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Abstract— Edge computing has received significant attention from 

academia and industries and has emerged as a promising solution for 

enhancing the information processing capability at the edge for next 

generation 6G networks. The technical design of 6G edge networks in 

terms of offloading the computationally extensive task is very critical 

because of the overgrowth in data volume primarily due to the explosion 

of smart IoT devices, and the ever-reducing size of these energy-

constrained devices in IoT systems. Toward harnessing the benefits of deep 

recurrent neural network based on Long Short Term Memory (LSTM) in 

the design of next-generation edge networks, this paper presents a 

framework DECENT- Deep learning Enabled green Computation for 

Edge centric Next generation 6G neTworks. The data offloading problem 

is modeled as a Markov decision process considering joint optimization of 

energy consumption, computation latency, and offloading rate for network 

utility in 6G environment. The algorithm learns faster from previous long-

term offloading experiences and solves the optimization problem with 

better convergence speed. Simulation results of the proposed framework 

DECENT shows that it maximizes the network utility by overcoming the 

challenges as compared to the state-of-the-art techniques. 

Index Terms– Edge computing, LSTM, Next generation 6G network. 

I. INTRODUCTION 

NTERNET of Things (IoT) along with the evolution of 5G 

supports massive associations among machines, humans, and 

smart devices [1]. 6G-enabled next generation IoT opens a new 

paradigm to various computation-intensive and delays 

constraints applications such as augmented virtual reality, 

unmanned aerial vehicle, tele-surgery, interactive games and 

facial recognition systems [2]. These smart things need to be 

self-sustainable for long-time services in order to effectively 

support smart industry, smart cities, healthcare devices and 

environment surveillance. These applications produce 

exponentially increasing traffic and required strict services such 

as latency, computation load, sensitivity and wireless 

communication in the 5G and beyond 5G (B5G) network [3]. 

There will be 29.3 billion networked devices by 2023, up from 

18.4 billion in 2018. The share of Machine-To-Machine (M2M) 

connections will grow from 33 percent in 2018 to 50 percent by 

2023 [4]. Moreover, limited computation capability and limited 

battery-powered energy are always a bottleneck of these smart 

things.  
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While 5G network maturing towards B5G, the numbers of 

commercial applications and services are growing. Those have 

far-reaching impact on our life with extremely diverse set of 

quality of requirements. Which exhausts the network resources 

of existing 5G networks and trigger the use cloud–based 

mobile-edge computing (MEC) and their servers. Therefor in 

the design of B5G network that is adaptive, intelligent and 

extremely flexible for heterogeneous services; 6G networks 

connects massive devices focus on lifetime maximization by 

reducing the energy consumption and latency for MEC servers. 

This is because of 6G networks offers fast and ultrareliable 

communication with higher data rate for cloud servers (data 

offloading at the edge of network) with low latency [5]. 

However, there are still problems in data offloading in edge 

centric 6G networks as follow: (i) 6G offers millions of IoT 

devices connected simultaneously and it requires dynamics 

services frequently, then even resource rich MEC server stuck 

in some cases; (ii) Installation and maintenance of high-

computation enabled MEC at the edge of network are costly, so 

proper number of MEC server in the environment is challenging 

task; (iii) 6G offers extended spectrum up to 40-50 BSs/Km2, 

so that end users may be captured by more than one MEC 

server. Thus selecting appropriate MEC server for computation 

offloading to reduce energy consumption and latency is also a 

complex task. However, joint application of MEC server and 

6G for IoT in future communications will be needed for such 

applications.   

Energy harvesting enabled smart things acquires energy from 

environmental resources: solar, wind, vibration, and thermal. It 

can also be harvested from electromagnetic fields created by 

cellular networks such as radio frequency (RF) signals are 

known as wireless power transfer. However, deployment of a 

battery charger or release of a periodical energy beacon source 

at accurate locations in the IoT network is a tedious challenge, 

and it increases the cost of entire network. In addition, RF 

causes the emission of greenhouse gases and provides 

significantly lower amounts of energy as compared to 

renewable energy sources [6]. Also, it is more preferable due to 

freely available anywhere (harsh conditions too) and during the 

day (both solar and wind) and night (wind) and do not harm the 

global climate. However, unpredictable natural energy source 

increases complexity for implementation due to (i) its inherent 

stochastic properties i.e., randomness in energy arrival rate with 

respect to time i.e., precisely depends upon weather conditions 

(ii) time-varying channel condition.  

The overgrowth of data by computation limited and delay-

sensitive IoT devices and their applications represents a new 

challenge to 6G-IoT networks. MEC network is a promising 

technique for providing computation capability at the edge of 

IoT devices with resource-rich high-performance MEC servers 

[7]. MEC servers are densely deployed in IoT networks, which 
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provide low latency computation task, high bandwidth, low 

energy consumption, and improve the quality of services. In the 

case of event triggering, IoT nodes generate an enormous 

amount of data and these data must be transmitted. If the IoT 

node does not have enough energy, then data should be stored 

in the buffer and when a sufficient amount of energy becomes 

available, stored data as computation task are transmitted to 

MEC servers wirelessly in two ways: full or partial offloading. 

When the IoT device offloads its full computation task to MEC 

servers, it is known as full offloading; when a portion of the 

computation task is offloaded, it is called partial offloading. On 

the other hand, an MEC server processes the offloaded task and 

sends back the results to edge devices. One critical problem in 

MEC network is how much of the computation task should be 

offloaded to MEC servers, i.e., determination of local 

processing rate and offloading rate. Therefore, to design an 

energy-efficient algorithm with delay constraints for EH-MEC 

server-based IoT networks becomes an interesting research 

topic. In this paper, we jointly optimize the individual local 

processing rate and offloading rate and the number of IoT 

devices allocated to MEC servers in order to maximize the 

utility of 6G-IoT network.   

In recent years, numerous studies have been published that 

design an optimal computation offloading rate on MEC servers 

and resource allocation for energy savings in EH-IoT devices 

under different design objectives [8-12]. In [8], the authors 

optimized the number of CPU cycles using an online 

reinforcement learning algorithm (RL) to save energy 

consumption and to allow multiple users to process the data 

locally or offload (full) to MEC server. In [9], the authors 

defined a layer-based software-defined network to minimize the 

application level delay for edge outlets. In [10-12], the authors 

focused on a decentralized approach that jointly optimizes the 

mobile users preceding matrices and saves energy based on 

game theory. In [13-14], Deep Q-network model used in multi-

users environment that simultaneously offload their task to one 

MEC server and the problem is defined as cost, such as 

summation of offloading delay of all users plus energy 

consumed in offloading. However, in the mentioned literatures, 

computation task offloading problem to MEC server has been 

taken up, where edge devices execute an entire task either 

locally or at a server by offloading it. Partial offloading and 

time-varying channel information is not prioritized for next 

generation 6G network environment.  

In this context, toward harnessing the benefits of deep 

recurrent neural network (RNN) based LSTM; remembering 

the long sequence of information over time and predict the 

output based upon previous computation. We present a 

framework DECENT to optimize the strategies for offloading 

the task and minimizing the delay, where both EH-IoT devices 

and time-varying channel condition is considered. The major 

contributions are as follows: 

1) A system model is presented focusing on the next 

generation cluster formation with MEC as cluster head, 

energy consumption, and green computation that support 

data offloading in 6G edge network.  

2) The problem of high-volume data offloading in the next 

generation 6G edge network is formulated as network utility 

maximization problem the considering the energy 

consumption and computation task offloading constraints. 

Further, maximization problem is converted into Markov 

Decision Problem to implement LSTM network. 

3) DECENT-Deep learning enabled solution is developed for 

green computation at next generation 6G edge networks 

focusing on scientific workflow and the algorithm using 

RNN LSTM network.  

4) The convergence property of the presented DECENT 

algorithm is analyzed; i.e., it avoids the vanishing or 

exploding gradient value. In addition, computational 

complexity depends on the weight (𝜓) of the LSTM 

network and it is computed in polynomial time of O(𝜓).  
5) The performance of DECENT is tested over critical LSTM 

unit i.e. memory size, mini batch-size, training interval and 

learning rate. Further, comparative simulations are 

performed along with state-of-the-art techniques to show 

the benchmarking results of DECENT.   

The remainder of this paper is organized into the following 

sections. Section II explored literature as related works. Section 

III and IV present the details of the scientific modeling of the 

proposed DECENT framework. Section V discusses simulation 

results and analysis. Finally, the conclusions of the paper are 

presented in section VI. 

II. RELATED WORK 

In this section, related pieces of literature regarding 

offloading rate, application-processing delay, and energy 

consumption in the MEC network are reviewed. As the 

information regarding generation of random data by IoT device 

and time-variant channel condition together makes challenging 

task to optimize the offloading policy in real-time MEC 

network, especially when the unknown amount of energy is 

harvested within given time period. In the 6G edge network, 

only local performance metrics are known in the current time 

slot. Thus, researchers have preferred RL technique to solve the 

problem of statistical uncertainty of environment and channel. 

