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Robust Beamforming Optimization for
Self-Sustainable Intelligent Reflecting Surface

Assisted Wireless Networks
Yuze Zou, Yusi Long, Shimin Gong, Dinh Thai Hoang, Wei Liu, Wenqing Cheng, and Dusit Niyato

Abstract—We focus on an intelligent reflecting surface (IRS)-
assisted multiple-input single-output (MISO) system where the
IRS sustains its operations by harvesting energy from the access
point (AP) in the power splitting (PS) protocol. We aim to
minimize the AP’s transmit power subject to the receivers’ signal-
to-noise ratio (SNR) and the IRS’s energy budget constraints. A
two-stage optimization framework is proposed to jointly optimize
the AP’s active beamforming, the IRS’s passive beamforming,
and the reflection amplitude. Given the reflection amplitude,
we employ alternating optimization to update the beamforming
strategies. Then, we determine the lower and upper bounds of
the reflection amplitude in closed-form expressions, which help to
update the reflection amplitude in a bisection method. We further
extend our study to the robust case with uncertain channels. Our
analysis reveals that the robust counterpart can be solved by the
same optimization framework. Extensive simulations reveal that
our algorithm is efficacy to balance the IRS’s energy budget
and the receiver’s SNR performance. With uncertain channel
information, a larger size of the IRS does not always ensure a
higher performance improvement to information transmissions.

Index Terms—Energy harvesting, intelligent reflecting surface,
robust optimization, passive beamforming

I. INTRODUCTION

Recently, the intelligent reflecting surface (IRS) has been
proposed as a promising technology to improve the energy-
and spectrum-efficiency of wireless communications by adap-
tively configuring the signal propagation conditions [1]. The
IRS is composed of a large array of low-cost and passive scat-
tering elements with specially designed physical dimensions.
Each element is controllable by an embedded controller chip
and used to induce a phase shift to the incident RF signal-
s [2]. By a joint control of the phase shifts of all scattering
elements, namely, passive beamforming, the reflected signals
can create preferable channel conditions for information trans-
missions. This implies an additional degree of freedom for
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the design and optimization of wireless networks. Hence, it
is envisioned as a revolutionary technology to integrate the
online configurable IRS into the future wireless networks [3]–
[5]. Extensive surveys in [1] and [2] have revealed that the
joint optimization of the IRS’s passive beamforming and
the RF radios’ active beamforming can significantly improve
the network performance by playing different roles such as
the signal reflector, transmitter, and even the receiver. The
performance improvement of IRS-assisted networks has been
investigated in a wide range of applications, such as mobile
edge computing [6], [7], wireless powered communication
networks [8]–[10], and secure wireless transmission [11]–[13].

Typically, the IRS is assumed to be an ideal passive device
with negligible energy consumption. This capability ensures
its wide deployment in outdoor environments, e.g., the facts
of buildings and moving vehicles. For example, the authors
in [8] investigated an IRS-assisted wireless powered sensor
network where a group of sensors can harvest RF energy
from a power station and operate in the harvest-then-transmit
protocol. A sum throughput maximum problem is formulated
by jointly optimizing the IRS’s phase shifts and the users’ time
allocations. In fact, the IRS’s energy consumption depends
on its physical dimensions and the implementation of its
scattering elements. The authors in [14] proposed a linear
model to describe the IRS’s energy consumption, which is
proportionally increasing with the number of scattering ele-
ments. Moreover, the energy consumption of each scattering
element depends on its phase resolution, i.e., a finer tuning of
the phase shifts implies a higher energy consumption of each
scattering element due to more complicated circuit design. As
the size of IRS increases, its energy consumption is no longer
negligible and becomes a critical design aspect for overall
performance improvement. However, how to fulfill the IRS’s
energy demand still remains as an open problem.

