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Secure and Reliable Transfer Learning Framework
for 6G-enabled Internet of Vehicles

Minrui Xu, Dinh Thai Hoang, Jiawen Kang*, Dusit Niyato, Fellow, IEEE, Qiang Yan, Dong In Kim, Fellow, IEEE

Abstract—In the coming 6G era, Internet of Vehicles (IoV)
has been evolving towards 6G-enabled IoV with super-high data
rate, seamless networking coverage, and ubiquitous intelligence
by Artificial Intelligence (AI). Transfer Learning (TL) has
great potential to empower promising 6G-enabled IoV, such as
smart driving assistance, with its outstanding features including
enhancing quality and quantity of training data, speeding up
learning processes and reducing computing demands. Although
TL had been widely adopted in wireless applications (e.g.,
spectrum management and caching), its reliability and security
in 6G-enabled IoV were still not well investigated. For instance,
malicious vehicles in source domains may transfer and share un-
trustworthy models (i.e., knowledge) about connection availability
to target domains, thus adversely affecting the performance
of learning processes. Therefore, it is important to select and
also incentivize trustworthy vehicles to participate in TL. In
this article, we first introduce the integration of TL and 6G-
enbaled IoV and provide TL applications for 6G-enabled IoV. We
then design a secure and reliable transfer learning framework
by using reputation to evaluate the reliability of pre-trained
models and utilizing the consortium blockchain to achieve secure
and efficient decentralized reputation management. Moreover, a
deep learning-based auction scheme for the TL model market
is designed to motivate high-reputation vehicles to participate in
model sharing. Finally, the simulation results demonstrate that
the proposed framework is secure and reliable with well-design
incentives for TL in 6G-enabled IoV.

Index Terms—Transfer learning, 6G, blockchain, learning-
based auction, Internet of Vehicles, incentive mechanism.

I. INTRODUCTION

The unprecedented evolution of wireless communication
technologies, e.g., from 4G to 5G and beyond, has paved the
way for a large number of advanced vehicular network ap-
plications. Particularly, 6G technologies can provide seamless
and ubiquitous communications for vehicles and infrastruc-
tures which are naturally large-scale and mobile ad-hoc [1].
Therefore, there is a strong push for future vehicle networks in
6G to meet stringent reliability and security requirements. 6G
technologies are expected to bring breakthroughs as well as a
comprehensive revolution for 6G-enabled Internet of Vehicles
(IoV) [2]. For example, 6G can provide IoV with super-high
data rates (e.g., up to 1Tb/s), very broad frequency bands (e.g.,
73GHz-140GHz and 1THz-3THz), and less than 1-millisecond
end-to-end latency.

Minrui Xu, Jiawen Kang, Dusit Niyato are with School of Computer
Science and Engineering, Nanyang Technological University, Singapore. Dinh
Thai Hoang is with School of Electrical and Data Engineering, University of
Technology Sydney, Australia. Qiang Yan is with WeBank Co., Ltd., China.
Dong In Kim is with the College of Information & Communication Engi-
neering, Sungkyunkwan University, South Korea. (*Corresponding author:
Jiawen Kang)

In the near future, 6G-enabled IoV is expected to fa-
cilitate a safer, more efficient, and intelligent traffic sys-
tem, which strictly requires heterogeneous communications,
latency-critical applications, and scalable vehicular networks.
To meet these requirements, Artificial Intelligence (AI) has
been regarded as a core component to empower 6G-enabled
IoV [1]. Machine Learning (ML), e.g., reinforcement learning
and deep learning (DL) can be implemented to design and
optimize IoV architecture and network orchestration in a
cost-efficient manner. In addition, through a huge amount
of data collected from entities in IoV (e.g., vehicles and
infrastructures), AI solutions are able to synthesize, analyze,
and provide important information for optimizing operations,
thereby meeting stringent security requirements, high-mobility,
and efficiency of 6G-enabled IoV. For example, AI can as-
sist drivers by recognizing, searching, and sharing local and
roadside information, e.g., traffic signs and adaptive speed
signs [3]. This smart driving assistance thus can significantly
improve driving safety, reduce fuel consumption, and traffic
management efficiency in 6G-enabled IoV.

