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Abstract. Offline reinforcement learning (RL) aims to train an agent solely using
a dataset of historical interactions with the environments without any further
costly or dangerous active exploration. Model-based RL (MbRL) usually achieves
promising performance in offline RL due to its high sample-efficiency and compact
modeling of a dynamic environment. However, it may suffer from the bias and error
accumulation of the model predictions. Existing methods address this problem by
adding a penalty term to the model reward but require careful hand-tuning of the
penalty and its weight. Instead in this paper, we formulate the model-based offline
RL as a bi-objective optimization where the first objective aims to maximize the
model return and the second objective is adaptive to the learning dynamics of the
RL policy. Thereby, we do not need to tune the penalty and its weight but can
achieve a more advantageous trade-off between the final model return and model’s
uncertainty. We develop an efficient and adaptive policy optimization algorithm
equipped with evolution strategy to solve the bi-objective optimization, named as
BiES. The experimental results on a D4RL benchmark show that our approach sets
the new state of the art and significantly outperforms existing offline RL methods
on long-horizon tasks.

Keywords: Offline reinforcement learning · Multi-objective optimization · Evo-
lution strategy.

1 Introduction

Reinforcement learning (RL) encounters many obstacles when deploying an agent to
real-world tasks, e.g., autonomous driving [22], robot control [21], and healthcare [27],
due to costly online trial-and-error. Fortunately, it is available for these tasks to pre-
collect large and diverse datasets. Hence, the research on learning high-quality policies
from static datasets has promoted the development of offline RL [15].

Since the entire learning process is carried out in a static dataset D, offline RL faces
several challenging problems. (1) RL agents cannot explore environments: If D does not
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comprise highly rewarding demonstrations, the RL algorithms might be unable to learn a
satisfying policy. Hence, the static dataset should be as large and diverse as possible [8].
(2) Another fundamental challenge is the distribution shift: The RL algorithms train a
candidate policy on the distribution of data different from the distribution visited by the
behavior (data collection) policy, which yields function approximation errors and results
in poor performance. Several techniques have been proposed in response to the problem,
such as behavior policy regularization [9] and Q-network ensembles [14]. These works
in offline RL mainly focus on model-free methods. However, the recent work by [28]
finds that even a vanilla model-based RL (MbRL) method can outperform model-free
ones in the offline setting.

Model-based RL commonly learns an approximated dynamics model of a real
Markov decision process (MDP), according to previously collected data. This paradigm
benefits from powerful supervised learning techniques, allowing the learning process to
leverage large-scale datasets. Moreover, once the MDP model is learned, we can employ
it to generate trajectories resulting from applying a sequence of actions. As a result,
MbRL algorithms have higher sample-efficiency than model-free ones. Despite these
benefits, MbRL may suffer from the effect of the distribution shift issue [5] when using
offline datasets. In particular, since offline datasets are unlikely to traverse all state-action
pairs, the learned MDP model may not be globally accurate. Policy optimization using
the model without any precautions against model inaccuracy can lead to the model
exploitation issue [11], resulting in poor performance. For instance, the policy is likely
to visit risky states where the model erroneously predicts successor states that yield
higher rewards than the correct successor states obtained from the corresponding real
MDP environment. One commonly-used way [28] of solving the issue is to incorporate
uncertainty quantification into the model reward: r̃ = r̂ − λu(s, a), which provides the
agent with a penalty for visiting risky states.

Fig. 1: A proof-of-concept experiment on two
offline RL tasks from the D4RL bench-
mark [8]. We evaluate a SoTA offline MbRL
algorithm named MOPO. The results show that
it cannot achieve a higher true return than the
behavior policy when using long-horizon model
rollouts.

However, it can be difficult to de-
sign a proper penalty term for compli-
cated constraints [26]. In particular, The
effort required to tune the reward penalty
to a given offline RL task or repeatedly
calculate it during optimization might
negate any gains in the eventual model
return. Conversely, in the case of a defi-
cient penalty, a much larger region will
be searched in a potentially risky pol-
icy space, resulting in an extra cost of
time and unstable performance. On the
other hand, recent works [11,28,13] have
adopted existing RL algorithms, such as
SAC [10] or NPG [19] to optimize a pol-
icy under a learned MDP model. In general, these algorithms are sample efficient due to
learning the policy from every time step of an episode. However, in the offline model-
based setting, such a learning process may damage the performance of those algorithms
since model errors rapidly accumulate with the increase of the time steps, especially
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when the length of the episode is long [5]. As a proof-of-concept experiment in Figure 1,
we evaluate a state-of-the-art offline MbRL algorithm named MOPO [28]. Even though
MOPO applies a well-designed reward function, the results show that it cannot achieve
a higher true return than the behavior policy when using long-horizon model rollouts.
This finding corroborates the combination of the uncertainty penalty and RL algorithms
potentially not being a panacea to the model-based offline RL tasks, which motivates two
effective improvements to existing approaches in this paper. Our contributions include
the following:

