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Abstract. Gradient boosting has been proved to be an effective ensem-
ble learning paradigm to combine multiple weak learners into a strong
one. However, its improved performance is still limited by decision er-
rors caused by uncertainty. Fuzzy decision trees are designed to solve
the uncertainty problems caused by the collected information’s limita-
tion and incompleteness. This paper investigates whether the robust-
ness of gradient boosting can be improved by using fuzzy decision trees
even when the decision conditions and objectives are fuzzy. We first pro-
pose and implement a fuzzy decision tree (FDT) by referring to two
widely cited fuzzy decision trees. Then we propose and implement a
fuzzy gradient boosting decision tree (FGBDT), which integrates a set
of FDTs as weak learners. Both the algorithms can be set as non-fuzzy
algorithms by parameters. To study whether fuzzification can improve
the proposed algorithms in classification tasks, we pair the algorithms
with their non-fuzzy algorithms and run comparison experiments on
UCI Repository datasets in the same settings. The experiments show
that the fuzzy algorithms perform better than their non-fuzzy algo-
rithms in many classical classification tasks. The code is available at
github.com/ZhaoqingLiu/FuzzyTrees.

Keywords: Decision tree · Fuzzy system · Gradient boosting · Classifi-
cation.

1 Introduction

Fuzzy concepts and fuzzy objectives are ubiquitous in the process of human cog-
nition and decision-making in real life [19]. Therefore, it is one of the hot areas
of research to use fuzzy computing methods to deal with information that is not
easy to be quantified. As a typical fuzzy algorithm, fuzzy decision trees [29, 33]
have been used in many applications, e.g., diagnosis systems [29], healthcare [1]
and accounting and audit [2]. A fuzzy decision tree is an extension and improve-
ment of traditional decision trees. A fuzzy decision tree fuzzifies training sets
to fuzzy sets in the data preprocessing stage and computes splitting criteria for
feature selection in the tree construction stage [33].

https://github.com/ZhaoqingLiu/FuzzyTrees
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Gradient boosting [13,22] is a primary boosting algorithm in ensemble learn-
ing. It can effectively improve a single base learning algorithm’s performance [13].
The idea of gradient boosting is derived from the gradient descent method and
has been widely used [20,21]. Its basic principle is to train the next weak learner
according to the negative gradient of the current learner’s loss function and then
integrate the trained weak learner into a single strong learner in the form of an
iterative combination.

Although some studies focus on fuzzy decision trees, no one compares fuzzy
gradient boosting decision trees with non-fuzzy gradient boosting decision trees,
and few implementations of fuzzy decision trees are based on the CART [3], which
is one of the classical decision trees. In this paper, we propose a fuzzy decision tree
(FDT) and fuzzy GBDT (FGBDT), which can combine the inductive capability
of decision trees with the capability of fuzzy sets [34] to express uncertainty.

Unlike the fuzzy decision trees in other literature, we use the Fuzzy C-Means
clustering algorithm (FCM) [9] as a feature fuzzification method in data pre-
processing to improve the effectiveness of describing fuzzy concepts. We also use
fuzzy Gini impurity-based metric calculation to extend the heuristic search tech-
niques used in traditional decision trees. Compared with the fuzzy entropy [6,34]
used in most existing fuzzy decision trees, the fuzzy Gini impurity used in our
fuzzy feature selection technique can reduce the computation of splitting cri-
teria and simplify the tree. For an empirical study, we develop the proposed
algorithms into a software toolkit in Python. Finally, we carry out experiments,
and the results show that the fuzzy trees have more advantages in solving the
classification uncertainty than the non-fuzzy trees.

The contributions of this paper are summarised as follows:

– A novel fuzzy decision tree-based gradient boosting algorithm is proposed.
– A Python toolkit for FDT and FGBDT is developed.
– Extensive experiments indicate that FDT and FGBDT can achieve better

accuracy in many classification tasks than non-fuzzy FDT and non-fuzzy
FGBDT, respectively.

The paper is organised as follows. Section 2 introduces the related work. The
details of FDT and FGBDT are presented in Section 3. Section 4 analyses the
experimental evaluation. Conclusion and future work are discussed in Section 5.

2 Related Work

In this section, we review the researches on fuzzy decision trees and gradient
boosting.

