IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 31, 2022, accepted February 23, 2022, date of publication February 28, 2022, date of current version March 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3155193

Darkening Low-Earth Orbit Satellite
Constellations: A Review

ALI LALBAKHSH 2, (Member, IEEE), ANDREW PITCAIRN "3,

KAUSHIK MANDAL 4, (Senior Member, IEEE),

MOHAMMAD ALIBAKHSHIKENARI“3, (Miember, IEEE),

KARU P. ESSELLE "2, (Fellow, IEEE), AND SAM REISENFELD "', (Life Member, IEEE)

!'School of Engineering, Macquarie University, Sydney, NSW 2119, Australia

2School of Electrical and Data Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
3Macquarie University College, Macquarie University, Sydney, NSW 2119, Australia

4Institute of Radio Physics and Electronics, University of Calcutta, Kolkata 700073, India

SDepartment of Signal Theory and Communications, Universidad Carlos IIl de Madrid, Leganés, 28911 Madrid, Spain

Corresponding author: Ali Lalbakhsh (ali.lalbakhsh@mgq.edu.au)

This work was supported in part by Macquarie University; in part by the Australian Research Council Discovery Grants Scheme; and in
part by the Faculty of Engineering and Information Technology, University of Technology Sydney, Seed Grant.

ABSTRACT The proliferation of low-earth orbit (LEO) satellites and the LEO satellite internet will be
a game-changer for the low-latency high-speed global internet. While this new generation of the satellite
internet in conjunction with fifth generation network (5G) and sixth generation network (6G) enabled
emerging technologies, such as precision farming and smart cities, it will bring new challenges, such as
satellite collision, limited satellite lifespan, security concerns, and satellite brightness. This article discusses
the satellite brightness caused by LEO constellations that potentially affect the ongoing astronomical studies.
It reviews the underlying contributors to the satellite brightness as well as the state-of-the-art technologies
proposed to mitigate this emerging challenge.

INDEX TERMS Low earth orbit satellites, satellite brightness, satellite internet, phased array antenna,
brightness magnitude, satellite communication, SATCOM.

NOMENCLATURE I. INTRODUCTION

Abbreviation Meaning In recent years, satellite internet has moved into the low earth
5G 5" Generation mobile network. orbit (LEO) arena, reducing latency, and increasing network
5G 5™ Generation mobile network. speeds. Using several satellites in LEO, space players create
LEO Low Earth Orbit. constellations of internet satellites to cover the earth fully.
MEO Medium Earth Orbit. SpaceX’s Starlink network is the most developed of these
GEO Geosynchronous equatorial orbit. with 1560 active satellites, as of 24 February 2022. Oth-
GPS Global positioning satellite. ers include Telesat LEO, Amazon’s Project Kuiper, Iridium

03b Other 3 Billion. NEXT, Globalstar and OrbComm [1].
SES Société Européenne des Satellites. A constellation of satellites in LEO comes with many
NOIR Lab National Optical Infrared benefits. Having a very high coverage percentage of the
Astronomy Research Laboratory. entire earth will help provide internet to remote areas to
m Meters. improve education and communication where traditional
M Magnitued. internet access is very limited and unreliable. Reduced
ms Millisecond. latency will improve real-time communication speeds com-
Mbps Megabits per second. pared to traditional geosynchronous equatorial orbit (GEO)
Gbps Gigabits per second. satellite internet. Running costs will be reduced due to
PSo Particle swarm optimisations. the minimal ground-based infrastructure required as future
satellites will be fitted with optical inter-satellite links for
The associate editor coordinating the review of this manuscript and communication between the satellites without using ground
approving it for publication was Haipeng Yao . stations, further increasing data transfer speed [2], [3]. Such
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TABLE 1. Speeds from different orbital heights.

GEO MEO LEO
Distance from | 35,786 Km 8,000 Km 550 Km
Earth
Latency 476 msec 106.7 msec 7.32 msec
Data rate 1.5 Mb/s 2.1 Mb/s 150 Mb/s

constellations will play an essential role in emergency com-
munications in regional areas and oceans where conventional
satellite communications and other terrestrial technologies
are minimal [4], [5].

