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Abstract: Benefiting from the advances in object detection in remote sensing, detecting objects in im-
ages captured by drones has achieved promising performance in recent years. However, drone-view
object detection in rainy weather conditions (Rainy DroneDet) remains a challenge, as small-sized
objects blurred by rain streaks offer a little valuable information for robust detection. In this paper,
we propose a Collaborative Deraining Network called “CoDerainNet”, which simultaneously and
interactively trains a deraining subnetwork and a droneDet subnetwork to improve the accuracy of
Rainy DroneDet. Furthermore, we propose a Collaborative Teaching paradigm called “ColTeaching”,
which leverages rain-free features extracted by the Deraining Subnetwork and teaches the DroneDet
Subnetwork such features, to remove rain-specific interference in features for DroneDet. Due to the
lack of an existing dataset for Rainy DroneDet, we built three drone datasets, including two synthetic
datasets, namely RainVisdrone and RainUAVDT, and one real drone dataset, called RainDrone.
Extensive experiment results on the three rainy datasets show that CoDerainNet can significantly
reduce the computational costs of state-of-the-art (SOTA) object detectors while maintaining detection
performance comparable to these SOTA models.

Keywords: drone-view object detection; image deraining; collaborative teaching

1. Introduction

Drones have attracted much attention recently due to their rapid and cost-effective
deployment [1]. Drone-view object detection (DroneDet) aims to locate and classify objects
in images captured by drones, which is one of the most crucial algorithms deployed on
drones for environmental perception. Recently, a few object detectors for DroneDet [2–4]
have been proposed to boost detection performance. Their detection accuracy decreases
enormously in rainy weather, which is one of the most common weather conditions,
although they have achieved impressive performance in favorable weather conditions.

Rain contains countless rain streaks, which have different density levels. These rain
streaks block some of the light reflected by objects, thus decreasing the contrast between
objects and the background in an image. A widely used rain model is the additive composite
model [5,6], which is written as follows:

r = c + s (1)

where r is an image degraded by rain streaks, c is the corresponding rain-free and clean
image, and s denotes rain streaks, which can be viewed as additive noise. The noise s
degrades features extracted for DroneDet in rainy weather conditions, resulting in poor
detection performance.

We explain the reasons for the poor detection performance from a probabilistic per-
spective. First, we define some notations for further analysis. Denote a rain-free (source)
domain as D = {C, P(C)} (indicated as the black circles in Figure 1). D consists of clean
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images collected under favorable weather conditions, where C is a feature space, P(C)
is a marginal probability distribution, and C = {c1, . . . , cn} ∈ C. Denote a rainy (target)
domain as Dr = {R, Pr(R)} (indicated as the pink circles in Figure 1). Dr consists of
degraded images collected under rainy weather conditions, where R is another feature
space, Pr(R) is a marginal probability distribution, and R = {r1, . . . , rn} ∈ R. Let the
task of drone-view object detection under rainy weather conditions (Rainy DroneDet) be
T r = {Y, P(Y|R)}, where Y is a feature space, P(Y|R) is a conditional probability distri-
bution, and Y = { y1, . . . , yn} ∈ Y. When a detector that is well trained in D is utilized
to perform DroneDet in Dr, the detection performance will decrease significantly since
P(Y|C) 6= P(Y|R).

Deraining Model

Input
Rainy images  

Output
Detection ResultsDrone-view Detector

Drone-view Detector

(a)

(b) 

(c) 

TeachingInput
Rainy images  

Output
Detection Results

Input
Rainy images  

Output
Detection Results

Det HeadExtractor

Drone-view Detector

Deraining Model

  Extractor  Image
Generator

Only Training

Minimize classification error

Cross-domain
Alignment Module

Minimize classification error

Figure 1. Comparison of the proposed CoDerainNet and existing detectors for Rainy DroneDet.
(a) ImDrain-based methods, (b) DA-based methods, (c) our CoDerainNet.

Two types of solutions for the Rainy DroneDet are Image Deraining-based methods
(“ImDerain-based”, as illustrated in Figure 1a) and Domain Adaptation-based methods
(“DA-based”, as illustrated in Figure 1b). The ImDerain-based methods [7–9] generally
consist of two stages: image deraining and object detection. However, they adopt a multi-
stage and progressively deraining model [10] to obtain rain-free images, resulting in huge
computation costs. Deploying these ImDerain-based methods on drones is infeasible due
to the very limited onboard computing resources.

Essentially, these ImDerain-based methods attempt to build a synthetic rainy domain
to mitigate the domain gap between D and Dr, as shown in Figure 1a. Let the synthetic
rainy domain beDr

syn = {Rsyn, Pr(Rsyn)}, where Rsyn is another feature space, and Pr(Rsyn)

is a marginal probability distribution, Rsyn = {r1
syn, . . . , rn

syn} ∈ Rsyn, and ri
syn is synthesized

by the combination of c and synthetic rain streaks ssyn. However, Wei et al. [11] reported
that there was a large difference between ssyn and s, such as the direction and density
of rain streaks. Instead of building Dr

syn, DA-based methods, [12–14] design a cross-
domain alignment module to directly align the two feature spaces, C and R, as shown in



Remote Sens. 2023, 15, 1487 3 of 21

Figure 1b. The DA-based methods investigate cross-domain knowledge from a probabilistic
perspective, but neglect intrinsic knowledge in the image degradation from D to Dr.

