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ABSTRACT
The increase in population and urbanisation of hilly regions have increased the risk due to 
landslides. This manuscript presents a data-driven approach with a random forest algorithm to 
estimate the projected area, length, travel distance, and width of landslides, using elevation and 
slope information. The method is tested for two different study areas (Idukki and Wayanad), 
using three different combinations of inputs. The input features considered were elevation (E), 
tangential slope (θ), drop height (H), angle of reach (α) and the profile curvature (c). A total of 144 
models were considered and were evaluated using mean-absolute-error (MAE) and root-mean- 
square-error (RMSE) values. The results indicate that, by using E and θ alone, the RMSE value in 
estimating the length values for flow-like landslides in Wayanad was reduced from 472.74 m to 
204.64 m. Out of the 48 combinations considered, MAE values have increased in seven cases and 
RMSE values in eight cases only. The pre-trained models are saved and used to develop an easy-to 
-use tool, which can bypass the complications associated with the existing statistical approaches. 
The tool can be used by untrained personnel for preliminary hazard assessment.
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1. Introduction

Landslides are common natural hazards in hilly 
regions, responsible for severe economic loss and 
casualties across the globe. With the change in climate 
and the increased number of extreme rainfall events, 
the number of rainfall-induced landslides has also 
increased (Gariano & Guzzetti, 2016). The local people 
are the first ones to identify the tension cracks or minor 
failures before the occurrence of a landslide. If the area 
that may get affected by the failure can be effectively 
communicated to them based on the available infor-
mation, it can be helpful in making the action plan and 
communicating the same with the stakeholders. In 
a recent study, it was stated that people are more likely 
to trust early warnings than structural mitigation mea-
sures (Huang et al., 2021). Understanding the failure 
mechanism and the post-failure movement of land-
slides is an essential part of the assessment of 
a landslide hazard. The attempts to understand the 
mechanism of failure and the post-failure motion of 
slope instabilities had started in the early 20th century 
itself (Terzaghi, 1950). The system of landslides and 
their evolutions has different temporal scales, and the 
variations with respect to time involve different stages 
such as deformations before the failure, the failure 
itself, and the displacements after the failure. The 

term failure is critical, as it decides the separation of 
phases in the process. Failure indicates the first forma-
tion of a rupture surface as displacement (Leroueil 
et al., 1996), and it happens when the factor of safety 
(FS) becomes lesser than 1. This stage involves 
aProposing an easy-to-use tool for estimating landslide 
dimensions change in kinematic behaviour, from slid-
ing to fall or flow. This change is also critical in deciding 
the post-failure behaviour. This analysis can be carried 
out either in a forensic style, as a back analysis, or as 
a prediction for future events.

The displacement post-failure is highly dependent 
on the type of failure. The knowledge of landslide 
typology is critical in analysing the post-failure motion, 
and for precise runout analysis, complex process- 
based models should be used separately for each land-
slide type (Armento et al., 2008; Guzzetti et al., 2002). 
Many empirical, analytical, and dynamic models have 
been used to quantify the post-failure motion of land-
slides. The advancements in numerical models have 
helped in understanding the triggering and runout 
mechanisms of landslides (Christen et al., 2010), yet 
the time taken for analysis and the complexities 
involved in modelling still makes this a challenging 
task (McDougall, 2017). The complexities associated 
with runout modelling are primarily due to the lack 
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of guidance in this regard. The selection of the runout 
model and clear guidance on modelling for practi-
tioners are provided in very few codes or guidelines 
(Lato et al., 2016). The runout analysis is still considered 
a speciality service that demands expert support 
(APEGBC, 2012). Considering these facts, the practi-
tioners need much simpler approaches for hazard 
assessment.

Even though there are empirical and statistical corre-
lations used to estimate the landslide deposition area 
and runout distances, the relationship demands prior 
information on landslide volume in most cases 
(McDougall, 2017). Two widely accepted relationships 
in this regard are the inverse relationship between the 
reach angle and landslide volume and the one between 
volume and area of landslides, using Galileo scaling 
laws. Zhao et al. (2022) studied the empirical equations 
for estimating the runout distances of landslides and 
have argued that such may not be useful for regions 
other than the one from which data is collected. They 
have proposed a Bayesian method for estimating run-
out distance from sparse data, using drop height and 
the slope angle. In another study, a data-driven frame-
work has been developed to predict the runout distance 
of landslides, using slide width, slide length, slide 
volume, slide thickness, and vertical drop (Xu et al.,  
2019). They have compared five different algorithms 
and have found that multi-layer perceptron performs 
better than the other algorithms considered. (Mergili 
et al., 2019) combined the release and runout in land-
slide susceptibility modelling using probability density 
functions and cumulative distribution functions of the 
travel distances and angles of reach of the historical 
landslides. The method provides approximate the sus-
ceptibility of any point in a landscape, to be affected by 
either shallow landslide processes or the resulting fail-
ure triggered debris flows, either through release, or 
through runout (Lima et al., 2019). The exportability of 
this model to any other study area is subject to a long 
process of precise data collection and statistical analysis, 
and it requires the thorough knowledge of multiple 
probabilities, to arrive at an integrated susceptibility 
index. Similar to this study, Melo et al. (2019) have also 
combined both failure and runout of shallow landslides 
using logistic regression and a cellular automate model.

This study is an attempt to bypass the intricacies 
associated with numerical modelling and existing corre-
lations using a data-driven approach. As an initial step, 
a simple tool is introduced, that requires only topogra-
phical features derived from satellite-based information 
to estimate the maximum runout length, maximum 
width, maximum travel distance, and area affected 
due to a landslide, when the source area is identified. 
The method is an integration of geomorphological and 
geometrical landslide runout assessment techniques. 
The variables to be estimated were quantified for his-
torical events using geomorphological assessment. 

Three different landslide typologies are considered 
(namely flows, slides and falls) and the data from two 
test sites are used for training and testing the model. 
The model uses a Random Forest (RF) algorithm, and 
the trained model is used to develop a user-friendly tool 
that can be easily used for applications in landslide 
hazard assessment. The method is tested for two differ-
ent study areas in the Western Ghats of India.