Although being considered an integral component of 6G,
current ML approaches have been facing challenges for prac-
tical implementation in IoV, high mobility, dynamics, and
heterogeneity. In particular, the deployment of AI in 6G-
enabled IoV is constrained by dynamic wireless environments,
lack of labeled data, long training process, and limited capac-
ity and resources of vehicles. Fortunately, Transfer Learning
(TL) [4] has been recently introduced with many applications
in wireless networks, e.g., spectrum management and signal
recognition. TL can develop intelligent solutions to maximize
data extraction efficiency from the same or similar domains,
thereby remarkably enhancing AI solutions for IoV [5]. As
a result, the development of TL for future 6G-enabled IoV
is expected to significantly speed up the learning process
and reduce computing costs, thus meeting the extremely high
requirements of 6G-enabled IoV.

However, due to the utilization of knowledge from differ-
ent sources, which might be untrusted, to improve learning
efficiency, the reliability and security of TL are the main
concerns for its deployment. Thus, in this article, we introduce
a novel framework that provides secure and reliable services
for deploying TL in future 6G-enabled IoV. Specifically, we
introduce the concept of reputation as a metric to evaluate
the reliability and trustworthiness of pre-trained models built
and owned by vehicles, and thus design a reputation-based
trainer selection scheme for FL. To achieve secure and efficient
decentralized reputation management, consortium blockchain
is leveraged for reputation management. Finally, to motivate
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6G-enable IoV in 
Space-Air-Ground Integrated Networks
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Fig. 1: Tradition machine learning vs. Transfer Learning for 6G-enabled IoV in Space-Air-Ground Integrated Networks.

high-reputation vehicles participating in TL model transfer-
ring, a deep learning-based auction (DLA) scheme is designed
to incentivize trustworthy vehicles.

The main contributions of this article are summarized as
follows:

• We first introduce TL, 6G, and IoV together with their
integration which envisions a blueprint for future in-
telligent transportation systems. To enable efficient TL
deployment, we design a novel model trading market
for 6G-enabled IoV. The proposed model trading can
effectively improve the quality of ML in TL environments
by encouraging good source model owners to participate
and contribute.

• We employ reputation as a reliable metric to select trust-
worthy pre-trained models for reliable TL. We then de-
sign a distributed reputation calculation and management
scheme by utilizing blockchain technology to regulate the
reputation in a decentralized and secure manner. With the
proposed metric and scheme, TL can be performed in IoV
systems in a more secure and reliable way.

• To achieve dynamic and reliable model trading, we
propose the DLA scheme considering the reputation of
model sellers and bids of model buyers. This scheme
is effective to maximize revenue for sellers, i.e., source
model owners, while guaranteeing individual rationality
and incentive compatibility for buyers, i.e., target model
owners. Simulation results show that the proposed TL
framework can assure secure and reliable services as well
as well-incentives for vehicles.

II. FUNDAMENTALS OF TRANSFER LEARNING

A. Overview

Transfer learning has recently been introduced as a highly
effective machine learning solution that can address many
existing problems of traditional ML methods [4]. TL can
effectively extract valuable knowledge from learning tasks
in source domains to improve the learning performance in
similar target domains. For example, in Fig. 1, we provide an
example of using traditional ML and TL for 6G-enable IoV in
Space-Air-Ground Integrated Networks (SAGIN) [6], which

aim to provide ubiquitous connectivity by utilizing ground,
air, and space vehicles and infrastructures. In SAGIN, ML
was adopted for optimal path choosing for satellite networks
to improve the driving navigation and safety of vehicles.
However, collecting data from SAGIN for ML model training
is intricate and unbalanced. In details, data from the safe
domain, e.g., with rare accident events, is rich while data
from the risky domain, e.g., with frequent accident events,
is scarce, leading to unsatisfactory driving performance of
ML models in risky tasks, such as car crashes. Thus, the
development of TL is expected to provide many benefits
over traditional ML techniques. For example, by leveraging
valuable knowledge from similar environments or applications,
TL can overcome the lack of labeled data in specific tasks.
Additionally, the shared knowledge, along with knowledge
collected and extracted from previous experiences, can also be
utilized to reduce computation workloads required for model
training as well as to speed up slow learning processes of
traditional ML techniques. Furthermore, the knowledge from
other sources can be transferred in the form of weights,
such as learning rate and random seed. As a result, TL does
not incur much communication overhead, and data privacy
is also protected. With such outstanding benefits, TL has
been considered to be an indispensable part of future wireless
networks [5].

B. Basic Concepts

• Domain: A domain is defined by a feature space and a
marginal probability distribution. The marginal probabil-
ity distribution is the probability distribution of different
types of signal in the dataset.