In this paper, we mitigate the two issues and propose a light image degradation
knowledge-transferring network for Rainy DroneDet, called “CoDerainNet”, which is a
Collaborative Deraining Network. As shown in Figure 1c, our CoDerainNet includes the
Deraining Subnetwork, DroneDet Subnetwork, and a Collaborative Teaching paradigm.
CoDerainNet can interactively train the Deraining Subnetwork and DroneDet Subnetwork
to improve the Rainy DroneDet performance with limited additional computational cost
during inference. Furthermore, we propose a Collaborative Teaching paradigm called
“ColTeaching”, which transfers intrinsic degradation knowledge from the Deraining Sub-
network to DroneDet Subnetwork and teaches the DroneDet Subnetwork such knowledge
to prevent rain-specific interference in features for DroneDet.

We build three drone-captured datasets due to the scarcity of datasets for Rainy
DroneDet. They include two synthetic drone-captured datasets, namely RainVisDrone and
RainUAVDT, based on the VisDrone [15] and UAVDT [16] benchmark datasets. Moreover,
we create a real drone-captured dataset, “RainDrone”, to verify CoDerainNet’s effectiveness
in real rainy scenarios. More details of our RainDrone will be introduced in Section 5.1.

Our main contributions can be summarized as follows.

(1) We propose CoDerainNet, a light object detector for Rainy DroneDet that can interac-
tively train the Deraining Subnetwork and DroneDet Subnetwork to improve Rainy
DroneDet performance with limited additional computational cost during inference;

(2) We propose ColTeaching, which transfers intrinsic degradation knowledge from the
Deraining Subnetwork to DroneDet Subnetwork to block rain-specific interference in
features for Rainy DroneDet. This offers a new solution to the problem of how image
restoration techniques can help improve tasks of low-quality image understanding;

(3) To advance the research on DroneDet under inclement weather, we build three drone-
captured datasets, including two synthetic datasets and one real dataset.

We compare CoDerainNet with seven state-of-the-art (SOTA) models to verify its
effectiveness and conduct extensive experiments on the three drone-captured datasets. The
experiment results show that CoDerainNet can significantly reduce the computational costs
of these SOTA object detectors while maintaining detection performance comparable to
these SOTA models.

The rest of the paper is organized as follows: Firstly, in Section 2, we review the current
development of Rainy DroneDet and provide a summary of related works.
Section 3 describes the problem in collaborative deraining learning for Rainy DroneDet. In
Section 4, we provide details of CoDerainNet. Section 5 presents the experimental results on
CoDerainNet. Section 6 discusses the limitations and presents a discussion of CoDerainNet.
Finally, in Section 7, we conclude the paper.

2. Related Work

We review the related works from two aspects: general object detection under rainy
weather conditions and DroneDet.

2.1. Object Detection under Rainy Weather Conditions

We describe the major existing solutions to this task in two main directions, i.e., the
ImageDe-based and DA-based for general object detection. We provide a summary of their
respective advantages and disadvantages in Table 1.
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Table 1. Summary of the advantages and disadvantages of object detection under rainy weather conditions.

Methods Advantages Disadvantages

ImageDe-based methods [17–19]
Intuitive idea; adopts the deraining algo-
rithms as a pre-processing module to improve
the visibility of the input images.

The pre-processing module increases the com-
plexity of the original detectors. New rainy
images need to be annotated to supervise the
deraining process.

DA-based methods [13,14,20] Has no need to annotate new rainy images
because they belong to unsupervised learning.

Require a new alignment module for every new
domain, which limits their generalization.

2.1.1. ImageDe-Based Object Detection

ImageDe-based object detection [17–19] improves the visibility of input using exist-
ing deraining algorithms [17,18] as a pre-processing module, and then conducts object
recognition. Early on, the two-stage fashion is very inefficient because an image deraining
module in the first stage and an object detection module in the second stage are optimized
separately. The image deraining module is not optimized for the task of object recognition
but for human perception. Thus, improving image visibility with the image deraining
module does not necessarily benefit object detection performance. Furthermore, a unified
fashion has been proposed to bridge the goals of image deraining and object detection.
Very recently, Liu et al. [19] designed a fully differentiable image restoration module to
recover the latent content for the sequential object recognition module. In this model, the
two modules can be trained in an end-to-end fashion.

The use of image deraining modules significantly increases the complexity of the
original detectors, making it infeasible to deploy them on drones with limited onboard
computing resources. Moreover, annotating drone images is more time-consuming and
laborious compared to annotating natural scene images, due to the presence of a large
number of small objects in drone-captured images.

2.1.2. DA-Based Object Detection

DA-based object detection [13,14,20] bridges the domain gap between images collected
in normal (source domain) and rainy weather (target domain) conditions by discovering
domain invariant feature representations. Following the domain adaptation paradigm,
firstly, samples from the source domain are used to train a detector. Secondly, domain
invariant features for the target domain are learned by a feature alignment module in the
detector. A multi-adversarial Faster-RCNN detector [20] was proposed for addressing
the problem of domain adaptation between normal and rainy weather conditions. The
multi-adversarial detector adopted a hierarchical feature alignment module for layer-wise
domain invariant features. Sindagi et al. [13] proposed a prior-based domain adversarial
framework to adapt existing detectors to inclement weather conditions. In this framework,
a prior-adversarial loss was defined to reduce the rainy weather-specific information. The
novel loss was used to improve the detection performance under rainy weather. Very
recently, for rainy scene segmentation, Lee et al. proposed a segmentation model FIFO [14],
which was insensitive to images’ rain-style variation.