2. Study area

The proposed methodology is tested at two different 
locations in the Western Ghats of India. The Western 
Ghats is a mountain range running through the 
Western coast of India, with a stretch of 1,600 km. 
The mountain range highly influences the monsoon 
weather patterns in India and is one of the hotspots of 
biodiversity in the world (Myers et al., 2000). The 
Western Ghats is separated into two parts by 
a mountain pass called the Palghat gap (Figure 1). In 
this study, two regions in the Western Ghats, one on 
the northern side and one on the southern side of the 
Palghat gap, are considered for the analysis. Both dis-
tricts belong to the state of Kerala. The boundaries of 
the study areas are determined by the administrative 
division (district), but in the case of both the study 
areas, the administrative boundaries coincide with 
the geographical boundaries defined by the hills and 
valleys of Western Ghats as well. In August 2018, extre-
mely heavy rains triggered landslides and floods in 
Kerala, leading to a recovery need of 4.4 billion US 
Dollars (United Nations Development Programme,  
2018). Idukki and Wayanad were the worst hit due to 
landslides, and the backward socio-economic condi-
tions of these districts also put them in a highly vulner-
able condition. Owing to the higher number and 
catastrophic effects of landslides in these regions, 
quantitative hazard assessment and identification of 
elements exposed to risk is the need of the hour.

Idukki and Wayanad are major tourist spots in the 
state, and tourism and agriculture are the major income 
source of the inhabitants. Idukki has a relatively flatter 
area in the western part of the district, and the remain-
ing locations are covered by highlands. Wayanad, on the 
other hand, has hills along the district boundaries. An 
east-flowing river Kabani and its tributaries have con-
tributed to the landscape development of Wayanad. 
The tributaries of the river originate in the hilly regions 
on the western side and flow downhill to the lower 
elevation parts on the northeastern side of the district.

The lithology of both the regions is made up of 
rocks of the migmatite group, and the peninsular 
gneissic complex. Both Idukki and Wayanad contribute 
to the major forest cover of Kerala, with a forest area of 
3151 km2 and 1580 km2, respectively (Forest Survey of 
India, 2019). Owing to the thick forest cover, both 
regions are rich in forest soil of high organic content. 
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The midlands of these districts have lateritic soil cover, 
formed by the transportation of weathered rock. 
Riverbanks have alluvial deposits. While Wayanad and 
the northern parts of the Palghat gap are characterised 
by thick regolith deposits, Idukki has a lesser thickness 
of overburden soil. The high elevation ranges of both 
the districts are highly dissected and have witnessed 
deep-seated movements in history. Major debris flows 
extending up to a few kilometres have happened in 
both districts. In Idukki, the road networks in the dis-
trict where the unsupported vertical slopes are highly 
affected by landslides. In the case of Wayanad, most 
landslides have happened within the forest areas.

From the interaction with the local people of the 
study areas, it was understood that tension cracks or 
new streams are usually observed prior to failure in the 
landslide location, particularly in the case of failure- 
triggered debris flows. This study is an attempt to esti-
mate the landslide dimensions based on the topogra-
phical features of the source area using a simple and 
easy-to-use tool. Once the tension cracks are identified, 
the proposed tool can estimate the runout area, thus 
helping to identify the elements exposed to risk and 
taking necessary precautions and emergency measures.

3. Methodology

The study proposes a user-friendly tool for estimating 
landslide dimensions based on a data-driven 
approach. A detailed landslide inventory was prepared 
using Google earth images (Abraham et al., 2021a,  

2021b) for both the study areas, and the procedure is 
mentioned in the ‘data collection’ section. The land-
slides were categorised into shallow landslides, flows, 
and rockfalls to train the models separately (Varnes,  
1978). The topographical details were collected using 
the digital elevation models (DEMs) of the study areas 
(Alos Palsar DEM, with 12.5 m resolution (ASF DAAC,  
2015)), and the maximum length, maximum width, 
area affected, and maximum horizontal distance was 
measured for each landslide polygon to get the train-
ing and testing data. The prepared data were used for 
training a model using the RF algorithm and the 
trained model was then used to develop a user- 
friendly tool for estimating landslide dimensions. The 
steps involved in the methodology are explained in 
detail in the following sections.

3.1. Data collection

Preparation of landslide inventories is the principal 
data required for the development of the model. For 
both Idukki and Wayanad, the major landslide disaster 
that happened in 2018 was considered for the analysis. 
Landslides happened throughout the higher elevation 
regions of both the districts in 2018, and satellite 
images before and after the disaster were available 
for preparing the inventory. The fast vegetation 
regrowth in the region might have resulted in missing 
some of the events, yet the prepared inventory was 
found to be in good agreement with the point land-
slide inventory prepared using field investigations and 

Figure 1. Location of study areas. a) India, b) Wayanad, and c) Idukki.
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satellite data interpretation (Hao et al., 2020). The pro-
cess of preparing the inventory is shown in Figure 2.

A total of 2162 landslides from Idukki and 388 land-
slides from Wayanad were mapped using the approach 
mentioned in Figure 2. After locating and mapping, the 
typology of landslides is evaluated in detail by inter-
preting the google earth images. Based on the type of 
failure, the landslides can be classified into five 
(Figure 3a). The initial classification by Baltzer in 1875 
(A, 1875) had only three categories: fall, flow, and slide, 
and this was later modified with the addition of topple 
and spread.

As explained in Figure 3b, the slope fails when the 
driving forces exceed the resisting force, that is, when 

the values of FS fall below 1. The shape of the slip 
surface, the material involved, and the topographical 
conditions decide the post-failure motion. From the 
collected data, no cases of topples and spreads were 
detected, and the inventory was classified into falls, 
slides, and flows. The flows are characterised by long 
runout, often channelised and flowing towards 
a stream downstream. The flow-like landslides are 
usually composed of both soil and rock, and the mate-
rial can be classified as debris. Such flows are failure 
triggered, with a translational or rotational slide at the 
crown area and then progressing as a flow due to very 
high moisture content. Even though they are complex 
failures, including both slide and flow, the term ‘flow’ is 

Figure 2. Preparation of landslide inventory data from pre and post landslide Google Earth Images. a) Image before the landslide, 
b) Image after the landslide, and c) Elevation profile along the landslide body.

Figure 3. Types of failure and post-failure movement. a) types of failure (modified after ; Cruden & Varnes, 1996))and b) Illustration 
of landslide process with respect to time (modified after ; Terzaghi, 1950)).
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used to classify such landslides, indicating the post- 
failure motion. Slides were identified where earth or 
debris are exposed, with lesser runout and clear dis-
tinction of a failure plane. The failure of rock in the 
study areas is often characterised by a complex form of 
both sliding and fall. The disintegrated particles of rock 
fall and travel longer distances and hence the com-
bined slides and falls of rock are categorised as ‘falls’ in 
this study.

A total of 12 datasets were prepared with the col-
lected data for training the model. This includes four 
sets of data for each study area, one for each landslide 
type and one without separating the landslide type. 
Apart from the separate dataset for each study area, 
one common dataset is also prepared for each land-
slide type and one superset of all the landslides from 
both the study areas.