• Task: Given a domain, a task can be defined by a label
space (e.g., a set of all driving decisions) and a predictive
function. By training with datasets of the source and the
target domains, the predictive function can predict labels
for given data samples.

Based on the domain and task, TL can be defined as follow:
given a source domain with a corresponding source task and
a target domain with a corresponding target task, the goal
of TL is to learn the target predictive function by leveraging
the knowledge gained from the source domain and the source
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task. In TL, either the source domain and the target domain
are different or the tasks of both domains are different. Take
autonomous driving as an example, this means that, either the
image features of the set of source driving experience and
the set of target driving experience are different (i.e., driving
under different scenarios), or the marginal distributions of the
two sets are diverse. Therefore, TL can be applied in various
applications in 6G-enabled IoV.

C. Classification of Transfer Learning

Based on the similarity between domains and tasks as well
as the availability of labeled data, TL can be classified into:

• Inductive TL: The source and target domains are the same,
but the source and target tasks are different. For inductive
TL, the target data should be labeled. Depending on
the availability of labeled data at the source domain,
inductive TL can be further classified into self-taught
learning and multi-task learning. In self-taught learning,
the source data is not labeled, and they cannot be used
for training the target predictive function. Instead, they
can be leveraged to reduce the feature space in the target
domain. In contrast, labeled source data is available in
multi-task learning. Thus, the source model’s weights and
parameters can be transferred to the target model.

• Transductive TL: The source and target domains are
different, but the source and target tasks are the same.
For transductive TL, labeled target data is not required,
while the source data must be labeled. Since the two tasks
are the same and the source model is trained with labeled
data, the source model’s weights and parameters can be
transferred to the target model to overcome the lack of
labeled data at the target domain.

• Unsupervised TL: The target and source tasks are dif-
ferent and there is no labeled data in both domains.
For unsupervised TL, the knowledge gained from the
unsupervised learning process at the source task can be
transferred to serve as the initial point for learning the
target task, thereby improving the learning performance
of the target task.

The choice among these three TL classifications is deter-
mined by the availability of training data in learning problems.
When labeled data is available in target domains, Inductive
TL can be utilized to accelerate the learning process of TL. If
labeled data is unavailable in target domains but available in
source domains, Transductive TL is effective to be leveraged
to enhance quality and quantity of data in target domains.
Finally, when labeled data is unavailable in both source and
target domains, Unsupervised TL can be used to transfer the
knowledge between source and target domains.

D. Strategies of Deep Transfer Learning

Imitating the brain structure of creatures, DL uses a multi-
layered architecture called Deep Neural Networks (DNN).
DNN is trained to perform specific tasks such as classification,
clustering, or regression. With the training data, DNN updates
its knowledge, which is represented by its parameters. Using

the knowledge acquired during its learning phase, DNN exe-
cutes the learned task. A trained DL model can be regarded
as knowledge obtained from training data, including its archi-
tecture and parameters. Therefore, DL provides an effective
way to transfer knowledge from one domain to another one,
namely, Deep Transfer Learning (DTL) [4]. There are three
typical strategies used in DTL:

• Off-the-shelf pre-trained models: DL model training is
a data-hungry and time-consuming work. Fortunately,
such an inefficient training process is relieved by directly
leveraging pre-trained models, which are trained from
neighboring domains, for target tasks. For example, in
traffic sign classification tasks, some pre-trained models,
such as VGG, GoogLeNet, and ResNet50, can be easily
obtained from common DL libraries.

• Pre-trained models as feature extractors: Extracting fea-
tures is an important procedure in ML algorithms, which
directly affects decision-making for these algorithms. In
DL, DNN can automatically learn the features extraction
from the training data. Therefore, knowledge from the
source domain is embedded in this new representation,
which improves the learning process in the target domain.

• Fine-tuning pre-trained models: Instead of leveraging all
parameters of pre-trained models directly, certain parts
or a whole pre-trained source model can be continuously
fine-tuned with target data to further improve the perfor-
mance of the TL model further. The fine-tuned of pre-
trained models can be performed in Weight Initialized
and Selective Fine-tuning.

However, the best strategy selection for DTL is not straight-
forward, which should consider multiple factors including the
size of target data and similarity between the source and
target domains. For example, when target labeled data is large,
Weight Initialization is an effective solution since overfitting
is not a considerable concern. In contrast, when target data is
small, we can use a pre-trained model as a feature extractor.
Moreover, if source and target data are similar, we can use
the whole pre-trained model. Otherwise, it is better to transfer
only some general features from the first few layers of DNN.