In [15], centralized and decentralized Q-learning (QL) 

algorithms were proposed that minimize energy consumption 

and maintain the quality of services in random heterogeneous 

cellular network observed by mobile users. In [16], the authors 

proposed a policy-gradient based actor-critic algorithm for 

scheduling EH-IoT nodes for traffic offloading that provides 

optimal resource (channel) to maximize the network energy 

efficiency. The authors did not consider the data generation rate 

by IoT devices, and offloading rate; the algorithms fail to 

compete in a real-time environment when the state and action 

space is large. In [17], the authors proposed after-state QL 

algorithm with a polynomial approximation to diminish the 

curse of dimensionality to estimate the offloading policy for the 

EH-IoT devices. As the authors did not take the partial 

offloading of the computation task, IoT devices experienced a 

delay in time-responsive applications. In [18], computation task 

execution latency was considered in addition to wireless 

channel condition; computation-offloading algorithm was 

proposed in a multiple computing node environment subject to 

minimizing the task’s execution latency and energy 

consumption. User fairness was jointly considered in [19] with 

channel condition and execution latency as compared to [18] 

and designed an offloading scheme. However, there are 

limitations to the above works; they are only beneficial for 
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single task application and not suitable for multimedia 

streaming applications where execution consists of multiple 

tasks. Above literature uses QL approach to learn the offloading 

rate to reduce the execution latency and energy consumption. 

However, the learning rate is very slow because exploration and 

exploitation strategies suffer from dimensionality of Q-table, 

which fails in the case of large state space and action space. 

Thus, long-term stable profit is not gained in the 6G edge 

network.  

Aiming to solve these limitations, neural network based 

deep reinforcement learning (DRL) framework was introduced 

into MEC to overcome the curse of dimensionality and 

experience a fast convergence rate. DRL have learning ability 

from the past offloading strategy of an IoT device in time-

varying energy, computation task, channel condition, and 

eventually produces mapping from state to action. In [20], the 

authors proposed a deep Q-network learning (DQL) algorithm 

to access the network for offloading the computation task 

subject to minimizing the user’s cost. In [21], the authors 

proposed a DQL method in a multiuser environment to train the 

network based on past experiences in order to jointly take the 

offloading decision and resource allocation based upon the 

overall cost of all users and the capacity of the MEC server. In 

[22], the authors proposed a deep deterministic policy gradient 

method, where IoT devices can decide to choose either RF 

communication or low-power backscatter communication for 

balancing the energy consumption in computation and data 

offloading. In [23], the authors proposed a Dyna architecture-

based offloading rate decision algorithm that was used to secure 

both the location privacy and data pattern privacy for healthcare 

EH-IoT devices. The proposed algorithm failed to compete in a 

multi-user environment in order to provide interactive 

performance to multimedia applications. In the Internet of 

Vehicles, MEC servers are replaced by vehicle edge computing 

(VEC) servers that provide services to nearby vehicles [24], 

authors proposed a DQL-based algorithm for optimizing the 

offloading rate of data, while considering both the delay of 

computation task and limited computation capabilities of 

vehicles. In [25][26], the authors took advantage of parallel 

computing and proposed a distributed DRL offloading 

algorithm where multiple wireless devices simultaneously 

generate an offloading decision. However, above studies based 

on a DQL network suffer from the curse of the dimensionality 

problem when channel quantization and energy harvesting 

capability requires higher accuracy.  

Not much work has been performed that was focused on 

joint optimization of the task offloading strategy and resource 

allocation in a multiuser access control MEC server 

environment. In addition, time complexity and learning rate are 

usually large and slow, and above mentioned algorithms are not 

feasible in a real-time MEC network. Fortunately, LSTM has 

two changes in existing DQL: first, the network has cell 

memory that is used to remember past offloading experiences 

and able to execute long sequence of samples; second, the 

network is trained with mini-batch samples to minimize the 

correlation between samples and then the target Q network is 

provided to regularly update the network weights [28]. Recently 

in 2017, Transformers is first kind of transduction neural 

network architecture introduced and shows better improvement 

still in development phase. Transformers use behavior self-

attention to convert input sample to output without relying on 

sequence-aligned RNN [27]. However, Transformers solves the 

major problem of parallelization that inhibits in sequential 

LSTM and probability of forgetting the information 

exponentially from a sample that is far away from the current 

sample by encoding each word of sample into hidden state then 

passed to decoding stage and paying more attention to current 

sample respectively. But, the major challenge is to build 

Transformers requires sheer size, cost and processing 

requirement such as for parallelization requires Pre-Trained 

unsupervised model-  Google’s BERT or GPT , which faces 

customization of hyper parameters (encoders and decoders) for 

the specific applications to get proper results and these model 

are limited to transduction fixed-length samples (BERT= 512 

characters at a time). Further, the parallelization causes 

fragmentation of context without worrying about semantic and 

respect of sample then it could suffers from loss of significant 

information. In this paper, we use LSTM-based deep RNN to 

train and learn the network, which overcomes the traditional 

DQL based RNN issue and of long–term dependencies of input-

output networks pair and is able to predict the optimal 

offloading rate for next time slot in order to minimize energy 

consumption, computation delay and task drop ratio in 

economical and resolve the context fragmentation issue by 

using gates and sequential processing.  

III. SYSTEM MODEL 

A. Next Generation Edge Network 

We consider an uplink MEC network with 𝑁 number of EH-

IoT nodes (e.g. smart sensors, smartphones, or smart watches), 

and multiple MEC servers; i.e., 𝔐 = {1,2…𝑚, . . 𝑀} for 

complete coverage of the network, as shown in Fig. 1. The MEC 

servers have a fixed location and IoT nodes are randomly 

scattered over the network. The IoT node has the capability to 

do less extensive computation tasks locally or can offload all or 

partial computation tasks to its nearby MEC server and store the 

remaining task in its buffer. The IoT node is battery-powered 

renewable ambient energy sources. 

EH  IoT 
node

MEC server
Uplink

m

M

1 2

𝑀 = {1,2…𝑚, . .𝑀} 
Fig.1: 

Illustration of a MEC server cluster network 

The MEC network operates based-on time slots 𝑇 =
{1,2, … . } which have an equal time span. Each time slot is 

divided into two parts (𝑡1𝑎𝑛𝑑 𝑡2,  𝑡1 ≪ 𝑡2 ). In 𝑡1 time, MEC 

server makes a cluster by selecting its 𝐾 number of nearby IoT 
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nodes and divides the available channels into 𝐾 number of 

orthogonal channels with equal bandwidth 𝐵. In 𝑡2  time, MEC 

server chooses an optimal offloading rate (action) for each IoT 

node in its cluster to maximize the expected discounted reward 

or utility of the network. The action of the MEC server depends 

upon channel state information, estimated harvested energy, 

battery level, and the size of the data offloaded to the MEC 

server by each IoT node. Note that each IoT node is assigned to 

only one MEC server. The 𝑚𝑡ℎ MEC server chooses randomly 

‘𝐾𝑚(𝑇(𝑡1)) = {1,2, …𝑘 …𝐾}’ number of IoT nodes out of 𝑁 

IoT nodes to form cluster at time slot 𝑇(𝑡1), such 

that ∑ 𝐾𝑚(𝑇(𝑡1)) = 𝑁
𝑀
𝑚=1 .  

Where ‘𝐾′ represents the number of orthogonal channels 

available in each cluster and each channel has an equal 

frequency bandwidth 𝐵. In 𝑇(𝑡2), selected 𝑘𝑚  IoT nodes send 

its status (battery level, estimated harvested energy, channel 

gain, generated data, and buffered data) to its MEC server. 

Further, MEC server decides their offloading rate based on the 

received information. Next, the member IoT nodes of a cluster 

compute some of the tasks locally and offload some of the 

computation tasks to their MEC server. Thereafter, the MEC 

server computes their task and returns the result back to the 

respective IoT nodes.  

B. Edge Energy Consumption And Channel  

For the simplicity, we consider a single cluster operation for 

task offloading to the MEC server for both maximization of the 

information rate and minimization of energy consumption 

within the cluster, as shown in Fig. 2. At the beginning of time 

slot 𝑇 , the 𝑘𝑡ℎ IoT node has new sensing data of size 𝑐𝑚,𝑘
𝑔 (𝑇) 

and buffered data of previous time slot 𝑐𝑚,𝑘
𝑏 (𝑇 − 1) size in 

the cluster, with MEC server referred to as cluster head. The 

𝑘𝑡ℎ IoT node has a total amount of data 𝐶𝑚,𝑘(𝑇) for 

computation i.e.,  𝑐𝑚,𝑘
𝑔 (𝑇) + 𝑐𝑚,𝑘

𝑏 (𝑇 − 1) and it is partitioned 

into 𝛽 equivalent parts, similar to the scheme referred in [29]. 

