23] A. Ara, N. A. Khan, O. A. Razzaq, T. Hameed, and M. A. Z.
Raja, “Wavelets optimization method for evaluation of fractional partial
differential equations: an application to financial modelling,” Advances
in Difference Equations, vol. 2018, no. 1, p. 8, 2018.

[24] S. V. Moravvej, S. J. Mousavirad, M. H. Moghadam, and M. Saa-
datmand, “An lstm-based plagiarism detection via attention mechanism
and a population-based approach for pre-training parameters with im-
balanced classes,” in International Conference on Neural Information
Processing. Springer, 2021, pp. 690–701.

[25] S. J. Mousavirad, D. Oliva, R. K. Chakrabortty, D. Zabihzadeh, and
S. Hinojosa, “Population-based self-adaptive generalised masi entropy
for image segmentation: A novel representation,” Knowledge-Based
Systems, vol. 245, p. 108610, 2022.

[26] S. J. Mousavirad, M. H. Moghadam, M. Saadatmand, R. Chakrabortty,
G. Schaefer, and D. Oliva, “Rws-l-shade: An effective l-shade algorithm
incorporation roulette wheel selection strategy for numerical optimisa-
tion,” in International Conference on the Applications of Evolutionary
Computation (Part of EvoStar). Springer, 2022, pp. 255–268.

[27] S. J. Mousavirad, G. Schaefer, I. Korovin, M. H. Moghadam, M. Saa-
datmand, and M. Pedram, “An enhanced differential evolution algorithm
using a novel clustering-based mutation operator,” in 2021 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2021, pp. 176–181.

[28] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed-forward neural networks,” Neural Processing
Letters, vol. 17, no. 1, pp. 93–105, 2003.

[29] S. J. Mousavirad and S. Rahnamayan, “Evolving feedforward neural
networks using a quasi-opposition-based differential evolution for data
classification,” in IEEE Symposium Series on Computational Intelli-
gence, 2020.

[30] S. J. Mousavirad, G. Schaefer, I. Korovin, and D. Oliva, “RDE-OP: A
region-based differential evolution algorithm incorporation opposition-
based learning for optimising the learning process of multi-layer neural
networks,” in 24th International Conference on the Applications of
Evolutionary Computation, 2021.

[31] S. Mc Loone and G. Irwin, “Improving neural network training solutions
using regularisation,” Neurocomputing, vol. 37, no. 1-4, pp. 71–90, 2001.

[32] M. Carvalho and T. B. Ludermir, “Particle swarm optimization of feed-
forward neural networks with weight decay,” in 2006 Sixth International
Conference on Hybrid Intelligent Systems (HIS’06). IEEE, 2006, pp.
5–5.

[33] A. Rakitianskaia and A. Engelbrecht, “Weight regularisation in particle
swarm optimisation neural network training,” in 2014 IEEE symposium
on swarm intelligence. IEEE, 2014, pp. 1–8.

[34] L. Munkhdalai, J. Y. Lee, and K. H. Ryu, “A hybrid credit scoring model
using neural networks and logistic regression,” in Advances in Intelligent
Information Hiding and Multimedia Signal Processing. Springer, 2020,
pp. 251–258.

[35] N. Abrishami, A. R. Sepaskhah, and M. H. Shahrokhnia, “Estimating
wheat and maize daily evapotranspiration using artificial neural net-
work,” Theoretical and Applied Climatology, vol. 135, no. 3-4, pp. 945–
958, 2019.

[36] H. D. Beale, H. B. Demuth, and M. Hagan, “Neural network design,”
Pws, Boston, 1996.

[37] S. J. Mousavirad, G. Schaefer, and I. Korovin, “An effective approach
for neural network training based on comprehensive learning,” in Inter-
national Conference on Pattern Recognition, 2020.

[38] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quarterly of Applied Mathematics, vol. 2, no. 2, pp.
164–168, 1944.

[39] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[40] G. Lera and M. Pinzolas, “Neighborhood based levenberg-marquardt
algorithm for neural network training,” IEEE Transactions on Neural
Networks, vol. 13, no. 5, pp. 1200–1203, 2002.

