
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

DECENT: Deep Learning Enabled Green

Computation for Edge centric 6G Networks
 Pankaj Kumar Kashyap, Sushil Kumar, Senior Member IEEE, Ankita Jaiswal, Omprakash Kaiwartya, Senior

Member IEEE, Manoj Kumar, Upasana Dohare, Amir H. Gandomi, Senior Member IEEE

Abstract— Edge computing has received significant attention from

academia and industries and has emerged as a promising solution for

enhancing the information processing capability at the edge for next

generation 6G networks. The technical design of 6G edge networks in

terms of offloading the computationally extensive task is very critical

because of the overgrowth in data volume primarily due to the explosion

of smart IoT devices, and the ever-reducing size of these energy-

constrained devices in IoT systems. Toward harnessing the benefits of deep

recurrent neural network based on Long Short Term Memory (LSTM) in

the design of next-generation edge networks, this paper presents a

framework DECENT- Deep learning Enabled green Computation for

Edge centric Next generation 6G neTworks. The data offloading problem

is modeled as a Markov decision process considering joint optimization of

energy consumption, computation latency, and offloading rate for network

utility in 6G environment. The algorithm learns faster from previous long-

term offloading experiences and solves the optimization problem with

better convergence speed. Simulation results of the proposed framework

DECENT shows that it maximizes the network utility by overcoming the

challenges as compared to the state-of-the-art techniques.

Index Terms– Edge computing, LSTM, Next generation 6G network.

I. INTRODUCTION

NTERNET of Things (IoT) along with the evolution of 5G

supports massive associations among machines, humans, and

smart devices [1]. 6G-enabled next generation IoT opens a new

paradigm to various computation-intensive and delays

constraints applications such as augmented virtual reality,

unmanned aerial vehicle, tele-surgery, interactive games and

facial recognition systems [2]. These smart things need to be

self-sustainable for long-time services in order to effectively

support smart industry, smart cities, healthcare devices and

environment surveillance. These applications produce

exponentially increasing traffic and required strict services such

as latency, computation load, sensitivity and wireless

communication in the 5G and beyond 5G (B5G) network [3].

There will be 29.3 billion networked devices by 2023, up from

18.4 billion in 2018. The share of Machine-To-Machine (M2M)

connections will grow from 33 percent in 2018 to 50 percent by

2023 [4]. Moreover, limited computation capability and limited

battery-powered energy are always a bottleneck of these smart

things.

P. Kashyap, S Kumar, A. Jaiswal, M. Kumar are with the School of

Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India.

Email: pankaj76_scs@jnu.ac.in, skdohare@mail.jnu.ac.in,
ankita79_scs@jnu.ac.in, manoj26_scs@jnu.ac.in.

O. Kaiwartya is with Department of Computer Science, Nottingham Trent

University, UK Omprakash.kaiwartya@ntu.ac.uk.
U. Dohare is with Department of Computer Science and Engineering, IIMT

College of Engineering, Greater Noida, UP, India Email:

Upasana.dohare_gn@iimtindia.net
A. H. Gandomi is with the Faculty of Engineering and Information

Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia

(e-mail:gandomi@uts.edu.au).

While 5G network maturing towards B5G, the numbers of

commercial applications and services are growing. Those have

far-reaching impact on our life with extremely diverse set of

quality of requirements. Which exhausts the network resources

of existing 5G networks and trigger the use cloud–based

mobile-edge computing (MEC) and their servers. Therefor in

the design of B5G network that is adaptive, intelligent and

extremely flexible for heterogeneous services; 6G networks

connects massive devices focus on lifetime maximization by

reducing the energy consumption and latency for MEC servers.

This is because of 6G networks offers fast and ultrareliable

communication with higher data rate for cloud servers (data

offloading at the edge of network) with low latency [5].

However, there are still problems in data offloading in edge

centric 6G networks as follow: (i) 6G offers millions of IoT

devices connected simultaneously and it requires dynamics

services frequently, then even resource rich MEC server stuck

in some cases; (ii) Installation and maintenance of high-

computation enabled MEC at the edge of network are costly, so

proper number of MEC server in the environment is challenging

task; (iii) 6G offers extended spectrum up to 40-50 BSs/Km2,

so that end users may be captured by more than one MEC

server. Thus selecting appropriate MEC server for computation

offloading to reduce energy consumption and latency is also a

complex task. However, joint application of MEC server and

6G for IoT in future communications will be needed for such

applications.

Energy harvesting enabled smart things acquires energy from

environmental resources: solar, wind, vibration, and thermal. It

can also be harvested from electromagnetic fields created by

cellular networks such as radio frequency (RF) signals are

known as wireless power transfer. However, deployment of a

battery charger or release of a periodical energy beacon source

at accurate locations in the IoT network is a tedious challenge,

and it increases the cost of entire network. In addition, RF

causes the emission of greenhouse gases and provides

significantly lower amounts of energy as compared to

renewable energy sources [6]. Also, it is more preferable due to

freely available anywhere (harsh conditions too) and during the

day (both solar and wind) and night (wind) and do not harm the

global climate. However, unpredictable natural energy source

increases complexity for implementation due to (i) its inherent

stochastic properties i.e., randomness in energy arrival rate with

respect to time i.e., precisely depends upon weather conditions

(ii) time-varying channel condition.

The overgrowth of data by computation limited and delay-

sensitive IoT devices and their applications represents a new

challenge to 6G-IoT networks. MEC network is a promising

technique for providing computation capability at the edge of

IoT devices with resource-rich high-performance MEC servers

[7]. MEC servers are densely deployed in IoT networks, which

I

mailto:skdohare@mail.jnu.ac.in
mailto:ankita79_scs@jnu.ac.in
mailto:Omprakash.kaiwartya@ntu.ac.uk

2

provide low latency computation task, high bandwidth, low

energy consumption, and improve the quality of services. In the

case of event triggering, IoT nodes generate an enormous

amount of data and these data must be transmitted. If the IoT

node does not have enough energy, then data should be stored

in the buffer and when a sufficient amount of energy becomes

available, stored data as computation task are transmitted to

MEC servers wirelessly in two ways: full or partial offloading.

When the IoT device offloads its full computation task to MEC

servers, it is known as full offloading; when a portion of the

computation task is offloaded, it is called partial offloading. On

the other hand, an MEC server processes the offloaded task and

sends back the results to edge devices. One critical problem in

MEC network is how much of the computation task should be

offloaded to MEC servers, i.e., determination of local

processing rate and offloading rate. Therefore, to design an

energy-efficient algorithm with delay constraints for EH-MEC

server-based IoT networks becomes an interesting research

topic. In this paper, we jointly optimize the individual local

processing rate and offloading rate and the number of IoT

devices allocated to MEC servers in order to maximize the

utility of 6G-IoT network.

In recent years, numerous studies have been published that

design an optimal computation offloading rate on MEC servers

and resource allocation for energy savings in EH-IoT devices

under different design objectives [8-12]. In [8], the authors

optimized the number of CPU cycles using an online

reinforcement learning algorithm (RL) to save energy

consumption and to allow multiple users to process the data

locally or offload (full) to MEC server. In [9], the authors

defined a layer-based software-defined network to minimize the

application level delay for edge outlets. In [10-12], the authors

focused on a decentralized approach that jointly optimizes the

mobile users preceding matrices and saves energy based on

game theory. In [13-14], Deep Q-network model used in multi-

users environment that simultaneously offload their task to one

MEC server and the problem is defined as cost, such as

summation of offloading delay of all users plus energy

consumed in offloading. However, in the mentioned literatures,

computation task offloading problem to MEC server has been

taken up, where edge devices execute an entire task either

locally or at a server by offloading it. Partial offloading and

time-varying channel information is not prioritized for next

generation 6G network environment.

In this context, toward harnessing the benefits of deep

recurrent neural network (RNN) based LSTM; remembering

the long sequence of information over time and predict the

output based upon previous computation. We present a

framework DECENT to optimize the strategies for offloading

the task and minimizing the delay, where both EH-IoT devices

and time-varying channel condition is considered. The major

contributions are as follows:

1) A system model is presented focusing on the next

generation cluster formation with MEC as cluster head,

energy consumption, and green computation that support

data offloading in 6G edge network.

2) The problem of high-volume data offloading in the next

generation 6G edge network is formulated as network utility

maximization problem the considering the energy

consumption and computation task offloading constraints.

Further, maximization problem is converted into Markov

Decision Problem to implement LSTM network.

3) DECENT-Deep learning enabled solution is developed for

green computation at next generation 6G edge networks

focusing on scientific workflow and the algorithm using

RNN LSTM network.

4) The convergence property of the presented DECENT

algorithm is analyzed; i.e., it avoids the vanishing or

exploding gradient value. In addition, computational

complexity depends on the weight (𝜓) of the LSTM

network and it is computed in polynomial time of O(𝜓).
5) The performance of DECENT is tested over critical LSTM

unit i.e. memory size, mini batch-size, training interval and

learning rate. Further, comparative simulations are

performed along with state-of-the-art techniques to show

the benchmarking results of DECENT.

The remainder of this paper is organized into the following

sections. Section II explored literature as related works. Section

III and IV present the details of the scientific modeling of the

proposed DECENT framework. Section V discusses simulation

results and analysis. Finally, the conclusions of the paper are

presented in section VI.

II. RELATED WORK

In this section, related pieces of literature regarding

offloading rate, application-processing delay, and energy

consumption in the MEC network are reviewed. As the

information regarding generation of random data by IoT device

and time-variant channel condition together makes challenging

task to optimize the offloading policy in real-time MEC

network, especially when the unknown amount of energy is

harvested within given time period. In the 6G edge network,

only local performance metrics are known in the current time

slot. Thus, researchers have preferred RL technique to solve the

problem of statistical uncertainty of environment and channel.

In [15], centralized and decentralized Q-learning (QL)

algorithms were proposed that minimize energy consumption

and maintain the quality of services in random heterogeneous

cellular network observed by mobile users. In [16], the authors

proposed a policy-gradient based actor-critic algorithm for

scheduling EH-IoT nodes for traffic offloading that provides

optimal resource (channel) to maximize the network energy

efficiency. The authors did not consider the data generation rate

by IoT devices, and offloading rate; the algorithms fail to

compete in a real-time environment when the state and action

space is large. In [17], the authors proposed after-state QL

algorithm with a polynomial approximation to diminish the

curse of dimensionality to estimate the offloading policy for the

EH-IoT devices. As the authors did not take the partial

offloading of the computation task, IoT devices experienced a

delay in time-responsive applications. In [18], computation task

execution latency was considered in addition to wireless

channel condition; computation-offloading algorithm was

proposed in a multiple computing node environment subject to

minimizing the task’s execution latency and energy

consumption. User fairness was jointly considered in [19] with

channel condition and execution latency as compared to [18]

and designed an offloading scheme. However, there are

limitations to the above works; they are only beneficial for

3

single task application and not suitable for multimedia

streaming applications where execution consists of multiple

tasks. Above literature uses QL approach to learn the offloading

rate to reduce the execution latency and energy consumption.