Another common assumption in the literature is that the
joint active and passive beamforming optimization is per-
formed based on perfect channel state information (CSI).
However, it is challenging to obtain the accurate CSI of the
AP-IRS channel and IRS-user channel in practice due to the
fact that the reflective elements at the IRS are passive and have
limited signal processing capabilities. Specifically, there are
two typical IRS-related channel estimation approaches. One
is to estimate AP-IRS and IRS-user channels separately [15]
and the other is to estimate the cascaded AP-IRS-user channel
[16]–[18]. For both approaches, the channel estimation error
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is inevitable due to processing delay and limited sampling
rate in a dynamic channel environment [18]–[20]. The joint
active and passive beamforming optimization may face severe
performance loss if countermeasures are not taken properly
against the channel uncertainty. For example, the authors
in [21] revealed that the phase error in channel estimation
may bring the ambiguity in the IRS’s phase tuning. Thus,
it is practical to quantize the channel uncertainty and design
robust control strategy to countermeasure the uncertainty. To
fight against the channel uncertainty, the authors in [22]
modeled the error estimates as Gaussian variables and studied
the asymptotical performance loss of spectrum efficiency in
IRS-assisted uplink transmissions. Instead of the stochastic
approach in [22], another approach for modeling the chan-
nel uncertainty is to impose a bounded norm on the error
estimates. This normally results in a robust formulation to
ensure the worst-case performance guarantee. For example,
considering the norm-based uncertainty model for the channels
from the IRS to the receivers, a robust power minimization
problem was studied in [18] subject to the worst-case data
rate requirements at individual receivers. The authors in [20]
assumed that the cascaded channel from the base station to the
receiver via the IRS is subject to a norm-based uncertainty
model. A similar model was applied in [23] to improve
the IRS-assisted secure communication performance, where
a robust sum-rate maximization problem was studied subject
to the worst-case information leakage to an eavesdropper. The
solutions to the above robust problems typically rely on convex
reformulations of the worst-case constraints, and then use the
alternating optimization (AO) method to optimize the joint
beamforming strategies iteratively.

In this paper, we address the above-mentioned difficulties
in an IRS-assisted wireless system considering the IRS’s self-
sustainability and channel uncertainties. In particular, we envi-
sion a multi-input single-output (MISO) downlink system from
a multi-antenna access point (AP) to single-antenna receivers
assisted by the IRS. The IRS is self-sustainable by harvesting
RF energy from the AP’s active beamforming. To sustain its
operations, the IRS is capable of controlling its reflection
amplitude flexibly such that a part of the incident RF signals
is reflected while the other part is harvested as energy. The
control of the IRS’s reflection amplitude is similar to the con-
ventional power splitting (PS) protocol for energy harvesting
devices [24]. The self-sustainable IRS was also studied in our
previous work [25], where the time switching (TS) protocol
was considered for the IRS to transit between energy har-
vesting and IRS-assisted information transmissions. Similarly,
the authors in [26] proposed the IRS-assisted harvest-then-
transmit time switching transmission policy for the wireless
sensor network. To fulfill the IRS’s energy demand, the IRS
is allocated with a dedicated time slot to harvest RF energy
from the power station. Different from the TS protocol in [25]
and [26], we consider the PS protocol for the IRS to harvest
RF energy and sustain its operation, which provides another
self-sustainable design for the IRS-assisted MISO system. In
[27], the authors investigated both the TS and PS protocols for
self-sustainable IRS-assisted wireless powered communication
networks. Different from [27] and [26], we jointly optimize

active beamforming at the AP and passive beamforming at the
IRS and its reflection amplitude to assist the MISO system
sustainably in PS protocol. Moreover, a practical case with
imperfect CSI is considered and we employ the norm-based
uncertainty model to characterize the cascaded channel from
the AP to receivers, which is the product of the AP-IRS and
IRS-user channels. Different from [18], [20], [22], [23], we
focus on a more practical case with both the worst-case SNR
requirements at the receivers and the worst-case power budget
constraint at the IRS.

Some preliminary results on the robust beamforming op-
timization were previously presented in our conference pa-
per [28]. In this paper, we present a comprehensive analysis
and unified solution for both the non-robust and robust cases.
In particular, we firstly formulate an optimization problem to
minimize the AP’s transmit power by jointly optimizing the
AP’s active beamforming and the IRS’s passive beamforming
strategies with perfect CSI. Then, the problem is extended to
its robust counterpart under imperfect CSI. It is clear that the
AP’s active beamforming not only determines the data rate to
the information receiver, but also affects the energy harvesting
capability at the IRS. This implies a close coupling between
the AP’s active beamforming and the IRS’s optimal control
on its phase shifting matrix and the reflection coefficient. By
exploiting the problem structure, we decompose the optimiza-
tion of the IRS’s phase shifting matrix and the reflection co-
efficient into two sub-problems, i.e., the inner-loop and outer-
loop optimizations in an iterative manner. Given the outer-
loop reflection coefficient, the inner-loop joint beamforming
optimization follows the conventional AO method. Then, the
IRS’s reflection coefficient in the outer loop can be updated
in a closed-form expression. Most importantly, this method
provides a generalized optimization framework for both the
non-robust and robust cases. For clarification, we summarize
our main contributions in this paper as follows.

• Firstly, we focus on a generic MISO system assisted by
a self-sustainable IRS, which has been seldom studied
in the literature. The AP’s active beamforming and the
IRS’s passive beamforming and its reflection amplitude
are jointly optimized to assist the MISO downlink trans-
missions in the PS protocol. We believe that our work
provide necessary supplement to the current literatures
by considering IRS’s self-sustainability and its practical
deployments with uncertain channel conditions.