LEO satellite constellations can provide low latency, high
bandwidth internet from an orbital height of 550 kilometers
(km), significantly better than GEO internet satellites which
are stationed in a 35,786 km orbit [6], [7] to stay constantly
aligned with specific areas of the earth and have a much
higher latency as well as lower bandwidth [8]. Table 1 shows
a comparison of coverage and distance of GEO, medium earth
orbit (MEO) and LEO Satellites.

Additionally, the LEO satellites can be de-orbited after
they reach the end of life, another advantage over GEO
technology. This helps in reducing the amount of space junk
in orbit earth. Traditional GEO satellites are positioned into
a graveyard orbit when they retire, which is more efficient
than trying to deorbit it from its operating height [9]. Collision
avoidance is an important aspect of LEO satellite constella-
tions. The orbital space around earth is becoming increasingly
busy with space junk, satellites, and other objects. Another
major concern is that too many satellites may induce the
Kessler effect, a cascading collision leading to a debris belt
around the earth, limiting our capabilities to launch rockets
into orbit and beyond [10], [11]. As stated in [12], there are
over 120 conjunctions in a 30-day period that cross the thresh-
old for the current collision avoidance regulations as well as
53 that cross the maneuver planning threshold that is used to
control the current density of LEO space. For this reason, a
collision-avoidance system has been implemented ont o the
satellites to maneuver the satellite. Another key feature is to
make de-orbiting the satellites part of the satellite mission.
When they reach their end of life, they complete a de-orbit
burn, eventually burning up in the Earth’s atmosphere, further
reducing the amount of space debris in orbit [13]-[15].

However, the LEO constellations require significantly
more satellites to provide the same coverage amount com-
pared to a GEO constellation as shown in Fig. 1, [6], [16].

This increases the number of objects in the orbit, and with
it brings new challenges, such as orbital collusion, limited
satellite lifespan, security concerns associated with tens of
thousands of satellites, and satellite brightness. This review
will systematically discuss the underlying factors of LEO
satellite constellation brightness and the most recent tech-
nologies developed to mitigate this emerging challenge.

Il. DEVELOPMENT OF LEO SATELLITES
Traditionally, internet satellites were in GEO, but in 2013
Société Européenne des Satellites (SES) launched four satel-
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lites, the start of its ‘Other 3 Billion’ (O3b) constellation into
MEDO to provide internet access to many countries around the
world. The O3b constellation currently has 20 satellites in
MEO, supporting many customers [17], [18]. In MEO, the
satellites have a 100-120 millisecond (ms) latency, which is
far better than GEO, but not as low as a LEO satellite con-
stellation. Ob3 mPOWER is their newest satellite design, cur-
rently in production to increase bandwidth from 50 megabits
per second (Mbps) to 1+ gigabits per second (Gbps) [19].
Since O3b’s success in providing MEO satellite internet, LEO
satellite constellations have been developed to compete with
broadband and fiber internet on the ground as well as provide
internet to rural areas without compromise.

The first iteration of the Starlink satellite started as a stan-
dard MicroSat. During development, the two test satellites
were named Tintin A and Tintin B. They were a box design
measuring 1.1 meters (m) x 0.7 m x 0.7 m. The MicroSat
consisted of a flight computer, power system, a control sys-
tem, broadband and ground positioning satellite (GPS) anten-
nas, and two solar panels. The satellites have a total mass of
400 kilograms (kg) each [20]. Tintin A and Tintin B, shown
in Fig. 2, successfully communicated with ground stations,
leading to the development of Starlink version 0.9. This
satellite was an all-new design that consisted of a new flat-
panel layout, allowing the satellites to be stacked vertically
when loaded onto the launch vehicle. It uses a single solar
panel, a new propulsion system using Hall Effect thrusters
with Krypton fuel and a new collision-avoidance system.
This new package reduced the weight of the satellite down
to approximately 227 kg. On 15 May 2019, 60 of the new
version 0.9 satellites were launched on a Falcon 9 rocket and
reached an altitude of 550 km [21], [22]. The most current
Starlink satellite in orbit as of this publishing date is v1.5.
It uses two parabolic antennas and four phased array antennas
in the Ku- and Ka-bands, as well as a star-tracker to help with
attitude data and control while maintaining the single solar
panel, Hall effect thrusters and the collision avoidance system
from version 0.9. They weigh around 260 kg each [23]-[25].
OneWeb, another LEO constellation now operated by the
British Government and Bharti Global, is working to extend
its constellations with a plan to produce 648 satellites for
its first-generation fleet for its initial constellation. Currently
394 satellites are successfully launched into LEO.