However, the learning rate is very slow because exploration and

exploitation strategies suffer from dimensionality of Q-table,

which fails in the case of large state space and action space.

Thus, long-term stable profit is not gained in the 6G edge

network.

Aiming to solve these limitations, neural network based

deep reinforcement learning (DRL) framework was introduced

into MEC to overcome the curse of dimensionality and

experience a fast convergence rate. DRL have learning ability

from the past offloading strategy of an IoT device in time-

varying energy, computation task, channel condition, and

eventually produces mapping from state to action. In [20], the

authors proposed a deep Q-network learning (DQL) algorithm

to access the network for offloading the computation task

subject to minimizing the user’s cost. In [21], the authors

proposed a DQL method in a multiuser environment to train the

network based on past experiences in order to jointly take the

offloading decision and resource allocation based upon the

overall cost of all users and the capacity of the MEC server. In

[22], the authors proposed a deep deterministic policy gradient

method, where IoT devices can decide to choose either RF

communication or low-power backscatter communication for

balancing the energy consumption in computation and data

offloading. In [23], the authors proposed a Dyna architecture-

based offloading rate decision algorithm that was used to secure

both the location privacy and data pattern privacy for healthcare

EH-IoT devices. The proposed algorithm failed to compete in a

multi-user environment in order to provide interactive

performance to multimedia applications. In the Internet of

Vehicles, MEC servers are replaced by vehicle edge computing

(VEC) servers that provide services to nearby vehicles [24],

authors proposed a DQL-based algorithm for optimizing the

offloading rate of data, while considering both the delay of

computation task and limited computation capabilities of

vehicles. In [25][26], the authors took advantage of parallel

computing and proposed a distributed DRL offloading

algorithm where multiple wireless devices simultaneously

generate an offloading decision. However, above studies based

on a DQL network suffer from the curse of the dimensionality

problem when channel quantization and energy harvesting

capability requires higher accuracy.

Not much work has been performed that was focused on

joint optimization of the task offloading strategy and resource

allocation in a multiuser access control MEC server

environment. In addition, time complexity and learning rate are

usually large and slow, and above mentioned algorithms are not

feasible in a real-time MEC network. Fortunately, LSTM has

two changes in existing DQL: first, the network has cell

memory that is used to remember past offloading experiences

and able to execute long sequence of samples; second, the

network is trained with mini-batch samples to minimize the

correlation between samples and then the target Q network is

provided to regularly update the network weights [28]. Recently

in 2017, Transformers is first kind of transduction neural

network architecture introduced and shows better improvement

still in development phase. Transformers use behavior self-

attention to convert input sample to output without relying on

sequence-aligned RNN [27]. However, Transformers solves the

major problem of parallelization that inhibits in sequential

LSTM and probability of forgetting the information

exponentially from a sample that is far away from the current

sample by encoding each word of sample into hidden state then

passed to decoding stage and paying more attention to current

sample respectively. But, the major challenge is to build

Transformers requires sheer size, cost and processing

requirement such as for parallelization requires Pre-Trained

unsupervised model- Google’s BERT or GPT , which faces

customization of hyper parameters (encoders and decoders) for

the specific applications to get proper results and these model

are limited to transduction fixed-length samples (BERT= 512

characters at a time). Further, the parallelization causes

fragmentation of context without worrying about semantic and

respect of sample then it could suffers from loss of significant

information. In this paper, we use LSTM-based deep RNN to

train and learn the network, which overcomes the traditional

DQL based RNN issue and of long–term dependencies of input-

output networks pair and is able to predict the optimal

offloading rate for next time slot in order to minimize energy

consumption, computation delay and task drop ratio in

economical and resolve the context fragmentation issue by

using gates and sequential processing.

III. SYSTEM MODEL

A. Next Generation Edge Network

We consider an uplink MEC network with 𝑁 number of EH-

IoT nodes (e.g. smart sensors, smartphones, or smart watches),

and multiple MEC servers; i.e., 𝔐 = {1,2…𝑚, . . 𝑀} for

complete coverage of the network, as shown in Fig. 1. The MEC

servers have a fixed location and IoT nodes are randomly

scattered over the network. The IoT node has the capability to

do less extensive computation tasks locally or can offload all or

partial computation tasks to its nearby MEC server and store the

remaining task in its buffer. The IoT node is battery-powered

renewable ambient energy sources.

EH IoT
node

MEC server
Uplink

m

M

1 2

𝑀 = {1,2…𝑚, . .𝑀}
Fig.1:

Illustration of a MEC server cluster network

The MEC network operates based-on time slots 𝑇 =
{1,2, … . } which have an equal time span. Each time slot is

divided into two parts (𝑡1𝑎𝑛𝑑 𝑡2, 𝑡1 ≪ 𝑡2). In 𝑡1 time, MEC

server makes a cluster by selecting its 𝐾 number of nearby IoT

4

nodes and divides the available channels into 𝐾 number of

orthogonal channels with equal bandwidth 𝐵. In 𝑡2 time, MEC

server chooses an optimal offloading rate (action) for each IoT

node in its cluster to maximize the expected discounted reward

or utility of the network. The action of the MEC server depends

upon channel state information, estimated harvested energy,

battery level, and the size of the data offloaded to the MEC

server by each IoT node. Note that each IoT node is assigned to

only one MEC server. The 𝑚𝑡ℎ MEC server chooses randomly

‘𝐾𝑚(𝑇(𝑡1)) = {1,2, …𝑘 …𝐾}’ number of IoT nodes out of 𝑁

IoT nodes to form cluster at time slot 𝑇(𝑡1), such

that ∑ 𝐾𝑚(𝑇(𝑡1)) = 𝑁
𝑀
𝑚=1 .

Where ‘𝐾′ represents the number of orthogonal channels

available in each cluster and each channel has an equal

frequency bandwidth 𝐵. In 𝑇(𝑡2), selected 𝑘𝑚 IoT nodes send

its status (battery level, estimated harvested energy, channel

gain, generated data, and buffered data) to its MEC server.

Further, MEC server decides their offloading rate based on the

received information. Next, the member IoT nodes of a cluster

compute some of the tasks locally and offload some of the

computation tasks to their MEC server. Thereafter, the MEC

server computes their task and returns the result back to the

respective IoT nodes.

B. Edge Energy Consumption And Channel

For the simplicity, we consider a single cluster operation for

task offloading to the MEC server for both maximization of the

information rate and minimization of energy consumption

within the cluster, as shown in Fig. 2. At the beginning of time

slot 𝑇 , the 𝑘𝑡ℎ IoT node has new sensing data of size 𝑐𝑚,𝑘
𝑔 (𝑇)

and buffered data of previous time slot 𝑐𝑚,𝑘
𝑏 (𝑇 − 1) size in

the cluster, with MEC server referred to as cluster head. The

𝑘𝑡ℎ IoT node has a total amount of data 𝐶𝑚,𝑘(𝑇) for

computation i.e., 𝑐𝑚,𝑘
𝑔 (𝑇) + 𝑐𝑚,𝑘

𝑏 (𝑇 − 1) and it is partitioned

into 𝛽 equivalent parts, similar to the scheme referred in [29].

For delay-sensitive applications, we consider that the execution

time for the computation task on an MEC server is no longer

than time slot 𝑇. The reason behind this is if the data offloading

at the MEC server does not occur within time slot 𝑇, then

computation latency arises during offloading of the task, and

the energy consumed during task computation is difficult to

calculate, as the channel coefficient varies in each time slot. The

IoT node partially offloads the data to the MEC server with an

offloading rate of 𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) over the wireless uplink of the

radio channel. Next, locally compute the data with a local

execution rate of 𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2)). The remaining [1 −

 𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) − 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))] computation task is stored in the

buffer for the processing that occurs in the next upcoming time

slots, with {𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)), 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))}𝜖 {
𝛽0

𝛽
,
𝛽𝑙

𝛽
} 0 ≤ 𝛽0, 𝛽𝑙 ≤

𝛽. The IoT node is powered with a rechargeable battery of

maximum battery capacity 𝑏𝑚𝑎𝑥 . The IoT node harvests 𝑒(𝑇)
amount of energy during time slot 𝑇 and this harvested energy

is used for the next time slot (𝑇 + 1) for local processing or

offloading of the computation task. The function of the battery

is considered to be ideal; i.e., the IoT node does not lose energy

in storing or retrieving energy. We assume that energy

consumption in the node is only due to local computation and

data transmission. Once the battery reaches its maximum

capacity 𝑏𝑚𝑎𝑥 , the additional harvested energy is abandoned.

The energy 𝑒𝑚,𝑘(𝑇) harvested by the IoT node is dynamic in

nature and is modelled as a Markov chain model with 𝐸 number

of quantized level energy state sets. The transition probability

of 𝑒𝑚,𝑘 from 𝑒𝑥 to 𝑒𝑦 during time slot T is given as 𝑇𝑚,𝑘
𝑥,𝑦
=

𝑝𝑟𝑜𝑏 (𝑒𝑚,𝑘(𝑇 + 1) = 𝑦|𝑒𝑚,𝑘(𝑇) = 𝑥) = 𝑒
𝑥.𝑦 , ∀𝑥, 𝑦 ∈ 𝐸.

The amount of energy harvested by the IoT node during time

slot T is calculated according to the profile energy prediction

(Pro-Energy) model referred to in [32]. The transmission power

𝑝𝑚,𝑘(𝑇(𝑡2)) of IoT node holds the inequality, i.e.,

𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇), 𝑝𝑚,𝑘(𝑇(𝑡2)) ≥ 0 with binary

indicator 𝐼𝑚.𝑘(𝑇(𝑡2)) = 1, which means that offloading of the

computation task was successfully performed

and 𝐼𝑚.𝑘(𝑇(𝑡2)) = 0 shows that the IoT device failed to offload

the computation task in current time slot 𝑇, as the IoT node does

not have enough power for data transmission.

 𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇), 𝑝𝑚,𝑘 ≥ 0, ∀𝑚, 𝑘 =
 1,2… . k (1)

EH IoT node

MEC server

Uplink
Uplink

UplinkUplink

Offloding policy

Buffer

W parts Computation task

𝑒𝑚 ,𝑘(𝑇)

𝑏𝑚 ,𝑘(𝑇)
 𝑐𝑚 ,𝑘
𝑔 (𝑇)

 𝐶𝑚 ,𝑘(𝑇)

𝐷𝑚 ,𝑘
𝑙 (𝑇(𝑡2))

𝑐𝑚 ,𝑘
𝑏 (𝑇 − 1)

𝛾𝑚 ,𝑘(𝑇)

𝐷𝑚 ,𝑘
𝑜 (𝑇(𝑡2))

𝑚𝑡ℎ

𝑘𝑡ℎ

1− 𝐷𝑚 ,𝑘
𝑜 (𝑇(𝑡2)) − 𝐷𝑚 ,𝑘

𝑙 (𝑇(𝑡2))

Fig. 2: Offloading Policy by IoT node in MEC server cluster

The channel gain ℎ𝑚,𝑘(𝑇) between 𝑚𝑡ℎ MEC server and

𝑘𝑡ℎ EH-IoT node is assumed to be stochastic in nature and is

modelled as a Markov chain model, with transition

probability 𝑇𝑚,𝑘
𝑢,𝑣 = 𝑝𝑟𝑜𝑏 (ℎ𝑚,𝑘(𝑇 + 1) = 𝑢|ℎ𝑚,𝑘(𝑇) = 𝑣) =

ℎ𝑢,𝑣 , ∀𝑢, 𝑣 ∈ 𝐻, where H represents the number of quantized

radio channel state sets. We assume that at the beginning of

each time slot, the instantaneous channel power gain is obtained

at the MEC server by feedback from IoT node. The signal-to-

interference-plus-noise ratio (SINR) of 𝑘𝑡ℎ IoT node during

time slot 𝑇 is given as

𝛾𝑚,𝑘(𝑇) =
ℎ𝑚,𝑘(𝑇) 𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2))

∑ ℎ𝑚,𝑖(𝑇)𝑝𝑚,𝑖(𝑇)+𝛿
2

𝑖𝜖𝑘\{𝑘}
 (2)

where 𝑝𝑚,𝑘(𝑇(𝑡2)) is the transmission power of 𝑘𝑡ℎ IoT node

for offloading the computation task and 𝛿2 is the noise power

5

gain variance of additive white Gaussian channel with zero

mean. The ℎ𝑚,𝑖(𝑇) 𝑎𝑛𝑑 𝑝𝑚,𝑖(𝑇(𝑡2)) represent the channel gain

and transmission power of other nodes in the same cluster,

respectively.

C. Edge Green Computation

1) Local Computing

We assume that 휁 is the number of CPU cycles required to

compute one bit. Therefore, the total number of cycles required

to compute 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2)) bits is 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))휁.
The CPU can control the number of cycles required for local

execution in each cycle 𝑙 by adjusting the frequency 𝑓𝑙defined

as dynamic frequency and voltage policy [31]. The local

execution latency defined by 𝐿𝑙(𝑇(𝑡2)) during time slot T is

given as

𝐿𝑙(𝑇(𝑡2)) = ∑
1

𝑓𝑙

 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2))𝜁

𝑙=1 (3)

The energy consumed in local execution of a task by IoT

node with ɷ as the coefficient of CPU effective capacitance at

time slot 𝑇 is calculated as

𝐸𝑙(𝑇(𝑡2)) = ∑ ɷ(𝑓𝑙)2
 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))𝜁

𝑙=1 (4)

2) Computation Offloading

The 𝑘𝑡ℎ IoT node offloads its computation task to the 𝑚𝑡ℎ
MEC server. The uplink transmission rate 𝑟𝑚,𝑘(𝑇) for task

offloading can be calculated by considering the mutual

interference due to simultaneous transmission of other IoT

nodes as

𝑟𝑚,𝑘(𝑇) = 𝐵 log2(1 + 𝛾𝑚,𝑘(𝑇)) (5)

where B is the uplink channel bandwidth at time slot 𝑇. The

transmission delay for offloading 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) bits of

data to the MEC server is given as

𝐿𝑜(𝑇(𝑡2)) =
 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑜 (𝑇(𝑡2))

𝑟𝑚,𝑘(𝑇)
 (6)

The energy consumption of the IoT node in offloading the

computation task to the 𝑚𝑡ℎ MEC server with transmission

power 𝑝𝑚,𝑘(𝑇) depends upon computation delay, calculated as

𝐸𝑜(𝑇(𝑡2)) = 𝐿𝑜(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2)) (7)

The computation latency 𝐿𝑚,𝑘(𝑇) of the IoT node depends

upon local execution latency 𝐿𝑙(𝑇(𝑡2)) and offloading delay to

the MEC server 𝐿𝑜(𝑇(𝑡2)) represented as

𝐿𝑚,𝑘(𝑇) = max {𝐿𝑙(𝑇(𝑡2)), 𝐿𝑜(𝑇(𝑡2))} (8)

Note that energy consumption in other operations,

regardless of local computing and offloading, are assumed to be

negligible. Then, the total energy consumption in the IoT node

is the sum of energy consumed for local computation and

offloading the computation task, calculated as

 𝐸𝑚,𝑘(𝑇) = 𝐸𝑙(𝑇(𝑡2)) + 𝐸𝑜(𝑇(𝑡2)) (9)

At the beginning of time slot 𝑇 , the battery level of the IoT

node, which depends upon energy consumption, energy

harvested, and previous battery level, is calculated as

𝑏𝑚,𝑘(𝑇 + 1) = min{𝑏𝑚𝑎𝑥, 𝑏𝑚,𝑘(𝑇) + 𝑒𝑚,𝑘(𝑇) − 𝐸𝑚,𝑘(𝑇)} (10)

IV. DECENT- DEEP LEARNING ENABLED GREEN

COMPUTATION FOR EDGE NETWORK

In this section, we formulated optimal data offloading

problem as a Markov decision process (MDP) to represent the

network utility maximization that jointly optimizes energy

consumption, computation latency, and offloading rate. An

LSTM based deep learning DECENT algorithm is presented to

solve the MDP problem.

A. Optimization Problem Formulation

The performance of each cluster is measured in terms of

utility (𝑈𝑚(𝑇)) function. Whereas, utility 𝑈𝑚,𝑘(𝑇) of 𝑘𝑡ℎ IoT

node (member) refer to 𝑚𝑡ℎCH depends upon the offloading

task, task drop ratio, energy consumption, computation latency

and waiting cost (𝑍(𝑇)) at buffer given as,

𝑈𝑚,𝑘(𝑇) = 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) − 𝜑𝐼(𝑏𝑚,𝑘(𝑇 + 1) <

0) − 𝜕𝐸𝑚,𝑘(𝑇) − 𝜈𝐿𝑚,𝑘(𝑇) − 𝜗𝑍(𝑇) (11)

where 𝜑 is the weight parameter for task drop rate and 𝐼 is

the binary indicator. If 𝐼 = 0, then the battery level of the IoT

node in the current time slot is not enough for executing the

computation task and therefore the data would be dropped. Let

𝜕, 𝜈 𝑎𝑛𝑑 𝜗 denote the weight parameter for energy saving,

computation latency, and waiting cost respectively. Finally, we

formulate the utility at the MEC server as the sum of utility of

each member node, given as

𝑈𝑚(𝑇) = ∑ 𝑈𝑚,𝑘(𝑇)
𝐾
𝑘=1 (12)

The main objective of the proposed algorithm is to

maximize the utility at each MEC server by deciding the

number of member nodes, the offloading rate, and the local

processing rate during time slot 𝑇. Accordingly, we formulate

the optimization problem as

(P1) max lim
𝑇→∞

1

𝑇
∑ 𝑈𝑚(𝑡)
𝑇
𝑡=1 , ∀,𝑚 = 1,2, . . 𝑚…𝑀 (13a)

Subject to 𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇) ,

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾 (13b)

𝑏𝑚,𝑘(𝑇 + 1) ≤ min{𝑏𝑚𝑎𝑥, 𝑏𝑚,𝑘(𝑇) + 𝑒𝑚,𝑘(𝑇) − 𝐸𝑚,𝑘(𝑇)},

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾 (13c)

{𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)), 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))}𝜖 {
𝑤0
𝑤
,
𝑤𝑙
𝑤
}0 ≤ 𝑤0, 𝑤𝑙 ≤ 𝑤,

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾 (13d)

∑ 𝐾𝑚(𝑇) = 𝑁
𝑀
𝑚=1 (13e)

B. Optimization Problem Modelled as MDP

Here briefly define the three key elements of the RL

includes state, action, and reward. Then, we formulate the

utility maximization problem as a classical Q-learning RL for

finding the solution. Note that in this paper, multiple IoT node

6

offloading scenarios are considered. Thus, the number of states

and actions are large for the RL agent on each MEC server. To

avoid the curse of dimensionality, we further use a DQL-based

LSTM network layer to estimate the long-range action-value

function of correlated patterns of input and output for Q-

learning. The RL agent on each MEC server jointly selects the

number of IoT nodes to form clusters and also chooses both

offloading rate and local processing rate to maximize the

expected discounted long-term utility in current time slot 𝑇. The

system state 𝑆(𝑇) is the controlled stochastic process of the

network across time slot 𝑇 = 1,2…. Generally, 𝑆(𝑇) can be

extracted from 𝑀 number of MEC server placed in the network

at different locations and defined as follows

𝑆(𝑇) = (𝑠1(𝑇), 𝑠2(𝑇), 𝑠3(𝑇), …… . , 𝑠𝑚(𝑇)… . . , 𝑠𝑀(𝑇)) (14)

At the beginning of time slot 𝑇(𝑡2), each IoT node evaluates

it’s bm,k, 𝑒𝑚,𝑘 and 𝛾𝑚,𝑘 then sends these information as causal

knowledge to their MEC server. Now, MEC server uses this

received information along with previous SINR value, and

decides the offloading rate and local processing rate of IoT

nodes. In (14), the 𝑠𝑚(𝑇) describes the configuration at 𝑚𝑡ℎ
MEC server with its total 𝑘 number of member nodes, with five

elements: the SINR 𝛾𝑚(𝑇) information, the current battery level

𝑏𝑚(𝑇), the new generated data 𝑐𝑚,𝑘
𝑔 (𝑇), the buffered

data 𝑐𝑚,𝑘
𝑏 (𝑇 − 1) and energy harvested 𝑒𝑚(𝑇) of each member

IoT node in current time slot 𝑇, as given by

𝑠𝑚(𝑇) = (𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝑐𝑚
𝑔 (𝑇), 𝑐𝑚

𝑏 (𝑇), 𝑒𝑚(𝑇)) (15)

𝛾𝑚(𝑇) = (𝛾𝑚,1(𝑇), 𝛾𝑚,2(𝑇), 𝛾𝑚,3(𝑇) …… . 𝛾𝑚,𝑘(𝑇)) (16)

𝑏𝑚(𝑇) = (𝑏𝑚,1(𝑇), 𝑏𝑚,2(𝑇), 𝑏𝑚,3(𝑇)…… . 𝑏𝑚,𝑘(𝑇)) (17)

𝑐𝑚
𝑔 (𝑇) = (𝑐𝑚,1

𝑔 (𝑇), 𝑐𝑚,2
𝑔 (𝑇), 𝐷𝑚,3

𝑔 (𝑇)…… .𝐷𝑚,𝑘
𝑔 (𝑇)) (18)