• Secondly, we consider imperfect channel state informa-
tion due to the inevitable estimation error in the IRS-
related channels, incurred by the passive nature of the
IRS. We provide a unified solution framework for both
robust and non-robust cases. Specifically, by exploiting
the problem structure, a two-stage algorithm is devised
to jointly optimize the AP’s active beamforming, the
IRS’s passive beamforming and the reflection amplitude.
A closed-form update for reflection amplitude is derived
under the perfect channel state information and its update
for the robust counterpart is also proposed.

• Thirdly, we perform intensive simulations to show the
performance impacts of the IRS’s deployment parame-
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TABLE I: Math Notations and Operators

Notations Definitions

‖·‖ Euclidean norm of a complex vector
|·| Modulus of a complex number

(·)T Transpose operator
(·)H Conjugate transpose operator
Ca×b Space of complex matrices with size a× b
IM Identity matrix with size M

Re (·) Real part of a complex number
vec(·) Vectorization of a matrix variable
arg (a) Angle vector of elements in vector a
⊗ Kronecker product of matrices

Tr(X) Trace of matrix X
diag(a) Diagonal matrix with the diagonal vector a
A � 0 A is a positive semidefinite matrix

ters under both non-robust and robust conditions. These
results reveal some important information in designing
the IRS-assisted MISO systems. For example: 1) The
proposed algorithm is shown to be efficient to balance
the IRS’s energy budget and the receiver’s signal en-
hancement by tuning IRS’s reflection amplitude. 2) With
imperfect channel state information, a larger size of
the IRS does not always ensure a higher performance
improvement to the information transmission between
the AP and the user. 3) For practical considerations,
the IRS’s discrete phase shifting is also analyzed and
evaluated via simulations. With 3-bit phase resolution,
the discrete phase shifting scheme can achieve nearly
the optimal performance of the ideal continuous phase
shifting scheme.

The remainder of the paper is organized as follows. We
present the system model in Section II, and propose the
algorithm to minimize the AP’s transmit power with perfect
CSI in Section III. Then, we derive the robust counterpart
and its reformulation with norm-based channel uncertainties
in Section IV. Numerical results are presented in Section V
and conclusions are summarized in Section VI. Some operators
and notations used in this paper are listed in Table I for clarity.

II. SYSTEM MODEL

We consider a MISO wireless downlink communication
system assisted by an IRS with N elements as illustrated in
Fig. 1. The AP with M antennas serves multiple receivers
equipped with a single antenna. To avoid interference, we
assume that each receiver is allocated an orthogonal channel
for information transmission, e.g., by using the time division
multiple access (TDMA) scheme. Multiple receivers can be
also served simultaneously by the multi-antenna AP. In this
case, the AP’s transmit precoding has to be properly designed
to mitigate the interference among different receivers. More
importantly, we can verify that our solution method proposed
for TDMA scheme can be easily extended to this multi-
user case with minor revisions, e.g., [5], [9]. Without loss of
generality, we focus on the TDMA scheme in the following

part and formulate our design problem in each time slot with a
single receiver. The IRS controller is capable of adjusting the
phase shift of each reflecting element dynamically according
to the CSI. The joint control of phase shifts, namely, passive
beamforming, provides the capability of shaping the physical
channel as desired. The AP-receiver, AP-IRS, and IRS-receiver
channels are denoted by g ∈ CM×1, H ∈ CM×N and
f ∈ CN×1, respectively. The channel estimation can follow
a similar approach as that in [29]. The RF transmitter firstly
sends pilot signals to the receiver. Meanwhile, the receiver
or IRS can estimate the corresponding AP-receiver or IRS-
receiver channels. Then, the AP can jointly optimize its
active beamforming, the IRS’s phase shifting matrix and the
reflection amplitude, which can be distributed to the IRS at
the beginning of each time slot for information transmission.