IlIl. ONSET OF BRIGHTNESS

The presence of thousands of satellites orbiting the earth at a
very low altitude causes the onset of streaks in the sky due to
sun illumination known as satellite brightness.

The brightness of satellites can affect astronomers observ-
ing the night sky by creating streaks in the images, which
can cause blown highlights in the astronomical images, which
causes fainter objects not to be visible. If the satellite remains
on any pixel for any length of time as it can saturate the pixel,
creating artifacts and reducing the data captured [26]. Obser-
vatories with a wider field of view will be greatly affected due
to observing a larger area of the night sky. Observatories with
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FIGURE 1. Comparison of coverage and distance of GEO, MEO and LEO satellites [6].

FIGURE 2. Tintin A & B pre-launch [20].

a smaller field of view will be less affected, but the trails from
LEO constellations can still affect their data. The reflections
are at their worst during twilight hours when the satellites are
in full view of the sun, yet the earth is still night. This is due
to the height of the satellites in orbit. Most LEO satellites are
around 550 km from the surface of the earth, resulting in a
radial velocity of 7.6 km/s [26] which is slow enough to leave
trails on the imaging sensors.

The streaks of some LEO satellites, shown in Fig. 3 [27],
are caused by the satellites being illuminated by the sun,
and depending on the observational zenith angle, shown in
Fig. 5, satellite altitude, and observing night, the brightness
and number of streaks in the images can vary. Satellites are
complex in design and shape, as there is no need for them
to be aerodynamic. They consist of the body, which can vary
in size and shape to house all the instruments in addition to
a solar array or a singular solar panel. The solar panels and
the antennas are known as two main reflection points on the
LEO satellites, strongly contributing to satellites brightness.
The solar array on most of LEO satellites is estimated size of
12 m x 3.2 m [28] that is large enough to reflect light.
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FIGURE 3. A wide-field image with satellite streaks [27].
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FIGURE 4. Diffused and specular reflections on a glossy surface [45].

The phased array antennas on most of LEO satellites
are also a key point for reflections due to their reflec-
tive surface which helps reduce heat by reflecting the light
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FIGURE 5. Observer aspect of the satellite [46].

away. These antennas are essential to LEO satellites as
they are responsible for providing internet communications
on the V and Ku- bands, as well as connecting to the
ground stations for tracking and system monitoring on the
V and Ka- bands [23]. Apart from phase array technology,
a new beam steering mechanism has recently been pro-
posed based on near-field transformation, contributing to
low-cost manufacturing [29]-[36]. This technique does not
require expensive active phase shifters and can be imple-
mented by all-dielectric substances [29]—[31], all-metal struc-
tures [32], [33], or hybrid materials [34]-[36]. Additionally,
there are other antenna reconfiguring techniques that poten-
tially can be adopted for such purposes [37]-[43].

Phased array antennas electronically steer the highly-
directive beam of the antenna using several microwave phase
shifters. The main beam can be oriented in any direction
by fixing the arrangement of elements and changing the
phase of each element accordingly. Despite their excellent
performance, this class of antenna is susceptible to heat,
where their radiation patterns, and particularly the antenna
gain, are varied slightly as the heat increases. Because of
this, reflective radiators are designed and placed on top of
the antenna to minimize heat-driven variation in the antenna
radiation patterns [44]. These radiators along with relatively
large solar panels, reflect sunlight during sunrise and sunset
as the satellites orbit the earth, producing both specular and
diffused reflections [46].