(1) We propose a bi-objective policy optimization algorithm where the first objective
aims to maximize the model return, and the second objective synchronously cal-
ibrates the learning bias of the policy. Our method achieves more stable policy
improvement on offline MbRL tasks.

(2) To the best of our knowledge, our approach is the first to adopt evolution strategy
(ES) to model-based offline RL problems and solve the optimization under uncertain
and long-horizon RL tasks. We also theoretically establish an upper bound for the
norm of a BiES-based gradient estimation.

(3) We conduct a large-scale empirical study on offline MuJoCo locomotion tasks from
the D4RL benchmark [8]. The experimental results show that our method attains
state-of-the-art results compared to other offline RL algorithms.

2 Related Work

Model-based Offline RL Although it offers the convenience of working with large-scale
datasets, the MbRL algorithm still suffers from the effects of the distribution shift, espe-
cially in the model exploitation problem [15]. Prior works in MbRL algorithms explored
methods to solve this problem, such as Dyna-style algorithms [23,11], the leverage of
multiple dynamics models as an ensemble [5,11], an energy-based model regularizer [2],
a game-theoretic MbRL algorithm [19], meta-learning [6], policy constraints [1], and
generative temporal difference learning [12]. In the offline setting, since the learned
model will not be calibrated with additional data collection, it becomes crucial to prevent
the policy from overly exploiting the model. Recent works propose an explicit reward
penalty for this purpose [13,28]. One constructs terminating states based on a hard
threshold, and the other uses a soft reward penalty associated with a user-chosen weight.

Evolution Strategy in RL As a sub-class of the evolutionary algorithm (EA), we have
seen a specific revival in evolution strategy (ES) on account of its surprising scalability
and performance [20]. More particularly, recent works have applied ES to solve high-
dimensional RL problems, resulting in the achievement of comparable performance to
deep RL algorithms while cutting down the training time [20,17]. However, these works
primarily focus on model-free tasks [4]. In the EA community, the works similar to
our approach are model-based EA [3] and surrogate model-assisted EA [16], but these
methods are exploited mainly in one-step black-box optimization problems rather than
sequential RL tasks. Prior works showed that ES might be a more suitable choice for
optimization under uncertain and long-horizon RL tasks because it learns from the result
of the whole rollouts [20,17].
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3 Preliminaries

We now describe the background related to our approach, including a baseline for offline
MbRL tasks and the basic concepts of evolution strategy.

3.1 Model-based Offline Policy Optimization

A Markov Decision Process (MDP) is defined asM = {S,A, r, p, ρ0}, where S is the
state space; A is the action space; r defines the reward function S × A → R; p is the
transition distribution p(st+1|st, at); and ρ0 is the probability distribution of the initial
state s0. The policy π(at|st) serves as a mapping from the state space to the distribution
of actions. For general RL algorithms, their goal is to search for a policy that maximizes
the expected return in Equation (1):

max
π

Jρ0(π,M) = max
π

Es0∼ρ0,π

[
H−1∑
t=0

r (st, at)

]
. (1)

In the model-based offline setting, an approximate MDP model M̂ = {Ŝ, A, r̂, p̂, ρ0}
is learned from a static dataset D = {(sit, ait, sit+1, r

i
t)}, then M̂ is utilized to search for

a policy that maximizes the expected return in the model. The transition distribution p̂
and the reward function r̂ can also be learned from D. Since errors accumulate rapidly
when M̂ makes predictions based on its own previous outputs, offline MbRL algorithms
may struggle with unstable policy learning. [11] proved that it is crucial to provide a
policy with a penalty for visiting the states where the model is likely to be inaccurate.
[28] suggested a practical implementation of the reward penalty, i.e., r̃ = r̂− λu(ŝt, at),
in which r̂ is the model reward. The penalty coefficient λ serves as a hyperparameter
chosen for different tasks, and u(ŝt, at) denotes the estimation of the model uncertainty
at the state-action tuple (ŝt, at). As such, the objective function is given as below:

max
π

J̃ρ0(π,M̂) = max
π

Es0∼ρ0,π

[
H−1∑
t=0

(r̂t − λu)