𝑐𝑚
𝑏 (𝑇) = (𝑐(𝑇), 𝑐𝑚,2

𝑏 (𝑇), 𝑐𝑚,3
𝑏 (𝑇)…… . 𝑐𝑚,𝑘

𝑏 (𝑇)) (19)

𝑒𝑚(𝑇) = (𝑒𝑚,1(𝑇), 𝑒𝑚,2(𝑇), 𝑒𝑚,3(𝑇)…… . 𝑒𝑚,𝑘(𝑇)) (20)

By knowing the system state 𝑆(𝑇), the RL agent on each

MEC server takes an action space 𝐴(𝑇), which ensures that the

formatted cluster evaluates the maximum expected discounted

reward. Action includes the selection of local processing rate

and offloading rate for each member IoT nodes in different

clusters during each time slot 𝑇, defined as

𝐴(𝑇) = (𝑎1(𝑇), 𝑎2(𝑇), 𝑎3(𝑇)…… . 𝑎𝑚(𝑇)… . . , 𝑎𝑀(𝑇)) (21)

 𝑎𝑚(𝑇) = (𝐷𝑚
𝑙 (𝑇(𝑡2)), 𝐷𝑚

𝑜 (𝑇(𝑡2))) (22)

The primary goal of the RL agent on each MEC server is to

maximize the reward 𝑅(𝑇) that is interpreted as the

maximization of utility at each MEC server, which denotes the

objective of problem (P1). The profit of the reward 𝑅(𝑇) =

(𝑆(𝑇), 𝐴(𝑇)) depends upon taking all the action 𝑎𝑚(𝑇)𝜖 𝐴(𝑇)

in a certain state 𝑠𝑚(𝑇)𝜖 𝑆(𝑇) to maximize the expected

discounted reward, given as

𝑅(𝑇) = (𝑟1(𝑇), 𝑟2(𝑇), 𝑟3(𝑇)…… . 𝑟𝑚(𝑇)…… . 𝑟𝑀(𝑇)) (23)
𝑟𝑚(𝑇) = max𝔼 [∑ 𝑈𝑚(𝑇)

𝑇
𝑇=1] (24)

The RL agent on each MEC server aims to maximize the

reward function in the long run by optimizing the policy. The

long-term discounted expected reward during time slot 𝑇 can be

written as

𝑅𝛾(𝑇) = ∑ 𝛾𝑘−𝑇𝑅(𝑇 + 1)∞
𝑗=𝑇 (25)

where 𝛾 represent the discount factor; if 𝛾 = 0, then a

myopic situation occurs and the reward depends upon only on

the transition from the current state to the next state. As

𝛾 approaches unity, the reward value depends upon the future

value. For the classical RL network, the state action-value

function 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) under the policy 𝜋 for solving the

MDP is defined as follow

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) = 𝔼𝜋[𝑅
𝛾(𝑇)| 𝑆(𝑇) = 𝑠(𝑇), 𝐴(𝑇) = 𝑎(𝑇)]

= 𝔼𝜋[∑ 𝛾𝑘−𝑇𝑅(𝑇 + 1)∞
𝑗=𝑇 |𝑆(𝑇) = 𝑠(𝑇), 𝐴(𝑇) = 𝑎(𝑇)] (26)

The RL agent takes an action on each step and stores

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) in a Q-table. The updated state-action value

𝑄𝜋(𝑠(𝑡), 𝑎(𝑡)) in one-step learning rate (0 < 휂 < 1) given as

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) = 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) + 휂 [𝑅(𝑇 + 1) +

 𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋(𝑠(𝑇 + 1), 𝑎(𝑇)) − 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇))] (27)

where 𝑅(𝑇 + 1) represents the immediate reward gain

during time slot 𝑇. The goal of the RL agent on each MEC

server is to maximize the expected discounted reward under

optimal policy 𝜋∗ at any state, so we can formulate equation

(27) as an optimality equation in a recursive manner by using

the Bellman equations, as follows

𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇)) = 𝔼 [𝑅(𝑇 + 1) + 𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇 +

1), 𝑎(𝑇)| 𝑠(𝑇 + 1) = 𝑠, 𝐴(𝑇 + 1) = 𝑎)] (28)

The objective of this learning is to find an optimal policy 𝜋∗
 to maximizes the long-term expected discounted reward, given

as

𝜋∗(𝑠(𝑇)) = arg max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇)) (29)

Where, 𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇)) denotes the optimal state-action

pair value. This inherently calls utility maximization problem

(P1) at each MEC server.

C. Proposed DECENT Algorithm Based On LSTM

Unit (T-1) Unit (T+1)

Current input

Forget Gate Output

Previous input Next input

𝑥𝑠(𝑇 − 1)

ℎ𝑠(𝑇 − 1)

ℎ𝑠(𝑇 − 1)

𝑐𝑠(𝑇 − 1)

𝑥𝑠(𝑇 + 1)

ℎ𝑠(𝑇 + 1)

ℎ𝑠(𝑇)

𝑐𝑠(𝑇)

𝜎 𝜎

×

tanh 𝜎

Output GateInput Gate

𝑥𝑠(𝑇)

𝑓𝑔(𝑇)

𝑖𝑔(𝑇)

ĉ𝑠(𝑇)

𝑜𝑔(𝑇)

ℎ𝑠(𝑇)

+ ×

×

tanh

Fig.3: LSTM unit

As in the 6G network, there are a large number of states and

actions; it is difficult to frequently store all Q-values in a table.

With the introduction of DQL, the neural network absorbs the

large number of states and actions of classical Q-learning and

produces an approximate Q-value [32]. In the proposed scheme,

LSTM network layer is used rather than traditional RNN to

7

build the DQL network [28], which is used to approximate

action value pairs for all state-action pairs.

The LSTM network layer consists of more than one LSTM

unit. This LSTM unit are able to process very long series of

information using cell memory to memorize previous

computation and improves convergence speed over traditional

RNN. The operation of a single LSTM unit is shown in Fig. 3,

where it passes a message from its predecessor unit to a

successor unit as intermediate output over a large number of

correlated input-output pairs. The key feature of the LSTM unit

is the cell state 𝑐𝑠(𝑇 − 1) memory vector, which flows through

all units. Each LSTM has three gates: forget gate, input gate,

and output gate. The forget gate is to determine the degree

information needed to be forgotten of the previous cell state.

The output of forget gate (𝑓𝑔(𝑇)) in time slot 𝑇 depends upon

the previous time slot hidden state ℎ𝑠(𝑇 − 1) and current

input 𝑥𝑠(𝑇). Forget gate outputs a number between 0 (forget all

previous information) and 1(keep all the previous state

information) by sigmoid (𝜎) neural net layer operation with

weight factor 𝑤𝑓𝑔 and balance factor 𝑏𝑓𝑔 , given as

𝑓𝑔(𝑇) = 𝜎(𝑤𝑓𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑓𝑔) (30)

The next step is divided into two operations: their primary

goal is which kind of new information is added to the cell state.

In the first operation, the output of input gate 𝑖𝑔(𝑇) ∈ {0,1})

with weight factor 𝑤𝑖𝑔 and balance factor 𝑏𝑖𝑔 generates

𝑖𝑔(𝑇) = 𝜎(𝑤𝑖𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑖𝑔) (31)

Whereas the second operation resembles to update the cell state

memory vector known as cell gate output alias candidate

values ĉ𝑠(𝑡), given as

ĉ𝑠(𝑇) = tanh(𝑤𝑐𝑡ℎ[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇) + 𝑏𝑐𝑡ℎ]) (32)

After this, the old cell state (𝑐𝑠(𝑇 − 1)) value is updated

with the new state 𝑐𝑠(𝑇) by summation of two terms (1) product

of forget gate output with previous cell state and (2) product of

input gate output to new candidate values, given as

𝑐𝑠(𝑇) = 𝑓𝑔(𝑇) ∗ 𝑐𝑠(𝑇 − 1) + 𝑖𝑔(𝑇) ∗ ĉ𝑠(𝑇) (33)

The final step decides what information of the new state is

shown as output 𝑜𝑔(𝑇) for the next cell state as hidden state

output ℎ𝑠(𝑇). Output gate also works in two steps: first output

is generated on a sigmoid neural network, then 𝑡𝑎𝑛ℎ layer is

used to push the value between -1 to 1 of the new state. The

output of the hidden cell state is given as

𝑜𝑔(𝑇) = 𝜎(𝑤𝑜𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑜𝑔) (34)

ℎ𝑠(𝑇) = 𝑜𝑔(𝑇) ∗ tanh(𝑐𝑠(𝑇)) (35)

The complete workflow and algorithm of the proposed

DECENT framework shown in the fig.4 and algorithm 1

respectively with ‘𝑛’ LSTM units, where output of the LSTM

layer is fed to a fully connected network layer with weight

factor 𝑤𝑚,𝑓𝑐 and balance factor 𝑏𝑚,𝑓𝑐 to get the final output.

Initially, the RL agent at 𝑚𝑡ℎMEC server receives the

information of current state 𝑠𝑚(𝑇) =
(𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝐷𝑚

𝑙 (𝑇(𝑡2)), 𝐷𝑚
𝑜 (𝑇(𝑡2)), 𝑒𝑚(𝑇)), then the LSTM

network layer produced the approximated Q-value as mini-

batch 𝑄𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(𝑠𝑚(𝑇), 𝑎𝑚(𝑇)) ∈ ℝ
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒×𝑍𝑚 , where

𝑍𝑚 denotes the size of action space 𝑎𝑚(𝑇) =
(𝐷𝑚
𝑙 (𝑇(𝑡2)), 𝐷𝑚

𝑜 (𝑇(𝑡2))) ∈ A(𝑇). To fit in the action space of

Q-value, a fully connected network layer uses its filter to adjust

the space for Q-value. The action generator 𝜙𝑚,𝐴 for the LSTM

network takes the input state 𝑠𝑚(𝑇) and produces output

as (𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)) . The action generator 𝜙𝑚,𝐴(𝑇) is

composed of weights of both LSTM units (n) and fully

connected network layer, as follows:

 𝜙𝑚,𝐴 (휃𝑚,𝑎(𝑇)) = 𝜙𝑚,𝐴{𝑤𝑚,𝑙1, 𝑤𝑚,𝑙2, 𝑤𝑚,𝑙𝑡 … .𝑤𝑚,𝑙𝑛, 𝑤𝑚,𝑓𝑐 } (36)

For updating the 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇)) value, an action

generator is used to evaluate the approximate value. If the

approximated value is accurate, then the policy is greedy. The

accurate estimation of Q-value for the given current state 𝑠𝑚(𝑇)
by taking an action 𝑎𝑚(𝑇) ∈ 𝐴(𝑇) is not always found. Thus,

the RL agent uses the greedy policy with probability

𝜖 (0 < 𝜖 < 1) to select an action that provides maximum

reward (exploitation of knowledge); otherwise it selects any

random action from the action space with probability 1 − 𝜖 (as

exploration of action space). After taking an action 𝑎𝑚(𝑇), the

RL agent receives the reward 𝑟𝑚(𝑇) and the network switches

to new state 𝑠𝑚(𝑇 + 1). Experience replay 𝑒𝑚,𝑟(𝑇) memory is

used to store the received reward and new state in each time slot

that consists of four tuple: 𝑒𝑚,𝑟,𝑇(𝑇) =
(𝑠𝑚(𝑇), 𝑎𝑚(𝑇), 𝑟𝑚(𝑇), 𝑠𝑚(𝑇 + 1)) in memory buffer data set

𝔇𝑚 = { 𝑒𝑚,𝑟,1(𝑇), 𝑒𝑚,𝑟,2(𝑇), … 𝑒𝑚,𝑟,𝑇(𝑇)}.
The size of experience replay memory is limited to the size

of action space Z, which stores up to maximum 𝑍𝑚
experiences. Furthermore, mini-batch is formed by choosing

some random experiences from 𝔇𝑚. Thereafter, we randomly

select any tuple (�̃�𝑚,𝑟(𝑇) = (�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1))
from the mini-batch and an approximated Q-value is estimated.