For delay-sensitive applications, we consider that the execution 

time for the computation task on an MEC server is no longer 

than time slot 𝑇. The reason behind this is if the data offloading 

at the MEC server does not occur within time slot 𝑇, then 

computation latency arises during offloading of the task, and 

the energy consumed during task computation is difficult to 

calculate, as the channel coefficient varies in each time slot. The 

IoT node partially offloads the data to the MEC server with an 

offloading rate of 𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) over the wireless uplink of the 

radio channel. Next, locally compute the data with a local 

execution rate of 𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2)). The remaining [ 1 −

 𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) − 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))] computation task is stored in the 

buffer for the processing that occurs in the next upcoming time 

slots, with {𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)), 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))}𝜖 {
𝛽0

𝛽
,
𝛽𝑙

𝛽
} 0 ≤ 𝛽0, 𝛽𝑙 ≤

𝛽. The IoT node is powered with a rechargeable battery of 

maximum battery capacity 𝑏𝑚𝑎𝑥  . The IoT node harvests 𝑒(𝑇) 
amount of energy during time slot 𝑇  and this harvested energy 

is used for the next time slot (𝑇 + 1) for local processing or 

offloading of the computation task. The function of the battery 

is considered to be ideal; i.e., the IoT node does not lose energy 

in storing or retrieving energy. We assume that energy 

consumption in the node is only due to local computation and 

data transmission. Once the battery reaches its maximum 

capacity 𝑏𝑚𝑎𝑥 , the additional harvested energy is abandoned. 

The energy 𝑒𝑚,𝑘(𝑇) harvested by the IoT node is dynamic in 

nature and is modelled as a Markov chain model with 𝐸 number 

of quantized level energy state sets. The transition probability 

of 𝑒𝑚,𝑘 from 𝑒𝑥 to 𝑒𝑦 during time slot T is given as  𝑇𝑚,𝑘
𝑥,𝑦
=

𝑝𝑟𝑜𝑏 (𝑒𝑚,𝑘(𝑇 + 1) = 𝑦|𝑒𝑚,𝑘(𝑇) = 𝑥) = 𝑒
𝑥.𝑦 , ∀𝑥, 𝑦 ∈ 𝐸. 

The amount of energy harvested by the IoT node during time 

slot T is calculated according to the profile energy prediction 

(Pro-Energy) model referred to in [32]. The transmission power 

𝑝𝑚,𝑘(𝑇(𝑡2)) of IoT node holds the inequality, i.e., 

𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇),    𝑝𝑚,𝑘(𝑇(𝑡2)) ≥ 0 with binary 

indicator 𝐼𝑚.𝑘(𝑇(𝑡2)) = 1, which means that offloading of the 

computation task was successfully performed 

and 𝐼𝑚.𝑘(𝑇(𝑡2)) = 0 shows that the IoT device failed to offload 

the computation task in current time slot 𝑇, as the IoT node does 

not have enough power for data transmission. 

 𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇), 𝑝𝑚,𝑘 ≥ 0, ∀𝑚, 𝑘 =
 1,2… . k    (1) 

EH IoT node

MEC server

Uplink
Uplink

UplinkUplink

Offloding policy

Buffer

W parts Computation task

𝑒𝑚 ,𝑘(𝑇) 

𝑏𝑚 ,𝑘(𝑇) 
 𝑐𝑚 ,𝑘
𝑔 (𝑇) 

 𝐶𝑚 ,𝑘(𝑇) 

𝐷𝑚 ,𝑘
𝑙 (𝑇(𝑡2)) 

𝑐𝑚 ,𝑘
𝑏 (𝑇 − 1) 

𝛾𝑚 ,𝑘(𝑇) 

𝐷𝑚 ,𝑘
𝑜 (𝑇(𝑡2)) 

𝑚𝑡ℎ  

𝑘𝑡ℎ  

1−  𝐷𝑚 ,𝑘
𝑜 (𝑇(𝑡2)) − 𝐷𝑚 ,𝑘

𝑙 (𝑇(𝑡2)) 

 

Fig. 2: Offloading Policy by  IoT node in  MEC server cluster 

The channel gain ℎ𝑚,𝑘(𝑇) between 𝑚𝑡ℎ MEC server and 

𝑘𝑡ℎ  EH-IoT node is assumed to be stochastic in nature and is 

modelled as a Markov chain model, with transition 

probability 𝑇𝑚,𝑘
𝑢,𝑣 = 𝑝𝑟𝑜𝑏 (ℎ𝑚,𝑘(𝑇 + 1) = 𝑢|ℎ𝑚,𝑘(𝑇) = 𝑣) =

ℎ𝑢,𝑣 , ∀𝑢, 𝑣 ∈ 𝐻, where H represents the number of quantized 

radio channel state sets. We assume that at the beginning of 

each time slot, the instantaneous channel power gain is obtained 

at the MEC server by feedback from IoT node. The signal-to-

interference-plus-noise ratio (SINR) of  𝑘𝑡ℎ IoT node during 

time slot 𝑇 is given as  

𝛾𝑚,𝑘(𝑇) =
ℎ𝑚,𝑘(𝑇) 𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2))

∑ ℎ𝑚,𝑖(𝑇)𝑝𝑚,𝑖(𝑇)+𝛿
2

𝑖𝜖𝑘\{𝑘}
    (2) 

where 𝑝𝑚,𝑘(𝑇(𝑡2)) is the transmission power of  𝑘𝑡ℎ IoT node 

for offloading the computation task and 𝛿2 is the noise power 
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gain variance of additive white Gaussian channel with zero 

mean. The  ℎ𝑚,𝑖(𝑇) 𝑎𝑛𝑑 𝑝𝑚,𝑖(𝑇(𝑡2)) represent the channel gain 

and transmission power of other nodes in the same cluster, 

respectively.   

C. Edge Green Computation  

1) Local Computing 

We assume that 휁 is the number of CPU cycles required to 

compute one bit. Therefore, the total number of cycles required 

to compute  𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2)) bits is  𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))휁. 
The CPU can control the number of cycles required for local 

execution in each cycle 𝑙 by adjusting the frequency 𝑓𝑙defined 

as dynamic frequency and voltage policy [31]. The local 

execution latency defined by 𝐿𝑙(𝑇(𝑡2))  during time slot T is 

given as  

𝐿𝑙(𝑇(𝑡2)) = ∑   
1

𝑓𝑙

 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑙 (𝑇(𝑡2))𝜁

𝑙=1     (3) 

The energy consumed in local execution of a task by IoT 

node with ɷ as the coefficient of CPU effective capacitance at 

time slot 𝑇 is calculated as 

𝐸𝑙(𝑇(𝑡2)) = ∑ ɷ(𝑓𝑙)2
 𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))𝜁

𝑙=1    (4) 

2) Computation Offloading 

The 𝑘𝑡ℎ IoT node offloads its computation task to the 𝑚𝑡ℎ 
MEC server. The uplink transmission rate 𝑟𝑚,𝑘(𝑇) for task 

offloading can be calculated by considering the mutual 

interference due to simultaneous transmission of other IoT 

nodes as  

𝑟𝑚,𝑘(𝑇) = 𝐵 log2(1 + 𝛾𝑚,𝑘(𝑇))    (5)  

where B is the uplink channel bandwidth at time slot 𝑇. The 

transmission delay for offloading   𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) bits of 

data to the  MEC server is given as 

𝐿𝑜(𝑇(𝑡2)) =
  𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘

𝑜 (𝑇(𝑡2))

𝑟𝑚,𝑘(𝑇)
     (6) 

The energy consumption of the IoT node in offloading the 

computation task to the 𝑚𝑡ℎ  MEC server with transmission 

power 𝑝𝑚,𝑘(𝑇) depends upon computation delay, calculated as 

𝐸𝑜(𝑇(𝑡2)) = 𝐿𝑜(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2))    (7) 

The computation latency  𝐿𝑚,𝑘(𝑇) of the IoT node depends 

upon local execution latency 𝐿𝑙(𝑇(𝑡2)) and offloading delay to 

the MEC server  𝐿𝑜(𝑇(𝑡2)) represented as 

𝐿𝑚,𝑘(𝑇) = max  {𝐿𝑙(𝑇(𝑡2)), 𝐿𝑜(𝑇(𝑡2))}    (8)  

Note that energy consumption in other operations, 

regardless of local computing and offloading, are assumed to be 

negligible. Then, the total energy consumption in the IoT node 

is the sum of energy consumed for local computation and 

offloading the computation task, calculated as 

 𝐸𝑚,𝑘(𝑇) = 𝐸𝑙(𝑇(𝑡2)) + 𝐸𝑜(𝑇(𝑡2))    (9) 

At the beginning of time slot 𝑇 , the battery level of the IoT 

node, which depends upon energy consumption, energy 

harvested, and previous battery level, is calculated as 

𝑏𝑚,𝑘(𝑇 + 1) = min{𝑏𝑚𝑎𝑥,   𝑏𝑚,𝑘(𝑇) + 𝑒𝑚,𝑘(𝑇) − 𝐸𝑚,𝑘(𝑇)} (10)  

IV. DECENT- DEEP LEARNING ENABLED GREEN 

COMPUTATION FOR EDGE NETWORK 

In this section, we formulated optimal data offloading 

problem as a Markov decision process (MDP) to represent the 

network utility maximization that jointly optimizes energy 

consumption, computation latency, and offloading rate. An 

LSTM based deep learning DECENT algorithm is presented to 

solve the MDP problem. 