These were named I1, I2, I3, IC, W1, W2, W3, WC, C1, 
C2,C3, and CC, where the first letter stands for the 
region and the second one stands for the type of fail-
ure considered. The letter I stands for Idukki, W stands 
for Wayanad, and C stands for the combined dataset. In 
the second part, 1 represents flows, 2 represents slides, 
3 represents falls and C represents the combined 
dataset.

3.2. Terminology and selection of features

The main objective of the tool is to minimise the 
number of features used for estimating landslide 
dimensions. As the soil of both the study regions is of 
varying grain size, debris or soil is involved in both 
slides and flows, while the category falls includes rock 
particles only. Apart from the material, the topographi-
cal features play a critical role in deciding the dimen-
sions of a landslide. The path of flow-like landslides is 
highly influenced by the topography, ridges, and val-
leys. From the visual interpretation of Google Earth 
images, the travel distances and the area (A) affected 
by landslides are measured manually, as shown in 

Figure 4. The term L denotes the projected runout 
length measured through the centre of the landslide 
body in the plan, and the term W denotes the max-
imum width of the cross-section of the failure. Even 
though W is also used in this manuscript to represent 
the region Wayanad, the name of the dataset will 
always be used along with a second letter or number, 
representing the type of failure, and hence both can be 
distinguished easily. The projected distance in the plan 
between the source and the farthest deposit location is 
termed the projected travel distance, and in this study, 
it is denoted as D, as shown in Figure 4. Using D and W, 
a rectangular bound can be proposed, which can be 
considered as the maximum area that can get affected 
by the landslide. The drop height ðH) is defined as the 
projected distance between the source and the farth-
est deposit location on a vertical plane. Other features 
in Figure 4 are defined (by ; Hungr et al., 2005) as reach 
angle (α), shadow angle (β), source-talus angle (Ψ), and 
substrate angle (γ). The term Dx is the component of D 
in the global direction parallel to the slope. Apart from 
these features, the tangential angle made by the slope 
area to the vertical plane is denoted as θ: For different 
types of slopes, Finlay et al. (1999) have proposed the 
expressions to calculate D as a function of vertical 
drop, slope angle, volume and width of landslide. In 
the cases except for cut slope and boulder fall, prior 
knowledge of landslide volume is required to estimate 
the travel distance.

The extent of landslides is highly affected by the 
geometrical features, but the distances and angles 
about which the information is available before the 
landslide can only be considered for predicting the 
landslide dimensions. The features H, α; θ and c can 
be calculated from the DEM data and can be used for 
the estimation of D,W, L; and A. Both H and α require 
the knowledge of the nearest flatter area or approx-
imate possible runout area. In the case of flow and falls, 
the post-failure movement will not stop at the first 
drop. To summarise, five input features are used, and 

Figure 4. Geometrical features associated with landslides: a) plan, and b) longitudinal section (modified after ; Hungr et al., 2005)).
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it is explored in detail if the dimensional parameters 
can be predicted effectively using these variables.

The distribution of all four variables in different 
datasets is summarised in Figure 5. It can be under-
stood that the A; L and H values are much higher for 
flows in Wayanad, when compared to all other cases. In 
the case of W, slides have higher values than other 
datasets. W has the least varying distribution among all 
the variables.

For each of the 12 datasets prepared, three different 
trials were conducted, by varying the combination of 
input features, to predict all four variables (A; L;W; and 
D). In the first combination, all five features are con-
sidered and is named EHθαc. The feature importance 
values of each feature are used to understand the 
significance of features in the combination. Feature 
importance calculates a score for all input features, 
which represents the significance of each feature. The 
value of feature importance can vary from 0 to 1, and 
a higher value indicates that the specific feature has 
more effect in predicting the variable. As the objective 
is to minimise the number of features, based on the 
feature importance values obtained for the first com-
bination, two more combinations were considered, 
one with E;H and θ, and the last one with only two 
features, E and θ.

Each dataset was trained and tested separately 
using the RF algorithm to find the best-suited features 
for estimating landslide dimensions.

3.3. Machine learning algorithm and 
performance evaluation

RF is a widely used ensemble machine learning (ML) 
algorithm (Ho, 1995). As the name indicates, a large 
number of decision trees are involved in the decision- 
making process of RF. Each tree in an RF has multiple 
branches and nodes. At each node, a decision is taken, 
which leads to one of the branches. The decisions thus 
continue, considering all the features, and the tree 
finally assigns a class to the object. Each tree will 
have a separate prediction, and later, the final predic-
tion is decided based on voting, considering the pre-
dictions of all decision trees (Figure 6). Each decision 
tree is sampled independently using statistical boot-
strapping (Breiman et al., 2003) and contains a subset 
of the dataset considered.

RF is widely used for multiple applications to train 
models and is proven to provide satisfactory results 
due to the random selection at nodes. The method is 
ideal for minimising the overfitting issues. The perfor-
mance of the model can be further fine-tuned by 
varying the set of hyperparameters. The performance 
of the model is highly sensitive to the values of hyper 
parameters (Daviran et al., 2021), and several cost- 
effective ways are available, for multi-criteria optimi-
sation (Liu et al., 2017). The number of trees in the 
forest, the maximum number of features considered 
for splitting a node, the maximum depth of the tree, 

Figure 5. Box and whisker plot showing the distribution of A; L;W and D in different datasets.
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and the minimum number of samples used to split 
a node are varied in this study to improve the effi-
ciency of the model. These values were fine-tuned 
separately for each model, along with the test-to- 
train ratio of the dataset. The process is carried out 
manually, by varying the parametric inputs and 
observing the corresponding model performance. 
All the other parameters are constant while fine- 
tuning one parameter. In this study, RF regressor is 
used to predict the variables A; L;W and D using three 
different combinations of input features. The test-to- 
train ratio was fixed for each of these variables, based 
on the performance of the EHθαc model. This is to 
ensure that the comparisons of errors are made on 
the same dataset. The ratio was varied from 0.1 to 0.5 
in the case of the EHθαc model, and the best perform-
ing test dataset was used to test the performances of 
the other two cases as well. Different trials were con-
ducted to understand the effect of each feature, and 
the Willmott’s index of agreement (d), Mean-Absolute 
-Error (MAE) and the Root-Mean-Square-Error (RMSE) 
values of the predicted and observed values in the 
test dataset were used to evaluate the performance of 
different models. These values are calculated based 
on the test and predicted data, using the following 
equations: 

d ¼ 1 �

Pn
i¼1 ytest;i � ypred;i

� �2

Pn
i¼1 ypred;i � ytest þj j ytest;i� ytest

�
�
�

�
�
�

� �2 (1) 

MAE ¼
1
n

Xn

i¼1

ypred;i � ytest;i
�
�

�
�

� �
(2) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ypred;i � ytest;i
� �2

s

(3) 

where n is the total number of samples in the test 
dataset, ytest;i is the variable in the test dataset and 
ypred;i is the corresponding value predicted by the 
model. Also, ytest indicates the mean value in the test 
dataset. The value of d varies from 0 to 1, and the 
higher the value, the better the agreement between 
observed and predicted values. Based on the d, MAE 
and RMSE values, the features were decided and the 
tool for landslide dimension estimation was developed 
by using the best-suited feature inputs.