In DECENT, the parameterized Q-value is used for updating

the network weight 휃𝑚,𝑎(𝑇), denoted

as 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)). In addition, update only that

network parameter that minimizes the loss

function 𝐿𝑚(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)). The Q-value updated in

this way avoids the issue of correlation between large input-

output data during the transition in the same episode [38].

Where, 𝑦𝑚(𝑇) represents the state update target Q-value with

previous state weight parameter 휃𝑚,𝑎(𝑇), given as follows

𝑦𝑚(𝑇) = 𝑟𝑚(𝑇) + 𝛾 max
𝑎𝑚(𝑡)∈𝐴(𝑡)

𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)) (37)

The loss function of the network is evaluated as follows

𝐿 (휃𝑚,𝑎(𝑇)) = 𝔼(�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1)

~𝔇𝑚 [(𝑦𝑚(𝑇) − 𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)))
2

]

= [(𝑦𝑚(𝑇) − 𝑄(�̃�𝑚(𝑇), �̃�𝑚(𝑇); 휃𝑚,𝑎(𝑇)))
2
] (38)

The gradient vector ∇θ of the loss function is obtained by

differentiating Eq. (39) with respect to weight, given as

∇m,θ 𝐿 (휃𝑚,𝑎(𝑇)) = (�̃�𝑚(𝑇) + 𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇 −

1) − 𝑄 (𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)))∇m,θ𝑄(�̃�𝑚(𝑇), �̃�𝑚(𝑇); 휃𝑚,𝑎(𝑇)) (39)

The network weight 휃 𝑚,𝑎+1(𝑇) is updated according to a

stochastic Gradient descent method with learning rate 𝛼𝜖 {0,1},
as follows:

8

휃𝑚,𝑎+1(𝑇) = 휃𝑚,𝑎(𝑇) + 𝛼∇m,θ𝐿(휃𝑚,𝑎) (40)

Algorithm 1 DRN- LSTM based offloading rate control Algorithm

1. Initialize 𝔇𝑚 and 𝜙𝑚,𝐴 with random weights 휃𝑚,𝑎 .

2. Assign maximum number of training episode 𝐸𝑝𝑠 = 𝐸𝑝𝑠
𝑚𝑎𝑥 .

3. initialize and observe the environment to get initial state 𝑆𝑚(𝑇)=

(𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝑐𝑚
𝑔 (𝑇), 𝑐𝑚

𝑏 (𝑇), 𝑒𝑚(𝑇))

4. For 𝑇 = 1,2… .. do

5. If 𝑟𝑎𝑛𝑑𝑜𝑚 () ≤ 𝜖
Randomly select an action

 𝑎𝑚(𝑇) = (𝐷𝑚
𝑙 (𝑇), 𝐷𝑚

𝑜 (𝑇)) ∈ 𝐴(𝑇).

6. Else

a. Form the experience 𝑒𝑚,𝑟,𝑇(𝑇) = (𝑠𝑚(𝑇 − 1)… 𝑠𝑚(𝑇))
b. Set 𝑆𝑚(𝑇) as input to LSTM network

c. For each action 𝑎𝑚(𝑇) ∈ 𝐴(𝑇) evaluate the output of

LSTM to obtain 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)) using 𝜙𝑚,𝐴

with random weights 휃𝑚,𝑎.

d. Select an action such that 𝑎𝑚𝑎𝑥(𝑇) =
arg max
𝑎𝑚(𝑇)∈𝐴(𝑇)

(𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇))

7. End if
8. Take an action 𝑎𝑚𝑎𝑥(𝑇) to switch new state (𝑠𝑚(𝑇 + 1))
9. Evaluate 𝑒𝑚(𝑇), 𝐿𝑚(𝑇) and task drop loss
10. calculate 𝑈𝑚(𝑇) using Eq.(12)
11. Evaluate 𝑟𝑚(𝑇) using Eq.(24)
12. Formulate the experience tuple from transition

(𝑠𝑚(𝑇), 𝑎𝑚(𝑇), 𝑟𝑚(𝑇), 𝑠𝑚(𝑇 + 1)) and store into memory data set

𝔇𝑚,
13. For 𝐸𝑝𝑠 = 1,2, 3… . . 𝐸𝑝𝑠

𝑚𝑎𝑥 do

a. Select randomly from mini-batch
�̃�𝑚,𝑟(𝑇) = (�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1))

b. Calculate target Q-value 𝑦𝑚(𝑇) using Eq. (37)
14. End For
15. Evaluate Loss function by using Eq.(38)
16. Update the network parameter 휃𝑚,𝑎(𝑇) by performing stochastic

Gradient descent optimization using Eq. (39) & Eq. (40).

17. End For

 Cluster head (MEC Server)

MEC sever send the optimal

to each member nodes

Start

Evaluate and task

drop loss for all member nodes

Minibatch

Calculate LSTM loss and gradient

Observe the battery level
and estimate harvested energy

SINR of k IoT nodes

𝑚𝑡ℎ

𝛾𝑚(𝑇) = (𝛾𝑚 ,1(𝑇),𝛾𝑚 ,2(𝑇),…… . 𝛾𝑚 ,𝑘(𝑇))

𝑏𝑚(𝑇)
𝑒𝑚(𝑇)

𝑠𝑚(𝑇) = (𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝑐𝑚
𝑔 (𝑇), 𝑐𝑚

𝑏 (𝑇), 𝑒𝑚(𝑇))

Stop

 𝑟𝑎𝑛𝑑𝑜𝑚 () ≤ 𝜖

Offload data 𝐶𝑚 ,𝑘(𝑇)𝐷𝑚 ,𝑘
𝑜 (𝑇(𝑡2))

Select action using greedy

policy

𝜖 𝑎𝑚(𝑇)

 𝑎𝑚(𝑇)
Randomly select an

action

Computation result back to
IoT node

𝐷𝑚
𝑙 (𝑇) and 𝐷𝑚

𝑜 (𝑇) 𝑒𝑚(𝑇),𝐿𝑚(𝑇)

Evaluate reward

𝑈𝑚(𝑇) Evaluate Utility

𝑟𝑚(𝑇) = max𝔼 𝑈𝑚(𝑇)

𝑇

𝑇=1

𝑇 <= 𝑇𝑚𝑎𝑥 ?

Set as input to

LSTM Network

𝑆𝑚(𝑇)

False

True

False

True

�̃�𝑚 ,𝑟(𝑇) Choose an experience randomly

for times

Update the LSTM network parameter 휃𝑚 ,𝑎(𝑇)

𝑒𝑚 ,𝑟 ,𝑇(𝑇) = (𝑠𝑚(𝑇),𝑎𝑚(𝑇), 𝑟𝑚(𝑇), 𝑠𝑚(𝑇 + 1))

𝐸𝑝𝑠
𝑚𝑎𝑥

Output Q-value𝑄(𝑠𝑚 (𝑇),𝑎𝑚(𝑇);휃𝑚 ,𝑎(𝑇))

Switch to new state and
form the experience

𝑠𝑚(𝑇 + 1)

LSTM unit

LSTM unit𝑤𝑚 ,𝑙2

LSTM unit𝑤𝑚 ,𝑙𝑛

L
S

T
M

 n
et

w
or

k
la

ye
r

Fully connected
network layer𝑤𝑚 ,𝑓𝑐

𝑤𝑚 ,𝑙1

𝑒𝑚 ,𝑟 ,1(𝑇) = (𝑠𝑚(1),𝑎𝑚(1), 𝑟𝑚(𝑇), 𝑠𝑚(2))

Memory Buffer Data set

𝔇𝑚 = { 𝑒𝑚 ,𝑟 ,1(𝑇), 𝑒𝑚 ,𝑟 ,2(𝑇),… 𝑒𝑚 ,𝑟 ,𝑇(𝑇)}

Switch

Fig.4: Scientific workflow of the DECENT algorithm

V. PERFORMANCE EVALUATION AND RESULT ANALYSIS

A. Analysis of DECENT

In this section, two major analyses are used to validate the

effectiveness of the proposed algorithm: (1) convergence

property, and (2) computational complexity.

1. Convergence Property

The convergence of the DECENT algorithm depends upon two

conditions: (1) the DECENT network overcomes the vanishing

or exploding gradient; i.e., it controls the variation of gradient

values too large or small exponentially in each time slot; (2) it

stabilizes the training process with close to zero training error

using (mini-batch) stochastic gradient descent. Both conditions

hold in polynomial time under mild assumption and the

convergence holds the condition as follows

𝑓(휃(𝑡)) ≤ 휀 for all 𝑡 ∈ [1,2, 3… . . 𝑇] (41)

9

Above the inequality state that, when training, loss of the

DECENT drops to 휀 during time instant 𝑡 with linear

convergence speed, the algorithm converges to optimal policy.

The proof of the convergence property for the proposed

algorithm is similar to the convergence of training RNN [33].

2. Computational Complexity

Time complexity of the DECENT mainly depends upon the

weight 𝜓 of each LSTM unit cell state. Each LSTM unit (cell)

has four connections used to evaluate output: forget gate, input

gate, cell gate and output gate that control the flow of

information shown in fig 3. Each component is associated with

the previous cell state input plus the current time slot input.

Therefore, if there are 𝑁𝑇 number of units in the LSTM layer

in the current time slot and 𝑁𝑇−1number of units in the previous

layer, then the total number of inputs to each component

is 𝑁𝑇 + 𝑁𝑇−1. As, there are four connections in each unit, then

there is total 4(𝑁𝑇 +𝑁𝑇−1) weights associated with each unit.