A. Optimization Problem Formulation 

The performance of each cluster is measured in terms of 

utility (𝑈𝑚(𝑇)) function. Whereas, utility 𝑈𝑚,𝑘(𝑇) of 𝑘𝑡ℎ IoT 

node (member) refer to 𝑚𝑡ℎCH depends upon the offloading 

task, task drop ratio, energy consumption, computation latency 

and waiting cost (𝑍(𝑇)) at buffer given as, 

𝑈𝑚,𝑘(𝑇) =   𝐶𝑚,𝑘(𝑇)𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)) − 𝜑𝐼(𝑏𝑚,𝑘(𝑇 + 1) <

0) − 𝜕𝐸𝑚,𝑘(𝑇) − 𝜈𝐿𝑚,𝑘(𝑇) − 𝜗𝑍(𝑇)    (11) 

where 𝜑 is the weight parameter for task drop rate and 𝐼 is 

the binary indicator. If 𝐼 = 0, then the battery level of the IoT 

node in the current time slot is not enough for executing the 

computation task and therefore the data would be dropped. Let 

𝜕, 𝜈 𝑎𝑛𝑑 𝜗 denote the weight parameter for energy saving, 

computation latency, and waiting cost respectively. Finally, we 

formulate the utility at the MEC server as the sum of utility of 

each member node, given as  

𝑈𝑚(𝑇) = ∑ 𝑈𝑚,𝑘(𝑇)
𝐾
𝑘=1      (12) 

The main objective of the proposed algorithm is to 

maximize the utility at each MEC server by deciding the 

number of member nodes, the offloading rate, and the local 

processing rate during time slot 𝑇. Accordingly, we formulate 

the optimization problem as  

(P1) max lim
𝑇→∞

1

𝑇
∑ 𝑈𝑚(𝑡)
𝑇
𝑡=1 ,      ∀,𝑚 = 1,2, . . 𝑚…𝑀 (13a) 

Subject to    𝐼𝑚.𝑘(𝑇(𝑡2))𝑝𝑚,𝑘(𝑇(𝑡2)) ≤ 𝑏𝑚,𝑘(𝑇) ,      

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾   (13b) 

𝑏𝑚,𝑘(𝑇 + 1) ≤ min{𝑏𝑚𝑎𝑥, 𝑏𝑚,𝑘(𝑇) + 𝑒𝑚,𝑘(𝑇) − 𝐸𝑚,𝑘(𝑇)}, 

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾      (13c) 

{𝐷𝑚,𝑘
𝑜 (𝑇(𝑡2)), 𝐷𝑚,𝑘

𝑙 (𝑇(𝑡2))}𝜖 {
𝑤0
𝑤
,
𝑤𝑙
𝑤
}0 ≤ 𝑤0, 𝑤𝑙 ≤ 𝑤, 

∀𝑚, 𝑘 = 1,2, . . 𝑘 …𝐾      (13d) 

∑ 𝐾𝑚(𝑇) = 𝑁
𝑀
𝑚=1     (13e) 

B. Optimization Problem Modelled as MDP 

Here briefly define the three key elements of the RL 

includes state, action, and reward. Then, we formulate the 

utility maximization problem as a classical Q-learning RL for 

finding the solution. Note that in this paper, multiple IoT node 
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offloading scenarios are considered. Thus, the number of states 

and actions are large for the RL agent on each MEC server. To 

avoid the curse of dimensionality, we further use a DQL-based 

LSTM network layer to estimate the long-range action-value 

function of correlated patterns of input and output for Q-

learning. The RL agent on each MEC server jointly selects the 

number of IoT nodes to form clusters and also chooses both 

offloading rate and local processing rate to maximize the 

expected discounted long-term utility in current time slot 𝑇. The 

system state 𝑆(𝑇) is the controlled stochastic process of the 

network across time slot 𝑇 = 1,2…. Generally, 𝑆(𝑇) can be 

extracted from 𝑀 number of MEC server placed in the network 

at different locations and defined as follows 

𝑆(𝑇) = (𝑠1(𝑇), 𝑠2(𝑇), 𝑠3(𝑇), …… . , 𝑠𝑚(𝑇)… . . , 𝑠𝑀(𝑇))  (14) 

At the beginning of time slot 𝑇(𝑡2), each IoT node evaluates 

it’s bm,k, 𝑒𝑚,𝑘 and 𝛾𝑚,𝑘  then sends these information as causal 

knowledge to their MEC server. Now, MEC server uses this 

received information along with previous SINR value, and 

decides the offloading rate and local processing rate of IoT 

nodes. In (14), the 𝑠𝑚(𝑇) describes the configuration at 𝑚𝑡ℎ 
MEC server with its total 𝑘 number of member nodes, with five 

elements: the SINR 𝛾𝑚(𝑇) information, the current battery level 

𝑏𝑚(𝑇), the new generated data  𝑐𝑚,𝑘
𝑔 (𝑇),  the buffered 

data 𝑐𝑚,𝑘
𝑏 (𝑇 − 1) and energy harvested 𝑒𝑚(𝑇) of each member 

IoT node in current time slot 𝑇, as given by  

𝑠𝑚(𝑇) = (𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝑐𝑚
𝑔 (𝑇), 𝑐𝑚

𝑏 (𝑇), 𝑒𝑚(𝑇))       (15) 

𝛾𝑚(𝑇) = (𝛾𝑚,1(𝑇), 𝛾𝑚,2(𝑇), 𝛾𝑚,3(𝑇) …… . 𝛾𝑚,𝑘(𝑇))    (16) 

𝑏𝑚(𝑇) = (𝑏𝑚,1(𝑇), 𝑏𝑚,2(𝑇), 𝑏𝑚,3(𝑇)…… . 𝑏𝑚,𝑘(𝑇))    (17) 

𝑐𝑚
𝑔 (𝑇) = (𝑐𝑚,1

𝑔 (𝑇), 𝑐𝑚,2
𝑔 (𝑇), 𝐷𝑚,3

𝑔 (𝑇)…… .𝐷𝑚,𝑘
𝑔 (𝑇))    (18) 

𝑐𝑚
𝑏 (𝑇) = (𝑐(𝑇), 𝑐𝑚,2

𝑏 (𝑇), 𝑐𝑚,3
𝑏 (𝑇)…… . 𝑐𝑚,𝑘

𝑏 (𝑇))           (19) 

𝑒𝑚(𝑇) = (𝑒𝑚,1(𝑇), 𝑒𝑚,2(𝑇), 𝑒𝑚,3(𝑇)…… . 𝑒𝑚,𝑘(𝑇))     (20) 

By knowing the system state 𝑆(𝑇), the RL agent on each 

MEC server takes an action space 𝐴(𝑇), which ensures that the 

formatted cluster evaluates the maximum expected discounted 

reward. Action includes the selection of local processing rate 

and offloading rate for each member IoT nodes in different 

clusters during each time slot 𝑇, defined as 

𝐴(𝑇) = (𝑎1(𝑇), 𝑎2(𝑇), 𝑎3(𝑇)…… . 𝑎𝑚(𝑇)… . . , 𝑎𝑀(𝑇))   (21) 

   𝑎𝑚(𝑇) = (𝐷𝑚
𝑙 (𝑇(𝑡2)), 𝐷𝑚

𝑜 (𝑇(𝑡2)))                             (22) 

The primary goal of the RL agent on each MEC server is to 

maximize the reward 𝑅(𝑇) that is interpreted as the 

maximization of utility at each MEC server, which denotes the 

objective of problem (P1). The profit of the reward 𝑅(𝑇) =

(𝑆(𝑇), 𝐴(𝑇)) depends upon taking all the action 𝑎𝑚(𝑇)𝜖 𝐴(𝑇) 

in a certain state  𝑠𝑚(𝑇)𝜖 𝑆(𝑇) to maximize the expected 

discounted reward, given as  

𝑅(𝑇) = (𝑟1(𝑇), 𝑟2(𝑇), 𝑟3(𝑇)…… . 𝑟𝑚(𝑇)…… . 𝑟𝑀(𝑇)) (23) 
𝑟𝑚(𝑇) = max𝔼 [∑ 𝑈𝑚(𝑇)

𝑇
𝑇=1 ]    (24) 

The RL agent on each MEC server aims to maximize the 

reward function in the long run by optimizing the policy. The 

long-term discounted expected reward during time slot 𝑇 can be 

written as 

𝑅𝛾(𝑇) = ∑ 𝛾𝑘−𝑇𝑅(𝑇 + 1)∞
𝑗=𝑇    (25) 

where 𝛾 represent the discount factor; if 𝛾 = 0, then a 

myopic situation occurs and the reward depends upon only on 

the transition from the current state to the next state. As 

𝛾 approaches unity, the reward value depends upon the future 

value. For the classical RL network, the state action-value 

function 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) under the policy  𝜋 for solving the 