A. IRS-assisted Channel Enhancement

Besides phase tuning, we also assume that the IRS con-
troller can adjust the magnitude of its reflecting coefficients.
Similar to backscatter communications, each reflecting ele-
ment sets a phase shift θn ∈ [0, 2π)1 and its magnitude
ρn ∈ [0, 1] to reflect the incident RF signals. Let Θ =
diag(ρ1e

jθ1 , . . . , ρNe
jθN ) denote the IRS’s passive beamform-

ing strategy. Hence, the IRS-assisted equivalent channel from
the AP to the receiver is given by

ĝ = g + HΘf , (1)

where H = [h1, . . . ,hN ] denotes the channel from the AP to
the IRS. We can also define the IRS-assisted reflecting channel
Hf from the AP to the receiver as follows:

Hf , Hdiag(f) = [f1h1, f2h2, . . . , fNhN ]. (2)

Hence, the channel model in (1) can be equivalently rewrit-
ten as ĝ = g + Hfv where v = [ρ1e

jθ1 , . . . , ρNe
jθN )]T

denotes the diagonal vector of the matrix Θ. We consider
linear beamforming at the AP, with w ∈ CM×1 denoting
the transmit beamforming vector. Let s denote the complex
symbol with unit transmit power. The received signal at the
receiver is given by y = ĝHws + νd, where νd is the
additive white Gaussian noise at the receiver. Without loss
of generality, we can normalize the noise variance to unit one.
Therefore, the SNR at the receiver can be characterized as
γ(w,Θ) = ‖(g + HΘf)Hw‖2.

B. IRS’s Power Budget Constraint

Given the AP’s transmit beamforming, the incident signal
at the IRS is x = HHws. We assume that each tunable
chip of the reflecting element is also equipped with an energy
harvester circuit that is able to harvest RF energy from the
AP’s beamforming signals. In particular, the IRS’s energy
harvesting follows a similar PS protocol as that of the con-
ventional wireless powered relay communications [24]. For
the n-th reflecting element of the IRS, by tuning the reflection

1Practically, phase shifts can be selected from a finite set for the ease of
implementation. Given the continuous phase shifts, the discrete phase shifts
can be obtained by quantization projection, e.g., [8], [30].
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Fig. 1: The IRS-assisted MISO system model in the PS protocol.

amplitude ρn, part of the incident signal is reflected to the
receiver (denoted by ρnhHn ws), while the remaining part is
fed to the energy harvester. Hence, the parameter ρ2

n can be
regarded as the power splitting (PS) ratio 2. The amplitude
adjusting can be achieved by using electronic devices such as
positive-intrinsic-negative (PIN) diodes, field-effect transistors
(FET), micro-electromechanical system (MEMS) switches,
and variable resistor loads, e.g., [5], [31]. A similar PS
protocol for self-sustainable IRS-assisted system is discussed
in [27].

We consider a linear power consumption model as that
in [14], where the IRS’s power consumption is linearly pro-
portional to the number of reflecting elements and the phase
resolution of each scattering element. To maintain the IRS’s
operations, the total harvested energy has to meet the IRS’s
total power consumption. Besides, a linear energy harvesting
(EH) model is considered as well. We further assume a
simplified case that all the IRS’s reflecting elements set the
same reflection amplitude 3, i.e., ρ1 = · · · = ρN = ρ. Then,
we can rewrite the equivalent channel as ĝ = g+ρHfθ, where
θ = [ejθ1 , . . . , ejθN ]T . The IRS’s energy budget constraint can
be given as η

∑
n

(
1− ρ2

n

)
|hHn w|2 = η

(
1− ρ2

)
‖HHw‖2 ≥

Nµ, where η represents the energy harvesting coefficient and
hn denotes the channel vector from the AP to the n-th re-
flecting element. We further assume that the phase resolutions
of the IRS’s scattering elements are identical [14]. Hence, the
IRS’s power consumption is given by Nµ, where µ denotes
the power consumption of each scattering element.

Focusing on information transmission in one specific time
slot, we aim to minimize the AP’s transmit power, denoted as
‖w‖2, by jointly optimizing the active and passive beamform-
ing strategies, constrained by the IRS’s power budget and the
receiver’s SNR requirements.

min
w,θ,ρ

‖w‖2, (3a)

s.t. |(g + ρHfθ)Hw|2 ≥ γ0, (3b)

η(1− ρ2)‖HHw‖2 ≥ Nµ, (3c)
ρ ∈ [0, 1] and θn ∈ [0, 2π) ∀n ∈ N . (3d)

Note that (3c) denotes a linear EH model for simplicity.
In fact, a more practical non-linear EH model can be also

2Without abuse of notation, the PS ratio and reflection amplitude are used
interchangeably in the rest of this paper.

3For ease of implementation, it is reasonable to simplify the circuit design
and reduce the circuit’s power consumption by setting all amplitude reflections
to be the same, similar to that in [27].

applied here [32]. Denote the non-linear EH model as f(P ),
where P is the input power. Considering the concave and non-
decreasing properties of f(P ), we can verify that the proposed
solution method for linear EH model is still applicable to the
non-linear EH model with minor modification. Given the non-
linear EH model, we can simply retrieve the IRS’s power
demand as f−1(Nµ), where f−1(·) is the reverse function
of f(·) and denotes a constant given the size of the IRS.
It is clear that the solution to problem (3) relies on the
channel information. In the following, we firstly consider the
case with perfect CSI and propose the joint beamforming
optimization solution to minimize the AP’s transmit power.
Then, a robust counter-part of problem (3) can be reformulated
by considering an analytical model for channel uncertainties.
We envision that the solution to the non-robust case can shed
some insights on the algorithm design for a more practical
case with uncertain CSI.