]
. (2)

3.2 Evolution Strategy

It is challenging to compute accurate gradients for black-box or noisy optimization
problems. Hence, as a derivative-free optimization approach, evolution strategy (ES) has
seen a recent revival in the RL community. Instead of optimizing an objective function
F (x) directly, ES optimizes the Gaussian smoothing of F : Fσ(x) = Eε∼N (0,I)[F (x+
σε)], where σ plays the role of a smoothing parameter. For σ > 0, the function Fσ(x) is
consistently differentiable, and its gradient is given by ∇Fσ(x) = (2π)−d/2

∫
Rd F (x+

σε)e−
1
2‖ε‖

2
2εdε. Although the gradient is intractable, it can be estimated by a standard

Monte Carlo method: ∇̂s
NFσ(x) = 1

Nσ

∑N
i=1 F (x+ σεi) εi. The estimator is often

revised to achieve unbiased estimation with reduced variance. [17] proposed an antithetic
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Algorithm 1 Bi-objective policy optimization for model-based offline RL

1: input: a S-MDP model with two objectives: the model return J r̂π and model uncertainty Jqπ .
2: Learn S-MDP on a static dataset.
3: Run an adaptive policy optimization algorithm on S-MDP until convergence:

∇θπJρ0 = α∇θπJ r̂ρ0 + (1− α)∇θπJqρ0
Note that α exists theoretically optimal value according to Equation (4).

estimator: ∇̂at
NFσ(x) =

1
2Nσ

∑N
i=1 (F (x+ σεi)− F (x− σεi)) εi, where the gradient

is estimated by the symmetric difference between a perturbation εi ∼ N (0, I) and
its antithetic counterpart −εi. Once the ES gradient is obtained, it can be equipped
with popular SGD algorithms. A simple way of employing ES to optimize RL policy
parameters θ is to set F (θ) = Jρ0(πθ,M) ≈

∑H−1
t=0 r (st, at). Despite its simplicity,

ES achieves competitive performance compared to policy gradient algorithms [4].

4 The Proposed BiES Algorithm

In this section, we first introduce a bi-objective policy optimization framework and
illustrate how our method achieves an adaptive trade-off between the model return
and model uncertainty. Then we propose the bi-objective evolution strategy (BiES), an
efficient and stable policy optimization algorithm, by integrating ES with the framework.

Our framework consists of two steps, as presented in Algorithm 1. First, we propose
a surrogate MDP (S-MDP) model and learn it on a static dataset in a supervised manner.
Second, based on S-MDP, we develop a provably efficient mechanism to adjust weights
between two objectives. The first objective aims to maximize the model return, and the
second objective synchronously calibrates the learning bias of the policy. As a result,
our approach achieves more stable policy optimization via an adaptive trade-off. More
specifically, we construct the S-MDP model M̂ = {Ŝ, A, r̂, q, p̂, ρ0} by adding q(ŝ, a),
a guided objective for model uncertainty. We model S-MDP using a bootstrap ensemble
of Gaussian dynamics models {P̂1

φ, . . . , P̂Nφ }, in which each model of the ensemble is
a multi-layer neural network parametrized by φ. It predicts the mean µ and covariance
Σ of a Gaussian distribution over the next state and reward, P̂iφ(ŝit+1, r̂

i|ŝt, at) :=

N (µiφ(ŝt, at), Σ
i
φ(ŝt, at)). We compute the mean of the rewards predicted by ensemble

models as r̂, and the minus ensemble difference −maxi,j(‖µiφ(ŝt, at)− µ
j
φ(ŝt, at)‖2)

as q. Therefore, a bi-objective policy optimization problem can be formulated as:

max
π
Jρ0(π,M̂) = max

π
(J r̂ρ0(π,M̂), Jqρ0(π,M̂)),

J r̂ρ0(s,M̂) = Es0∼ρ0,π

[
H−1∑
t=0

r̂ (ŝt, at)

]
,

Jqρ0(s,M̂) = Es0∼ρ0,π

[
H−1∑
t=0

q (ŝt, at)

]
. (3)

Next, we discuss a special gradient ascent algorithm for solving the bi-objective opti-
mization problem. For example, a general multi-objective optimization problem can
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be formulated as: maxx∈Rd f(x) = maxx∈Rd(f1(x), f2(x), ..., fm(x)), where x is a
parameter vector; d represents the number of parameters; f(x) is a multi-objective
function involving the m sub-objectives fi=1,...,m. When we utilize gradient-based
methods to solve the problem, the gradient of f(x) is given as follows: ∇xf(x) =∑m
i=1 αi∇xfi(x), s.t.