MDP is defined as follow 

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) = 𝔼𝜋[𝑅
𝛾(𝑇)| 𝑆(𝑇) = 𝑠(𝑇), 𝐴(𝑇) = 𝑎(𝑇)]  

= 𝔼𝜋[∑ 𝛾𝑘−𝑇𝑅(𝑇 + 1)∞
𝑗=𝑇 |𝑆(𝑇) = 𝑠(𝑇), 𝐴(𝑇) = 𝑎(𝑇)] (26) 

The RL agent takes an action on each step and stores 

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) in a Q-table. The updated state-action value 

𝑄𝜋(𝑠(𝑡), 𝑎(𝑡)) in one-step learning rate (0 < 휂 < 1) given as 

𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) = 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇)) + 휂 [𝑅(𝑇 + 1) +

    𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋(𝑠(𝑇 + 1), 𝑎(𝑇)) − 𝑄𝜋(𝑠(𝑇), 𝑎(𝑇))]   (27) 

where 𝑅(𝑇 + 1) represents the immediate reward gain 

during time slot 𝑇. The goal of the RL agent on each MEC 

server is to maximize the expected discounted reward under 

optimal policy  𝜋∗ at any state, so we can formulate equation 

(27) as an optimality equation in a recursive manner by using 

the Bellman equations, as follows  

𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇)) = 𝔼 [𝑅(𝑇 + 1) + 𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇 +

1), 𝑎(𝑇)| 𝑠(𝑇 + 1) = 𝑠, 𝐴(𝑇 + 1) = 𝑎)]             (28) 

The objective of this learning is to find an optimal policy 𝜋∗  
 to maximizes the long-term expected discounted reward, given 

as 

𝜋∗(𝑠(𝑇)) = arg max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇))  (29) 

Where, 𝑄𝜋∗(𝑠(𝑇), 𝑎(𝑇))  denotes the optimal state-action 

pair value. This inherently calls utility maximization problem 

(P1) at each MEC server.  

C. Proposed DECENT Algorithm Based On LSTM 

Unit (T-1) Unit (T+1)

Current input

Forget Gate Output

Previous input Next input

𝑥𝑠(𝑇 − 1) 

ℎ𝑠(𝑇 − 1) 

ℎ𝑠(𝑇 − 1) 

𝑐𝑠(𝑇 − 1) 

𝑥𝑠(𝑇 + 1) 

ℎ𝑠(𝑇 + 1) 

ℎ𝑠(𝑇) 

𝑐𝑠(𝑇) 

𝜎 𝜎 

× 

tanh 𝜎 

Output GateInput Gate

𝑥𝑠(𝑇) 

𝑓𝑔(𝑇) 

𝑖𝑔(𝑇) 

ĉ𝑠(𝑇) 

𝑜𝑔(𝑇) 

ℎ𝑠(𝑇) 

+ × 

× 

tanh 

 

Fig.3: LSTM unit 

As in the 6G network, there are a large number of states and 

actions; it is difficult to frequently store all Q-values in a table. 

With the introduction of DQL, the neural network absorbs the 

large number of states and actions of classical Q-learning and 

produces an approximate Q-value [32]. In the proposed scheme, 

LSTM network layer is used rather than traditional RNN to 
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build the DQL network [28], which is used to approximate 

action value pairs for all state-action pairs.  

The LSTM network layer consists of more than one LSTM 

unit. This LSTM unit are able to process very long series of 

information using cell memory to memorize previous 

computation and improves convergence speed over traditional 

RNN. The operation of a single LSTM unit is shown in Fig. 3, 

where it passes a message from its predecessor unit to a 

successor unit as intermediate output over a large number of 

correlated input-output pairs. The key feature of the LSTM unit 

is the cell state 𝑐𝑠(𝑇 − 1) memory vector, which flows through 

all units. Each LSTM has three gates: forget gate, input gate, 

and output gate. The forget gate is to determine the degree 

information needed to be forgotten of the previous cell state. 

The output of forget gate (𝑓𝑔(𝑇)) in time slot 𝑇 depends upon 

the previous time slot hidden state ℎ𝑠(𝑇 − 1) and current 

input 𝑥𝑠(𝑇). Forget gate outputs a number between 0 (forget all 

previous information) and 1(keep all the previous state 

information) by sigmoid (𝜎) neural net layer operation with 

weight factor 𝑤𝑓𝑔  and balance factor 𝑏𝑓𝑔 , given as  

𝑓𝑔(𝑇) = 𝜎(𝑤𝑓𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑓𝑔)   (30) 

The next step is divided into two operations: their primary 

goal is which kind of new information is added to the cell state. 

In the first operation, the output of input gate 𝑖𝑔(𝑇)  ∈ {0,1}) 

with weight factor 𝑤𝑖𝑔  and balance factor 𝑏𝑖𝑔  generates  

𝑖𝑔(𝑇) = 𝜎(𝑤𝑖𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑖𝑔)   (31) 

Whereas the second operation resembles to update the cell state 

memory vector known as cell gate output alias candidate 

values ĉ𝑠(𝑡), given as 

ĉ𝑠(𝑇) = tanh(𝑤𝑐𝑡ℎ[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇) + 𝑏𝑐𝑡ℎ])  (32) 

After this, the old cell state  (𝑐𝑠(𝑇 − 1)) value is updated 

with the new state 𝑐𝑠(𝑇) by summation of two terms (1) product 

of forget gate output with previous cell state and (2) product of 

input gate output to new candidate values, given as 

𝑐𝑠(𝑇) = 𝑓𝑔(𝑇) ∗ 𝑐𝑠(𝑇 − 1) + 𝑖𝑔(𝑇) ∗ ĉ𝑠(𝑇)   (33) 

The final step decides what information of the new state is 

shown as output 𝑜𝑔(𝑇)  for the next cell state as hidden state 

output ℎ𝑠(𝑇). Output gate also works in two steps: first output 

is generated on a sigmoid neural network, then 𝑡𝑎𝑛ℎ layer is 

used to push the value between -1 to 1 of the new state. The 

output of the hidden cell state is given as 

𝑜𝑔(𝑇) = 𝜎(𝑤𝑜𝑔[ℎ𝑠(𝑇 − 1) ∗ 𝑥𝑠(𝑇)] + 𝑏𝑜𝑔)   (34) 

ℎ𝑠(𝑇) = 𝑜𝑔(𝑇) ∗ tanh(𝑐𝑠(𝑇))      (35) 

The complete workflow and algorithm of the proposed 

DECENT framework shown in the fig.4 and algorithm 1 

respectively with ‘𝑛’ LSTM units, where output of the LSTM 

layer is fed to a fully connected network layer with weight 

factor  𝑤𝑚,𝑓𝑐  and balance factor 𝑏𝑚,𝑓𝑐  to get the final output.  

Initially, the RL agent at  𝑚𝑡ℎMEC server receives the 

information of current state 𝑠𝑚(𝑇) =
(𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝐷𝑚

𝑙 (𝑇(𝑡2)), 𝐷𝑚
𝑜 (𝑇(𝑡2)), 𝑒𝑚(𝑇)), then the LSTM 

network layer produced the approximated Q-value as mini-

batch 𝑄𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ(𝑠𝑚(𝑇), 𝑎𝑚(𝑇))  ∈  ℝ
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒×𝑍𝑚 ,  where 

𝑍𝑚 denotes the size of action space  𝑎𝑚(𝑇) =
(𝐷𝑚
𝑙 (𝑇(𝑡2)), 𝐷𝑚

𝑜 (𝑇(𝑡2))) ∈  A(𝑇). To fit in the action space of 

Q-value, a fully connected network layer uses its filter to adjust 

the space for Q-value. The action generator 𝜙𝑚,𝐴 for the LSTM 

network takes the input state 𝑠𝑚(𝑇) and produces output 

as (𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)) . The action generator 𝜙𝑚,𝐴(𝑇) is 

composed of weights of both LSTM units (n) and fully 

connected network layer, as follows: 

 𝜙𝑚,𝐴 (휃𝑚,𝑎(𝑇)) =  𝜙𝑚,𝐴{𝑤𝑚,𝑙1, 𝑤𝑚,𝑙2, 𝑤𝑚,𝑙𝑡 … .𝑤𝑚,𝑙𝑛, 𝑤𝑚,𝑓𝑐 }   (36) 

For updating the 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇)) value, an action 

generator is used to evaluate the approximate value. If the 

approximated value is accurate, then the policy is greedy. The 

accurate estimation of Q-value for the given current state 𝑠𝑚(𝑇) 
by taking an action 𝑎𝑚(𝑇) ∈ 𝐴(𝑇) is not always found. Thus, 

the RL agent uses the greedy policy with probability 

𝜖 (0 < 𝜖 < 1) to select an action that provides maximum 

reward (exploitation of knowledge); otherwise it selects any 

random action from the action space with probability 1 − 𝜖 (as 

exploration of action space). After taking an action 𝑎𝑚(𝑇),  the 

RL agent receives the reward 𝑟𝑚(𝑇) and the network switches 

to new state 𝑠𝑚(𝑇 + 1). Experience replay 𝑒𝑚,𝑟(𝑇) memory is 

used to store the received reward and new state in each time slot 

that consists of four tuple:  𝑒𝑚,𝑟,𝑇(𝑇) =
(𝑠𝑚(𝑇), 𝑎𝑚(𝑇), 𝑟𝑚(𝑇), 𝑠𝑚(𝑇 + 1)) in memory buffer data set 

𝔇𝑚 = { 𝑒𝑚,𝑟,1(𝑇),  𝑒𝑚,𝑟,2(𝑇), …  𝑒𝑚,𝑟,𝑇(𝑇)}.  
The size of experience replay memory is limited to the size 

of action space Z, which stores up to maximum 𝑍𝑚  
experiences. Furthermore, mini-batch is formed by choosing 

some random experiences from 𝔇𝑚. Thereafter, we randomly 

select any tuple (�̃�𝑚,𝑟(𝑇) = (�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1)) 
from the mini-batch and an approximated Q-value is estimated. 