E. Potential Applications of TL in 6G-enabled IoV

1) Mobile Extended Reality: Mobile Extended Reality
(XR) refers to various technologies, such as augmented,
mixed, and virtual reality employed to digitally enhance
vehicular environments and human interactions in real-time.
The rapid development of 6G networking technologies and
wearable devices is paving the way for XR. However, this also
brings forth several challenges. Particularly, drivers’ demands
for more high-quality and personalized experiences have been
rapidly increasing in 6G-enabled IoV. For example, a federated
learning algorithm in [7] was used to proactively determine
vehicles’ orientations and mobility to minimize breaks in
presence that can detach the XR users from their virtual world.
However, conventional ML techniques might not be effective
as they may require a lot of data and training time. By utilizing
TL, data collected from vehicles’ individual interactions can be
collected to train a generalized ML model, and then the model
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TABLE I: Potential Applications of Transfer Learning in 6G-enabled IoV

6G-enabled IoV Applications Typical Services TL Strategies TL Advantages

Mobile Extended Reality Minimizing breaks in presence
of XR users [7]

Fine-tuning
pre-trained models

Enhancing quality of experiences,
reducing computing demands

Mobile Digital Twins Mitigating unreliability in
long-distance communication [8]

Pre-trained models
as feature extractors

Improving driving safety,
protecting drivers’ privacy

UAV-assisted
Autonomous Driving

Providing ultra-high reliability
and connectivity [9]

Off-the-shelf
pre-trained models

Addressing lack of labeled data,
speeding up learning processes

is transferred to other nodes (e.g., vehicles) for fine-tuning,
thereby enhancing the quality of experiences and reducing
computing demands simultaneously.

2) Mobile Digital Twins: Digital twins utilize the digital
monitoring of physical vehicles to achieve real-time and
accurate operations for 6G-enabled IoV. With the availability
of a massive amount of data, ML is an essential solution for
digital twins to leverage such data to enable various cutting-
edge vehicular applications. For instance, a federated learning-
empowered digital twin wireless network was introduced in [8]
to mitigate the unreliability in long-distance communication
between vehicles and infrastructures. However, due to strict
requirements of driver-privacy protection and data sharing,
the ML-based driving virtual assistants usually do not have
sufficient data for timely traffic analysis and monitoring. To
solve this problem, TL can be used to leverage knowledge
from similar experiences (i.e., source domain) to each vehicle
(i.e., target domain) aiming to improve the ML-based personal
driving assistant’s performance for driving safety.

3) UAV-assisted Autonomous Driving: Despite its rapid
development, autonomous driving is still facing challenges
in 6G-enabled IoV. Particularly, Unmanned aerial vehi-
cles (UAV)-assisted automated driving systems are network-
dependent, i.e., they require continuous communication to
function properly. In this context, ML can provide these
systems with ultra-high reliability and connectivity [1]. TL
can be applied into these systems which are impeded by
lack of labeled data, to enhance the performance of the
conventional ML techniques. Specifically, there are many
factors affecting vision-based data, e.g., weather conditions
and broken infrastructures. These variances are not always
presented in a dataset collected for a specific area. Therefore,
knowledge about these variances can be transferred from a
more comprehensive dataset of different areas to improve the
target models’ robustness if such events occur. For example, to
optimize the performance of the autonomous driving systems
under environments with different objectives, uncertainties,
and dynamics, a TL-based framework was developed in [9]
for enhancing scalability and reliability for joint radar and
data communication systems. In conclusion, TL can empower
vehicles to learn quickly an optimal policy when they travel
to new environments.

Finally, the summary of these aforementioned potential
applications is provided in Table. I.

III. CHALLENGES OF IMPLEMENTING TRANSFER
LEARNING IN 6G-ENABLED IOV

A. Technical Challenges of TL Algorithms
1) Determine the Source Task: TL requires in-depth and

task-specific analysis in domains of source and target tasks

to determine whether these tasks are similar. For example, to
perform similar resource management tasks in IoV, the source
task can be chosen based on physical distance from source to
target vehicles [4]. The reason is that surrounding vehicular
networks of source and target tasks are similar, and hence
their experiences are likely to be related. Alternatively, TL can
transfer knowledge of the same vehicular task (e.g., pedestrian
detection task) to different driving environments. However,
6G-enabled IoV typically has very wide coverage [1], leading
to a large number of choices for source domains for TL
applications. Moreover, several 6G-enabled IoV services, e.g.,
satellite communications, are specific to certain areas and
groups of vehicles. If source and target domains are not
correlated, the use of TL in 6G-enabled IoV even makes target
models perform worse than just training with only target data.