∑m
i=1 αi = 1, αi ≥ 0, where we achieve adaptive trade-offs be-

tween two even more objectives by automatically tuning the weight α. [7] extended the
vanilla gradient descent algorithm to multi-objective optimization. His work provides a
general method to calculate “optimal” αi at each gradient update. He proved that the
weight α is the optimal solution of a quadratic optimization problem. In the case of a
common bi-objective optimization problem, an analytical solution exists as below:

min
α∈[0,1]

‖α∇xf1(x) + (1− α)∇xf2(x)‖2

α =
(∇xf2(x)−∇xf1(x))T∇xf2(x)
‖∇xf1(x)−∇xf2(x)‖2

(4)

Now moving back to Equation (3), if we obtain the gradients of J r̂ and Jq, the our
proposed optimization problem can be solved by a simple gradient method.

θπt+1 = θπt + γ∇θπJρ0 , (5)

∇θπJρ0 = α∇θπJ r̂ρ0 + (1− α)∇θπJqρ0 , (6)

α =

(
∇θπJqρ0 −∇θπJ

r̂
ρ0

)T∇θπJqρ0∥∥∇θπJ r̂ρ0 −∇θπJqρ0∥∥2 . (7)

The two sub-objectives J r̂ and Jq are both uncertain and noisy functions. With that
in mind, ES might be a better choice. We use the antithetic ES estimator to compute
their gradients, as listed in Algorithm 2. For better performance, we propose several
key improvements. First, any bi-objective optimization algorithm is likely to be stuck
prematurely at a bad Pareto stationary point [7], causing no gain in the eventual policy
quality. To solve this issue, BiES adopts behavior cloning initialization, which provides
a relatively stable policy π0 as the initial solution by end-to-end behavior cloning. We
can intuitively understand that the method works as a regularization of distributional
shift. At the initial stage of policy optimization, behavior cloning constrains the policy
to the support of training data. Second, we notice that the states of the high dimensional
complex tasks take the values in a broad range, which may cause the policies only pay
attention to particular features of these states. Therefore, the state normalization can make
the policies more robust for multiple-scale state observations: at = π(diag(Σ)−1/2(ŝt−
µ)). In the offline RL setting, a large-scale dataset is available for the learning algorithms,
which means that we can set µ and Σ to be the mean and covariance of all the states
in the dataset, just like the data normalization in supervised learning. Finally, BiES
adopts an elite selection strategy that sorts noises εk in a descending order according to
max{J r̂(πi,k,+), J r̂(πi,k,−)} and max{Jq(πi,k,+), Jq(πi,k,−)}, respectively. We only
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Algorithm 2 BiES for model-based offline RL
1: hyperparameters: step-size γ, number of noises N , smoothing parameter σ, b elites.
2: inputs: a neural network policy πi parametrized by θi ∈ Rd. θ0 is initialized by end-to-end

behavior cloning, set µ,Σ to be the mean and covariance of all states in the dataset Denv , an
initial states dataset ρ0 ⊂ Denv , and i = 0.

3: train S-MDP M̂ on Denv .
4: while ending condition not satisfied do
5: Sample ε1, ε2, . . . , εN in Rd fromN (0, I).
6: Collect 2N rollouts {(ŝt, at, r̂t, qt)|πi,k,±}H−1

t=0 via M̂, where πi,k,± uses normalized
states as inputs, and initial state s0 ∼ ρ0.
πi,k,± = θi ± σεk, k ∈K = {1, 2, ..., N}.