4. Results

Considering the regional-specific and failure-specific 
datasets and different feature combinations, a total of 
144 models were considered for the comparative ana-
lysis. As expected from the geometrical properties, 
when more specific input features are available, the 
prediction performance will be improved. But the pos-
sible information available prior to failure is highly 
limited to the scarp zone, where tension cracks are 
limited. When multiple flat areas are available along 
the failure propagation, finding out the values of H and 
θ is challenging. The first step is to understand the 
importance of each of these features in predicting 
the variables. The least important features can be 
removed from further analysis. When all the features 
have similar importance values, it is crucial to under-
stand the sensitivity of each feature by understanding 
the variations that may happen in the prediction per-
formance if it is removed.

Figure 6. Graphical representation of RF algorithm.
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4.1. Feature importance and performance 
evaluation

The feature importance values of all 144 combinations 
are shown in Figure 7. The values represented in 
Figure 7 are the feature importance values obtained 
for the fine-tuned models. The maximum depth of 
trees, number of trees, minimum number of samples 
used to split a node, and the number of features to 

consider when looking for the best split were fine- 
tuned, keeping default values for all other parameters. 
Considering the lesser number of parameters and 
trials, the fine-tuning was carried out by varying the 
values manually, for each dataset, and each feature 
combination. The value of maximum depth of trees 
were varied from 5 to 500, with an increment of 50, 
and it was observed that the performance of training 
data went increasing, while the performance of test 

Figure 7. Feature importance values for all features for 12 datasets considered for predicting a) A, using EHθαc, b) A, using EHθ, c) 
A, using Eθ, d) L, using EHθαc, e) L, using EHθ, f) L, using Eθ, g) W, using EHθαc, h) W, using EHθ, i) W, using Eθ, j) D, using EHθαc, k) 
D, using EHθ, and l) D, using Eθ.
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data was decreasing beyond the fine-tuned value. For 
the number of trees, the values were varied from 50 to 
1000, with an increment of 50. The observation was 
similar for both training and testing datasets, and the 
fine-tuned value is the value beyond which no signifi-
cant improvement in model performance is noted. The 
number of samples at each node were varied from 2 to 
10, with an increment of 1. For the number of features, 
the values were varied between 1 and 3, with an 
increment of 0.5. All these increments were further 
reduced once the performance of test data becomes 
constant or starts decreasing. Fine intervals were used 
in such cases to decide the model parameters. All 144 
models considered in this study have separate fine- 
tuned parameters, and the feature importance value, 
MAE and RMSE of the fine-tuned models were further 
used for comparison. As shown in Figure 7, the curva-
ture values are least important in all the trials con-
ducted using EHθαc. While all other features have 
feature importance values greater than 0.15, the corre-
sponding values for c were found to be less than 0.1 in 
most cases. The value has slightly gone above 0.1 only 
in the case of W3 and C2.This indicates that the feature 
c is less significant in predicting the variables, and the 
results may not get affected highly even if this input is 
avoided from the analysis. Hence, c is removed from 
further analysis.

While considering the features, the feature impor-
tance values of E and θ were found to be more than 0.3 
in some cases. The effect of θ was found to be more 
significant in the case of C1 for predicting A (0.30), L 
(0.30) and D (0.28), C2 for predicting A (0.32), C3 and C4 
for predicting L (0.27 and 0.27) and D (0.28, 0.30). 
Similarly, the effect of E was significant in the case of 
IC (0.31) and WC (0.29) for predicting W, and I2 (0.26), 
I3 (0.28) and C2 (0.28) for predicting D. In the case of 
W3 for predicting A, the feature E had the second least 
importance value of 0.15, where α was found to be the 
most crucial with a feature importance value of 0.27.

From the results, it was observed that E and θ have 
significant effects in predicting the landslide dimen-
sions, particularly when combined datasets are used. 
This has special significance, as the model has to be 
exported to multiple regions after a detailed testing 
procedure, and this is the first step in developing 
a globally applicable model. Hence, when the model 
is applied to a new region for which trained models are 
not available. It is suggested to use the combined 
dataset for predicting the dimensions. This has led to 
the inference that E and θ cannot be avoided while 
developing a model. The variables H and α decide the 
value of D. If both H and α are known, D can be easily 
calculated using the geometry without using any pre-
diction model. The challenge in this regard is the diffi-
culty in understanding the value of α. When the terrain 
has a D value extending up to a few kilometres, minor 
variations in the expected farthest deposition point 

will not make much variations in α value, but this is 
significant in the case of slides. Estimating α prior to 
failure is an almost impossible task, yet most of the 
existing correlations use α as an input parameter for 
predicting D. From the feature importance values of 
the combination EHθαc, it was observed that α is 
highly significant in only a few cases, and in all the 
other cases, it is neither the least nor the most signifi-
cant factor. Hence, in the second combination, α was 
also removed along with c.

From the second combination, it was observed that 
E and θ have very high feature importance values in 
some cases, while H has values comparable to the 
other two, even when it is the most significant factor. 
Also, H is least important in predicting D in the case of 
I3, C3 and CC. Even though drop height can be esti-
mated from the profile of the slope before failure, and 
it is challenging when the slope has multiple landings 
in between. It is difficult to use the value of H before 
failure. A wrong value can lead to large variations in 
predicted and observed dimensions of landslides. 
Hence, the third attempt was the combination of 
only E and θ, which can be easily calculated once 
tension cracks are observed. The feature importance 
values in this combination indicate that both the fea-
tures have importance values close to 0.5 and are more 
or less equally contributing to the prediction of vari-
ables, in most cases except C3 for predicting W, and I1 
for predicting D. In the case of C3 for predicting W; θ 
was found to be more significant with an importance 
factor of 0.64 and in the second case, E was found to be 
more significant with an importance factor of 0.62.