2.1 Fuzzy Decision Trees

As one of the most representative algorithms in machine learning, a decision
tree uses a tree-like model of symbols, rules, and logic to represent knowledge
and make logical inferences. A fuzzy decision tree is an extension of the classical
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decision tree. It is more robust in tolerating uncertainty by introducing fuzzy
sets. Most of the fuzzy decision trees proposed in the literature can be regarded
as the variants of the ID3 invented by Quinlan [25] and the C4.5 developed
by Quinlan [26]. However, few studies involved fuzzy extensions of the CART
algorithm introduced by Breiman et al. [3]. Yuan and Shaw [33] proposed a
fuzzy decision tree induction method similar to the ID3 [25], except they use
the classification ambiguity metric instead of entropy as the heuristic induction
criterion. In the method, feature fuzzification in the data preprocessing stage is
essential for constructing a fuzzy decision tree. A similar idea was also proposed
in Kosko’s study [16]. The author uses a simple algorithm to generate a triangular
membership function to fuzzify the training sets into fuzzy membership degrees.
The Fuzzy ID3 algorithm (Fuzzy ID3) proposed by Umanol et al. [29] uses fuzzy
entropy first introduced by Zadeh [34], and the axiom construction of entropy
of fuzzy sets was further introduced by De Luca and Termini [6]. Unlike the
traditional ID3 algorithm, Fuzzy ID3 used the probability of membership degrees
instead of the probability of crisp samples to calculate the metric, i.e., fuzzy
entropy, when selecting the optimal splitting feature. In the literature, many
other studies have extended entropy based on fuzziness in various ways.

2.2 Gradient Boosting

Gradient boosting is an ensemble learning technique and one of the most popu-
lar algorithms. Its basic idea is derived from the gradient descent method [32].
According to Schapire’s proof conclusion based on Hoeffding Inequality [14] and
the probably approximately correct (PAC) learning model [27], in the case that
the errors of weak learners are independent of each other, the error rate of an en-
semble method decreases exponentially with the increase of the number of weak
learners and eventually tends to zero. Based on the proof, the gradient descent
method can combine multiple weak learners in a strong learner. The regression
gradient boosting algorithms developed by Freund et al. [12,13] can be used for
regression and classification tasks. A more general view of functional gradient
boosting was proposed by Llew et al. [22]. The basic principle of the algorithms
is to train the next weak learner according to the negative gradient information
of the loss function of the current model in multiple iterations, and then com-
bine the trained weak learner into the model combination in the form of addition
and finally minimise the loss function in the function space [13]. Boosting algo-
rithms have made considerable progress in many areas of machine learning and
statistics beyond regression and classification. In many current studies, the stan-
dard weak learners of gradient boosting algorithms are traditional decision trees,
logistic regression classifiers, Naive Bayes, and other non-fuzzy algorithms [24].

3 Fuzzy Decision Trees for Gradient Boosting Ensemble

In this section, we detail two algorithms: FDT and FGBDT.
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3.1 Framework of Fuzzy Decision Trees

The tree construction and prediction stages of FDT and its non-fuzzy FDT
are similar. At the same time, there are two differences between the two algo-
rithms. One is that the former executes additional feature fuzzification in data
preprocessing, and the other is that the former uses the fuzzy sets to calculate
all splitting criteria in tree construction. Specifically, the FDT calculates fuzzy
metrics according to the fuzzy membership degrees obtained from the feature
fuzzification rather than crisp samples.

Feature Fuzzification in Data Preprocessing Feature Fuzzification (FF)
refers to the fuzzy transformation of features in the data preprocessing stage
before constructing an FDT tree. The membership function used in FF can
be obtained from statistical data or determined based on the fuzzy clustering
method of self-organising learning [33]. After the transformation based on the
membership function, the calculated fuzzy membership degrees of the features
belonging to a group of fuzzy sets are added to the samples. Considering that
the Fuzzy C-Means clustering algorithm (FCM) [9] is one of the most widely
used methods for feature fuzzification in fuzzy decision tree studies, we use it to
cluster a group of fuzzy sets from each feature and then to calculate the fuzzy
membership degrees of each feature belonging to these fuzzy sets. By calculating
the membership matrix, the FCM makes the features with the maximum similar-
ity be grouped in the same cluster, while the ones with the minimum similarity
are divided into different clusters. Also, FF is a prerequisite for constructing
FDTs because the metric fuzzification in the tree construction stage is based on
the fuzzy membership degrees generated by FF.