7: Compute objective functions by:
J r̂ ≈

∑H−1
t=0 r̂t,Jq ≈ 1

H

∑H−1
t=0 qt

8: Sort the noises εk for m = r̂, q:
Km = sort(K,max{Jmi,k,+, Jmi,k,−})

9: Compute the ES gradient of Jm for m = r̂, q:
gmi = 1

2bσ

∑
k∈Km[0:b]

(
Jmi,k,+ − Jmi,k,−

)
εk

10: Make the update step:
θi+1 = θi + optimizer-step(gi, γ),
where gi = αgr̂i + (1− α)gqi , α can be computed by Equation (7)

11: i← i+ 1
12: end while

choose the top-b noises for computing the gradients of two objectives. This enhancement
improves the performance of BiES because it reduces the variance of gradient estimation
by using more concentrated Gaussian noises.

It is proved that the optimal convex combination of ∇fi(x∗) is equal to zero when
x∗ is Pareto stationary [7] (see Definition 1). However, we use the ES-based gradient
estimation, which means E(∇̂ESfi(x∗)) = ∇fi(x∗). As such, we need to establish an
upper bound for the norm of BiES-based gradient ∇̂ESf(x∗) when the optimal policy
is Pareto stationary. Considering a general multi-objective optimization problem, the
necessary conditions for a solution to be optimal are the KKT conditions. Thus each
solution that satisfies these conditions is Pareto stationary [18].

Definition 1. Let x∗ be a Pareto stationary solution. Therefore, there exists non-negative
scalars α1, . . . , αm ≥ 0 such that ∇f(x∗) =

∑m
i=1 αi∇fi(x∗) = 0,

∑m
i=1 αi = 1.

Hence, we can define an ascent direction based on the ES gradient ∇̂ESfi(x), i.e.,
∇̂ESf(x) =

∑m
i=1 αi∇̂ESfi(x), s.t.

∑m
i=1 αi = 1, αi ≥ 0. Suppose that we have

∇̂ESfi(x) = ∇fi(x) + εi, then ‖∇̂ESfi(x)−∇fi(x)‖ = ‖εi‖ ≤ ε̃i. We can prove an
upper bound for the norm of ∇̂ESf(x∗).

Theorem 1. If x∗ is a solution satisfying Definition 1, then ‖∇̂ESf(x∗)‖ ≤
∑m
i=1 αiε̃i.

Proof. Since x∗ satisfies Definition 1., we have∇f(x∗) = 0. Consequently,

‖∇̂ESf(x∗)‖ = ‖
m∑
i=1

αiεi‖ ≤
m∑
i=1

αiε̃i.
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5 Experiments

In this section, there are three important questions for conducting our experiments:

Q1 Does BiES outperform other SoTA approaches on modern benchmarks?
Q2 Is our proposed BiES essential? Does a single-objective ES perform well?
Q3 How does each component affect the performance of BiES?

Table 1: Hyper-parameters for BiES
Parameters γ σ N b policy structure

Value 0.02 0.03 30 20 MLP(32,Tanh,32)

Note that we use the same hyper-
parameters for all tasks and random seeds.
In contrast, prior works, like MOPO [28]
and MOReL [13], tune the hyperparame-
ters separately for each benchmark problem. For Q1, we pick several offline RL algo-
rithms as baselines, including the model-based and model-free approaches: Model-based
policy optimization (MBPO) [11], model-based offline policy optimization (MOPO) [28],
behavior regularized actor critic (BRAC) [25], bootstrapping error accumulation reduc-
tion (BEAR) [14], and batch-constrained Q-learning (BCQ) [9]. The detailed experi-
mental results are given in Section 5.2. We do not pick MOReL [13] as the baseline
because the author-provided implementation of MOReL achieves a lower result than
their reported results3. Unlike MOReL, [28] argued that MOPO allows the policy to
take a few risky actions due to using a soft reward penalty, leading to better exploration.
For Q2, we compare BiES with a single-objective ES (denoted by ES w/ p), and its
objective function is given in Equation (2). Moreover, we also evaluate a state-of-the-art
multi-objective optimization approach, COMO-CMA-ES [24]. For Q3, we conduct a
thorough ablation study.