From a probabilistic perspective, the DA-based methods focus on the latent rela-
tionship between the two different domains aiming to discover the common knowledge
between a clean domain and a rainy domain. Whereas our CoDerainNet attempts to ex-
plore the process of image degradation from a clean domain to a rainy domain. Moreover,
the DA-based methods require a new alignment module for every new domain, which
limits their generalization ability.

2.2. DroneDet

DroneDet is an emerging and hot topic in aerial image processing. Aerial images are
different from natural images and have unique characteristics. For instance, objects in
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these aerial images are generally small, resulting in poor DroneDet performance. There are
three types of solutions for DroneDet. Super-resolution-based methods [1,4,21] reconstruct
a low-resolution image into a high-resolution one, which contains more details of small
objects beneficial for recognizing them. Towards this end, generative adversarial networks,
consisting of a generator and a discriminator, are utilized to super-resolve low-resolution
images. These methods adopt a multi-stage paradigm, including region proposal, RoIs
super-resolution, and object detection, which is inefficient and difficult to optimize in an
end-to-end manner. Context-based methods [22,23] establish the relationship between RoIs
and their surrounding regions, and integrate it into their original features. It is difficult
for drone-captured images to establish such a relationship due to background clutter in
drone-captured images. Multi-scale-representation-based methods [24–26] combine spatial
information in low-level layers and semantic information in high-level layers for feature
enhancement. In recent years, the security aspects of drone communications have started to
receive attention [27–29]. Tian et al. [27] proposed an adversarial attack model to conduct
adversarial attacks against deep learning-based navigation systems of drones.

Although methods for DroneDet have obtained impressive detection performance, their
detection performance decreases significantly in rainy weather conditions. To deal with the
issue of Rainy DroneDet, CoDerainNet introduces a subnetwork for image deraining.

3. Problem Definition

We follow Multi-Task Learning (MTL) [30] to define the problem in collaborative
deraining learning for Rainy DroneDet.

Definition (MTL). Given n related tasks {Ti}n
i=1, the goal of MTL is to improve the

performance of all or some of the tasks by simultaneously learning the n tasks.
Based on this definition, we can formulate the task of Rainy DroneDet. Recall that

T r = {Y, P(Y|R)} is the task of Rainy DroneDet. Let T dr = {C, P(C|R)} be the task of
image deraining. T r is trained on the dataset {R, Y}, which consists of N training samples
{ri, yi}N

i=1, where ri ∈ Rw×h×3 is the ith rainy image and yi is the image’s label for DroneDet.
T dr is trained on the dataset {R, C}, which consists of M training samples {ri, ci}M

i=1, where
ci ∈ Rw×h×3 is the corresponding rain-free image of ri for image deraining. Therefore, the
problem of the collaborative deraining learning for Rainy DroneDet can be formulated
as follows.

Definition (collaborative deraining learning for Rainy DroneDet). Given two tasks,
Rainy DroneDet T r and image deraining T dr, the goal of the collaborative deraining
learning for Rainy DroneDet is to improve the T r performance with limited computational
costs during inference by simultaneously optimizing these two tasks.

4. Methodology
4.1. Overview

Figure 2 shows the architecture of the proposed CoDerainNet, which consists of two
subnetworks and one training paradigm, i.e., Deraining Subnetwork, DroneDet Subnet-
work, or ColTeaching. (1) The Deraining Subnetwork reduces rain streak noise in features
by reconstructing rain-free images. (2) The DroneDet Subnetwork detects objects in drone-
captured images effectively. (3) ColTeaching incorporates image deraining into the process
of Rainy DroneDet by strengthening the interaction between the two subnetworks.

CoDerainNet can significantly improve Rainy DroneDet performance by interactively
training the two subnetworks. Firstly, each of them is trained on the dataset {ri, ci}M

i=1 or
{ri, yi}N

i=1 so that they obtain optimal image deraining and object detection performance,
respectively. Secondly, ColTeaching incorporates image deraining into the process of Rainy
DroneDet by allowing interaction between them. Moreover, our proposed CoDerainNet
can improve Rainy DroneDet performance with limited additional computational cost, as
only the DroneDet Subnetwork needs to be executed during inference. We provide the
details of the above two subnetworks and the training paradigm below.
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Figure 2. The architecture of CoDerainNet. It consists of two subnetworks and one training paradigm,
i.e., Deraining Subnetwork, DroneDet Subnetwork, and ColTeaching. The Deraining Subnetwork is
only executed during the training phase.

4.2. Deraining Subnetwork

Rain streaks can reduce the discriminative capacity of different objects’ features. In
the real world, rain streaks block some of the light reflected by objects, which reduces
images’ contrast and brightness. In addition, rain streaks appear as noise in images and
will reduce signal-to-noise ratio of original images. To alleviate the problem, we proposed
a Deraining Subnetwork, which reduces the noise in features by reconstructing rain-free
images. Figure 2 shows its architecture, which consists of two modules, namely a derain-
ing feature extractor φderain(·) and a rain-free image generation module. To successfully
perform the subsequent weight-sharing strategy ColTeaching, φderain(·) shares the same
structure as the detection feature extractor, which consists of the first two convolution
blocks in the DroneDet Subnetwork. Features φderain(R) are delivered into the rain-free
image generation module for image deraining.