III. TRANSMIT POWER MINIMIZATION WITH PERFECT CSI
With known CSI, the non-convex problem (3) can be solved

by the general AO algorithm. In particular, we can solve each
set of variables, i.e., θ, w or ρ, sequentially and iteratively
while the other variables are fixed. For any fixed ρ in the
outer loop, the inner-loop optimization of the active and
passive beamforming (w,θ) can follow a similar semidefinite
relaxation (SDR) method as that of [33]. Given the active
beamforming w, the constraints (3b)-(3c) define the lower and
upper bounds on ρ. This implies that we can use a linear search
method to update the reflection amplitude ρ in the outer loop.

Before we dive into the algorithm design, it is necessary to
check the feasibility of problem (3), which helps us build a
feasible region for the iterative search algorithm. Intuitively,
we can always find a sufficiently large transmit power ‖w‖2
to ensure the fulfillment of both the SNR and power budget
constraints in (3). This implies that we can set the upper
bound on the AP’s transmit power as ‖w‖2max , γ0/‖g‖2
according to the SNR constraint (3b), by assuming that there
is no assistance from the IRS. If the solution to problem
(3) exceeds ‖w‖2max, this means that a significant portion of
the AP’s transmit power will be used to maintain the IRS’s
self-sustainability. In this case, there is no need to use the
IRS to assist the AP’s information transmission. Based on the
IRS’s power budget constraint (3c), it is easy to find the AP’s
minimum transmit power by the following problem:

‖w‖2min , arg min
w

{
‖w‖2

∣∣ ‖HHw‖2 ≥ Nµ/η
}
, (4)

which can be solved by adopting the SDR technique to convert
it into a semidefinite program (SDP). Then, problem (3)
becomes infeasible if the solution is smaller than ‖w‖2min.
To ensure the feasibility of problem (3), we thus require the
non-trivial condition ‖w‖2min < ‖w‖2max. This condition also
ensures that the use of IRS can provide better performance
than that of the non-IRS-assisted system. In the following
part, we firstly provide the AO method to optimize the
joint beamforming strategies (w,θ) with a fixed reflection
amplitude ρ. After that, with the fixed (w,θ), a search method
is devised to update ρ by exploiting the problem’s structural
property.
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5

A. Inner-loop Beamforming Optimization

With the fixed ρ in problem (3), we decompose the op-
timization of (w,θ) in two steps. Firstly, we optimize the
IRS’s phase vector θ to maximize the channel gain of the
cascaded channel as shown in (3b). Secondly, once we obtain
θ, the active beamforming w can be optimized by formulating
problem (3) into an SDP, which can be efficiently solved by the
interior-point method [34]. In the first step, the optimization
of θ is simply given as follows:

max
θ

|(g + ρHfθ)Hw|2, s.t. θn ∈ [0, 2π), ∀n ∈ N . (5)

Let θ̄ = [θ, ζ]T = [ejθ1 , . . . , ejθN , ζ]T where ζ is an
auxiliary variable such that ζ ≥ 0 and |ζ| = 1. The
objective in (5) can be expanded and rewritten in a compact
form as θ̄

H
Rθ̄, where the matrix coefficient R is given by

R =

[
ρ2HH

f wwHHf ρHH
f wwHg

ρgHwwHHf 0

]
. We further apply

SDR to the quadratic term θ̄
H

Rθ̄ by introducing a rank-one
matrix Θ̄. As such, problem (5) can be converted into an SDP
as follows, similar to that in [35] and [36].

max
Θ̄�0

Tr(RΘ̄), s.t. Θ̄n,n = 1, ∀n = 1, . . . , N + 1, (6)

which can be solved efficiently by the off-the-shelf solver [37].
In the second step, with the fixed θ, the optimization of w in
problem (3) can be reformulated into an SDP as follows:

min
W�0

Tr(W), (7a)

s.t. Tr(ĜW) ≥ γ0, (7b)

Tr(HHHW) ≥ Nµη−1(1− ρ2)−1, (7c)

where Ĝ = ĝĝH denotes the equivalent channel matrix from
the AP to the receiver, and W is the SDR of the quadratic term
wwH , i.e., W � wwH . Given ρ and θ, the channel matrix
Ĝ becomes constant in problem (7). Hence, problem (7) has
a similar structure as that of problem (6). Both of them can
be efficiently solved by the interior-point method. Generally,
the relaxed problems (6) and (7) may not lead to a rank-
one solution. This implies that the optimal objective value of
problem (6) only provides an upper bound of problem (5).
Similarly, the optimal solution in (7) can be considered as a
lower bound on the optimization of active beamforming in
the second step. As such, additional steps are required to
construct a rank-one solution to the problem (5) from the
optimal high-rank solution to the problem (6). Similarly, the
rank-one beamforming vector w also needs to be extracted
from the optimal solution W to the problem (7).