2) Determine What to Transfer: Following the choice of
the source task, the domain knowledge needs to be transferred
to target tasks. Determining what to transfer is important for
TL to enable vehicular networks to cover a wide range of
scenarios. However, in some scenarios, e.g., car crashes which
are rare, obtaining the labeled data for TL training in the real
world is intractable and even impossible. As such, transductive
TL is typically used to transfer some related knowledge to
handle the tasks in such scenarios. For instance, in emergency
rescue tasks, the rescue vehicles can be trained to save life in
simulation systems and then be dispatched in real-world [1].
To further reduce fine-tuning time, some TL approaches to
transfer the entire source model, while others transfer only
the first few layers of DNN. However, this question depends
on IoV scenarios that affect the fine-tuning time of TL.

B. Reliability and Security of TL

1) Decentralized Environment: Most of the aforementioned
TL model sharing schemes are centralized, i.e., the transfer
of knowledge is governed by a single entity, e.g., a network
operator. However, in 6G-enabled IoV with a massive scale
of interconnected vehicles and infrastrutures [1], decentralized
TL model sharing is a more promising approach. Particularly,
valuable knowledge can be obtained from external or third-
party sources such as neighboring networks, controlled by
different operators, or vehicles. However, for such decentral-
ized approaches, security and privacy challenges become a
primary concern, e.g., attackers, eavesdroppers, and malicious
vehicles. For example, a model used for accident prevention
in 6G-enabled IoV should have a higher degree of accuracy
than that of an ordinary vehicular networks because a sin-
gle false negative event (e.g., failed to predict a potential
accident) could have very serious consequences. In recent
years, blockchain, which can enhance decentralized network’s

Page 4 of 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

security and privacy, has been successfully applied in various
wireless applications. Thus, utilizing blockchain for decentral-
ized TL is a attractive research direction. For instance, the
authors in [10] proposed a blockchain-based framework for
DTL. By using blockchain and smart contracts, the proposed
framework allows vehicles to securely and reliably share
their models, data, and resources. Moreover, smart contracts
facilitate automatic payment processes, which paves the way
for crowdsourcing-enabled TL.

2) Model Quality Evaluation: TL is still vulnerable to
adversarial attacks for data owners (e.g., vehicles) in 6G-
enabled IoV can intentionally or unintentionally mislead the
source model during TL processes. For instance, in the poi-
soning attack, an attacker sends a malicious source model to
manipulate the parameters of the source model, resulting in the
failure of the model transfer [4]. Furthermore, dynamic vehic-
ular networking environments may lead to some unintentional
adverse behaviors of source model owners. In addition, data
owners may unintentionally update poor-quality models due to
high-speed mobility or energy constraints, thereby degrading
the learning performance. Thus, TL should be able to evaluate
the quality of transferred models accurately to avoid such
intentionally or unintentionally unreliable model sharing.

3) Efficient Incentive Mechanism for Model Sharing: TL
can improve the effectiveness of current ML algorithms by
transferring the knowledge of the source domain to the tar-
get domain. However, to motivate high-quality source model
trainers to share their models, an efficient incentive mechanism
for a model sharing market is also needed. In this market,
source model trainers (e.g., vehicles) as sellers spend their
data and computing resources to improve the inference ability
of pre-trained models in source domains. On the other hand,
model buyers in the market are the receivers, whose goals are
obtaining the utility-maximized and reliable target models to
perform their local tasks (e.g., traffic sign recognition tasks).
Naturally, participants in the TL market are self-interested
and attempt to maximize their utilities. Model sellers intend
to maximize their revenue from model trading, while model
buyers aim to receive the best models for local tasks. Without
proper pricing and allocation mechanisms, trustworthy model
sellers may be reluctant to share their models with potential
buyers. Moreover, in 6G-enabled IoV which requires ultra-
high reliable and ultra-low latency services [1], incentive
schemes are required to perform decisions in real-time under
dynamic network environments. As a result, the incentive
scheme designed for the TL market to meet these stringing
requirements has still not well investigated.

IV. A SECURE AND RELIABLE FRAMEWORK OF
TRANSFER LEARNING FOR 6G-ENABLED IOV

In this section, we propose a secure and reliable TL
framework for 6G-enabled IoV to address the aforementioned
problems. In particular, this framework includes three phases,
i.e., blockchain-empowered decentralized model sharing, repu-
tation for model quality evaluation, and learning-based auction
for model trading. Thus, the proposed TL framework for 6G-
enabled IoV can offer decentralized and real-time services.