The rain-free image generation module is presented as follows. Firstly, one convolution
block Conv(·) and two ResBlock modules Res(·) are utilized to integrate more context
information into the extracted features φderain(R) for image deraining. Secondly, several
deconvolution blocks DeConv(·) are used to up-sample the enriched features to make the
resolution of the up-sampled features the same as that of the input. Then, the matched
features and their corresponding input are concatenated Cat(·, ·) and pass through the
pyramid enhancement block [31] Pyramid(·) to reconstruct the rain-free images. Pyramid(·)
is responsible for improving the features’ representational power through multi-scale
learning and multiple convolutional blocks with different receptive fields. At last, the
enhanced features pass through a 3× 3 convolution layer Conv3×3(·) to obtain the final
rain-free images. Mathematically, the generated rain-free images C = {c1, c2, . . . , cN} can
be formulated as follows:

C = Conv3×3(Pyramid(Cat( f eatnoise, R)) (2)

where

f eatnoise = DeConv(Res(Conv(φderain(R)))). (3)

The loss function of the Deraining Subnetwork LDR is written as follows:

LDR =
1
N

N

∑
i=1
‖ci − cGT

i ‖2, (4)
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where N denotes the batch size and ‖ · ‖2 presents the L2 norm, and ci and cGT
i represent

the ith generated image and the corresponding ground truth, respectively. In this way,
the clean features φderain(R), where noise is removed by image deraining, are beneficial to
Rainy DroneDet.

The pseudo-code of image deraining with the Deraining Subnetwork is summarized
in Algorithm 1.

Algorithm 1 The pipeline of image deraining with the Deraining Subnetwork.
Input: Rainy images R = {r1, . . . , rn} ∈ R.
Output: Rain-free images C = {c1, . . . , cn} ∈ C

1: begin
2: for i ∈ [0, n] do
3: φderain(ri);
4: f eatcont = Res(Conv(φderain(R)));
5: f eatnoise = DeConv( f eatcont);
6: f eatcat = Cat( f eatnoise, R);
7: f eatenh = Pyramid( f eatcat);
8: ci = Conv3×3( f eatenh);
9: loss = ‖ci − cGT

i ‖2;
10: Loss Back-forward Propagation;
11: end
12: end

4.3. DroneDet Subnetwork

The DroneDet Subnetwork adopts Feature Pyramid Networks (FPN) [32] to detect
small objects effectively. Figure 2 presents its architecture, which includes four modules.
The first module is a backbone, which transforms the input into a certain feature represen-
tation. The second module is an FPN module, which utilizes convolution kernel filters
with different strides to build several pyramidal feature hierarchies. It extracts multi-scale
feature representations by combining the rich semantic and detailed position information
from different layers of the backbone. The third module is a fine-grained target-focusing
module, which refines the multi-scale feature representations. The last module, “Head”,
is used to predict positions and categories of objects. A module for context collection is
also integrated into the second module to improve the expressive power of small-sized
objects’ features.

Context collector [26] is a module specially designed for DroneDet to collect local
and global context information to boost small object detection performance. It includes
three branches: a 1× 1 convolutional layer, a dilated convolutions, and a global average
pooling layer. In the first branch, the 1× 1 convolutional layer ψi is utilized to decrease
the channel number of input feature Ci. In the second branch, a few 3× 3 convolutional
filters υk

i with the atrous rate k ∈ (1, 2, . . . , N) are adopted to build local contextual features.
In the last branch, the global average pooling layer φi is used for a collection of global
contextual information at image level. The final features are obtained by concatenating
features extracted from the three branches. The series of operations is written as follows:

Fi(Ci) = Con({υk
i (Ci)}N

k=1, ψi(Ci), φi(Ci)). (5)

where Con is the concatenation operator.
The fine-grained target-focusing module [26] is introduced to achieve a better per-

formance of small object detection. This module further enhances the multi-scale fea-
tures by aggregating fine-grained objects’ sub-parts with a special focus on small objects.
Figure 3 presents the details of its structure, including FiFA and TFB. Specifically, FiFA is
a fine-grained feature aggregation block, which adaptively aggregates sub-regions from
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multi-scale features. TFB is a target-focusing block, which focuses the attention on RoIs to
suppress background noise.
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P2
Blocking 


Background


...... ............

Figure 3. The details of the Fine-grained Target-focusing module.

A regression loss for objects’ locations and a classification loss for objects’ categories
are used to optimize DroneDet Subnetwork. The regression loss GIoU [33] is used to regress
predicted bounding boxes to solve vanishing gradients of IoU loss for non-overlapping
case. The GIoU loss is written as follows:

GIoU = IoU − |C− (A ∪ B)|
|C| , (6)

where

IoU =
|A ∩ B|
|A ∪ B| . (7)

Here, A is a position of a predicted bounding box, B is a position of a ground truth
bounding box, and C is the smallest convex set of |A ∪ B|.

The binary cross entropy (BCE) loss is used to predict objects’ categories. The BCE loss
is written as follows:

LBCE = −(y · log(ŷ) + (1− y) · log(1− ŷ)), (8)

where ŷ is a predicted probability of a sample, and y is a label of the sample.

4.4. Collaborative Teaching Paradigm (ColTeaching)

We proposed ColTeaching to perform interactions between the above two subnetworks.
ColTeaching is a simple but effective joint optimization paradigm, which attempts to
incorporate image deraining into the process of Rainy DroneDet. Figure 4 illustrates the
process of ColTeaching. Firstly, Deraining Subnetwork and DroneDet Subnetwork are pre-
trained with their task-related annotations, namely the object’s position and categories for
detection and clean images for deraining. Secondly, given the two pre-trained subnetworks,
the detection feature extractor and the deraining feature extractor exchange their weights.
Finally, the two subnetworks are trained with their respective task for n epochs and then
exchange weights of their feature extractors.