Gaussian randomization method (GRM) is one of the effi-
cient methods to construct rank-one solutions from the optimal
solutions to SDR problems [38]. Specifically, for passive
beamforming in (6), we can firstly obtain the eigenvalue de-
composition as Θ̄ = UΣUH , where U = [e1, . . . , eN+1] and
Σ = diag(λ1, . . . , λN+1) are a unitary matrix and a diagonal
matrix, respectively, both with the size of (N + 1)× (N + 1).
Then, we can construct a suboptimal solution to problem (5)
as θ̄ = U

√
Σr, where r ∈ CN (0, IN+1) is a random vector

generated from the circularly symmetric complex Gaussian

Algorithm 1 Two-stage Beamforming Optimization with Per-
fect CSI

1: ‖w(0)‖2 ← +∞, k ← 1, ε← 10−5

2: Initialize θ randomly, w(k) ← ‖w‖2max

3: Evaluate ρ(k)
min, ρ(k)

max, and initialize ρ(k) ∈ (ρ
(k)
min, ρ

(k)
max)

4: while |‖w(k)‖2 − ‖w(k−1)‖2| > ε
5: k ← k + 1
6: Inner-loop update (θ,w)
7: Update θ: solve (6) to retrieve θ
8: Update w(k): solve (7) to retrieve w, w(k) ← w
9: Outer-loop update (ρ

(k)
min, ρ

(k)
max) by Proposition 2

10: ρ(k) ← (ρ
(k)
min + ρ

(k)
max)/2

11: end while

distribution with zero mean and the covariance matrix IN+1.
Given a set of randomly generated Gaussian vectors r, we
find the best θ̄ (denoted by θ̄

∗) that maximizes the objective
value in (5). Finally, the approximate solution to problem
(5) can be recovered by θ = ej arg([θ̄∗/θ̄∗N+1](1:N)), where
[x](1:N) denotes the vector of the first N elements in x [35].
It has been shown that a sufficiently large number of the
randomly generated vectors r can be used to generate a good
approximation of problem (5) [38]. The same procedures can
be applied to problem (7) can then used to retrieve the rank-
one approximate solution w.

Besides the AO method to optimize (w,θ), we also propose
a heuristic method to simplify the computation and reduce the
number of iterations. Note that the IRS’s phase vector θ only
appears in the constraint (3b). The use of IRS can be simply set
to enhance the equivalent channel gain ‖g+ρHfθ‖2 by tuning
its phase vector θ, regardless of the AP’s active beamforming
w. Hence, we call this heuristic method as the Max-Gain
algorithm. Given the receiver’s SNR requirement, the channel
enhancement in return can reduce the AP’s transmit power. By
this intuition, the IRS’s phase vector θ becomes the solution
to the following problem:

max
θ

‖g + ρHfθ‖2, s.t. θn ∈ [0, 2π), ∀n ∈ N , (8)

which can be solved efficiently by reformulating it into a
similar form as problem (6). As problem (8) is irrelevant to
the AP’s active beamforming, we can decompose the joint
beamforming optimization into two sub-problems and solve
them independently. Hence, we can avoid iterations between
w and θ and thus reduce the overall computational complexity.

B. Outer-loop Update of the Reflection Amplitude

Given the inner-loop beamforming solution (w,θ), the next
step is to update the outer-loop reflection amplitude ρ to further
reduce the AP’s transmit power. Note that the constraints (3b)
and (3c) actually define the lower and upper bounds of the
reflection amplitude ρ, respectively. Given the feasible region
of ρ, we can further exploit the structural property of the
optimal solution to problem (3), which will shed some insight
on the algorithm design to search for the optimal reflection
amplitude.
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6

Proposition 1: Given the beamforming solution (θ,w), the
upper bound on the reflection amplitude ρmax for problem (3)

is given as ρmax =
(

1− Nµ
η‖HHw‖2

)1/2

, while the lower bound
ρmin is the unique feasible solution to the quadratic equation
aρ2 + bρ+ c = 0, where the constant coefficients (a, b, c) are
given by a = |(Hfθ)

H
w|2, b = 2 Re

(
θHHH

f wwHg
)

, and
c = |gHw|2 − γ0, respectively.