5.1 D4RL Benchmark

D4RL is a standard benchmark for evaluating offline RL algorithms [8]. It provides
a variety of environments, tasks, and corresponding datasets containing samples of
multiple trajectories {(si, ai, ri, Ti)|πbc}, where T is the termination flag. We choose
three MuJoCo environments (halfcheetah, hopper, walker2d) with five dataset types
(random, medium, medium-replay, medium-expert, mixed) as the testbed. Random
contains 1M samples from a random policy. Medium contains 1M samples from a
policy trained to approximately 1/3 of the performance of the expert. Medium-replay
contains the replay buffer of a policy trained up to the performance of the medium agent.
Medium-expert contains a 50-50 split of medium and expert data (2M samples). Mixed
is an aggregate of random, medium, and expert datasets (3M samples).

5.2 Experimental Results

To answer Q1, the experimental results are given in Table 2. BiES obtains the best mean
score over 12 benchmark problems. Among the model-based methods, BiES achieves
SoTA results in six out of the 12 problems. In particular, BiES is the strongest by a
significant margin on the hopper medium and medium-replay datasets. Meanwhile,

3 https://github.com/aravindr93/mjrl/issues/35

https://github.com/aravindr93/mjrl/issues/35
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Table 2: Experimental results for the D4RL benchmark. Each number is the normalized score
= score−random score

expert score−random score × 100 of the policy at the last iteration of training (106 time steps in total),
± standard deviation, k the length of model rollouts, CMA-ES denotes COMO-CMA-ES. We use
the results reported by prior works.

Dataset Environment BiES (Our) MOPO CMA-ES MBPO BEAR BRAC-v BCQ
k=1-1000 k=1-500 k=1-5 k=1-500

halfcheetah 35.7 ± 6.62 24.1 ± 12.3 35.4 ± 2.5 28.2 ± 18.0 2.25 ± 0.01 30.7 25.1 31.2 2.2
random hopper 11.7 ± 1.96 11.9 ± 0.43 11.3 ± 0.52 11.4 ± 0.47 11.6 ± 0.22 4.5 11.4 12.2 10.6

walker2d 8.43 ± 7.49 8.91 ± 6.30 13.6 ± 2.6 4.75 ± 1.74 5.81 ± 0.29 8.6 7.3 1.9 4.9

halfcheetah 43.0 ± 2.63 41.2 ± 1.39 42.3 ± 1.6 2.79 ± 1.07 42.7 ± 0.79 28.3 41.7 46.3 40.7
medium hopper 90.6 ± 11.9 85.7 ± 13.5 28.0 ± 12.4 48.7 ± 11.1 76.3 ± 22.2 4.9 52.1 31.1 54.5

walker2d 21.0 ± 12.0 20.1 ± 15.2 17.8 ± 19.3 -0.13 ± 0.01 42.9 ± 19.5 12.7 59.1 81.1 53.1

halfcheetah 32.1 ± 2.27 30.7 ± 1.96 53.1 ± 2.0 33.6 ± 7.73 32.4 ± 5.97 47.3 38.6 47.7 38.2
med-replay hopper 93.8 ± 2.95 93.1 ± 6.92 67.5 ± 24.7 62.3 ± 26.7 92.1 ± 2.42 49.8 33.7 0.6 33.1

walker2d 25.2 ± 14.4 27.1 ± 17.0 39.0 ± 9.6 17.6 ± 7.11 30.2 ± 9.62 22.2 19.2 0.9 15.0

halfcheetah 38.0 ± 4.30 39.2 ± 2.18 63.3 ± 38.0 0.09 ± 0.51 42.9 ± 1.71 9.7 53.4 41.9 64.7
med-expert hopper 93.5 ± 11.3 92.8 ± 16.6 23.7 ± 6.0 72.8 ± 20.4 61.8 ± 18.0 56.0 96.3 0.8 110.9

walker2d 20.7 ± 18.9 15.1 ± 20.6 44.6 ± 12.9 2.64 ± 4.02 39.6 ± 23.9 7.6 40.1 81.6 57.5

Total Mean 42.8 40.8 36.6 23.7 40.1 23.5 39.8 31.4 40.45

Fig. 2: Ablation study. BiES and ES w/ p learning curves in the hopper environment. E: The real
MDP return. M: The predicted return. A: The prediction accuracy. ES denotes ES w/ p. Our BiES
achieves stable and near-monotonic learning.