Metric Fuzzification in Tree Construction Metric fuzzification (MF) refers
to the fuzzy calculation of splitting criteria for feature selection in the tree con-
struction stage. We take the fuzzy metrics, also known as fuzzy entropy and
fuzzy information gain, proposed by Umanol et al. [29] into our algorithm frame-
work for feature selection. Specifically, assume that we have a set of samples S,
where each sample has ` numerical features A1, A2, ..., A`, and a labelled class
C = {C1, C2, ..., Cn} and fuzzy sets Fi1, Fi2, ..., Fim for the feature Ai (the value
of m usually varies from feature to feature). The fuzzy entropy of a fuzzy set of
S is defined by:

I(S) = −
n∑

k=1

(pk log2 pk), where pk =

∣∣SCk
∣∣

|S|
, (1)

here SCk is a fuzzy subset of S, labelled as the class Ck,
∣∣SCk

∣∣ is the sum of the
fuzzy membership degrees in SCk , and |S| is the sum of the fuzzy membership
degrees in a fuzzy set of S. Then, the fuzzy information gain G(Ai, S) for Ai by
a fuzzy set of S is defined by:

G(Ai, S) = I(S)− E(Ai, S), and E(Ai, S) =

m∑
j=1

(pijI(SFij )), (2)
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where

pij =

∣∣SFij

∣∣∑m
j=1

∣∣SFij

∣∣ , (3)

SFij
is a fuzzy subset split from a fuzzy set of S on Ai, and

∣∣SFij

∣∣ is the sum of
the fuzzy membership degrees in SFij .

Although the fuzzy FD3 still adopts a greedy strategy to construct a tree, the
two metrics used for the greedy strategy are different from the classic probability-
based entropy and information gain.

– The first metric is fuzzy entropy, which is defined by Eq. 1. In Eq. 1, pk
equals the proportion of the sum of the fuzzy membership degrees in a fuzzy
subset SCk of S to the sum of the fuzzy membership degrees in a fuzzy
set of S. By comparison, according to Shannon [28], the classic information
entropy can be given by I(S) = −

∑n
k=1 pk log2 pk, where S represents a set

of samples with n classes; suppose k ∈ {1, 2, ..., n}, pk is the probability of
the samples labelled with class k in S.

– The second metric is the fuzzy information gain, which is defined by Eq. 2
and Eq. 3. In the two equations, pij equals the proportion of the sum of the
fuzzy membership degrees in a fuzzy subset SFij , which is split from a fuzzy
set of S on Ai to the sum of the fuzzy membership degrees in the fuzzy set
of S. In contrast, according to Quinlan [25], the classic information gain for
an feature a ∈ Ai can be given by G(S,Ai) = I(S) − I(S|Ai) = I(S) −∑

a∈Ai
p(a)

∑n
i=1−Pr(i|a) log2 Pr(i|a), where I(S) represents the entropy

of the parent node, I(S|Ai) represents the weighted sum of the entropy of
the child nodes split from S on Ai; and Pr(i|a) is the conditional probability
of Pri given a.

By analogy, we introduce two new concepts: fuzzy Gini impurity and fuzzy
information gain ratio into the algorithm framework to support FDT and other
fuzzy decision trees. The two concepts are the fuzzy extensions of the Gini impu-
rity used in Breiman et al. [3] and the information gain ratio used in Quinlan [25].
Specifically, the fuzzy Gini impurity of a fuzzy set S is defined by:

IG(S) =

n∑
k=1

pk(1− pk), (4)

where pk is given by Eq. 1. Then, the fuzzy information gain ratio for the feature
Ai by S is defined by:

GR(Ai, S) =
G(Ai, S)

IV (Ai, S)
, (5)

where G(Ai, S) is given by Eq. 2, and IV (Ai, S) is the intrinsic value of Ai. That
is, suppose Ai has a set of all possible values V = {V1, V2, ..., Vq},

IV (Ai, S) = −
n∑

t=1

(pt log2 pt), where pt =

∣∣∣AVt
i

∣∣∣
|Ai|

, (6)
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here AVt
i is a fuzzy subset of Ai with value Vt,

∣∣∣AVt
i

∣∣∣ is is the sum of the fuzzy

membership degrees in AVt
i , and |Ai| is the sum of the fuzzy membership degrees

in a fuzzy set of Ai.