A. Blockchain Empowered TL Model Trading Markets

We consider pre-trained model sharing as model trading
between source and target domains in a TL model trading
market. To achieve secure pre-trained model trading, a con-
sortium blockchain named “TL blockchain” is established on
edge servers (e.g., RoadSide Units, RSU) acting as miners to
run smart contracts for model information sharing and model
trading of the pre-trained models [11]. Specifically,

• Model Information Sharing Smart Contract: Each model
owner (e.g., a vehicle) first finalizes a training task (e.g.,
traffic sign recognition) in the source domain. The model
owners generate metadata of their pre-trained models
including pseudonyms of owners, model descriptions
of the pre-trained models (e.g., training task, accuracy,
model size, model usage, trading requirement, timestamp,
and digital signature for information verification), and
biding prices. The model owners then run the model
information sharing smart contract to automatically up-
load the metadata to the TL blockchain miners, thus
running a consensus algorithm, e.g., delegated proof-of-
stake, to finish block verification and synchronization.
After that, the pre-trained models can be recorded on the
TL blockchain for model trading (as illustrated in Steps
1 and 2 in Fig. 2).

• Model Trading Smart Contract: Model buyers (e.g.,
vehicles) in the target domain obtain the latest block
data from the TL blockchain. According to buyers’
training tasks, e.g., pedestrian recognition, buyers search
the metadata on the block data and pick out potential
model sellers (i.e., model owners in the source domain).
Buyers also retrieve the reputation values of model sellers
from the TL blockchain to filter malicious sellers with
low reputations. Here, we utilize reputation value as a
metric to indicate the reliability of model owners, and
the reputation reflects the quality of pre-trained models
of model owners (more details about reputation are given
in Section IV-B). Model buyers and sellers perform a
learning-based auction scheme for model pricing and
trading according to bidding prices and the reputation
of the sellers (Section IV-C). Then, model buyers obtain
pre-trained models (i.e., knowledge) from the matched
sellers and begin to fine-tune their target models. If the
training performance of a target task is good enough, e.g.,
accuracy higher than a given threshold, the buyer will
treat this trading record as a positive event and generate
a good reputation rating (Steps 3, 4 and 5 in Fig. 2) [12].
After that, a model trading smart contract will be executed
to upload the reputation and trading records to miners in
TL blockchain for block verification and recording (Step
6 in Fig. 2).

B. Decentralized Reputation Management

Similar to [12], reputation is introduced to measure the
trustworthiness and reliability of model sellers according to
their historical behaviors. By the reputation, model buyers
can select reliable and trusted model buyers with high-quality
pre-trained models, thus avoiding the effects of low-quality

Page 5 of 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

TL Blockchain

5. Target model fine-tuning1. Source model training

2. Model information updating

(𝑩𝟏, 𝒓𝟏)

(𝑩𝟐, 𝒓𝟐)

(𝑩𝒋, 𝒓𝒋)

3. Reputation calculation

S
o

u
rc

e
 D

o
m

a
in

(I
m

a
g

e
 c

la
ss

if
ic

a
ti

o
n

)

T
a
rg

e
t 

D
o

m
a
in

(T
ra

ff
ic

 s
ig

n
 c

la
ss

if
ic

a
ti

o
n

)

6. Reputation update and upload

4.3 Revenue
σ𝒊∈𝑵𝒓(𝒈𝒊)𝒑𝒊

4.4 Regret 𝒓𝒈𝒕𝒊 𝒘 =
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RSU

Bids 𝑩𝟏

Reputations
𝑹 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝒋]

Bids 𝑩𝟐

Bids 𝑩𝟑

4.1 Allocation
rules 𝒈(𝑩,𝑹)

4.2 Pricing
rules 𝒑(𝑩,𝑹)

4.6 Auctioneer update

RSU RSURSU

4.5 Optimization Problem
𝐦𝐢𝐧−σ𝒊∈𝑵𝒓(𝒈𝒊)𝒑𝒊 s.t. σ𝒊∈𝑵 𝒓𝒈𝒕𝒊 𝒘 = 𝟎

4. Deep Learning-based auction

… ………

Seller 1

Seller 2

Seller j

Bidder 1

Bidder 2

Bidder j

Fig. 2: A secure and reliable TL framework for 6G-enabled IoV including three main phases, i.e., blockchain-empowered
decentralized model sharing, reputation for model quality evaluation, and learning-based auction for model trading.

models on target task training. Moreover, since reputation
plays a significant role for TL, to remove the potential risks of
centralized reputation calculation and management, we design
a decentralized reputation calculation and management scheme
utilizing advantages of TL and blockchain technologies.