Apart from deciding the combinations, the predic-
tion performance of all three combinations should be 
evaluated in detail. This helps in understanding the 
applicability of the model for the intended purpose. 
As the EHθαc combination has more controlling para-
meters, it is expected to provide better prediction 
performance. If the results of the other two combina-
tions are highly varying from the performance of this 
combination, the model cannot be used effectively 
with less number of features. Even though H and α 
were not the most significant factors in most cases, and 
their importance values were comparable with those 
of E and θ. Hence, removing these parameters can 
critically affect the predicted values. This has been 
evaluated using MAE and RMSE values, as shown in 
Figure 8. Along with the error values in the first com-
bination (EHθαc) represented using the line diagram, 
the percentage variation of the error values obtained 
by using the second (EHθ) and third (Eθ) are repre-
sented as a scatter plot in Figure 8.

From Figure 8, it can be observed that the errors 
and significantly large for W1 and WC, where long 
runout debris flow with very large areas are dominat-
ing. The increased values of error are in proportion 
with the values in the database and hence are 
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Figure 8. MAE and RMSE values in predicting different variables. a) MAE in predicting A, b) RMSE in predicting A, c) MAE in 
predicting L, d) RMSE in predicting L, e) MAE in predicting W, f) RMSE in predicting W, g) MAE in predicting D, and h) RMSE in 
predicting D.
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acceptable. The primary concern here is the variation 
in the error values with the change in the input feature. 
When the percentage variation is negative, it indicates 
that the error is decreased and; therefore, the perfor-
mance is improved after removing the features. When 
the variation is positive, it has a negative impact on the 
prediction. After evaluating all the cases, it can be 
understood that the prediction is affected by the 
change in features, and the maximum value of percen-
tage variation was observed, −56.92%, in the case of 
estimating L of W1. The reduction has happened while 
using EHθ combination. The corresponding reduction 
in error using Eθ combination is −56.71%. The RMSE 
values of L in these two cases are 203.65 m and 
204.64 m, respectively. This indicates that the error 
has been reduced considerably when the α and c are 
removed. The maximum increase in error is 11.63%, in 
the case of MAE, for predicting D for W3 dataset, using 
EHθ. The corresponding variation while using Eθ is 
−10.57%. The results indicate that in no case the error 
has increased beyond 11.63%, even after removing the 
features. This is an acceptable limit, particularly in the 
case of long-runout events like falls and flows. Based 
on the results, Eθ combinations of all cases were saved 
into pickle files as predictors to develop an interactive 
tool for predicting the landslide dimensions.

4.2. Description of the tool

The tool is designed with the objective of delivering an 
easy-to-use platform for the practitioners to estimate 
the area that may get affected by landslides and take 
necessary actions. The tool is completely developed in 
python environment, using the existing library func-
tions. The regression is carried out using scikit-learn 
(Pedregosa et al., 2011), and the trained models are 
saved using pickle (Van Rossum, 2020). The tool has an 
interface developed using tkinter (Moore, 2018), which 
requires the elevation and tangential slope of the 
region as input features (Figure 9).

The two subsequent inputs decide which model 
should be used for predicting the results. The user 
can select Idukki and Wayanad in the present version, 
and if the region is outside these two, the NA option 
can be selected. Similarly, if the type of failure is 

known, the corresponding option can be selected, 
and NA can be selected if the type is unknown. When 
the material is soil or debris, and the moisture content 
is less, or when the terrain is relatively flat with pre-
dominantly cut slopes, slides can be expected. If the 
terrain has a very high moisture content and spring 
formations are observed nearby, flows can be 
expected, and falls can be expected only in the case 
of rocks. Based on the selection, the corresponding 
datasets among the 12 will be selected. The selection 
of the dataset has been decided after comparing the 
error patterns, as shown in Figure 10.

As observed from Figure 10, even though Wayanad 
has its own regional-specific database, the combined 
dataset has lesser values of error in most cases. With 
the use of the combined dataset, the error has 
increased while predicting width, in all the cases, 
with the maximum increase of 70.82% of RMSE value 
in the case of slides. The minimum increase is for MAE, 
for flow-like landslides, which is 7.55%. Also, in the case 
of slides, both MAE; and RMSE values have increased 
with the usage of the combined dataset. Hence, when 
landslide type is selected as slide, the trained model for 
Wayanad, W2 is used. The models with the Wayanad 
database are also used for predicting W when the 
region is selected as Wayanad. But in all other cases. 
The combined dataset is selected for predicting the 
dimensions of landslides in Wayanad to minimise the 
error. In the case of Idukki, the error is less when the 
regional-specific database is used. Hence, for Idukki, 
the I1; I2; I3 and IC datasets are used, according to the 
selection of user, and for Wayanad, the combined 
dataset is selected for flows, falls and when the type 
of failure is unknown. When the input for region is NA, 
the combined dataset is selected, corresponding to the 
failure type. When both region and landslide type are 
NA, CC dataset is used for prediction.

After selecting all the inputs, the ‘Calculate’ button 
can be used to get the outputs displayed on the 
screen. The output variables can be used to estimate 
the area that may get affected by the hazard. The tool 
is straightforward to be used and delivers the results 
within fractions of a second, as it uses pre-trained 
models for prediction. The performance of the tool is 
currently evaluated for the datasets retrieved in this 

Figure 9. The interface of the proposed tool. a) All inputs, b) dropdown for region, and c) dropdown for landslide type.
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Figure 10. Comparison of MAE and RMSE values of Eθ combination, for different landslide types. a) MAE for flow, b) RMSE for flow, 
c) MAE for slide, d) RMSE for slide, e) MAE for fall, f) RMSE for fall, g) MAE for combined landslide types, and h) RMSE for combined 
landslide types.

254 M. T. ABRAHAM ET AL.



study only. For extending its applicability other 
regions, thorough analysis with regional specific data 
is required. While the existing literature presents sta-
tistical correlations with drop height and other para-
meters which are obtained after the occurrence of 
landslide. Such relationships have limited applicability 
on decision support and early warning applications. 
This study puts forward a set of promising results 
which indicate that the dimensions of landslides can 
be predicted using the elevation and slope information 
of the location of visible cracks. The method is much 
simpler when compared with the numerical model-
ling-based tools and can be used to identify the ele-
ments exposed to risk and take necessary actions 
before the occurrence of landslide. The primary reason 
for considering the tool an ‘easy-to-use’ one is the 
usage of minimum parametric inputs, with satisfactory 
outputs, as demonstrated by the MAE and RMSE 
values. While using a numerical model requires 
detailed knowledge of the triggering mechanism, 
topography, boundary conditions and material proper-
ties, this tool can be used easily with only elevation 
and slope information. Also, the interface provides an 
easy way to input the parameters and directly getting 
the outputs, rather than using regression equations or 
codes. The method can be further enhanced by 

collecting data from multiple regions in order to 
develop a globally applicable version of the tool.