A reasonable explanation for why ColTeaching can be effective is as follows. Cleaner
and semantically more meaningful features are built through ColTeaching and used to teach
the two subnetworks, allowing them to benefit each other. The clean features extracted
by Deraining Subnetwork are viewed as intrinsic degradation knowledge and used to
teach DroneDet Subnetwork to block rain-specific interference in features for DroneDet.
Conversely, the semantic features extracted by DroneDet Subnetwork are viewed as helpful
knowledge and used to teach Deraining Subnetwork to generate the rain-free image.
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5. Experiments

We evaluated our CoDerainNet on the three datasets collected on drones under rainy
weather conditions, and compared it with seven SOTA methods to verify its effectiveness.
We first introduce experimental datasets and compare models below.

5.1. Datasets and Models

No benchmark datasets have been built for Rainy DroneDet. According to the very
recent review [15] for drone-based vision, only two public datasets have been built for
DroneDet, i.e., VisDrone [15] and UAVDT [16]. However, these two datasets do not con-
tain any images under inclement weather conditions, especially rainy weather conditions.
Therefore, we build two synthetic drone-captured datasets, i.e., RainVisDrone and RainU-
AVDT, and create a real drone-captured dataset, i.e., RainDrone. Table 2 shows the overview
of our drone-captured dataset.

We synthesized rainy images based on the rain synthesis process in [34]. Rainy images
from RainVisDrone and RainUAVDT are synthesized with three different rain-density
levels, namely light, medium, and heavy level, as was in SFA-Net [35]. The noise level is
introduced to adjust an image’s rain density. Light, medium, and heavy rain conditions
correspond to the noise level 5∼40%, 40∼70%, and 70∼95%, respectively. Figure 5a shows
some samples of the synthesized images at three rain-density levels.

Table 2. Overview of our drone-captured rainy image datasets.

Dataset Rain Density #Images Real or Synthetic

RainVisDrone
light 7019 synthetic

medium 7019 synthetic
heavy 7019 synthetic

RainUAVDT
light 38,327 synthetic

medium 38,327 synthetic
heavy 38,327 synthetic

RainDrone N/A 300 real
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 Original Image Light Rain Image Medium Rain Image Heavy Rain Image
(a)

(b)

Figure 5. Samples of images from our datasets. (a) Synthetic rainy images from RainVisDrone and
RainUAVDT. (b) Real rainy images from RainDrone.

(1) RainVisDrone: Our RainVisDrone dataset has 19,413 synthetic images for training and
1644 synthetic images for testing. The image resolution is about 2000× 1500 pixels.
Images have ten categories, i.e., pedestrian, person, car, van, bus, truck, motor, bicycle,
awning tricycle, and tricycle;

(2) RainUAVDT: Our RainUAVDT dataset has 69,774 synthetic images for training and
45,207 synthetic images for testing. The image resolution is about 1080× 540 pixels.
Images have three categories, i.e., bus, truck, and car;

(3) RainDrone: All images from RainDrone are captured by a drone platform DJI MINI 2.
They mainly include scenarios under rainy weather conditions. RainDrone has 300 real
rainy images for model inference. The resolution of images is about 1080× 540 pixels.
RainDrone has the same categories as RainVisdrone, including pedestrian, person, car,
van, etc. Figure 5b shows some samples of real rainy images from RainDrone.

According to Section 2, we designed three groups of experiments to comprehensively
compare CoDerainNet with object detection models. In the first group, CoDerainNet
is compared with two current SOTA object detection models, namely YOLOv5 [36] and
YOLOv7 [37]. In the second group, CoDerainNet is compared with the ImDerain-based
methods, which are combination models of MPRNet [7], PReNet [8], and each of the two
SOTA detectors: (1) MPRNet and YOLOv5, called “MPRNet-YOLOv5”; (2) PReNet and
YOLOv5, called “PReNet-YOLOv5”; (3) MPRNet and YOLOv7, called “MPRNet-YOLOv7”;
(4) PReNet and YOLOv7, called “PReNet-YOLOv7”. In the third group, CoDerainNet is
compared with the DA-based method AdaptiveTeacher [38].

5.2. Implementation Details and Evaluation Metrics
5.2.1. Implementation Details

We conducted all the implements with PyTorch 1.8.1 on a server with NVIDIA RTX3090
GPU. We used part of the pre-trained model from YOLOv5 [36] to save training time. The
Adam optimizer is used to train CoDerainNet because it can better deal with the issue of
sparse gradients and converge faster than the standard SGD optimizer. The learning rate
with the cosine learning rate schedule is set to 3× 10−4. The long side of the input image
to CoDerainNet is 1536 pixels, the same as in TPH-YOLOv5 [39].
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5.2.2. Evaluation Metrics

We adopted Average Precision (AP) and mean Average Precision (mAP), the same
as in PASCAL VOC [40], to evaluate the detection performance of CoDerainNet. AP is
defined as follows:

AP =
∫ 1

0
P(R)dR, (9)

where R is Recall and P is Precision, and P(R) is the curve composed of R and P. mAP is
defined as follows:

mAP =
1
N

N

∑
i=1

APi, (10)

where N is the number of categories. AP is averaged on ten Intersection over Union (IoU) values
of [0.50 : 0.05 : 0.95]. AP50 and AP75 are calculated at the single IoU of 0.5 and 0.75, respectively.