In DECENT, the parameterized Q-value is used for updating 

the network weight 휃𝑚,𝑎(𝑇), denoted 

as 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)). In addition, update only that 

network parameter that minimizes the loss 

function 𝐿𝑚(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)). The Q-value updated in 

this way avoids the issue of correlation between large input-

output data during the transition in the same episode [38]. 

Where, 𝑦𝑚(𝑇) represents the state update target Q-value with 

previous state weight parameter 휃𝑚,𝑎(𝑇), given as follows  

𝑦𝑚(𝑇) = 𝑟𝑚(𝑇) + 𝛾 max
𝑎𝑚(𝑡)∈𝐴(𝑡) 

𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇))      (37) 

The loss function of the network is evaluated as follows 

𝐿 (휃𝑚,𝑎(𝑇)) = 𝔼(�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1)           

~𝔇𝑚 [(𝑦𝑚(𝑇) − 𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)))
2

] 

= [(𝑦𝑚(𝑇) − 𝑄(�̃�𝑚(𝑇), �̃�𝑚(𝑇); 휃𝑚,𝑎(𝑇)))
2
]   (38) 

The gradient vector  ∇θ of the loss function is obtained by 

differentiating Eq. (39) with respect to weight, given as 

∇m,θ 𝐿 (휃𝑚,𝑎(𝑇)) = (�̃�𝑚(𝑇) + 𝛾 max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄 (𝑠𝑚(𝑇 + 1), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇 −

1) − 𝑄 (𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)))∇m,θ𝑄(�̃�𝑚(𝑇), �̃�𝑚(𝑇); 휃𝑚,𝑎(𝑇))         (39) 

The network weight 휃 𝑚,𝑎+1(𝑇) is updated according to a 

stochastic Gradient descent method with learning rate 𝛼𝜖 {0,1}, 
as follows: 
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휃𝑚,𝑎+1(𝑇) = 휃𝑚,𝑎(𝑇) + 𝛼∇m,θ𝐿(휃𝑚,𝑎)    (40) 

Algorithm 1 DRN- LSTM based offloading rate control Algorithm  

1. Initialize  𝔇𝑚 and 𝜙𝑚,𝐴 with random weights 휃𝑚,𝑎 . 

2. Assign maximum number of training episode 𝐸𝑝𝑠 = 𝐸𝑝𝑠
𝑚𝑎𝑥  . 

3. initialize and observe the environment to get initial state 𝑆𝑚(𝑇)= 

(𝛾𝑚(𝑇), 𝑏𝑚(𝑇), 𝑐𝑚
𝑔 (𝑇), 𝑐𝑚

𝑏 (𝑇), 𝑒𝑚(𝑇))  

4. For 𝑇 = 1,2… ..  do  

5. If  𝑟𝑎𝑛𝑑𝑜𝑚 () ≤  𝜖 
Randomly select an action  

 𝑎𝑚(𝑇) = (𝐷𝑚
𝑙 (𝑇), 𝐷𝑚

𝑜 (𝑇)) ∈ 𝐴(𝑇). 

6. Else 

a. Form the experience 𝑒𝑚,𝑟,𝑇(𝑇) = (𝑠𝑚(𝑇 − 1)… 𝑠𝑚(𝑇)) 
b. Set 𝑆𝑚(𝑇) as input to LSTM network 

c. For each action 𝑎𝑚(𝑇) ∈ 𝐴(𝑇) evaluate the output of 

LSTM to obtain 𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇); 휃𝑚,𝑎(𝑇)) using 𝜙𝑚,𝐴 

with random weights 휃𝑚,𝑎. 

d. Select an action such that 𝑎𝑚𝑎𝑥(𝑇) =
arg max
𝑎𝑚(𝑇)∈𝐴(𝑇)

(𝑄(𝑠𝑚(𝑇), 𝑎𝑚(𝑇))                       

7. End if 
8. Take an action 𝑎𝑚𝑎𝑥(𝑇) to switch new state (𝑠𝑚(𝑇 + 1)) 
9. Evaluate 𝑒𝑚(𝑇), 𝐿𝑚(𝑇) and task drop loss  
10. calculate 𝑈𝑚(𝑇) using Eq.(12) 
11. Evaluate 𝑟𝑚(𝑇) using Eq.(24) 
12. Formulate the experience tuple from transition 

(𝑠𝑚(𝑇), 𝑎𝑚(𝑇), 𝑟𝑚(𝑇), 𝑠𝑚(𝑇 + 1)) and store into memory data set 

𝔇𝑚, 
13. For  𝐸𝑝𝑠 = 1,2, 3… . . 𝐸𝑝𝑠

𝑚𝑎𝑥 do  

a. Select randomly from mini-batch 
�̃�𝑚,𝑟(𝑇) = (�̃�𝑚(𝑇), �̃�𝑚(𝑇), �̃�𝑚(𝑇), �̂�𝑚(𝑇 + 1)) 

b. Calculate target Q-value  𝑦𝑚(𝑇) using Eq. (37)    
14. End For 
15. Evaluate Loss function by using Eq.(38) 
16. Update the network parameter  휃𝑚,𝑎(𝑇) by performing stochastic 

Gradient descent optimization using Eq. (39) & Eq. (40).  

17. End For 
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Fig.4: Scientific workflow of the DECENT algorithm 

V. PERFORMANCE EVALUATION AND RESULT ANALYSIS 

A. Analysis of DECENT 

In this section, two major analyses are used to validate the 

effectiveness of the proposed algorithm: (1) convergence 

property, and (2) computational complexity.  

1. Convergence Property 

The convergence of the DECENT algorithm depends upon two 

conditions: (1) the DECENT network overcomes the vanishing 

or exploding gradient; i.e., it controls the variation of gradient 

values too large or small exponentially in each time slot; (2) it 

stabilizes the training process with close to zero training error 

using (mini-batch) stochastic gradient descent. Both conditions 

hold in polynomial time under mild assumption and the 

convergence holds the condition as follows 

𝑓(휃(𝑡)) ≤  휀 for all 𝑡 ∈ [1,2, 3… . . 𝑇]   (41) 
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Above the inequality state that, when training, loss of the 

DECENT drops to 휀 during time instant 𝑡 with linear 

convergence speed, the algorithm converges to optimal policy. 

The proof of the convergence property for the proposed 

algorithm is similar to the convergence of training RNN [33]. 

2. Computational Complexity 

Time complexity of the DECENT mainly depends upon the 

weight 𝜓 of each LSTM unit cell state. Each LSTM unit (cell) 

has four connections used to evaluate output: forget gate, input 

gate, cell gate and output gate that control the flow of 

information shown in fig 3. Each component is associated with 

the previous cell state input plus the current time slot input. 

Therefore, if there are 𝑁𝑇  number of units in the LSTM layer 

in the current time slot and 𝑁𝑇−1number of units in the previous 

layer, then the total number of inputs to each component 

is 𝑁𝑇 + 𝑁𝑇−1. As, there are four connections in each unit, then 

there is total 4(𝑁𝑇 +𝑁𝑇−1) weights associated with each unit. 

Since there are 𝑁𝑇 units in one LSTM layer, so there is,  

4𝑁𝑇(𝑁𝑇 + 𝑁𝑇−1) weight associated with LSTM layer. The 

weights associated with   output component is 𝑁𝑇 ∗ 𝑁𝑜 , where 

𝑁𝑜 is the total number of output. The weights associated with 

forget gate, input gate and cell weight components of each layer 

is 𝑁𝑇 ∗ 3. If there are H numbers of hidden layers, so total 

weights are given as   

 𝜓 = 𝐻 ∗ (4𝑁𝑇(𝑁𝑇 + 𝑁𝑇−1) + 𝑁𝑇 ∗ 3) + 𝑁𝑇 ∗ 𝑁𝑜 (42) 

The computational complexity of DECENT learning model 

per weight and time slot using stochastic gradient optimization 

technique is 𝑂(1). Thus, the overall complexity of the proposed 

DECENT algorithm is 𝑂(𝜓).   