5. Discussion

Study presents a data-driven approach to predict the 
dimensions of different landslide types using an easy- 
to-use tool. The results indicate that the geometrical 
parameters such as E;H; θ; α and c can be used for 
estimating the area, maximum length, maximum 
width and maximum travel distance of landslides. 
The study investigates in detail the possibilities of 
predicting the dimensions using the elevation and 
slope data alone. Figure 7 indicates that the use of 
the Eθ combination reduces the error when compared 
to the EHθαc combination, in most of the cases. While 
evaluating the feature importance values, it can be 
understood that the curvature is the least important 
factor in all the 144 combinations considered. This is 
because most landslides have concave profile curva-
tures, and the values are highly similar irrespective of 
their size. Hence, any change in curvature values will 
not affect the model performance. Along with curva-
ture, the angle of reach, α, was also removed in 
the second analysis. Even though there was 
a significant reduction in error in some of the cases 

Figure 11. MAE, mean and d values of A; L;W and D in different datasets.
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using the second combination, the MAE value has 
increased by more than 11% in the case of predicting 
D with EHθ. Eventhough an influential parameter was 
removed, the performance was not highly affected, as 
the hyperparameters were fine-tuned separately for 
each model. The reason for E being a critical factor in 
estimating the dimensions is closely related to the 
landslides that have happened in the study area. In 
both the study areas, E values are closely related to H:
The landslides in higher elevation zones have hap-
pened in forest areas and plantations, where the H 
values are also higher. The failures in lower elevation 
regions are induced by the cut slopes exposed with-
out lateral support. Their dimensions are controlled 
by the construction activities such as buildings and 
roads, and they usually have lesser drop heights. 
Thus, even though H values are removed from the 
input features, E values indirectly represent H. The 
reason for using E instead of H is that E value can be 
collected when the source area is known, while H 
value cannot be. This limits the applicability of the 
model to different regions, where E and H are not 
closely related. Thus, the methodology has to be 
tested before exporting to other regions. The number 
of trees, features at each node, minimum number of 
samples used to split a node and depth of trees were 
used to minimise the error in each case. A similar 
approach was adopted and was found satisfactory in 
reducing the error for Eθ combination as well. This 
helped in developing a model by using only slope and 
elevation data for predicting landslide dimensions.

While comparing the errors, it should be noted that 
the AL;W; and D values are entirely different for each 
landslide type. From Figure 11, it can be observed that 
the MAE values in all cases are lesser than the mean 
values of the dataset. While flows and rockfalls have 
very long runouts extending from a few hundreds of 
metres to a few kilometres, slides extend up to a few 
hundreds of metres only, with an average value close 
to 100 m (Figure 11). The MAE values in the case of the 
area are more than 2000 m2 in all the cases, except falls 
for Idukki and the combined dataset. The MAE values in 
predicting the length of the slides are also very close to 
the mean values of the dataset. This has happened due 
to the considerable variation in the size of slides. The 
error values in prediction will overestimate the land-
slide hazard in the case of small landslides. This limita-
tion can be bypassed by preparing a different dataset 
for cut slope failures and shallow landslides in other 
locations. While shallow slides happening in forest 
regions have a wider travel distance, the failed mass 
in case of cut slope failures often gets deposited at the 
foot of the slope due to the flat area nearby. In such 
cases, the failure plane is primarily vertical, while in the 
case of other shallow landslides, circular or transla-
tional slip surfaces inclined to the horizontal plane 

are observed. Considering d, the values are least in 
case of slides, and the minimum value observed is 
0.38, in the case of slides in the combined dataset. In 
all cases except slides, the values are greater than 0.5, 
showing satisfactory agreement between the 
observed and predicted datasets.

The width of landslides is maximum for both slides 
and falls, and the values range from 8 m to 337 m. The 
error values should be evaluated with reference to the 
distribution of data in each case. From Figure 8 it can 
be understood that in the case of area, the maximum 
MAE is with W1, which is 6269.79 m2. This error has 
highly influenced the combined dataset of Wayanad as 
well, which has an MAE value of 5778.57 m2. Even 
though the magnitude is higher when compared to 
the other values, the predictions are satisfactory, as the 
area of debris flows in this region ranges from 485 m2 

to 253,880 m2. The pattern of variation of error is 
similar for A; L; and D, with the maximum error in the 
case of W1 and WC datasets. But in the case of width, 
the maximum error is observed in the case of I2 and IC 
datasets. This is due to the higher number of cut slope 
failures that happened in the Idukki district. The fail-
ures are very wide and have a width values upto 337 m, 
with lesser values of length. Also, there are shallow 
landslides that happened away from the road, which 
have width-to-length ratio close to unity. The error is 
slightest in the case of rockfalls, where the average 
width is 48 m in the case of a combined fall dataset, 
and the values vary from 12 m to 137 m. These obser-
vations indicate that when the dataset is uniform, 
there are higher chances that the error will be mini-
mum. The hypothesis during formulating the metho-
dology was that when the same type of failure 
happens in a nearby location, the dimensions will not 
vary much, and hence a model trained using historical 
data can effectively be used for predicting future 
events in the same area.

In the case of the Wayanad dataset, this hypothesis 
is not valid, as the error is lesser for the combined 
dataset than the regional-specific Wayanad dataset. 
The main reason for this variation is among the 388 
landslides mapped from Wayanad, 252 are flows, 68 
are slides, including both earth and debris, and the 
remaining are falls. The number of events that is 
being used for training is much less when compared 
to the whole dataset, and the variation within the 
dataset is also very high. Due to these reasons, the 
model gets better trained with combined datasets. 
Hence, the regional-specific datasets need not be the 
best option while predicting landslide dimensions, and 
the number and quality of data plays critical roles in 
minimising the error. With more data, the model can 
be extended to other parts of the world as well.

The methodology can only be used to predict the 
dimensions of a landslide that may happen in the 
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future, based on the field observations of cracks. 
However, no information can be provided on the 
time of occurrence of the landslide. The tool should 
be the regional or local scale landslide early warning 
systems to obtain the information on ‘when’ 
a landslide will occur. The warning system can be 
based on rainfall thresholds, seismic signals, or satellite 
or field-based monitoring systems. The integration of 
this tool along with an early warning system can pro-
vide a better understanding of the hazard and can be 
used to disseminate the warnings effectively to the 
stakeholders. This aspect can be explored in the future. 
In the present state, the proposed methodology is best 
suited for long runout failures like flows and falls and 
can be used to develop a globally applicable model for 
predicting landslide dimensions.