5.3. Ablation Studies

We carried out ablation studies on RainVisDrone to verify the effectiveness of each
component in CoDerainNet. We removed the Deraining Subnetwork from CoDerainNet as
the baseline model.

5.3.1. Effectiveness of Our ColTeaching

We aimed to verify that CoDerainNet can perform weights exchange by the ColTeach-
ing paradigm, to effectively improve the detection accuracy for DroneDet. For the interval
of exchanging weights, we assigned weights of the Deraining Subnetwork to the DroneDet
Subnetwork every 50 epochs; we assigned weights of the DroneDet Subnetwork to the
Deraining Subnetwork every 600 epochs. We set the input of image size as 640× 640
instead of large input 1336× 1336 to reduce the training time of CoDerainNet.

Figures 6 and 7 show the learning process of both the DroneDet and Deraining Sub-
network optimized by our ColTeaching paradigm, respectively. In Figure 6, we can see that
the detection accuracy of the DroneDet Subnetwork significantly drops and then gradually
increases every 50 epochs. As for Box_loss and Cls_loss, the two losses significantly boost
and gradually decrease every 50 epochs. This result shows that the DroneDet Subnet-
work can still converge effectively with ColTeaching. Figure 7 presents that the PSNR
value of reconstructed rain-free images significantly drops and then gradually increases
every 600 epochs. The LDR significantly boosts and gradually decreases every 600 epochs.
This result suggests that the Deraining Subnetwork can also converge effectively with
ColTeaching. In addition, Table 3 presents that the AP50 of “Baseline w LDR” increased by
2.18%. The results verify that the ColTeaching paradigm can effectively boost the DroneDet
performance. With the ColTeaching paradigm, clean features extracted by the Deraining
Subnetwork from rainy inputs for image deraining can be shared to learn better detection
features in the DroneDet Subnetwork.

Table 3. Effectiveness of the Deraining Subnetwork.

Method AP50[%]

Baseline 37.97
Baseline w Conv_3 39.01
Baseline w Conv_2 39.76

Baseline w LDR (Baseline w Conv_1) 40.15
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Figure 6. Curves of LDR on the training set for medium rain.

Figure 7. Curves of LDR and PSNR with ColTeaching.

5.3.2. Comparison of Different Implementations of Our ColTeaching

We further investigated three implementations of ColTeaching to select an optimal
configuration of the deraining feature extractor. The first implementation, called “Baseline
w Conv_1”, adopts the first two convolution blocks of the detection subnetwork as the
deraining feature extractor. The second implementation, called “Baseline w Conv_2”,
adopts one more convolution block to learn deeper features. We continue exploring the
deeper features as the deraining feature extractor with the final implementation, called
“Baseline w Conv_3”, which uses all convolution blocks. Table 3 compares the DroneDet
accuracy of CoDerainNet with different convolution blocks. The experimental results
demonstrate that “Baseline w Conv_1” can obtain the best DroneDet performance.

To interpret the improved performance, note that, compared with Conv_2 and Conv_3,
features extracted by Conv_1 have the maximum resolution and hence contain the richest
spatial details. Deraining features extracted with the deeper convolutional blocks (Conv_2
or Conv_3) contain less amount of spatial details due to their low resolution. The visibility
enhancement for input images of these features is limited, which leads to the poor quality
of features for the DroneDet Subnetwork.

5.3.3. Learning Curves of the Proposed Deraining Subnetwork

We aimed to verify that the proposed Deraining Subnetwork can converge stably
during training and effectively remove rain streaks in a rainy image. The dataset consists of
images selected randomly from our RainVisDrone for image deraining. It has 432 training
pairs of rainy and clean images and another 20 pairs for evaluation, which is the same
as DnCNN [41]. The resolution of the training patches randomly cropped from their
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original images is 48× 48 pixels. In addition, two metrics, structure similarity index [42]
(SSIM) and peak signal-to-noise ratio [43] (PSNR), are used to evaluate the reconstructed
images’ quality.

Figure 8 presents the LDR loss curves of the Deraining Subnetwork on the training set
for light, medium, and heavy rain, respectively. A value on the horizontal axis represents
50 epochs. We observe that the three loss curves continuously decrease to stable points
after 6000 (120× 50) epochs. Therefore, our Deraining Subnetwork can converge stably for
light, medium, and heavy rainy datasets. Furthermore, Figures 9 and 10 show that with
the increase in training epochs, the PSNR and SSIM curves of the reconstructed images
increase. Similarly, the two metrics values tend to be stable after 6000 (120× 50) epochs.
Table 4 compares the average values for PSNR and SSIM of images reconstructed from
images with different rain density. We can observe that our Deraining Subnetwork can
still achieve 40.10 dB of PSNR and 0.9944 of SSIM, even for images that are degraded by
heavy rain.

Table 4. Comparison of the average values of PSNR (in dB) and SSIM of the reconstructed light,
medium, and heavy rainy images.

Rain Level PSNR (dB) SSIM

Light 45.15 0.9987
Medium 43.36 0.9974
Heavy 40.10 0.9944

Figure 8. Curves of LDR on the training set for light, medium, and heavy rainy images.