Since there are 𝑁𝑇 units in one LSTM layer, so there is,

4𝑁𝑇(𝑁𝑇 + 𝑁𝑇−1) weight associated with LSTM layer. The

weights associated with output component is 𝑁𝑇 ∗ 𝑁𝑜 , where

𝑁𝑜 is the total number of output. The weights associated with

forget gate, input gate and cell weight components of each layer

is 𝑁𝑇 ∗ 3. If there are H numbers of hidden layers, so total

weights are given as

 𝜓 = 𝐻 ∗ (4𝑁𝑇(𝑁𝑇 + 𝑁𝑇−1) + 𝑁𝑇 ∗ 3) + 𝑁𝑇 ∗ 𝑁𝑜 (42)

The computational complexity of DECENT learning model

per weight and time slot using stochastic gradient optimization

technique is 𝑂(1). Thus, the overall complexity of the proposed

DECENT algorithm is 𝑂(𝜓).

B. Simulation And Discussion

In this section, we evaluate the performance of the

proposed LSTM based DECENT algorithm for the optimal

selection of a data offloading rate in EH MEC-based IoT

network with respect to different LSTM parameters and state-

of-art algorithms.

1. Simulation Environment

The simulation of proposed DECENT algorithm to

optimize the policy for data offloading is implemented using

Python 3.7 and Tensorflow 1.2.1 framework. For data

preprocessing and management Numpy, pandas and scikit-

learn libraries of Python is used such as sklearn.preprocessing

import LabelEncoder, sklearn.utils import shuffle and

sklearn.model_selection import train_test_split (for training

and testing of samples). Whereas tensforflow.contrib import

RNN is being used for creating deep RNN LSTM network

along with primary functions: 1) RNN (input, weights, biases)

- responsible for creating and training of the LSTM network,

2) RNN.BasicLSTMCell(n_hidden)- for creating single layer

LSTM with n_hidden cells 3) squaredelta()- to evaluate the

loss 4) GradientDescentOptimizer(learning_rate)- to optimize

and update the loss and network weight parameter

respectively 5) tf.global_variables_initializer()- to initialize

and process all the variables. We trained the proposed

algorithm with size of experience replay memory buffer,

training mini-batch 1024, 128 samples. And the training

interval (number of iterations at which LSTM network is

refreshed) be 10. The LSTM network consists of 𝑛 = 128
hidden cells and 𝑡𝑎𝑛ℎ activation function for the output.

Table 1. Simulation Parameters

Parameter Value Parameter Value
𝑝𝑚,𝑘(𝑇) (0.5, 15) 𝑑𝐵𝑚 𝛿2 −30 𝑑𝐵𝑚

𝑐𝑚,𝑘
𝑔 (𝑇) 150 𝑘𝑏/𝑠 𝜕 0.3

𝑇 1000 𝑠𝑙𝑜𝑡 𝜈 0.1 𝑠𝑒𝑐/𝑏𝑖𝑡

ɷ 0.75 𝜗 0.2𝑠𝑒𝑐

𝑓𝑙 2 GHz/sec 𝜑 0.1

𝐵 10 MHz 𝑏𝑚𝑎𝑥 8 𝐽
Ĉ 0.06 ζ 1000𝑐𝑦𝑐𝑙𝑒/𝑏𝑖𝑡
𝛾 0.92 𝐸𝑚,𝑘 (0.5, 6)𝐽
𝜖 0.25 휂 0.4

We consider a network area of 100 × 100 𝑚2, where 60

EH-IoT nodes are randomly deployed. For distribution of IoT

nodes and creating the network MATLAB R2017a function

NetArch(length, width, MEC-location, initial energy) and

NodeArch(NetArch, number of nodes) are used respectively.

For energy consumption of IoT nodes first order radio [2] is

used with initial energy of 2 𝐽 for all IoT nodes. The MEC

server has computation capacity of 10GHz/sec. The

transmission power [𝑝𝑚,𝑘(𝑇) ∈ (0.5, 15) 𝑑𝐵𝑚]of an IoT node

crucial parameter and depends upon amount of data being

offloaded to MEC server and quantity of energy harvested in

the previous time slot. The bandwidth 𝐵 of the channel is 10

MHZ for smooth transmission for data. The parameters related

to CPU of an IoT node such as frequency 𝑓𝑙 = 2 GHz/sec,
computation latency 𝜈 = 0.1 𝑠𝑒𝑐/𝑏𝑖𝑡 and number of cycle

required to compute one bit ζ = 1000𝑐𝑦𝑐𝑙𝑒/𝑏𝑖𝑡 is fixed. And

finally the critical parameters of LSTM RNN network such as

discount factor 𝛾 = 0.92 for getting higher long-term

discounted reward corresponds to future value, learning

parameter 휂 = 0.4 to achieve optimal policy quickly. These

simulation parameters along with others are listed in the Table

1. The time-varying channel gain ℎ𝑚,𝑘(𝑇)of an IoT device

follow the Rayleigh fading model, ℎ𝑚,𝑘(𝑇) = ℎ𝑚,𝑘 𝛤𝑚,𝑘(𝑡)

where, 𝛤𝑚,𝑘 denotes the independent random channel fading

with unit mean [35]. The MATLAB Simulink Super-resolution

Model is used for the implementation of EH technique [36] and

for generating dynamic channel gain values while satisfying

channel statistical properties, MATLAB function

ANDIFFSR(s, delta_est, phi_est, factor) is used [37].

2. Result Analysis

This section analyzes the convergence rate of DECENT

algorithm in terms of utility over critical LSTM parameters.

Further, performance test is performed between DECENT and

over state-of-art algorithms for the comparative analysis of

energy consumption, computation time, task drop rate and

utility of EH MEC-based IoT network.

1) Convergence Performance Over Different Parameter

In the fig. 5(a-d), impact of different LSTM unit parameters for

different values on the convergence of the proposed DECENT

algorithm in terms of average utility are shown with LR (휂)=0.4.

Fig. 5(a) shows that small size of memory size-experience

replay buffer (MS =128) causes larger variation in the

convergence of average utility, while after increasing the MS to

10

2048, it requires both more training data and time to converge

to an optimal value close to unity. Thus, for further simulation

MS=1024 is selected that converges to an optimal value in less

time. Furthermore, random data from the MS of 1024 is

selected and formed mini-batch samples for the training

procedure.

Fig. 5 Average utility over (a) Memory size (b) Mini batch size (c) Training

interval (d) learning rate

Fig. 5(b) shows that a small mini-batch size (MBS=32) is

not suitable for storing all the training data, so the convergence

time of the proposed algorithm is fast but failed to reach the

optimal value. When using a larger MBS (=512), frequently

consider old data for the training procedure, which forces the

algorithm to take a long time to learn the optimal policy for

convergence. Thus, utility of the system degrades. Whereas on

setting MBS=128, the utility of the system reaches optimal

value quickly, because of DECENT consider proper mix of old

and recent data for training procedure. We set MBS size to 128

for the further simulations.

Fig. 5(c) shows that for a small value of training interval

(TI=5), the proposed algorithm converges very fast, which

means it learns the optimal policy by updating frequently, while

a larger TI (>25) showed poor performance regarding

convergence property because the policy is not updated

properly. Thus, the results indicate unnecessary updation of the

policy for lower values of TI while higher values of TI update

the policy rarely. Therefore, we set the TI =10 for the upcoming

simulation results. In the Fig. 5(d), we investigated the impact

of learning rate (LR) in the weight updation of Gradient descent

optimizer using Eq. (40). The LR (휂) is responsible for mapping

inputs to outputs in the training dataset of the model or simply

controls the rate of loss during updation of weight for each

batch training sample. It is observed from the result that either

too small of a value of 휂 ≤ 0.05 or a higher value 휂 ≥ 0.8
results in the proposed algorithm being stuck into local optimal

(stuck with high training error) and never reaches the global

optimal value; consequently, network performance degrades.

While setting up 휂 = 0.4, the proposed algorithm learns the

optimal policy faster and converges in less time. This is because

DECENT uses a memory cell to map the input to output values,

and weights are updated using a stochastic gradient method,

which avoids the numerical overflow (explode) of weight.

Thus, for the next experiment set, learning rate 휂 = 0.4 is set

that helps in producing the set of global optimal weights.

2) Convergence Performance Over Number of Time Slots

It is observed from Fig. 6(a-c) that the proposed algorithm

DECENT achieves the optimal offloading rate pertaining to

maximize the average utility of the network after convergence

with setting up parameters 𝛾 = 0.92 and 휂 = 0.4 within 1000
time slots. Particularly, fig. 6(a) shows that energy consumption

of DECENT decreases as the time slot increases till 𝑇 = 175
and become stable with consumption of 3J energy that validates

the convergence property. However, DQL and QL converge the

energy consumption after time slot T= 420 and 495,

respectively. In addition to these, Fig. 6(b-c) show that the

computation latency and task drop rate for DECENT, DQL, and

QL also decreases until T = 175, 420, 495, respectively, and

converges after further increase in the time slot. The proposed

algorithm uses the EH technique and computation task

partition, which enables IoT nodes to use the energy in

operation and the offloading task to MEC in an efficient

manner.

The network utility of the EH MEC based IoT network depends

upon energy consumption, computation latency, and task drop

rate, as given in Eq. (11). Combining all the results obtained

from fig. 6 (a-c), the average network utility is evaluated and is

(a)

(d)

(c)

(b)

11

shown in fig. 6(d) with respect to the time slot. As the time slot

increases, the utility of the proposed algorithm increases rapidly

and saturates within time slot 175. The utility of DQL and QL

takes 245 and 320 more timeslots to converge as compared to

DECENT. The proposed algorithm outperformed the DQL and

QL offloading algorithms in terms of average utility after 𝑇 =

 175 by 19.25% and 32%, respectively.

Fig. 6 Convergence performance (a) Energy consumption (a) Computation

latency (c) Task drop rate (d) Average Utility

Fig. 6(a-c) reveals that the improved utility performance of

DECENT is achieved by reducing the energy consumption by

22.34%, 36.23%, shortening the computation latency by

19.18%, 33.45%, and lowering the task drop rate by 52%, 72 %

with respect to DQL and QL, respectively. The reason behind

is twofold: (i) the DECENT uses LSTM network wherein each

memory cell stores only relevant previous state information

such as energy consumption, task drop rate, computation

latency during and local processing to estimate the next state

offloading rate in an efficient manner; (ii) LSTM unit

compresses the large state space using fully connected layer and

𝑡𝑎𝑛ℎ activation function improves the learning performance, as

a result proposed algorithm convergences faster than state-of-

art techniques. Whereas, DQL stores all the previous state

information and takes much time to evaluate the next state

output, as searching for all possible neural network combination

is required. Although, QL based algorithm suffers from the

curse of dimensionality between large input-output data during

the transition of state. This can be attribute to slow learning rate

which causes convergence of QL based algorithm took many

time slots. In addition, fig. 5(a-c) also reveals that the random

algorithm lags significantly behind DECENT by 68%, 76%,

and 83% in energy consumption, computation latency, and task

drop ratio, respectively. This is due to the fact that random

algorithm randomly selects any offloading rate for data

offloading.