6. Conclusions

The study presents a data-driven approach to predict 
the dimensions of landslide, upon the identification of 
minor cracks in the crown area. The methodology 
proposed in this study use only the elevation and 
tangential slope of the crown area to predict the 
dimensions of landslides and prove to be a promising 
tool that can be used in the decision support system.

The proposed methodology is tested for two differ-
ent regions in Western Ghats of India, using 12 differ-
ent datasets, and three different combinations of input 
features are used to evaluate the influence of each 
parameter on the model predictions. The comparison 
of MAE and RMSE values of the predicted variables in 
each case indicates that the maximum increase in error 
is only 11.63%, while the reduction in error is 56.92% 
with the Eθ combination. The performance of Eθ com-
bination was found to be comparable with the other 
two, without the requirement of any challenging fea-
ture inputs like drop height and angle of reach.

The combinations of all 12 datasets were used to 
decide the model to be used for predicting the dimen-
sions. While the region-specific models were found to 
have least errors for Idukki, the combined dataset was 
found to have better performance than the datasets 
for Wayanad. The pre-trained models were used to 
develop a tool with an interactive interface, which 
can be easily used to predict the landslide dimensions. 
The proposed methodology has the potential to be 
applied to other regions as well with the availability 
of regional specific data, yet the possibility of finding 
robust relationships among the variables should be 
evaluated through detailed analysis.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Data availability statement

The data used for the analysis is available on request from 
the corresponding author.

Tool availability

The tool mentioned in the manuscript will be shared on 
request by the corresponding author.

References

A, B. (1875). Über bergstürze in den Alpen. Verlag der 
Schabelitz’schen buchhandlung (C. Schmidt). Zurich.

Abraham, M. T., Satyam, N., Jain, P., Pradhan, B., & Alamri, A. 
(2021a). Effect of spatial resolution and data splitting on 
landslide susceptibility mapping using different machine 
learning algorithms. Geomatics, Natural Hazards and Risk, 12 
(1), 3381–3408. https://doi.org/10.1080/19475705.2021. 
2011791 

Abraham, M. T., Satyam, N., Lokesh, R., Pradhan, B., & 
Alamri, A. (2021b). Factors affecting landslide susceptibil-
ity mapping: assessing the influence of different machine 
learning approaches, sampling strategies and data 
splitting. Land, 10(9), 989. https://doi.org/10.3390/ 
land10090989 

APEGBC. (2012). Professional practice guidelines – Legislated 
flood assessments in a changing climate in British Columbia 
(Vancouver, British Columbia: Engineers and Geoscientists 
British Columbia). 2012.

Armento, M. C., Genevois, R., & Tecca, P. R. (2008). 
Comparison of numerical models of two debris flows in 
the Cortina d’ Ampezzo area, Dolomites, Italy. Landslides, 5 
(1), 143–150. https://doi.org/10.1007/s10346-007-0111-2 

ASF DAAC, 2015. Alaska Satellite Facility Distributed Active 
Archive Center (ASF DAAC) Dataset: ASF DAAC 2015, ALOS 
PALSAR_Radiometric_Terrain_Corrected_high_res; 
Includes Material © JAXA/METI 2007. [WWW Document]. 
https://doi.org/10.5067/Z97HFCNKR6VA 

Breiman, L., Last, M., & Rice, J. (2003). Random Forests: 
Finding Quasars Feigelson, E.D., Babu, G. J. Statistical 
Challenges in Astronomy (pp. 243–254). Springer-Verlag. 
https://doi.org/10.1007/0-387-21529-8_16 

Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: 
Numerical simulation of dense snow avalanches in 
three-dimensional terrain. Cold Regions Science and 
Technology, 63(1–2), 1–14. https://doi.org/10.1016/j.coldre 
gions.2010.04.005 

Cruden, D., & Varnes, D. (1996). Landslide types and pro-
cesses. In A. K. Turner & R. L. Schuster Eds., Landslides, 
investigation and mitigation (pp. 36–75). Transportation 
Research Board. Special Report.

Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. 
(2021). A new strategy for spatial predictive mapping of 
mineral prospectivity: Automated hyperparameter tuning 
of random forest approach. Computers & Geosciences, 148, 
104688. https://doi.org/10.1016/j.cageo.2021.104688 

Finlay, P. J., Mostyn, G. R., & Fell, R. (1999). Landslide risk 
assessment: Prediction of travel distance. Canadian 
Geotechnical Journal, 36(3), 556–562. https://doi.org/10. 
1139/t99-012 

Forest Survey of India. (2019). State of forest report 2019. In 
Dehradun 2 . Uttarakhand: 131–140 .

Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing 
climate. Earth-Science Reviews, 162, 227–252. https://doi. 
org/10.1016/j.earscirev.2016.08.011 

ALL EARTH 257

https://doi.org/10.1080/19475705.2021.2011791
https://doi.org/10.1080/19475705.2021.2011791
https://doi.org/10.3390/land10090989
https://doi.org/10.3390/land10090989
https://doi.org/10.1007/s10346-007-0111-2
https://doi.org/10.5067/Z97HFCNKR6VA
https://doi.org/10.1007/0-387-21529-8_16
https://doi.org/10.1016/j.coldregions.2010.04.005
https://doi.org/10.1016/j.coldregions.2010.04.005
https://doi.org/10.1016/j.cageo.2021.104688
https://doi.org/10.1139/t99-012
https://doi.org/10.1139/t99-012
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1016/j.earscirev.2016.08.011


Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: 
A computer program for the three-dimensional simulation 
of rock-falls. Computers & Geosciences, 28(9), 1079–1093. 
https://doi.org/10.1016/S0098-3004(02)00025-0 

Hao, L., van Westen, C., Martha, T. R., Jaiswal, P., & 
McAdoo, B. G. (2020). Constructing a complete landslide 
inventory dataset for the 2018 monsoon disaster in Kerala, 
India, for land use change analysis. Earth System Science 
Data, 12(4), 2899–2918. https://doi.org/10.5194/essd-12- 
2899-2020 

Ho, T. K., 1995. Random decision forests, in: Proceedings of the 
International Conference on Document Analysis and 
Recognition, ICDAR. pp. 278–282. https://doi.org/10.1109/ 
ICDAR.1995.598994 

Huang, H., Huang, J., Liu, D., & He, Z. (2021). Understanding 
the public responses to landslide countermeasures in 
southwest China. International Journal of Disaster Risk 
Reduction, 64, 102500. https://doi.org/10.1016/j.ijdrr.2021. 
102500 

Hungr, O., Corominas, J., & Eberhardt, E. (2005). Estimating 
landslide motion mechanism, travel distance and velocity. 
In O. Hungr, R. Fell, R. Couture, & E. Eberhardt (Eds.), 
Landslide risk management (pp. 30). Taylor and Francis 
Group, CRC Press.