COMO-CMA-ES also achieves good results on the walker2d datasets. We hypothesize
that the adaptive mechanism of COMO-CMA-ES rapidly decays the step-size when the
policy reaches a near-optimal solution, preventing inaccurate update directions from
degenerating the learned policy on the walker2d datasets. Such results indicate that
the model-based offline policy optimization can benefit from early stopping. Moreover,
we find that the larger state-action space in the walker2d environments makes it more
difficult to learn a well-generalized model. Fortunately, the recent work shows a powerful
γ-model that learns a more accurate state transition for MbRL [12]. Our BiES can attain
better performance by being combined with stronger models. It should be pointed out
that MOPO utilizes a technique named branched rollout to collect experience replay. A
policy begins a rollout from the state s sampled from a static dataset and executes k steps
under the learned model. Conversely, BiES learns from the result of the whole rollout
(s0, s1, . . . , sk). Although learning from the whole rollout may damage performance due
to accumulated model errors, it will be advantageous in some scenarios where learning
algorithms might not directly access the datasets. In Table 2, we compare the performance
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Table 3: Ablation study. A comparison between
BiES and a single-objective ES. ES w/ p denotes
a vanilla ES algorithm that adopts the reward
penalty in Equation (2) (average of five random
seeds).

Environment Dataset BiES ES w/ p

random 11.5 ± 1.96 12.5 ± 0.63
medium 90.6 ± 11.9 33.9 ± 16.5

hopper med-replay 93.8 ± 2.95 73.0 ± 20.3
med-expert 93.5 ± 11.3 88.2 ± 16.4
mixed 72.5 ± 16.5 47.6 ± 16.9

random 8.43 ± 7.49 -0.17 ± 0.06
medium 21.0 ± 12.0 -0.11 ± 0.01

walker2d med-replay 25.2 ± 14.4 0.21 ± 0.64
med-expert 20.7 ± 18.9 -0.14 ± 0.09
mixed 35.5 ± 22.3 -0.07 ± 0.15

Table 4: Ablation study. The effectiveness of
behavior cloning initialization (average of five
random seeds).

Environment Dataset BiES w/ bc BiES w/o bc

random 35.7 ± 6.62 35.0 ± 5.64
medium 43.0 ± 2.63 6.39 ± 8.86

halfcheetah med-replay 32.1 ± 2.27 28.1 ± 8.62
med-expert 38.0 ± 4.30 11.7 ± 17.0
mixed 42.9 ± 0.72 41.6 ± 7.23

random 11.5 ± 1.96 10.5 ± 0.72
medium 90.6 ± 11.9 22.1 ± 32.8

hopper med-replay 93.8 ± 2.95 70.7 ± 31.1
med-expert 93.5 ± 11.3 92.8 ± 19.7
mixed 72.5 ± 16.5 84.1 ± 17.8

random 8.43 ± 7.49 4.73 ± 1.76
medium 21.0 ± 12.0 12.2 ± 7.78

walker2d med-replay 25.2 ± 14.4 14.7 ± 9.27
med-expert 20.7 ± 18.9 5.49 ± 3.43
mixed 35.5 ± 22.3 6.52 ± 5.81

of BiES and MOPO based on different k steps. When MOPO adopts longer rollouts
(k = 1− 500), it performs worse on the walker2d datasets. To answer Q2, we pick two
complex environments, hopper and walker2d, in which the policy must overcome the
severe model exploitation issue. We compare BiES with a single-objective ES (ES w/ p).
The results are shown in Table 3. It is clear that BiES significantly outperforms ES w/ p.
Figure 2 records the two methods’ learning curves, showing that the superiority of BiES
benefits from a better trade-off between the model return and uncertainty estimation.
Such results confirm the effectiveness of our method again. To answer Q3, we investigate
the impact of behavior cloning initialization (bc) by comparing the performance of two
methods: BiES w/ bc and BiES w/o bc. In Table 4, we observe apparent performance
degradation due to the absence of bc. According to [28], it is more challenging for
model-based algorithms to learn a well-generalized model from the medium datasets due
to the lack of action diversity. However, BiES w/ bc obtains significant improvements
on these datasets, which reflects the importance of bc.

6 Conclusion
This paper proposes a novel approach to address the model exploitation issue in model-
based offline reinforcement learning. In contrast to adding a penalty term and user-chosen
weight, we propose a bi-objective policy optimization framework where the first objec-
tive aims to maximize the model return, and the second one synchronously calibrates the
learning bias of the policy. Then we integrate evolution strategy with the framework and
develop BiES, an adaptive model-based offline policy optimization algorithm. Experi-
mental results show that our approach achieves state-of-the-art performance compared
to other offline RL algorithms.
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