The pseudocode for FDT is shown in Algorithm 1.

Algorithm 1 FDT algorithm.

1: if the current node at the level L with a fuzzy set of S satisfies: the current sample
size is less than the threshold minsamplessplit , or the tree’s current depth is greater
than the threshold maxdepth, or no features available for splitting tests. then

2: The current node is a leaf and is assigned a class label by majority vote calcula-
tion in classification tasks and a numerical label by mean calculation in regression
tasks.

3: else
4: for each Ai(i = 1, 2, ...`) do
5: Split S into two subsets.
6: Calculate the information gain according to the Eq. (2), where the Eq. (1)

is replaced by (4).
7: Select the test feature Amax that maximises the information gain.
8: if the test best impurity gain is greater than the threshold
min impurity split then

9: Generate a node according to the set of samples and the corresponding
fuzzy sets containing their fuzzy membership degrees.

10: Make the current level L = L+ 1.
11: Repeat recursively from Line 1 for both subsets, respectively.
12: end if
13: end for
14: end if

3.2 Implementation of Gradient Boosted Fuzzy Decision Trees

FGBDT combines multiple weak fuzzy learners into a single strong learner in
an iterative fashion, then gradually approximate the optimal learner in a greedy
fashion [13]. The main difference is that it integrates a set of regression FDTs
instead of non-fuzzy regression trees. According to Vapnik’s empirical risk min-
imisation principle [31], the algorithm iteratively performs the optimisation using
a function gradient descent method, i.e., the steepest descent step. Specifically,
the algorithm still uses the first-order derivative of the loss function to generate a
set of pseudo residuals, namely the first-order Taylor polynomial in Taylor’s the-
orem, to determine the loss function’s steepest gradient descent in the current
function space. Then the algorithm modifies the learner through the negative
gradient direction to make it better. Algorithm 2 presents the pseudocode for
the generic FGBDT for regression.
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Algorithm 2 FGBDT Algorithm.

Input: Training set {(xi, yi)}Ni=1; a differentiable loss function L(y, f(x)); number of
iterations M ;

1: Initialise a single learner with a constant value: f0(x) = arg minγ
∑N
i=1 L(yi, γ).

2: for m = 1 to M do
3: Iteratively calculate the pseudo residuals corresponding to x:
4: for i = 1, 2, ..., N do

5: rm = −
[
∂L(yi,f(xi))

∂f(xi)

]
f(x)=fm−1(x)

.

6: end for
7: Fit a regression FDT to the pseudo residuals rim giving disjoint regions Rjm , j =

1, 2, ..., Jm, that is, using the training set {(xi, rim)}Ni=1.
8: Use the fitted regression FDT to calculate the pseudo residuals by the gradient

descent method: γm = arg minγ
∑N
i=1 L(yi, fm−1(xi) + γhm(xi)).

9: Update the learner fm(x) = fm−1(x) + γmhm(x) for the optimisation in the
next iteration.

10: end for
Output: f̂(x) = fM (x).

3.3 Time Complexity

The time complexity of the two algorithms is shown in Table 1.

Table 1: Time complexity for FDT and FGBDT.

Algorithm
Time complexity

Training Prediction

FDT O(N log2NMC) ∼ O(N2MC) O(log2N) ∼ O(N)
FGBDT O(TN log2N) ∼ O(TN2) O(T log2N) ∼ O(TN)

For tree training, the average depth of an FDT tree is log2 N , where N is
the number of samples, and the worst-case depth is N , so the time complexity
for the depth is between O(log2 N) and O(N). In a tree construction, FDT
calculates the Gini impurity or entropy of the samples based on the current
sample size and then calculates the information gain or information gain ratio in
each iteration. So the time complexity for the tree is between O(N log2 NM) and
O(N2M), where M is the number of features. In calculating each information
gain and information gain ratio, FDT calculates the sum of membership degrees
of features of the current node and the sum of membership degrees of features
in each of its sub-trees. Therefore, the overall time complexity for the tree is
between O(N log2 NMC) and O(N2MC), where C is the number of fuzzy sets
(i.e., clusters) of a feature. Also, the time complexity for FGBDT is between
O(TN log2 N) and O(TN2), where T is the number of integrated trees. For
prediction, the time complexity for FDT is between O(log2 N) and O(N), and
that for FGBDT is between O(T log2 N) and O(TN).
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According to the Master theorem, because M � N , C � N and T � N , the
time complexity for the training of both algorithms is O(N log2 N) ∼ O(N2),
and that for the prediction of both algorithms is O(log2 N) ∼ O(N).