Lato, M., Bobrowsky, P., Roberts, N., Bean, S., Powell, S., 
Stead, D., McDougall, S., Brideau, M. A., & VanDine, D., 
2016. . In Canadian technical guidelines and best practices 
related to landslides: a national initiative for loss reduction 
8114 (Geological Survey of Canada)https://doi.org/10. 
4095/299117  .

Leroueil, S., Locat, J., Vaunat, J., Picarelli, L., Lee, H., & Faure, R. 
(1996). Geotechnical characterization of slope move-
ments. In K. Senneset (Ed.), 7th International Symposium 
on Landslides (CRC Press) (pp. 53–74).

Lima, P., Steger, S., Netto, A. L. C., Glade, T., & Mergili, M., 2019. 
Combining landslide susceptibility with potential runout. 
An integrative approach combining data-driven methods., 
in: IAG Regional Conference on Geomorphology 2019. 19-21 
September (International Association of 
Geomorphologists) Athens, p. 536.

Liu, C. H. B., Chamberlain, B. P., Little, D. A., & Cardoso, Â., 2017. 
Generalising random forest parameter optimisation to 
include stability and cost, in: Y. Altun, K. Das, 
T. Mielikäinen, D. Malerba, J. Stefanowski, J. Read, 
M. Žitnik, M. Ceci, & S. Džeroski (Eds.), Machine Learning 
and Knowledge Discovery in Databases; Proceedings of 
European Conference, ECML PKDD 2017 Skopje, Macedonia, 
September 18–22, 2017 Proceedings, Part III, Lecture Notes in 
Computer Science. Springer International Publishing, Cham, 
pp. 102–113. https://doi.org/10.1007/978-3-319-71273-4_9 

McDougall, S. (2017). Landslide runout analysis — Current 
practice and challenges. Canadian Geotechnical Journal, 
54, 605–620. https://doi.org/10.1139/cgj-2016-0104 

Melo, R., Zêzere, J. L., Rocha, J., & Oliveira, S. C. (2019). 
Combining data-driven models to assess susceptibility 
of shallow slides failure and run-out. Landslides, 16 
(11), 2259–2276. https://doi.org/10.1007/s10346-019- 
01235-2 

Mergili, M., Schwarz, L., & Kociu, A. (2019). Combining release 
and runout in statistical landslide susceptibility modeling. 
Landslides, 16(11), 2151–2165. https://doi.org/10.1007/ 
s10346-019-01222-7 

Moore, A. D. (2018). Python GUI Programming with Tkinter: 
Develop responsive and powerful GUI applications with 
Tkinter. Packt Publishing.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da 
Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots 
for conservation priorities. Nature, 403(6772), 853–858. 
https://doi.org/10.1038/35002501 

Pedregosa, F., Gaël Varoquaux, A. G., Michel, V., 
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., 
Duchesnay, É., Pedregosa, F., Varoquaux, G., 
Gramfort, A., Michel, V., . . . Duchesnay, É. (2011). 
Scikit-learn: Machine Learning in Python. Journal of 
Machine Learning Research, 12, 2825–2830.

Terzaghi, K. (1950). Mechanism of landslides Paige, Sidney. In 
Application of geology to engineering practice. Vol. 
(Geological society of America), pp.83–123https://doi. 
org/10.1130/Berkey.1950.83 doi:

United Nations Development Programme. (2018). Kerala post 
disaster needs assessment floods and landslides-august 2018 
(United Nations Development Programme) 1–440.

Van Rossum, G. (2020 (Python Software Foundation.)https:// 
www.python.org/downloads/release/python-382/). The 
python library reference, release 3.8.2.

Varnes, D. (1978). Slope movement types and processes. 
Transp. Res. Board Spec. Rep.

Xu, Q., Li, H., He, Y., Liu, F., & Peng, D. (2019). Comparison of 
data-driven models of loess landslide runout distance 
estimation. Bulletin of Engineering Geology and the 
Environment, 78(2), 1281–1294. https://doi.org/10.1007/ 
s10064-017-1176-3 

Zhao, T., Lei, J., & Xu, L. (2022). An efficient Bayesian method 
for estimating runout distance of region-specific land-
slides using sparse data. Georisk: Assessment and 
Management of Risk for Engineered Systems and 
Geohazards, 16(1), 140–153. https://doi.org/10.1080/ 
17499518.2021.1952613

258 M. T. ABRAHAM ET AL.

https://doi.org/10.1016/S0098-3004(02)00025-0
https://doi.org/10.5194/essd-12-2899-2020
https://doi.org/10.5194/essd-12-2899-2020
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1016/j.ijdrr.2021.102500
https://doi.org/10.1016/j.ijdrr.2021.102500
https://doi.org/10.4095/299117
https://doi.org/10.4095/299117
https://doi.org/10.1007/978-3-319-71273-4_9
https://doi.org/10.1139/cgj-2016-0104
https://doi.org/10.1007/s10346-019-01235-2
https://doi.org/10.1007/s10346-019-01235-2
https://doi.org/10.1007/s10346-019-01222-7
https://doi.org/10.1007/s10346-019-01222-7
https://doi.org/10.1038/35002501
https://doi.org/10.1130/Berkey.1950.83
https://doi.org/10.1130/Berkey.1950.83
https://www.python.org/downloads/release/python-382/
https://www.python.org/downloads/release/python-382/
https://doi.org/10.1007/s10064-017-1176-3
https://doi.org/10.1007/s10064-017-1176-3
https://doi.org/10.1080/17499518.2021.1952613
https://doi.org/10.1080/17499518.2021.1952613

	Abstract
	1. Introduction
	2. Study area
	3. Methodology
	3.1. Data collection
	3.2. Terminology and selection of features
	3.3. Machine learning algorithm and performance evaluation

	4. Results
	4.1. Feature importance and performance evaluation
	4.2. Description of the tool

	5. Discussion
	6. Conclusions
	Disclosure statement
	Data availability statement
	Tool availability
	References