The proof for Proposition 1 is relegated to Appendix A.
It is clear that Proposition 1 provides the feasible region for
ρ, given the joint beamforming strategies (w,θ). Considering
the non-trivial case with non-empty feasible region for ρ, the
following result further reveals the structural property of the
optimal solution to problem (3), which will guide the search
for the optimal reflection amplitude ρ in an iterative manner.

Proposition 2: Assuming that problem (3) is feasible, the
constraint in (3c) always holds with equality at optimum.

The proof for this proposition is detailed in Appendix B.
Proposition 2 implies an iterative search method for the
optimal ρ. Specifically, given the feasible region [ρmin, ρmax]
determined by Proposition 1, we can update ρ in the next
iteration as ρ = (ρmin + ρmax)/2. This allows us to further
update the beamforming strategies (w,θ) by solving prob-
lems (6) and (7) iteratively in the AO framework. Such an
iterative procedure terminates when the constraint (3c) holds
with equality. The detailed solution procedure for problem (3)
is shown in Algorithm 1. We set the termination condition
as the objectives of two consecutive iterations fall within a
predefined tolerance gap, ε. The convergence of Algorithm 1
is guaranteed by the following proposition.

Proposition 3: Algorithm 1 always converges to a finite value.

Proof: With a fixed ρ, it is clear that each iteration of the
AO method for (w,θ) will reduce the AP’s transmit power.
Besides, Proposition 2 reveals that the update to ρ can further
reduce the AP’s transmit power. As the objective in (3a)
has a finite lower bound, this implies that the iterations in
Algorithm 1 will eventually converge to a finite value.

C. An Illustrative Example of Algorithm 1

In this part, we provide an illustrative example to help
understand the iterations in Algorithm 1. The feasibility of
problem (3) is determined by the SNR and power budget
constraints in (3b) and (3c), which define two lower bounds
for the AP’s transmit powers, denoted by ‖w1‖2 and ‖w2‖2,
respectively. It is clear that ‖w1‖2 decreases with the increase
of ρ while on the contrary ‖w2‖2 increases in ρ. In the follow-
ing, we fix the IRS’s phase vector θ by solving problem (8)
and then discuss the relations between ρ and w.

1) Case I: Ideal IRS with neglectable power consumption:
In this case, the optimization problem focuses on the receiver
only and the AP’s transmit beamforming can be simply aligned
with the IRS-enhanced channel to the receiver. Given the
receiver’s SNR requirement γ0, the AP’s transmit power in
the IRS-assisted system is limited by ‖w1‖2max = γ0/‖g‖2,
while the minimum transmit power is given by ‖w1‖2min =

3

3

Fig. 2: An illustrative example of Algorithm 1.

γ0/‖(g + Hfθ)‖2 with ρ = 1. As shown in Fig. 2, the lower
bound ‖w1‖2 is plotted as the dotted curve.

2) Case II: Ideal receiver with neglectable SNR requiremen-
t: In this case, the optimization problem is only constrained
by the IRS’s power budget constraint. By setting ρ = 0 in the
extreme case, the IRS can harvest the RF energy at the maxi-
mum rate, and thus the AP’s minimum transmit power is given
by (4). For different ρ, the lower bound is similarly evaluated
by ‖w2‖2 , arg minw

{
‖w‖2 : η(1− ρ2)‖HHw‖2 ≥ Nµ

}
,

which is plotted as the solid curve in Fig. 2.
The x-axis of Fig. 2 denotes different choices of the

reflection amplitude ρ and y-axis represents the AP’s transmit
power. The shaded area in Fig. 2 denotes the feasible region
of ρ and ‖w‖2. The algorithm initializes with ‖w(0)‖2 and a
small ρ(0). In each AO iteration, the AP’s active beamforming
w is firstly optimized by solving the SDP in (7), which falls
in the feasible region in Fig. 2. After that, ρ(1)

min and ρ
(1)
max

can be evaluated in closed-form expressions by Proposition 2,
and thus the reflection amplitude for the next iteration is
updated as ρ(1) = (ρ

(1)
min + ρ

(1)
max)/2, as shown in Fig. 2.

This procedure iterates until the difference |ρ(k)
max − ρ(k)

min| or
|‖w(k)‖2 − ‖w(k−1)‖2| falls in a predefined tolerance gap ε,
as indicated in Algorithm 1.