4 Experimental Evaluation

This section empirically evaluates the proposed FDT and FGBDT.

4.1 Datasets

We consider six datasets from the UCI Machine Learning Repository [8].
• Vehicle Silhouettes (VS) [8]. The task is to classify a given silhouette as
one of four types of vehicle, using a set of features extracted from the silhouette
(846 samples, 18 features, and 4 classes).

• German Credit (GC) [5]. The task is to classify people described by a set
of features as good or bad credit risks (1, 000 samples, 24 features, and 2 classes).

• Pima Indians Diabetes (PID) [30]. The task is to classify the diabetes tests
based on the features of a group of people (768 samples, 8 features, and 2 classes).

• Iris [17]. The task is to classify the types of iris plant based on the attributes
of the four flowers (150 samples, 4 features, and 3 classes).

•Wine [18]. The task is to classify the origin of wines using the results of chem-
ical analysis (178 samples, 13 features, and 3 classes).

• Forest Cover Type (FCT) [21]. The task is to classify forest cover type from
cartographic variables (581, 012 samples, 54 features, and 7 classes).

4.2 Baselines and Experimental Setup

We conduct four comparison experiments. The first two are to study the ef-
fect of feature fuzzification (FF) only and the combination of FF and metric
fuzzification (MF) on the performance of FDT; the second is to investigate the
impact of the above two types of fuzzification on the performance of FGBDT;
the last one is to compare the performance of FDT with published baselines.
In the first experiment, the non-fuzzy FDT (DT) without FF is the baseline
of the non-fuzzy FDT with FF. In the other two experiments, the non-fuzzy
FDT and non-fuzzy FGBDT are the baselines of FDT and FGBDT. In the last
experiment, we compare our FDT with six representative baselines: XGBClas-
sifier (XGBoost) [4], CatBoostClassifier (CatBoost) [7], LGBMClassifier (Light-
GBM) [15], HoeffdingTreeClassifier (HT) [23], HoeffdingAdaptiveTreeClassifier
(HAT) [23] and SAMKNNClassifier (SAMKNN) [23].
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For all datasets, categorical features are transformed into numeric features.
For hyperparameters, disable fuzzy for each classifier is used to specify whether
to use fuzzy rules, and max depth is set to 5; learning rate for each pair of fuzzy
and non-fuzzy FGBDT classifiers is set to 0.1, and n estimators is set to 100;
all other hyperparameters are left as their default values; n conv for each FCM
transformer is set to one of {3, 4, 5} and 5 by default to specify the number
of fuzzy sets to generate. Also, we quantify the average performance of each
classifier through 10-round 10-fold cross-validation training and testing in each
experiment. In the last experiment, we randomly select 1, 000 samples from the
dataset FCT for the training and testing of FDT and baseline classifiers. The
same hyperparameters for all tree classifiers are set to identical values, except
that the hyperparameters for the SAMKNN classifier are left as their default
values. Our code is available on GitHub 1.

Table 2: Results with FF (n conv
= 3) and without FF.

Task DT with FF DT without FF
Acc Std Acc Std

VS 0.6963 0.0341 0.6643 0.0305
GC 0.7080 0.0449 0.7100 0.0316
PID 0.7226 0.0478 0.7084 0.0509
Iris 0.9333 0.0629 0.9333 0.0629

Wine 0.8935 0.0676 0.8990 0.0742

Avg 0.7907 0.0515 0.7830 0.0500

Table 3: Results with FF (n conv
= 4) and without FF.