3) System Performance Over Size of Computation Task

Fig. 7(a-c) shows that energy consumption, computation

latency, and task drop for the state-of-the-art algorithms is a

monotonically increasing function of computation task

offloaded to the MEC server by EH-IoT nodes. This is because

of more computation task offloaded on the MEC server

consumes more energy and time. Higher amount of data

requires more energy to transfer the bits of information to MEC

server according to first order radio model energy consumption

formula [2]. In addition, it also increases the task drop ratio.

Fig. 7(a) shows that, as the computation task size varies from

80 kb to 130 kb, the energy consumption of the presented

algorithm increased by 62 %. With further increases in the

computation task, variation in energy consumption is not visible

at all i.e., converged. However, in DQL and QL, energy

consumption increases at a much higher rate by 71 % and 77%,

respectively, up to 140 kb. This is because the presented

algorithm selects an optimal offloading rate and harvested

energy efficiently. Thus, the proposed algorithm outperformed

the DQL and QL by reducing energy consumption by 13 %

and 15 %, respectively.

In addition, Fig. 7(b) shows that computation latency of all

algorithms increases rapidly; only DECENT and DQL managed

to converge over 140 kb of computation size, whereas other

algorithms failed to control the increasing rate of computation

latency. The reason for this is that DECENT uses cell memory

to learn optimal policy (offloading rate) from long-term

dependencies provided by offloading experiences faster than

other algorithms. Moreover, Fig. 7(c) shows that the task drop

rate of the proposed algorithm also increases as the computation

task increases up to 130 kb; furthermore, in the computation

task (130-160kb), only 9 % of total computation task dropped

with a constant rate. However, in the DQL task, the drop rate is

(a)

(c)

(b)

(d)

12

higher than DECENT and it is about 13 % in the range of 130-

160 kb size of the computation task.

Fig. 7 (a). Energy consumption over computation task

Fig. 7 (b). Computation latency over computation task

Fig. 7 (c). Task drop rate over computation task

Fig. 7 (d). Average Utility over computation task

Overall, the proposed algorithm reduced the task drop rate

as compared to DQL and QL by 37 % and 68%, respectively.

The random algorithm showed the worst performance among

others and it could not converge as the computation size

increased. Overall, DECENT beats all the considered state-of-

the-art algorithms, such as DQL and QL, by the lower energy

consumption of 22.23%, 43.3%, shorter computation latency of

17.25%, 35.4%, and significantly lower task drop ratio of

87.2%, with a computation size of 130kb. The reason for this is

that the proposed algorithm efficiently divides the computation

task and learns the optimal policy faster to decide the data

offloading rate to the MEC server and local computation rate

for local execution. Also, DECENT does not account for

offloading all the generated data instantly. It stores some of the

generated data in a buffer and a fraction of data is offloaded to

the MEC server; by doing so, latency and the task drop ratio

decrease.

The results in the fig.7(d) shows that with the increase in

computation task, average utility of the network of the proposed

algorithm increases rapidly and stable at 140kb other than state-

of-art-algorithms. This observation affirms that the energy

consumption, computation latency and task drop rate of

DECENT is less than other state-of-algorithms and validates

the equation (11). It can be also observed that average utility of

the proposed algorithm reached about 0.91. This is because the

proposed algorithm uses 𝑡𝑎𝑛ℎ activation function and

experiences replay memory (reduces the state space) to improve

the learning rate rather than 𝜖 − greedy policy used in QL to

select an action. The network utility of random selection

schemes shows much lower increment in utility, as the

computation task increases because of random selection policy;

i.e., take any random offloading rate for data offloading,

although it is not possible by the random algorithm to control

the variation of the energy consumption, computation latency,

and task drop rate.

4) Normalized Computation Rate and Training Loss vs. Time

Slots

Fig.8. Normalized computation rate and Training loss over time slot

The MEC server forms a cluster with randomly selected

EH-IoT node and itself as cluster head. Here, we define

normalized (average) computation rate �̅� (state-action ∈ [0,1])
or utility for proposed DECENT algorithm as follows:

�̅�(𝑠𝑚(𝑇), 𝑎𝑚(𝑇)) =
𝑄𝜋∗(𝑠(𝑇),𝑎(𝑇))

max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇),𝑎(𝑇))
 (41)

It is observed from the fig 8, for the first 175 time slots, the

 �̅� increases rapidly because of the LSTM network in the

training phase shown in left side of vertical y-axis. After that,

with an increase in times slot, the variation in the curve reduces

and converges to 0.98 and the variance is close to zero.

Whereas, right vertical y-axis shows that the training

loss 𝐿 (휃𝑚,𝑎(𝑇)) is much higher for the first time slots. Further,

13

with an increase in the time slot, LSTM is able to train its

network (update the experience replay memory) and training

loss 𝐿 (휃𝑚,𝑎(𝑇)) that gradually decreases and stabilizes at

approximately 0.02 in time slot 320. This shows that DECENT

quickly minimizes its loss and converges to the optimal

computation rate. This is because of mini-batch memory that

consists of only relevant experiences from the input gate;

irrelevant experiences are ignored by forget gate. Finally, the

output gate only stores the experience based upon the 𝑡𝑎𝑛ℎ
function gate. Therefore, the size of mini-batch is also

efficiently utilized and searching of previous computation rate

is accelerated, which minimizes the training loss and helps to

converge the algorithm faster.

VI. CONCLUSIONS AND FUTURE SCOPE

This paper presented deep learning LSTM-RNN based

framework for EH IoT nodes to choose the optimal offloading

rate and the local processing rate in MEC networks with only

local causal knowledge of time-varying EH and channel states.

The main objective of the work is to learn the optimal policy in

order to maximize the long-term expected overall network

utility by decreasing energy consumption, computation latency,

and task drop rate in each time slot. An efficient algorithm,

DECENT, is proposed that uses the past offloading experiences

to improve the selection of the next action using a memory cell

of LSTM units. The memory cells are able to compress the large

state and action space in the learning process, which ultimately

avoids the curse of dimensionality problem and makes the

proposed algorithm to be computable in polynomial time.

Furthermore, the proposed algorithm uses a stochastic gradient

descent method as a parameterized policy to update the network

parameter and generate optimal actions. It avoids the vanishing

or exploding gradient value and minimizes the loss subject to

the convergence of the presented algorithm. Simulation results

shows that DECENT generates the optimal policy and improves

the network utility by 23% and 43% as compared to benchmark

DQL and QL algorithms, respectively. In the future, we will

extend the DECENT offloading framework to MEC-cloud’s

server architecture. In addition, cooperation between the MEC

server and a cloud server with transmission power selection to

EH-IoT node will also be considered.

REFERENCES

[1] S. Kumar, O. Kaiwartya, M. Rathee, N. Kumar and J. Lloret, "Toward
Energy-Oriented Optimization for Green Communication in Sensor

Enabled IoT Environments," in IEEE Systems Journal, doi:

10.1109/JSYST.2020.2975823, 2020

[2] Kashyap, P. K., Kumar, S., Dohare, U., Kumar, V., &Kharel, R.: Green

Computing in Sensors-Enabled Internet of Things: Neuro Fuzzy Logic-

Based Load Balancing. MDPI Electronics , 8(4), pp. 384-405, 2019.
[3] https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

[4] Z. Liao et al., "Distributed Probabilistic Offloading in Edge Computing
for 6G-Enabled Massive Internet of Things," in IEEE Internet of Things

Journal, vol. 8, no. 7, pp. 5298-5308, 1 April1, 2021.

[5] T. Koketsu Rodrigues, J. Liu and N. Kato, "Offloading Decision for
Mobile Multi-Access Edge Computing in a Multi-Tiered 6G Network,"

in IEEE Transactions on Emerging Topics in Computing, doi:

10.1109/TETC.2021.3090061.
[6] E. Fitzgerald, M. Pióro and A. Tomaszwski, "Energy-Optimal Data

Aggregation and Dissemination for the Internet of Things," in IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 955-969, April 2018.

[7] P. K. Kashyap, S. Kumar, A. Jaiswal, M. Prasad and A. H. Gandomi,

"Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation
Systems Using Deep Learning Neural Network," in IEEE Sensors

Journal, vol. 21, no. 16, pp. 17479-17491, 15 Aug.15, 2021.

[8] P. K. Kashyap, S. Kumar and A. Jaiswal, "Deep Learning Based
Offloading Scheme for IoT Networks Towards Green Computing," IEEE

International Conference on Industrial Internet (ICII), Orlando, USA,

2019, pp. 22-27
[9] Dinh, T. Q., La, Q. D., Quek, T. Q. S., & Shin, H. Distributed Learning

for Computation Offloading in Mobile Edge Computing. IEEE

Transactions on Communications, pp. 1–1, 2018.
[10] N. Kiran, C. Pan, S. Wang and C. Yin, "Joint resource allocation and

computation offloading in mobile edge computing for SDN based

wireless networks," in Journal of Communications and Networks, vol. 22,
no. 1, pp. 1-11, Feb. 2020.

[11] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy aware

offloading for competing users on a shared communication channel,
”IEEE Trans. Mobile Comput., vol. 16, no. 1, pp. 87–96, Jan. 2017.

[12] X. Chen, “Decentralized computation offloading game for mobile cloud

computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, Apr. 2015.

[13] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation

offloading for mobile-edge cloud computing,” IEEE Trans. Netw., vol.
24, no. 5, pp. 2795–2808, Oct. 2016.

[14] J. Li, H. Gao, T. Lv and Y. Lu, "Deep reinforcement learning based

computation offloading and resource allocation for MEC," 2018 IEEE
Wireless Communications and Networking Conference (WCNC),

Barcelona, pp. 1-6, 2018,.

[15] L. Huang, S. Bi and Y. J. Zhang, "Deep Reinforcement Learning for
Online Computation Offloading in Wireless Powered Mobile-Edge

Computing Networks," in IEEE Trans. on Mobile Computing, 2019.

[16] X. Chen, J. Wu, Y. Cai, H. Zhang and T. Chen, "Energy-Efficiency
Oriented Traffic Offloading in Wireless Networks: A Brief Survey and a

Learning Approach for Heterogeneous Cellular Networks," in IEEE

Journal on Selected Areas in Commu., vol. 33, no. 4, pp. 627-640, 2015.
[17] Y. Wei, F. R. Yu, M. Song and Z. Han, "User Scheduling and Resource

Allocation in HetNets With Hybrid Energy Supply: An Actor-Critic

Reinforcement Learning Approach," in IEEE Transactions on Wireless
Communications, vol. 17, no. 1, pp. 680-692, Jan. 2018.