Figure 9. PSNR of the reconstructed rain-free images from light, medium, and heavy rainy images.
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Figure 10. SSIM of the reconstructed rain-free images from light, medium, and heavy rainy images.

5.3.4. Visualization of Reconstructed Rain-Free Images

We present the visual comparison of images reconstructed by our Deraining Subnet-
work below. Figure 11a–d correspond to the original rainy images, the patches cropped
from the original ones, the reconstructed rain-free patches, and their corresponding ground
truth (clean patches), respectively. Comparing patches in Figure 11b,c, we can observe that
our Deraining Subnetwork can effectively remove rain steaks from the rainy input images.
Comparing patches in Figure 11c,d, the reconstructed patches can preserve image details,
e.g., the texture of cars.

（a）                                              （b）                                               (c)                                                      (d)
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Figure 11. Visualization of images and patches reconstructed by Deraining Subnetwork. (a) The
original input images. (b) The patches cropped from the original image. (b) The reconstructed
rain-free patches. (c) The corresponding ground truth.

Furthermore, we also used images degraded by medium-level rain as examples to
visualize the reconstruction process of rain-free in Figure 12. Figure 12a,f are the input rainy
patches and the corresponding ground truths. Figure 12b–e are the rain-free patches recon-
structed by the proposed Deraining Subnetwork trained with 1, 50, 100, and 6000 epochs,
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respectively. These visualization results demonstrate that the Deraining Subnetwork can
remove rain streaks and restore the contents of input images.

(a) (b) (c) (f)(d) (e)

Figure 12. Visualization of the process of reconstructing rain-free patches with different epochs of
training. Patches in Column (a) are the input rainy patches; patches in Columns (b–e) are the rain-free
patches reconstructed by the proposed deraining model trained with 1, 50, 100, and 6000 epochs,
respectively. Finally, patches in Column (f) are their corresponding ground truths.

5.4. Comparison with SOTA Methods

There is a tradition to present the SOTA comparison results in Table 2.

5.4.1. General Object Detectors

CoDerainNet is compared with two current SOTA object detectors, YOLOv5 and YOLOv7.
Table 5 presents that CoDerainNet obtains the best detection performance on the three datasets.
Specifically, on the RainVisDrone dataset, the AP50 obtained with CoDerainNet is 5.40% and
2.66% higher than those obtained with YOLOv5 and YOLOv7, respectively. On the RainUAVDT
dataset, the AP50 of CoDerainNet is 4.77% and 2.08% higher than those obtained with YOLOv5
and YOLOv7, respectively. On the RainDrone dataset, the AP50 of CoDerainNet is 1.73% and
1.12% higher than those obtained by YOLOv5 and YOLOv7, respectively.

The two reasons for CoDerainNet’s performance gain in accuracy are the reduction
in noise in the features and the feature enhancement for small targets. CoDerainNet can
reduce the noise in features caused by rain streaks with the Deraining Subnetwork under
our ColTeaching paradigm and thus improves the features’ quality for the task of DroneDet.
Furthermore, our DroneDet Subnetwork integrates context collector and the fine-grained
target-focusing module to enhance small targets’ features.

5.4.2. ImDerain-Based and DA-Based Object Detectors

We compared the detection accuracy of CoDerainNet with those of four ImDerain-
based detectors. The two deraining models, MPRNet and PReNet, are trained on the
synthetic rainy datasets for image deraining. We remove rain streaks using the two well-
trained deraining models to generate rain-free images from the synthetic and real rainy
datasets. Then, the two detectors, YOLOv5 and YOLOv7, are trained using these generated
images. In the end, we obtained the detection accuracy of the four concatenation models
on the generated rain-free images.

Table 5 presents the detection accuracy of our CoDerainNet and the four combination
models. Our CoDerainNet obtains AP50 values of 62.15%, 37.50%, and 59.21% on the three
datasets, which are comparable with that of MPRNet-YOLOv7. However, the inference
time of our CoDerainNet is less than that of MPRNet-YOLOv7. The comparison results
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demonstrate that our CoDerainNet is more efficient in terms of inference speed and com-
putational costs with comparable accuracy with the ImDerain-based detectors. In addition,
Table 5 also shows the performance comparison of CoDerainNet with AdaptiveTeacher,
and CoDerainNet outperforms AdaptiveTeacher.

ImDerain-based detectors adopt complex deraining models to improve DroneDet
accuracy effectively. These deraining models gradually learn restoration functions in
multi-stage architecture to achieve notable performance. As a result, these methods sub-
stantially increase the overall complexity of detectors. For example, the computational
complexity of MPRNet-YOLOv5 is about 20 times higher than that of YOLOv5 (2408.40 G
vs 108.40 G). However, our CoDerainNet can achieve a DroneDet performance comparable
to the ImDerain-based detectors while only slightly increasing the computational costs ,
since the Deraining Subnetwork is only executed during training but not inference.

5.4.3. Visualization of Detection Results

We compared the visual detection results of a rainy image from RainVisDrone. Ob-
servations in Figure 13 indicate that CoDerainNet detects objects more accurately than
the other models. In addition, Figures 14–16 visualize the detection results obtained by
CoDerainNet on rainy images. We can observe that CoDerainNet obtains impressive
detection results on both synthetic and real rainy datasets. It is worth mentioning that
CoDerainNet can detect targets in low-light images. According to the confidence score,
there is still much room for improvement in low-light detection performance.