B. Simulation And Discussion 

In this section, we evaluate the performance of the 

proposed LSTM based DECENT algorithm for the optimal 

selection of a data offloading rate in EH MEC-based IoT 

network with respect to different LSTM parameters and state-

of-art algorithms.  

1. Simulation Environment 

The simulation of proposed DECENT algorithm to 

optimize the policy for data offloading is implemented using 

Python 3.7 and Tensorflow 1.2.1 framework. For data 

preprocessing and management Numpy, pandas and scikit-

learn libraries of Python is used such as sklearn.preprocessing 

import LabelEncoder,  sklearn.utils import  shuffle and 

sklearn.model_selection import train_test_split (for training 

and testing of samples). Whereas tensforflow.contrib import 

RNN is being used for creating deep RNN LSTM network 

along with primary functions: 1) RNN (input, weights, biases) 

- responsible for creating and training of the LSTM network, 

2) RNN.BasicLSTMCell(n_hidden)- for creating single layer 

LSTM with n_hidden cells 3) squaredelta()- to evaluate the 

loss 4) GradientDescentOptimizer(learning_rate)- to optimize 

and update the loss and network weight parameter 

respectively 5) tf.global_variables_initializer()- to initialize 

and process all the variables. We trained the proposed 

algorithm with size of experience replay memory buffer, 

training mini-batch 1024, 128 samples. And the training 

interval (number of iterations at which LSTM network is 

refreshed) be 10. The LSTM network consists of 𝑛 = 128 
hidden cells and 𝑡𝑎𝑛ℎ activation function for the output.  

Table 1. Simulation Parameters 

Parameter Value Parameter Value 
𝑝𝑚,𝑘(𝑇) (0.5, 15) 𝑑𝐵𝑚 𝛿2  −30 𝑑𝐵𝑚 

𝑐𝑚,𝑘
𝑔 (𝑇)   150 𝑘𝑏/𝑠 𝜕 0.3 

𝑇 1000 𝑠𝑙𝑜𝑡 𝜈 0.1 𝑠𝑒𝑐/𝑏𝑖𝑡 

ɷ 0.75 𝜗 0.2𝑠𝑒𝑐 

𝑓𝑙 2 GHz/sec 𝜑 0.1 

𝐵 10 MHz 𝑏𝑚𝑎𝑥 8  𝐽 
Ĉ 0.06 ζ 1000𝑐𝑦𝑐𝑙𝑒/𝑏𝑖𝑡 
𝛾 0.92 𝐸𝑚,𝑘  (0.5, 6)𝐽 
𝜖 0.25 휂 0.4 

We consider a network area of 100 × 100 𝑚2, where 60 

EH-IoT nodes are randomly deployed. For distribution of IoT 

nodes and creating the network MATLAB R2017a function 

NetArch(length, width, MEC-location, initial energy) and 

NodeArch(NetArch, number of nodes) are used respectively. 

For energy consumption of IoT nodes first order radio [2] is 

used with initial energy of 2 𝐽 for all IoT nodes. The MEC 

server has computation capacity of 10GHz/sec. The 

transmission power [𝑝𝑚,𝑘(𝑇) ∈ (0.5, 15) 𝑑𝐵𝑚 ]of an IoT node 

crucial parameter and depends upon amount of data being 

offloaded to MEC server and quantity of energy harvested in 

the previous time slot. The bandwidth 𝐵 of the channel is 10 

MHZ for smooth transmission for data. The parameters related 

to CPU of an IoT node such as frequency 𝑓𝑙 = 2 GHz/sec, 
computation latency 𝜈 = 0.1 𝑠𝑒𝑐/𝑏𝑖𝑡 and number of cycle 

required to compute one bit ζ = 1000𝑐𝑦𝑐𝑙𝑒/𝑏𝑖𝑡 is fixed. And 

finally the critical parameters of LSTM RNN network such as 

discount factor 𝛾 = 0.92 for getting higher long-term 

discounted reward corresponds to future value, learning 

parameter 휂 = 0.4 to achieve optimal policy quickly. These 

simulation parameters along with others are listed in the Table 

1. The time-varying channel gain ℎ𝑚,𝑘(𝑇)of an IoT device 

follow the Rayleigh fading model,  ℎ𝑚,𝑘(𝑇) =  ℎ𝑚,𝑘  𝛤𝑚,𝑘(𝑡) 

where, 𝛤𝑚,𝑘 denotes the independent random channel fading 

with unit mean [35]. The MATLAB Simulink Super-resolution 

Model is used for the implementation of EH technique [36] and 

for generating dynamic channel gain values while satisfying 

channel statistical properties, MATLAB function 

ANDIFFSR(s, delta_est, phi_est, factor) is used [37].  

2. Result Analysis 

This section analyzes the convergence rate of DECENT 

algorithm in terms of utility over critical LSTM parameters. 

Further, performance test is performed between DECENT and 

over state-of-art algorithms for the comparative analysis of 

energy consumption, computation time, task drop rate and 

utility of EH MEC-based IoT network.      

1) Convergence Performance Over Different Parameter 

In the fig. 5(a-d), impact of different LSTM unit parameters for 

different values on the convergence of the proposed DECENT 

algorithm in terms of average utility are shown with LR (휂)=0.4. 

Fig. 5(a) shows that small size of memory size-experience 

replay buffer (MS =128) causes larger variation in the 

convergence of average utility, while after increasing the MS to 
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2048, it requires both more training data and time to converge 

to an optimal value close to unity. Thus, for further simulation 

MS=1024 is selected that converges to an optimal value in less 

time. Furthermore, random data from the MS of 1024 is 

selected and formed mini-batch samples for the training 

procedure.  

 

 

 

 
Fig. 5 Average utility over (a) Memory size (b) Mini batch size (c) Training 

interval (d) learning rate 

Fig. 5(b) shows that a small mini-batch size (MBS=32) is 

not suitable for storing all the training data, so the convergence 

time of the proposed algorithm is fast but failed to reach the 

optimal value. When using a larger MBS (=512), frequently 

consider old data for the training procedure, which forces the 

algorithm to take a long time to learn the optimal policy for 

convergence. Thus, utility of the system degrades. Whereas on 

setting MBS=128, the utility of the system reaches optimal 

value quickly, because of DECENT consider proper mix of old 

and recent data for training procedure. We set MBS size to 128 

for the further simulations. 

Fig. 5(c) shows that for a small value of training interval 

(TI=5), the proposed algorithm converges very fast, which 

means it learns the optimal policy by updating frequently, while 

a larger TI (>25) showed poor performance regarding 

convergence property because the policy is not updated 

properly. Thus, the results indicate unnecessary updation of the 

policy for lower values of TI while higher values of TI update 

the policy rarely. Therefore, we set the TI =10 for the upcoming 

simulation results. In the Fig. 5(d), we investigated the impact 

of learning rate (LR) in the weight updation of Gradient descent 

optimizer using Eq. (40). The LR (휂) is responsible for mapping 

inputs to outputs in the training dataset of the model or simply 

controls the rate of loss during updation of weight for each 

batch training sample. It is observed from the result that either 

too small of a value of 휂 ≤ 0.05 or a higher value 휂 ≥ 0.8 
results in the proposed algorithm being stuck into local optimal 

(stuck with high training error) and never reaches the global 

optimal value; consequently, network performance degrades. 

While setting up  휂 = 0.4, the proposed algorithm learns the 

optimal policy faster and converges in less time. This is because 

DECENT uses a memory cell to map the input to output values, 

and weights are updated using a stochastic gradient method, 

which avoids the numerical overflow (explode) of weight. 

Thus, for the next experiment set, learning rate 휂 = 0.4 is set 

that helps in producing the set of global optimal weights.  

2) Convergence Performance Over Number of Time Slots  

It is observed from Fig. 6(a-c) that the proposed algorithm 

DECENT achieves the optimal offloading rate pertaining to 

maximize the average utility of the network after convergence 

with setting up parameters 𝛾 = 0.92 and 휂 = 0.4 within 1000 
time slots. Particularly, fig. 6(a) shows that energy consumption 

of DECENT decreases as the time slot increases till 𝑇 = 175 
and become stable with consumption of 3J energy that validates 

the convergence property. However, DQL and QL converge the 

energy consumption after time slot T= 420 and 495, 

respectively. In addition to these, Fig. 6(b-c) show that the 

computation latency and task drop rate for DECENT, DQL, and 

QL also decreases until T = 175, 420, 495, respectively, and 

converges after further increase in the time slot. The proposed 

algorithm uses the EH technique and computation task 

partition, which enables IoT nodes to use the energy in 

operation and the offloading task to MEC in an efficient 

manner. 