• Decentralized reputation calculation: For each traded
pre-trained model from a seller, it will generate a per-
formance rating of the pre-trained model using in the
target tasks by model quality evaluation methods, e.g.,
sharply values [13]. If the pre-trained model leads to good
performance on the target tasks, e.g., high accuracy, the
model buyer treats this trading interaction with the model
seller as a positive event, otherwise, the interaction is a
negative event. Then, the direct reputation of buyer i for
seller j is denoted as the ratio of the number of positive
interaction events to the total number of interaction events
in a time window. To achieve accurate and objective
reputation calculation, we should consider both direct rep-
utation and an overall recommended reputation from its
friends, who have cooperated with the buyer before, for
the same seller. Here, the overall recommended reputation
is expressed by the weighted sum of the trustworthiness
weights of buyers for their friends and the corresponding
recommended reputation of the friend to the same seller.
Both the trustworthiness weight and reputation value are
in the range of [0, 1]. Moreover, the referenced reputation
values from strangers are the average reputation value of
a stranger to the seller. Finally, the integrated reputation
value rij of buyer i to seller j is the weighted sum of the
direct reputation, the recommended reputation, and the
referenced reputation values.

• Blockchain-based reputation management: To achieve
secure and decentralized reputation management, after
model training, the model buyers upload their integrated
reputation values with the corresponding digital signa-
tures as “transactions” to the miners of the TL blockchain.
With the help of an efficient consensus algorithm, the

verified reputation data is stored in the TL blockchain for
immutable, transparent, and reliable management. These
reputation values will be recommended to and referenced
by other model buyers.

C. Deep Learning-based Auction Scheme for TL Model Trad-
ing

To develop an efficient incentive mechanism, auction theory
is regarded as a promising tool to maximize the income of
model sellers while ensuring the bidder’s desired character-
istics, such as individual rationality and incentive compati-
bility [14]. However, traditional auction schemes cannot be
applied to real-time optimal trading and pricing scenarios.
We, therefore, develop a Deep Learning-based auction (DLA)
scheme to make the allocating and pricing decisions for
model sharing when demands of vehicles frequently change
over time. Particularly, an auctioneer parameterized by neural
networks first performs monotone transformations of input
buyers’ values, as well as the reputation of sellers. Based
on the real-time reputations of sellers, the auctioneer then
calculates the allocation rules, i.e., winning probabilities of
bidders, and conditional payment rules for the TL model
market. Lastly, the auctioneer is trained w.r.t. the loss function
so that it can adjust the weights to optimize the expected
outcome of this market.

In DLA, the auctioneer knows the value distribution of
bidders but not their actual valuation. The auctioneer inputs
sellers’ reputations and bidders’ bids, and then outputs the
pricing rules and the allocation rules (Steps 4.1 and 4.2 in Fig.
2). The buyer with its valuation obtains its utility computed
as valuation minus price. An auction is dominant strategy
incentive compatible (DSIC) [15], if each buyer maximizes
its utility by reporting truthfully regardless of its counterparts
report. When each buyer receives a non-zero utility at the end
of the auction, it is (ex-post) individually rational. The DSIC
auction requires each buyer to report truthfully, and so the
revenue on the valuation profile should be accurate. The DSIC

Page 6 of 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0
Re

ve
nu

e

DLA (3×3)
DLA-LR (3×3)
SPA (3×3)

DLA (3×5)
DLA-LR (3×5)
SPA (3×5)

(a) Revenue vs. Epochs.

Attack strength

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rm

itte
d r

ep
uta

tio
n

1/8
2/8

3/8
4/8

5/8
6/8

7/8

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

20

40

60

80

(b) Reliability evaluation.

Fig. 3: Security and reliability evaluation of the proposed TL
framework and DLA scheme, where the attack strength is

the ratio of falsified labels of a training dataset of the sellers
and the permitted reputation is the required reputation to

allow sellers to participate.

auction that maximizes its revenue is considered as the optimal
DSIC auction design.