As shown in Fig. 4, specular reflections occur when the
incident rays are all aligned and reflect in the same direction
as well as preserving the organization of the rays. This occurs
on reflective and polished objects and means that the light is
focused in one spot, rather than being scattered. Differently,
diffused reflection occurs when the surface is un-even and the
angle of the reflected rays are all different depending on what
part of the surface is illuminated. If the surface has roughness,
even at the molecular level, the light will be diffused due
to the uneven surface [48]-[51]. Most LEO satellites have
a square flat panel with flat radiators covering the phased
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FIGURE 6. LEO satellites creating the “String of pearls” effect [48].

array antennas. Both cause specular reflections back to the
ground, making them appear as bright objects in the night
sky as the sun reflects down to earth. This is because they
are highly reflective to passively cool the satellite without
the need for an additional cooling system [52]. Due to the
orbital height of LEO constellations, the satellites are only
visible around astronomical twilight and are not visible in
the earth’s shadow for local solar midnight [53]. The sun
reflects off the satellites and solar panels and phased array
antennas during sunrise and sunset as they orbit the earth, and
this produces both specular and diffused reflections [46]. Due
to this reflectiveness, satellites reflect sunlight back down to
earth creating a “string of pearls when they are maneuvering
to their operational orbit as seen in Fig. 6. This undesired
streak effect on images as well as being visible to the naked
eye [49], [54]. This side-effect only occurs immediately after
they have been released from the second stage of the rocket
and while the solar panels are in a low drag mode to reduce
the effect the atmosphere has on the satellite. Over the course
of 3 to 4 weeks as the satellites separate from each other and
rise to their operational orbit the string of pearls effect slowly
disappears.

These reflections can be mitigated by changing the orienta-
tion during the twilight hours where the satellite will be at its
most reflective. During its orbital raising period, the satellite
has the solar panel in a low drag mode, which increases the
area that light can reflect from. The satellites are rotated so the
solar panel is then in a “Knife edge” configuration, shown
in Fig. 9, having the thin edge of the array facing the earth
reducing the surface area that can reflect light during the
orbital raising period, as shown in Fig. 7, and thus reducing
the diffused reflections back down to earth [46].

Once the LEO satellite is in its operational orbit, the satel-
lite’s orientation will be changed during sunset and sunrise to
minimize the reflections by positioning the satellite into the
*“Shark fin” orientation which will not reflect any light from
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TABLE 2. Data from observatories on the satellite brightness magnitude after the application of low-albedo coating [59]-[62].

Starlink DarkSat

Date: Magnitude +/- NInERTE +/- difference Observor
2020 Feb 26 4.5 +0.2 5.7 +0.3 1.2 R. Cole
2020 Mar 01 4.7 +0.2 5.9 +0.2 1.2 R. Cole
2020 Mar 06 6.59 +0.05 7.46 +0.04 0.87 J. Tregloan-Reed
2020 Mar 06 5.15 - 6.13 - 0.98 T. Boroson / J. A. Tyson
2020 Mar 06 5.18 - - - T. Boroson / J. A. Tyson
2020 Mar 06 5.02 - - - T. Boroson / J. A. Tyson
2020 Mar 06 5.13 - - - T. Boroson / J. A. Tyson
2020 April 10 - - 5.87 +0.07 T. Horiuchi
2020 May 18 - - 5.74 +0.1 T. Horiuchi
2020 June 11 4.25 +0.07 5.33 + 0.04 1.08 T. Horiuchi

Satellite in

final orbit

Satellite during

orbital raising period <

FIGURE 7. Angle of reflection during orbital raise and on station during twilight hours.

the solar array back down to earth, as shown in Fig. 8. This
reduces the operational reflections to just the phased array
antennas as the satellites make their way into the night.

IV. LOW-ALBEDO COATING

Low albedo coatings are used to absorb light on reflective
surfaces and can be man-made or occur naturally in the
world. While they greatly help reduce the solar reflectivity on
objects, one downside is heat absorption. The surface reflects
very little of the incoming light and heat, which in turn heats
up the surface. Satellites are traditionally made to have a high
albedo surface to reflect the heat away from them. This helps
with cooling and keeps the weight of the satellite down as they
do not need a cooling radiator to maintain a stable working
temperature.