[18] Z. Wei, B. Zhao, J. Su and X. Lu, "Dynamic Edge Computation
Offloading for Internet of Things With Energy Harvesting: A Learning

Method," in IEEE IoT Journal, vol. 6, no. 3, pp. 4436-4447, June 2019.

[19] T. Q. Dinh, J. Tang, Q. D. La and T. Q. Quek, “Offloading in mobile edge
computing: Task allocation and computational frequency scaling,”IEEE

Trans. Commun., vol. 65, no. 8, pp. 3571–3584, 2017.

[20] J. Du, L. Zhao, J. Feng and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with minmax

fairness guarantee,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–

1608, Apr. 2018.
[21] C. Zhang, Z. Liu, B. Gu, K. Yamori, and Y. Tanaka, “A deep

reinforcement learning based approach for cost-and energy-aware multi-

flow mobile data offloading,” IEICE Trans. Commun., vol. E101-B, no.
7, pp.2017–2025, 2018.

[22] L. Ji, G. Hui, L. Tiejun, and L. Yueming, “Deep reinforcement learning

based computation offloading and resource allocation for mec,” in proc.
IEEE WCNC, pp. 1–5, 2018.

[23] Y. Xie, Z. Xu, Y. Zhong, J. Xu, S. Gong and Y. Wang, "Backscatter-

Assisted Computation Offloading for Energy Harvesting IoT Devices via
Policy-based Deep Reinforcement Learning," 2019 IEEE/CIC

International Conference on Communications Workshops in China

(ICCC Workshops), Changchun, China, 2019, pp. 65-70.
[24] M. Min et al., "Learning-Based Privacy-Aware Offloading for Healthcare

IoT With Energy Harvesting," in IEEE Internet of Things Journal, vol. 6,

no. 3, pp. 4307-4316, June 2019.
[25] Y. Liu, H. Yu, S. Xie and Y. Zhang, "Deep Reinforcement Learning for

Offloading and Resource Allocation in Vehicle Edge Computing and

Networks," in IEEE Trans. on Vehicular Technology, vol. 68, no. 11, pp.
11158-11168, Nov. 2019.

[26] L. Huang, X. Feng, A. Feng, Y. Huang, and P. Qian, “Distributed Deep

Learning-based Offloading for Mobile Edge Computing Networks,”
Mobile Netw. Appl., 2018, doi: 10:1007/s11036-018-1177-x

[27] L. Huang, X. Feng, C. Zhang, L. Qian, Y. Wu, “Deep reinforcement

learning-based joint task offloading and bandwidth allocation for multi-
user edge computing”, Digital Communication and Networks, vol. 5, no.

1, pp. 10-17, 2019.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

14

[28] Wolf, Thomas; Debut, Lysandre; Sanh, Victor; Chaumond, et al.,

“Transformers: State-of-the-Art Natural Language processing”.
Proceedings on the Conference on Empirical Methods in Natural

Language Processing: System Demonstrations. Pp. 38-45, 2020.

[29] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Performance
optimization in mobile-edge computing via deep reinforcement learning,”

IEEE Internet of Things Journal, Oct. 2018.

[30] P. K. Kashyap, S. Kumar, A. Jaiswal, M. Prasad and A. H. Gandomi,
"Towards Precision Agriculture: IoT-enabled Intelligent Irrigation

Systems Using Deep Learning Neural Network," in IEEE Sensors

Journal, doi: 10.1109/JSEN.2021.3069266.
[31] W. Liu, J. Cao, L. Yang, et al., “Appbooster: Boosting the performance

of interactive mobile applications with computation offloading and

parameter tuning,” IEEE Trans. Parallel. Distrib. Syst., vol. 28, no. 6, pp.
1593–1606, 2017.

[32] A. Cammarano, C. Petrioli and D. Spenza, "Online Energy Harvesting

Prediction in Environmentally Powered Wireless Sensor Networks,"
in IEEE Sensors Journal, vol. 16, no. 17, pp. 6793-6804, Sept.1, 2016.

[33] Y. Wang, M. Sheng, X. Wang, et al., “Mobile-edge computing: Partial

computation offloading using dynamic voltage scaling,” IEEE
Trans.Commun., vol. 64, no. 10, pp. 4268–4282, Aug. 2016.

[34] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying protocols

for wireless energy harvesting and information processing,” IEEE Trans.
Wireless Commun., vol. 12, no. 7, pp. 3622–3636, 2013.

[35] Allen-Zhu, Zeyuan & Li, Yuanzhi & Song, Zhao On the Convergence

Rate of Training Recurrent Neural Networks” NeurIPS (2019).
[36] K. E. Baddour and N. C. Beaulieu, "Autoregressive modeling for fading

channel simulation," in IEEE Transactions on Wireless Communications,

vol. 4, no. 4, pp. 1650-1662, July 2005.
[37] http://venividiwiki.ee.virginia.edu/mediawiki/images/4/4f/EHarv_Docu

mentation_v1.1.pdf.
[38] https://venividiwiki.ee.virginia.edu/mediawiki/index.php/SUPR_Models

PANKAJ KUMAR KASHYAP is working as
District Informatics Officer in National
Informatics Centre, Jammu & Kashmir (Union
Territory) under Ministry of Electronics and
Information Technology, Government of
India, New Delhi. He received his Ph.D. degree
and M.Tech degree in Computer Science and
technology from Jawaharlal Nehru University,

New Delhi in 2020 and 2014 respectively. His research area interest is load
balancing and energy optimization in wireless sensor networks, Internet of
Things or vehicles using machine learning approaches. Dr. Kashyap has
published more than 5 papers in international journals and over 10 papers in
international conferences. Dr. Kashyap is currently working on quantum
learning, deep learning based energy optimization, energy trading, security
analysis through blockchain and load balancing in IoT networks.

SUSHIL KUMAR ((M’11 SM’18) is currently
working as Assistant Professor at the School of
Computer and Systems Sciences, Jawaharlal
Nehru University, New Delhi, India. Prior to
that, he spent three years as Lecturer in Jamia
Millia Islamia (Central University), Delhi, India
and as Lecturer (Computer Science) in Shri Lal
Bahadur Shastri R. S. Vidyapeeth (Deemed
University), New Delhi. He received his Ph. D.
degree in Computer Science from the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi,
India. His research interest includes the area of vehicular cyber-physical
systems, Internet of things, Internet of unmanned aerial vehicles,
cybersecurity and wireless sensor networks. He has supervised seventeen

doctoral theses and currently supervising eight doctoral theses in vehicular
communication, the energy efficiency of terrestrial sensor networks,
blockchain, quantum computing, machine learning/deep learning and green
and secure computing in next generation Internet of Things. Dr. Kumar has
authored and coauthored over 100 technical papers in international journals
and conferences. Dr. Kumar served as session chair in many international
conferences and workshops. He is a reviewer in many IEEE/IET and other
international journals. He is a reviewer for projects for various research
funding organizations. He is served as guest editor in the Journal of Computer
Networks and Communications, and Transaction on emerging technologies.

ANKITA JAISWAL is currently a Ph.D. senior
research scholar at School of Computer and
Systems Sciences, Jawaharlal Nehru University,
New Delhi, India. She received her M. Tech.
degree in Computer Science and Technology
from School of Computer and Systems
Sciences, Jawaharlal Nehru University, New
Delhi, India in 2016 and B. Tech. degree in

Computer Science and Engineering from Uttar Pradesh Technical University,
India in 2013. Her research interests include 5G centric Wireless Sensor
Networks, Internet of Things, Next Generation Wireless Systems, Machine
Learning, and Quantum Computing. She has published three papers in
international journals and over three papers in international conferences. She
is currently working on techniques such as reinforcement learning, quantum
learning, deep learning, blockchain, energy trading and trust in next
generation IoT networks.

OMPRAKASH KAIWARTYA (Senior Member,
IEEE) received the Ph.D. degree in computer
science from Jawaharlal Nehru University, New
Delhi, India, in 2015. He is currently a Senior
Lecturer with the Department of Computer
Science, Nottingham Trent University,
Nottingham, U.K. He was previously a Research
Associate with Northumbria University,
Newcastle upon Tyne, U.K., in 2017 and a
Postdoctoral Research Fellow with the

University of Technology Malaysia, Johor Bahru, Malaysia, in 2016. His
research interests include drone-enabled networking, E-mobility-centric
electric vehicles, Internet-of-Things-enabled smart services, connected
vehicles, and next-generation wireless systems. He is a Fellow of Higher
Education Academy, U.K. He is also a Professional Member of British Computer
Society, U.K. He is an Associate Editor and/or a Guest Editor of the IEEE
Internet of Things Journal, IEEE Access, IET Intelligent Transport Systems,
EURASIP Journal on Wireless Communication and Networking, Sensors
(MDPI), and Electronics.

Manoj Kumar has received his M.tech degree from

Jawaharlal Nehru University, New Delhi, India. He is

currently pursuing Ph.D. from Jawaharlal Nehru

University, New Delhi. His research area of interest

is energy optimization, routing, localization in

Internet of Things. He has published three papers in

international conferences and journals.

http://venividiwiki.ee.virginia.edu/mediawiki/images/4/4f/EHarv_Documentation_v1.1.pdf
http://venividiwiki.ee.virginia.edu/mediawiki/images/4/4f/EHarv_Documentation_v1.1.pdf
https://venividiwiki.ee.virginia.edu/mediawiki/index.php/SUPR_Models

15

UPASANA DOHARE is currently working as
Assistant Professor at the Department of Computer
Science & Engineering, IIMT College of Engineering,
Greater Noida, India. She received her Ph.D. at
School of Computer and Systems Sciences,
Jawaharlal Nehru University, India in 2018. She
received her M.Tech. degree in Computer Science
& Technology from School of Computer and

Systems Sciences, Jawaharlal Nehru University, New Delhi, India in 2011. Her
research interest includes Green Computing in Wireless Sensor Networks,
Game Theoretic modeling of Ad Hoc and Internet of Things based Networks.

AMIR H. GANDOMI is a Professor of Data Science
and an ARC DECRA Fellow at the Faculty of
Engineering & Information Technology,
University of Technology Sydney. Prior to joining
UTS, Prof. Gandomi was an Assistant Professor at
Stevens Institute of Technology, USA and a
distinguished research fellow in BEACON center,
Michigan State University, USA. Prof. Gandomi
has published over two hundred journal papers

and seven books which collectively have been cited 20k+ times (H-index = 66).
He has been named as one of the most influential scientific mind and Highly
Cited Researcher (top 1% publications and 0.1% researchers) for four
consecutive years, 2017 to 2020. He also ranked 18th in GP bibliography
among more than 12,000 researchers. He has served as associate editor,
editor and guest editor in several prestigious journals such as AE of IEEE TBD
and IEEE IoTJ. Prof Gandomi is active in delivering keynotes and invited talks.
His research interests are global optimisation and (big) data analytics using
machine learning and evolutionary computations in particular.

	Clipboard Data(1)
	FINAL VERSION