To obtain a satisfactory solution for DSIC auction, DLA
schemes are widely adopted. DLA utilizes multi-layer neural
networks to encode auction mechanisms. In order to handle
sequentially inputted bids for multiple items in the TL model
Market, neural networks are used to process the current
state and output the temporal results. In detail, reputations
downloaded from the TL blockchain are input in the hidden
layer. Thus, the proposed auction scheme is more reliable.
Then, the temporal results are input to the softmax layer for
allocation rules and the sigmoid layer for pricing rules. The
goal of the DLA scheme is to find a solution to minimize
the negative, expected revenue (Step 4.3 in Fig. 2), while
satisfying incentive compatibility. Our primary goal is to
ensure that the selected auction satisfies the requirement for
incentive compatibility in the learning problem. Our method
for measuring incentive compatibility is to calculate an ex-post
regret for every bidder. Bidder is likely to regret their decision
ex-post (Step 4.4 in Fig. 2). In this context, the learning
problem is to minimize the expected loss, i.e., the expected
negated revenue s.t. sum ex-post regret for all bidders equals
zero (Step 4.5 in Fig. 2). Using the augmented Lagrangian
method, we solve the constrained training problem over the
space of neural autoworker parameters. Adding a quadratic
penalty term for violating constraints, the Lagrangian function
is defined for the optimization problem. Therefore, the DLA
scheme can make secure and reliable optimal allocation and
pricing decisions for the TL model market in real-time, hence
preventing malicious vehicles from adversely affecting the
performance of TL in 6G-enabled IoV.

D. Simulation Results

Simulations are used to illustrate the effectiveness of our
DL-based auction scheme. The proposed auction scheme is
implemented with the same parameters in [15]. TL model
markets are simulated with different numbers of participants to
analyze the performance of the DLA scheme. Here, TL model
markets consist of 3 buyers and 3 sellers (3×3) and 3 buyers
and 5 sellers (3×5). Figure 4 shows the simulation results for

evaluation of the proposed secure and reliable TL framework.
As shown in Fig. 3(a), the DLA scheme converges quickly
to the solution. The model sellers with low reputation, i.e.,
DLA-LR, receive less revenue in model trading. However, the
revenue of DLA schemes with different numbers of sellers is
much higher than that of the second-price auction (SPA) [14].
This proves the effectiveness of the proposed scheme whether
the number of sellers is equal to three or five. Moreover, Fig.
3(b) shows the change of TL model accuracy affected by
malicious sellers’ attack strength and the permitted reputation
of the TL market. We can observe that the increasing attack
strength decreases the accuracy of target models. The higher
reputation threshold of being sellers brings larger accuracy
because fewer malicious models from low-reputation sellers
are transferred to the buyers in the target domain. Fig. 3(b)
also illustrates that the reputation scheme can ensure reliable
and secure TL by removing unreliable or malicious source
model trainers.

V. CONCLUSIONS AND OPEN ISSUES

In this article, we propose a secure and reliable transfer
learning framework for 6G-enabled IoV with blockchain em-
powered model trading market. In the model trading market,
we first introduce reputation as the metric to evaluate the
reliability of model sellers in the source domain. With the
help of reputation, we then design the machine learning-based
auction scheme considering sellers’ reputations to achieve
optimal DSIC auction in model trading pricing for reliable
model trading in TL. The simulation results show that the
proposed framework and scheme can provide secure and
reliable transfer learning services with well-design incentives
for 6G-enabled IoV.

There are several possible directions that are worth being
studied: 1) Since vehicles in 6G networks have limited power
and resources. It still remains to be an open issue on how to
design light-weight and resource-efficient TL algorithms for
large-scale deployment on these vehicles by combining ad-
vanced machine learning techniques, such as sparse represen-
tation in neural networks, and pruning algorithms to dwindle
TL models. 2) Since model quality valuation methods directly
affect the reputation calculation, there is one more open issue
on how to design more accurate and efficient model quality
valuation methods for 6G-enable IoV to improve the accuracy
and objectivity of reputation calculation, thus enhancing the
detection performance of unreliable model sellers. 3) It is
also an open issue on how to improve the scalability of
consortium blockchain for efficient reputation management in
TL-based 6G-enabled IoV. Sharding and cross-chain technolo-
gies are promising solutions to establish scalable and efficient
blockchain systems for 6G-enabled IoV. 4) Considering the
high overhead of a large number of vehicles that may join in
the transfer learning for 6G-enabled IoV, efficient schemes for
optimizing the number of training model in target domains are
worth investigating to balance the learning performance and
resource cost.
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