VOLUME 10, 2022

To mitigate the light reflectivity of LEO satellites, a low-
albedo coating was proposed and applied to the LEO satel-
lites. This coating is compatible with both the parabolic and
phased array antennas used in the satellites, contributing to an
overall satellite brightness reduction of 55% [46]. The satel-
lites developed with the low-albedo coating were launched in
March 2020 and placed in a low earth orbit to investigate the
satellite brightness of the antenna system.

According to the several observations carried out over a
time frame of 1 year, the satellite brightness has decreased,
resulting in an increased apparent magnitude by more than
one magnitude compared to the standard satellites in the same
constellation, as summarized in Table 2 [59]-[62]. This table
compares the apparent magnitudes of satellites with and with-
out coating over 10 observations carried out in different times
and different terrestrial locations by three observatory sites.
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On station, brightness is driven by antennas

since the satellite is in the "shark-fin"

configuration during sunset and sunrise.

SHARK-FIN

FIGURE 8. A satellite in the shark-fin orientation once in operational
orbit [46].

Orientation Roll

Array mitigation during orbital raise

Rolling the satellite to reflect the sunlight
off the small 'knife’ edge of the solar
array, reduing the

reflection size.

FIGURE 9. A satellite in “Low drag knife edge” orientation [46].

Apparent magnitude is a measure of brightness of different
objects (stars, satellites, etc.) observed from Earth, where the
brighter the object is, the apparent magnitude of it is lower,
shown in Fig. 10 [55], [56].

Fy )

F x,0

L1
M] —M2 == —25 loglo E

M, = —2.5logg (

Each magnitude (M) increase implies a decrease in bright-
ness by a factor of ¥/100 ~ 2.512 also known as Pogson’s
Ratio [55]-[58].

24388

brightest faintest
Sun Moon Venus Vega quasar object
lI l I : I Il J| I I : 1 I I L
-25 -20 -15 -10 -5 ‘0 +51 +10 +15 +20 +25
very bright Sirius  faintest very faint
naked eye

star

FIGURE 10. Apparent brightness’s of some objects in the magnitude
system [63].

Although observations show that the coating reduced the
brightness albeit to varying degrees, the brightness of the
satellites still could interfere with astronomical observations.
The images captured by Tregloan-Reed and Horiuchi in
Fig. 11 show streaks from satellites with coating, although
darker, are still persistent in astronomical imaging [59]-[62].

The results also show that the 55% reduction of reflectiv-
ity [46], [60] varies in different locations. This could be due to
many factors such as the distance from the satellite, the angle
of the satellite in relation to the sun and different altitudes of
the satellites [61].

While there is some improvement in darkening LEO satel-
lites through low-Albedo coating, the technology used in
coating antenna systems increases the antenna’s heat absorp-
tion on the satellites, contributing to a short life span of the
electronic components, such as phase shifters in the antennas
system.

More importantly, the phased array technology, respon-
sible for providing steerable, highly directive radiation pat-
terns, is highly susceptible to heat and the antenna gain
drops as temperature increases. This means that the satellite
terminal antennas on the ground may not receive the signals
transmitted by LEO satellites, posing a serious barrier to pro-
viding low latency, high bandwidth satellite internet promised
by such new constellations. Additionally, overheating the
antenna system creates interference in infrared observations
as the satellites will be visible due to their higher tempera-
ture. The heating problem associated with low-albedo coating
makes this class of satellites less appealing. The low albedo
coating has little to no advantage compared to the foam visor,
with additional weight being applied as well as extra heat
absorption from the coating on the antennas.

V. SPECIALIZED FOAM VISOR

Foam visors have been used in many applications all over
the world to block light and reduce surface reflections. They
can be made from many different materials but when they
are used with satellites, they need to be designed to allow
radio waves to pass through without degrading the signal or
blocking it all together as well as being light weight, as every
gram counts when launching a group of satellites into LEO.
Being radio transparent is one of the biggest challenges as the
design of current and future constellations require high speed
connections with minimal data loss and interruptions, as they
are intended to be a consumer-based internet connection,
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FIGURE 11. Left satellite with coating: 2020/02/08. middle satellite with coating 2020/03/06. right STARLINK-1113: 2020/03/06 [60].

FIGURE 12. Satellites with visor deployed covering the phased array
antennas [40].

so the foam visor has to be transparent to radio waves over
a vast frequency range.