Task DT with FF DT without FF
Acc Std Acc Std

VS 0.6963 0.0341 0.6643 0.0305
GC 0.7080 0.0449 0.7100 0.0316
PID 0.7226 0.0478 0.7084 0.0509
Iris 0.9333 0.0629 0.9333 0.0629

Wine 0.8935 0.0676 0.8990 0.0742

Avg 0.7907 0.0515 0.7830 0.0500

Table 4: Results with FF (n conv
= 5) and without FF.

Task DT with FF DT without FF
Acc Std Acc Std

VS 0.6963 0.0341 0.6643 0.0305
GC 0.7080 0.0449 0.7100 0.0316
PID 0.7226 0.0478 0.7084 0.0509
Iris 0.9333 0.0629 0.9333 0.0629

Wine 0.8935 0.0676 0.8990 0.0742

Avg 0.7907 0.0515 0.7830 0.0500

Table 5: Results with FDT and
non-fuzzy FDT.

Task DT with PF DT with non-PF
Acc Std Acc Std

VS 0.6915 0.0619 0.6643 0.0305
GC 0.7200 0.0287 0.7100 0.0316
PID 0.7422 0.0389 0.7084 0.0509
Iris 0.9333 0.0629 0.9333 0.0629

Wine 0.9108 0.0650 0.8990 0.0742

Avg 0.7996 0.0515 0.7830 0.0500

1 https://github.com/ZhaoqingLiu/FuzzyTrees
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Table 6: Results with FGBDT and
non-fuzzy FGBDT.

Task DT with PF DT with non-PF
Acc Std Acc Std

VS 0.6832 0.0457 0.6572 0.0223
GC 0.6840 0.0504 0.6790 0.0451
PID 0.7082 0.0465 0.7031 0.0642
Iris 0.9400 0.0663 0.9333 0.0629

Wine 0.8987 0.0692 0.8990 0.0742

Avg 0.7828 0.0556 0.7743 0.0537

Table 7: Comparison between FDT
and baselines on dataset FCT.

Methods Acc Std

XGBoostb 0.6566 0.0395
CatBoostb 0.6302 0.0455
LightGBMb 0.4880 0.0518
HT 0.5390 0.0524
HAT 0.5418 0.0510
SAMKNN 0.5533 0.0600

FDT 0.6639 0.0434

4.3 Experimental Results

Non-fuzzy FDT with FF vs. Non-fuzzy FDT without FF Table 2, 3 and
4 summarise the prediction accuracy (Acc) and standard deviation (Std) of three
pairs of non-fuzzy FDT trained on samples with and without FF, respectively.
The results show that the average performance (Avg) of FDT with FF is better
than that without FF.

FDT vs. Non-fuzzy FDT Table 5 shows the respective Acc and Std for FDT
and non-fuzzy FDT. We observe that the FDT with the combination of FF and
MF outperform the non-fuzzy FDT on the average performance. In other words,
using fuzzy sets to quantify fuzzy objects in classification tasks can help FDT
improve performance (nearly 1.7%).

FGBDT vs. Non-fuzzy FGBDT As shown in Table 6, the FGBDT outper-
forms the non-fuzzy FGBDT. We consider that FGBDT with FF and MF can
further enhance the optimisation (nearly 0.9%) of gradient boosting by using
the fuzzy membership degrees added to the samples as the fuzzy rules.

FDT vs. State-of-the-Art We also compare FDT with six state-of-the-art
algorithms. For a fair comparison, we only take the base learner of the ensemble
algorithms for comparison. Table 7 show that FDT yields significant performance
improvement compared with the six representative baselines.

5 Conclusion and Future Work

We have proposed and implemented a fuzzy gradient boosting algorithm frame-
work with FDT and FGBDT. We have also conducted three comparison ex-
periments to study how fuzzification affects the algorithms’ performance. In
conclusion, FGBDT can improve performance and enhance gradient boosting’s
optimisation effect in many classification tasks.
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Based on the current research presented in this paper, we will further use
FCM to identify the appropriate membership functions, optimise multiple en-
semble learning methods based on FDT, and study how to reduce the computa-
tional overhead of the current algorithms. Furthermore, based on our observa-
tion, fuzzy sets theory does not consistently outperform the classic method. We
consider this problem is caused by over fuzzification. Therefore, how to design
a proper fuzzification controlling mechanism is also worth studying. Also, using
transfer learning [10,11,35] to generate decision trees is an exciting challenge.
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