The network utility of the EH MEC based IoT network depends 

upon energy consumption, computation latency, and task drop 

rate, as given in Eq. (11). Combining all the results obtained 

from fig. 6 (a-c), the average network utility is evaluated and is 

(a) 

(d) 

(c) 

(b) 



11 
 

shown in fig. 6(d) with respect to the time slot. As the time slot 

increases, the utility of the proposed algorithm increases rapidly 

and saturates within time slot 175. The utility of DQL and QL 

takes 245 and 320 more timeslots to converge as compared to 

DECENT. The proposed algorithm outperformed the DQL and 

QL offloading algorithms in terms of average utility after 𝑇 =

 175 by 19.25% and 32%, respectively.  

 

 
 

 

 

Fig. 6 Convergence performance (a) Energy consumption (a) Computation 

latency (c) Task drop rate (d) Average Utility 

Fig. 6(a-c) reveals that the improved utility performance of 

DECENT is achieved by reducing the energy consumption by 

22.34%, 36.23%, shortening the computation latency by 

19.18%, 33.45%, and lowering the task drop rate by 52%, 72 % 

with respect to DQL and QL, respectively. The reason behind 

is twofold: (i) the DECENT uses LSTM network wherein each 

memory cell stores only relevant previous state information 

such as energy consumption, task drop rate, computation 

latency during and local processing to estimate the next state 

offloading rate in an efficient manner; (ii) LSTM unit 

compresses the large state space using fully connected layer and 

𝑡𝑎𝑛ℎ activation function improves the learning performance, as 

a result proposed algorithm convergences faster than state-of-

art techniques. Whereas,  DQL stores all the previous state 

information and takes much time to evaluate the next state 

output, as searching for all possible neural network combination 

is required. Although, QL based algorithm suffers from the 

curse of dimensionality between large input-output data during 

the transition of state. This can be attribute to slow learning rate 

which causes convergence of QL based algorithm took many 

time slots. In addition, fig. 5(a-c) also reveals that the random 

algorithm lags significantly behind DECENT by 68%, 76%, 

and 83% in energy consumption, computation latency, and task 

drop ratio, respectively. This is due to the fact that random 

algorithm randomly selects any offloading rate for data 

offloading.  

3) System Performance Over Size of Computation Task  

Fig. 7(a-c) shows that energy consumption, computation 

latency, and task drop for the state-of-the-art algorithms is a 

monotonically increasing function of computation task 

offloaded to the MEC server by EH-IoT nodes. This is because 

of more computation task offloaded on the MEC server 

consumes more energy and time. Higher amount of data 

requires more energy to transfer the bits of information to MEC 

server according to first order radio model energy consumption 

formula [2]. In addition, it also increases the task drop ratio. 

Fig. 7(a) shows that, as the computation task size varies from 

80 kb to 130 kb, the energy consumption of the presented 

algorithm increased by 62 %. With further increases in the 

computation task, variation in energy consumption is not visible 

at all i.e., converged. However, in DQL and QL, energy 

consumption increases at a much higher rate by 71 % and 77%, 

respectively, up to 140 kb. This is because the presented 

algorithm selects an optimal offloading rate and harvested 

energy efficiently. Thus, the proposed algorithm outperformed 

the DQL and QL by reducing energy consumption by 13 % 

and 15 %, respectively.  

In addition, Fig. 7(b) shows that computation latency of all 

algorithms increases rapidly; only DECENT and DQL managed 

to converge over 140 kb of computation size, whereas other 

algorithms failed to control the increasing rate of computation 

latency. The reason for this is that DECENT uses cell memory 

to learn optimal policy (offloading rate) from long-term 

dependencies provided by offloading experiences faster than 

other algorithms. Moreover, Fig. 7(c) shows that the task drop 

rate of the proposed algorithm also increases as the computation 

task increases up to 130 kb; furthermore, in the computation 

task (130-160kb), only 9 % of total computation task dropped 

with a constant rate. However, in the DQL task, the drop rate is 

(a) 

(c) 

(b) 

(d) 
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higher than DECENT and it is about 13 % in the range of 130-

160 kb size of the computation task.  

 
Fig. 7 (a). Energy consumption over computation task 

 
Fig. 7 (b). Computation latency over computation task 

 
Fig. 7 (c). Task drop rate over computation task 

 
Fig. 7 (d). Average Utility over computation task 

Overall, the proposed algorithm reduced the task drop rate 

as compared to DQL and QL by 37 % and 68%, respectively. 

The random algorithm showed the worst performance among 

others and it could not converge as the computation size 

increased. Overall, DECENT beats all the considered state-of-

the-art algorithms, such as DQL and QL, by the lower energy 

consumption of 22.23%, 43.3%, shorter computation latency of 

17.25%, 35.4%, and significantly lower task drop ratio of 

87.2%, with a computation size of 130kb. The reason for this is 

that the proposed algorithm efficiently divides the computation 

task and learns the optimal policy faster to decide the data 

offloading rate to the MEC server and local computation rate 

for local execution. Also, DECENT does not account for 

offloading all the generated data instantly. It stores some of the 

generated data in a buffer and a fraction of data is offloaded to 

the MEC server; by doing so, latency and the task drop ratio 

decrease. 

The results in the fig.7(d) shows that with the increase in 

computation task, average utility of the network of the proposed 

algorithm increases rapidly and stable at 140kb other than state-

of-art-algorithms. This observation affirms that the energy 

consumption, computation latency and task drop rate of 

DECENT is less than other state-of-algorithms and validates 

the equation (11). It can be also observed that average utility of 

the proposed algorithm reached about 0.91. This is because the 

proposed algorithm uses 𝑡𝑎𝑛ℎ activation function and 

experiences replay memory (reduces the state space) to improve 

the learning rate rather than  𝜖 − greedy policy used in QL to 

select an action. The network utility of random selection 

schemes shows much lower increment in utility, as the 

computation task increases because of random selection policy; 

i.e., take any random offloading rate for data offloading, 

although it is not possible by the random algorithm to control 

the variation of the energy consumption, computation latency, 

and task drop rate.  

4) Normalized Computation Rate and Training Loss vs. Time 

Slots 

 
Fig.8. Normalized computation rate and Training loss over time slot 

The MEC server forms a cluster with randomly selected 

EH-IoT node and itself as cluster head. Here, we define 

normalized (average) computation rate �̅� (state-action ∈ [0,1]) 
or utility for proposed DECENT algorithm as follows: 

�̅�(𝑠𝑚(𝑇), 𝑎𝑚(𝑇)) =  
𝑄𝜋∗(𝑠(𝑇),𝑎(𝑇))

max
𝑎(𝑇)𝜖𝐴(𝑇)

𝑄𝜋∗(𝑠(𝑇),𝑎(𝑇))
       (41) 

It is observed from the fig 8, for the first 175 time slots, the 

 �̅� increases rapidly because of the LSTM network in the 

training phase shown in left side of vertical y-axis. After that, 

with an increase in times slot, the variation in the curve reduces 

and converges to 0.98 and the variance is close to zero. 

Whereas, right vertical y-axis shows that the training 

loss 𝐿 (휃𝑚,𝑎(𝑇)) is much higher for the first time slots. Further, 
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with an increase in the time slot, LSTM is able to train its 

network (update the experience replay memory) and training 

loss 𝐿 (휃𝑚,𝑎(𝑇)) that gradually decreases and stabilizes at 

approximately 0.02 in time slot 320. This shows that DECENT 

quickly minimizes its loss and converges to the optimal 

computation rate. This is because of mini-batch memory that 

consists of only relevant experiences from the input gate; 

irrelevant experiences are ignored by forget gate. Finally, the 

output gate only stores the experience based upon the 𝑡𝑎𝑛ℎ 
function gate. Therefore, the size of mini-batch is also 

efficiently utilized and searching of previous computation rate 

is accelerated, which minimizes the training loss and helps to 

converge the algorithm faster. 

VI. CONCLUSIONS AND FUTURE SCOPE 

This paper presented deep learning LSTM-RNN based 

framework for EH IoT nodes to choose the optimal offloading 

rate and the local processing rate in MEC networks with only 

local causal knowledge of time-varying EH and channel states. 

The main objective of the work is to learn the optimal policy in 

order to maximize the long-term expected overall network 

utility by decreasing energy consumption, computation latency, 

and task drop rate in each time slot. An efficient algorithm, 

DECENT, is proposed that uses the past offloading experiences 

to improve the selection of the next action using a memory cell 

of LSTM units. The memory cells are able to compress the large 

state and action space in the learning process, which ultimately 

avoids the curse of dimensionality problem and makes the 

proposed algorithm to be computable in polynomial time. 

Furthermore, the proposed algorithm uses a stochastic gradient 

descent method as a parameterized policy to update the network 

parameter and generate optimal actions. It avoids the vanishing 

or exploding gradient value and minimizes the loss subject to 

the convergence of the presented algorithm. Simulation results 

shows that DECENT generates the optimal policy and improves 

the network utility by 23% and 43% as compared to benchmark 

DQL and QL algorithms, respectively. In the future, we will 

extend the DECENT offloading framework to MEC-cloud’s 

server architecture. In addition, cooperation between the MEC 

server and a cloud server with transmission power selection to 

EH-IoT node will also be considered.  
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