（a）	 	 	 	 	 	 	 	 	 	 	 	 	 （b）

（c）	 	 	 	 	 	 	 	 	 	 	 	 	 （d）

Figure 13. Comparison of the detection results of a medium rainy image taken from the RainVisDrone
dataset. (a) YOLOv7, (b) PReNet-YOLOv7, (c) AdaptiveTeacher, and (d) CoDerainNet.
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Table 5. Comparison of CoDerainNet with SOTA detectors on RainVisDrone, RainUVADT, and
RainDrone datasets.

Method Reference
RainVisDrone RainUAVDT RainDrone

AP(%) AP50(%) AP75(%) AP(%) AP50(%) AP75(%) AP(%) AP50(%) AP75(%)
YOLOv5 Github 21 36.57 56.75 37.98 21.67 32.73 25.83 38.46 57.48 40.23
YOLOv7 arXiv 22 36.49 59.49 37.80 21.14 35.42 23.65 39.31 58.09 41.86

PReNet-YOLOv5 CVPR 19 37.22 58.72 38.96 23.29 34.58 28.19 38.89 57.96 40.72
MPRNet-YOLOv5 CVPR 21 37.24 59.59 39.05 24.50 36.41 29.18 39.76 58.18 41.03
PReNet-YOLOv7 CVPR 19 38.64 62.06 40.43 24.05 39.27 27.49 40.21 59.81 42.41
MPRNet-YOLOv7 CVPR 21 39.59 63.01 41.47 25.01 40.08 28.91 40.74 59.90 42.79
AdaptiveTeacher CVPR 22 18.03 31.80 18.13 14.34 25.43 15.41 19.67 30.98 19.03

CoDerainNet Ours 38.75 62.15 40.77 23.82 37.50 28.21 39.98 59.21 40.89

Figure 14. Visualization of detection results by CoDerainNet on a heavy rainy image in RainVisDrone.

Figure 15. Visualization of detection results by applying CoDerainNet to a low-light rainy image
in RainVisDrone.
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(a)                                                                                   (b)

(c)                                                                                   (d)

Figure 16. Visualization of the detection results obtained with CoDerainNet on our RainDrone
dataset. These subfigures (a), (b), (c), and (d) are captured by drones in real rainy weather conditions.

5.4.4. Overall Complexity Comparison

We compared the overall complexity of CoDerainNet with that of SOTA methods. The
evaluation metrics included FLOPs (Floating Point Operations, the calculation amount of a
model) and processing time (milliseconds) on the server. Table 6 shows that CoDerainNet
recorded a processing time of 106.78 s and FLOPs of 241.59. Compared with the ImDerain-
based methods, including PReNet-YOLOv5, MPRNet-YOLOv5, PReNet-YOLOv7, and
MPRNet-YOLOv7, CoDerainNet significantly reduces the inference time and calculation
amount because our approach does not need image deraining as a pre-processing step,
which involves a high computation cost. Compared with the general object detectors,
including YOLOv5 and YOLOv7, our CoDerainNet slightly increased the inference time
and calculation amount because the context collector and the fine-grained target-focusing
module are integrated into our DroneDet Subnetwork to boost the performance of small
object detection.

Table 6. Comparison of different methods in terms of inference time and calculation amount.

Method Time (Milliseconds) FLOPs (G)

YOLOv5 55.10 108.40
YOLOv7 27.89 103.30

PReNet-YOLOv5 386.15 1682.35
MPRNet-YOLOv5 270.10 2408.40
PReNet-YOLOv7 358.94 1677.25
MPRNet-YOLOv7 242.89 2403.30
AdaptiveTeacher 119.17 258.98

CoDerainNet 106.78 241.59
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6. Limitation

Although our proposed CoDerainNet obtained promising results on both synthetic and
real rainy datasets, the performance improvement on the real dataset is not as significant
as that on the synthetic datasets. An observation in Table 5 presents that a gain (1.73%) of
AP50 obtained by CoDerainNet on the real dataset RainDrone is less than the gain (5.4%) of
AP50 on the synthetic dataset RainVisdrone. The main reason for this phenomenon is that
only synthetic training pairs of clean and rainy images are used for training the Deraining
Subnetwork. Real training ones are often unavailable. There is a big difference between
synthetic and real rain streaks in terms of direction and density. Therefore, the lack of
training image pairs under real rainy weather is the main cause of the poor performance in
the real rainy dataset. Semi-supervised learning for image deraining may have the potential
to address this limitation.

7. Conclusions

We proposed CoDerainNet to improve Rainy DroneDet with slightly increased compu-
tational costs. CoDerainNet is an interactively trained Deraining Subnetwork and DroneDet
Subnetwork through our ColTeaching paradigm. Our key idea was to transfer the intrinsic
degradation knowledge from the Deraining Subnetwork to the DroneDet Subnetwork and
teaches the DroneDet Subnetwork such knowledge to suppress the impact of rain-specific
interference on features extracted for DroneDet. Three new drone-captured datasets, i.e.,
RainVisDrone, RainUVADT, and RainDrone, were also built for interactive detection and de-
raining. Extensive experiments demonstrated that CoDerainNet can obtain better detection
results. The results also demonstrated its effectiveness in a real rainy scenario.

In the near future, we can extend our CoDerainNet in the following directions. Firstly,
we can adapt it to other kinds of challenging weather conditions, including foggy weather,
snowy weather, and nighttime conditions. Secondly, we can investigate a simple semi-
supervised learning framework for deraining images collected in real rainy scenarios.
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