[41] M. El-Bakry, E.-S. A. El-Dahshan, and E. Abd El-Hamied, “Charged
particle pseudorapidity distributions for Pb–Pb and Au–Au collisions

using neural network model,” Ukrainian Journal of Physics, vol. 58,
no. 8, pp. 709–709, 2013.

[42] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

[43] K. Deb, “A population-based algorithm-generator for real-parameter
optimization,” Soft Computing, vol. 9, no. 4, pp. 236–253, 2005.

[44] Z. Cai, W. Gong, C. X. Ling, and H. Zhang, “A clustering-based
differential evolution for global optimization,” Applied Soft Computing,
vol. 11, no. 1, pp. 1363–1379, 2011.

[45] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine
intelligence,” in International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference
on Intelligent Agents, Web Technologies and Internet Commerce, vol. 1,
2005, pp. 695–701.

[46] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-oppositional
differential evolution,” in IEEE Congress on Evolutionary Computation,
2007, pp. 2229–2236.

[47] S. J. Mousavirad, A. A. Bidgoli, H. Ebrahimpour-Komleh, G. Schaefer,
and I. Korovin, “An effective hybrid approach for optimising the learning
process of multi-layer neural networks,” in International Symposium on
Neural Networks, 2019, pp. 309–317.

[48] S. J. Mousavirad, S. M. J. Jalali, A. Sajad, K. Abbas, G. Schaefer,
and S. Nahavandi, “Neural network training using a biogeography-based
learning strategy,” in International Conference on Neural Information
Processing, 2020.

[49] N. H. Awad, M. Z. Ali, P. N. Suganthan, and R. G. Reynolds,
“Differential evolution-based neural network training incorporating a
centroid-based strategy and dynamic opposition-based learning,” in
IEEE congress on evolutionary computation. IEEE, 2016, pp. 2958–
2965.

[50] V. Phansalkar and P. Sastry, “Analysis of the back-propagation algorithm
with momentum,” IEEE Transactions on Neural Networks, vol. 5, no. 3,
pp. 505–506, 1994.

[51] L. Scales, Introduction to non-linear optimization. Macmillan Interna-
tional Higher Education, 1985.

[52] R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” The Computer Journal, vol. 7, no. 2, pp. 149–154, 1964.

[53] G. H. Golub and Q. Ye, “Inexact preconditioned conjugate gradient
method with inner-outer iteration,” SIAM Journal on Scientific Com-
puting, vol. 21, no. 4, pp. 1305–1320, 1999.

[54] Y. Notay, “Flexible conjugate gradients,” SIAM Journal on Scientific
Computing, vol. 22, no. 4, pp. 1444–1460, 2000.

[55] M. J. D. Powell, “Restart procedures for the conjugate gradient method,”
Mathematical Programming, vol. 12, no. 1, pp. 241–254, 1977.

[56] R. L. Watrous, “Learning algorithms for connectionist networks: Applied
gradient methods of nonlinear optimization,” 1988.

[57] R. Battiti, “First-and second-order methods for learning: between steep-
est descent and newton’s method,” Neural Computation, vol. 4, no. 2,
pp. 141–166, 1992.

[58] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in IEEE International
Conference on Neural Networks. IEEE, 1993, pp. 586–591.

[59] M. F. Møller, A scaled conjugate gradient algorithm for fast supervised
learning. Aarhus University, Computer Science Department, 1990.

[60] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to
bayesian learning,” in International Conference on Neural Networks,
vol. 3, 1997, pp. 1930–1935.

[61] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural networks,” in IEEE Swarm Intelligence Symposium, 2003, pp.
110–117.

[62] A. T. Sahlol, A. A. Ewees, A. M. Hemdan, and A. E. Hassanien,
“Training feedforward neural networks using sine-cosine algorithm to
improve the prediction of liver enzymes on fish farmed on nano-
selenite,” in 2016 12th International Computer Engineering Conference.
IEEE, 2016, pp. 35–40.

[63] D. Bairathi and D. Gopalani, “Salp swarm algorithm (SSA) for training
feed-forward neural networks,” in Soft Computing for Problem Solving.
Springer, 2019, pp. 521–534.