There are many companies producing polyurethane foams
that are transparent to radio frequencies that would be ideal
for keeping a satellites reflective components shaded without
compromising the antennas on the satellite.

In order to block the sun hitting the phased array antenna
systems, that are widely used in the LEO satellites, a special
foam visor was recently proposed to cover the antennas [46].
It has been designed to maximise the shade on the antennas
while keeping weight down, which is why they are the shapes
as seen in Fig. 12, outlined in white. At the time of publishing,
no detailed information has been released on what type of
foam was used to form this visor used in the trial.
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Such specialized visor foam allows radio frequencies
to pass through while reducing the heat absorbed by the
LEO satellites equipped with this technology, resulting in
1.29 magnitudes darker than other LEO satellites in the same
constellation with a mean magnitude of 5.92, 5.8, 5.9 and
6.0 [59]-[61]. It was observed that while the visor foam
blocked most of the light, there were still some minor bright
spots due to potential gaps in the panel sections, which allow
sunlight to reach the rear side and the edges of the satellite
still being illuminated by the sun [67].

Unlike low-albedo coating technology, the visors will also
stop the antennas from heating up and provide more protec-
tion to the antenna system. Based on the limited informa-
tion released, visors are slightly darker than LEO satellites
with the low-albedo coating, while there is more room for
improvements in the design and implementation of the visor
such as removing all gaps in the panel as well as expanding
it past the edges to fully cover the underside of the satellite
reducing all possible chances of sunlight hitting the reflective
surfaces. The only downside to increasing the surface area of
the foam visor is the added weight, which in terms of satellites
and rocket launches, every gram needs to be accounted for,
that is why the visors has a particular shape to block the most
reflective components.

The foam visor has more advantages over the low albedo
coating, being able to cover more than just the antennas which
reduces the overall reflections as well as reduces the heat
absorbed by the antenna covers. Despite both these changes
to the original satellite, neither are enough to darken the
satellites to an acceptable level for astronomical explorations
world wide.

VI. FUTURE IMPROVEMENTS

A new solution for darkening LEO constellations is being
tested in which the sun is in-plane with the solar panel,
reducing the area of reflection and flairs from the satellite
body during the raising period. There are some challenges
associated with this approach, including light reduction on the
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solar panels, which would reduce the operating power, reduc-
tion in antenna contact time, as the antenna facing earth for a
shorter period of time, and satellite lifespan reduction due to
higher fuel consumption [46], [68]. Along with the satellite
orientation is to place the satellites closer to their final orbit
on launch reducing the time spent in their raising period to
reach the operational orbital height, reducing the amount of
time in their most reflective position. The challenge with this
is that it would be more expensive to raise the second stage of
the rocket up higher by using the first stage for longer [69].

A report by C Walker at National Optical-Infrared Astron-
omy Research Laboratory (NOIR Lab) in 2020 suggests
developing a software application to identify, model and mask
the satellite trails to predict the satellite interference in astron-
omy imaging [53].

For example, an artifact detection and masking algorithm
was proposed in [70] which relies on 1- a dataset containing
several visits to the same part of the sky, 2- detailed model-
ing of the position variable point spread function (PSF) on
single epoch images, 3- the production of PSF homogenized
artifact-less images, 4- the image’s model fitting catalogs,
5- the construction of position variable PSF convolved sim-
ulated images utilizing PSF models and the model fitting
catalogs. Such methods can be adapted to detect objects that
leave streaks using an algorithm to remove these streaks and
artifacts. Using multiple images and interpolation to create an
image that has no artifacts, this method can be applied to any
survey that images the same section of the sky multiple times.
This could be implemented and developed further to work
with specific observatories to reduce the impact of brightness
as more satellites enter orbit [71]. There are other algorithms
that can be used alongside this method to improve the tracking
and detection rate covering more potential objects that could
leave streaks and artifacts in the imaging [62], [72], [73].

Another method for brightness mitigation is to develop
software that plans and predicts the time and projection of
the satellites’ transit over the observatory so they can take
images of the night sky when there are no satellites in transit
in their desired area of the night sky for the duration of the
exposure [53], [74]. This seems more promising as observa-
tories can then see when they will have clear skies overhead
to image the night sky. In addition to knowing when they
have clear skies, it also depends on what type of imaging the
observatory is performing and the required time to take the
image. If a minimum timeframe for the exposure can be iden-
tified, the orbital spacing can be defined to ensure that there
is a minimum window of time between each satellite pass-
ing through these selected orbital zones. However, having a
minimum operating window would prevent longer exposures
occurring without interference from these constellations.

Interruption of the observations can be another approach to
brightness mitigation. If observations are required in the same
region of the sky where the satellites are illuminated the exact
time they cross the field of view, this can be computed, and
the shutter can be closed during that time while the satellite
passes over and then reopened to continue capturing data and
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won’t appear in the final image. However, this approach is not
practical for all observatories. For example, there would be
too many interruptions for a large field of view telescope, due
to the large area of the night sky it is imaging, more satellites
would cross this zone, causing it to close its shutter more
frequently, which in turn reduces its exposure time, reducing
the amount of data collected in each image, making this
approach less effective [47]. There are other measures such
as satellite number minimization based on particle swarm
optimizations (PSO) as reported in [16]. More information
on the implementation of a PSO algorithm can be found
in [75], [76]. Apart from PSO, other nature-based algorithms
such as grey wolf optimization [77]-[79], ant colony opti-
mization [80], [81], artificial neural networks [82]-[89], and
genetic algorithms [90] can be adopted for the same purpose.

In summary, operators need to do their best to avoid spec-
ular reflections in the direction of observatories [48]. This
is critical particularly for the observatories with larger field
of view and can be implemented by adjusting the satellites
to reduce specular reflections while transiting over obser-
vational areas. However, it will cost the satellite fuel every
time it passes over to rotate the satellite to an angle to reduce
the reflections and then return to its normal position, further
reducing the satellite’s lifespan.

Every day, more and more satellites are being put into LEO,
as such, observation times will slowly decrease as the sky fills
up with bright satellites. At this current time, there is little to
no information on the reduction of observable time due to
these satellites and it being a new emerging technology.

VIl. CONCLUSION

One of the critical emerging challenges associated with the
LEO satellite constellations is the unwanted brightness of
these constellations visible from earth in the night sky. Such
brightness interferes with astronomical viewing in many
ways, potentially disrupting the observatories’ function. The
urgency for the LEO constellations brightness rectification
was understood recently, and several technologies have been
proposed and tested to mitigate this issue.

The future improvements have some promising methods
that will also need improvement over time as new methods
and technology are created to help with this new problem.
Adjusting the satellite to have the satellite in-plane with the
sun would be the easiest method to help reduce the reflectivity
of the solar panel. The downside to this is that this uses up
more fuel than normal [46], reducing the satellite lifespan and
reducing the time the solar panel will be in direct sunlight
and will change the orientation of the antenna, reducing the
contact area with the ground stations.

Masking the trails, satellite planning, and imaging inter-
ruption will make moving the satellites to be in-plane with
the sun unnecessary.

These two methods will help imaging directly, reducing
the streaks and artifacts in both scenarios. The downside to
masking the trails, is there will be more images required to
cover the viewing area, making sure the combined images
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have no overlap of streaks that can be removed [53]. As well
as this, these methods could lose valuable scientific data
from losing data due to streak removal, or not being able to
operate at specific times due to satellites flying overhead [74].
Satellite planning will dictate when the observatories can
view the night sky and they might miss key events due to the
satellites blocking the view. A way to mitigate this is to plan
and work with the constellation companies to create a gap in
the constellation for these events [74].

Interruption of the imaging process will be more viable
for small field of view observatories as there will be less
satellites crossing its viewing area compared to wide field
of view observatories. As with the other two methods, there
is a potential to lose data when interrupting the imaging
and would lose more data compared to the other methods
above as well as taking longer from all these interruptions
and additional processing.

Apart from all modifications proposed or implemented on
the satellite’s configuration, mathematical modeling highly
tailored for each major observatory to predict the bright-
ness caused by each LEO constellation is another promising
avenue to rectify this existing challenge.
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