IV. ROBUST ACTIVE AND PASSIVE BEAMFORMING
OPTIMIZATION

In this part, we extend the power minimization problem (3)
to a more practical case with inexact CSI. Due to the use
of passive elements in IRS, the channel estimations involving
the IRS are inevitably subject to estimation errors. The per-
formance degradation due to channel uncertainty in an IRS-
assisted system is seldom explored in an analytical way. In
the sequel, we firstly propose a channel uncertainty model
for the IRS-assisted channels, and then reformulate a robust
counterpart of the power minimization problem (3). After that,
we transform the robust counterpart to an efficiently tractable
form that is appealing for our algorithm design.

We assume that the direct channel g from the AP to the
receiver can be estimated accurately by the receiver in a
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7

training process. In particular, the AP can send a known pilot
information to the receiver with fixed transmit power. Mean-
while the IRS switches off its reflecting elements. The channel
g can be recovered at the receiver based on the received signal
samples. However, by using the passive scattering elements,
the IRS faces the challenge of accurate channel estimation due
to its inability for regular information exchange with the active
RF transceivers. Without information decoding capability at
the IRS, the channels H and f have to be estimated at either
the AP or the receiver by overhearing the channel response.

A. Robust Counterpart and Reformulations

Due to the lack of channel samples, the channel H is
typically subject to estimation errors, i.e., H = H̄+∆h, where
H̄ denotes the averaged channel matrix and ∆h denotes the
error estimate of the channel matrix. We assume that the error
estimate ∆h has limited power distribution, and thus we can
define the uncertainty set Uh for channel H as follows:

H ∈ Uh , {H = H̄ + ∆h : Tr(∆H
h ∆h) ≤ δ2

h}, (9)

where δh denotes the power limits of error estimate ∆h. A
similar channel uncertainty model is also employed in [18],
[20], [23]. The estimation of channel f becomes more difficult
as the passive IRS generally cannot emit RF pilot signals for
channel training. As such, the channel f has to be bundled with
the channel H to form the cascaded channel Hf , as defined
in (2), which can be estimated at the receiver by overhearing
the mixture of signals from the AP and the IRS’s reflections.
Similar to (9), we can define the uncertainty of the cascaded
channel Hf as follows:

Hf ∈ Uf , {Hf = H̄f + ∆f : Tr(∆H
f ∆f ) ≤ δ2

f }, (10)

where δf denotes the power limit of error estimate ∆f for the
channel Hf . The average estimate H̄f and the power limit δf
are assumed to be known by historical measurements. Given
the uncertainty models in (9) and (10), the robust counterpart
of (3) can be formulated as follows:

min
w,θ,ρ

‖w‖2, (11a)

s.t. ‖(g + ρHfθ)Hw‖2 ≥ γ0, ∀Hf ∈ Uf , (11b)

η(1− ρ2)‖HHw‖2 ≥ Nµ, ∀H ∈ Uh, (11c)
ρ ∈ [0, 1] and θn ∈ [0, 2π) ∀n ∈ N . (11d)

The constraints (11b) and (11c) define the receiver’s worst-
case SNR requirement and the IRS’s worst-case power budget
constraint, respectively. Now, we focus on the optimization of
the IRS’s reflection amplitude ρ and the joint beamforming
strategies (w,θ) in problem (11), which are closely coupled
with the uncertain channels Hf and H. In the sequel, we firstly
explore equivalent reformulations to the constraints (11b)-
(11c).

Proposition 4: The constraint in (11b) bears the following
equivalence:

ρ2A + ρB + C � 0, (12)

where the coefficients A, B, and C are given as follows:

A =

[
Θ⊗W (WcH̄f )vec(Θ)

vec(Θ)H(WcH̄f )H Tr(H̄H
f WH̄fΘ)

]
,

B =

[
0 (θ⊗W)g

gH(θ⊗W)H gHWH̄fθ + θHH̄H
f Wg

]
,

C =

[
tIMN 0

0 gHWg − γ0 − tδ2
f ,

]
,

for some t ≥ 0, where we define Wc = IN⊗W for notational
convenience. W is a rank-one relaxation matrix of wwH .
Similarly, Θ is the rank-one relaxation matrix of θθH .

The proof for Proposition 4 is relegated to Appendix C. It
transforms the worst-case semi-infinite constraint in (11b) into
a semidefinite matrix inequality. Given a fixed ρ, the matrix
inequality in (12) is still in a non-convex form due to the
bilinear coupling between W and Θ (or θ). However, for
any fixed Θ or W, constraint (12) becomes a linear matrix
inequality with respect to the other decision variables. This
implies that the AO method used for the non-robust problem
in (3) can be applied similarly in optimizing W and Θ in the
robust case.

Proposition 5: The constraint in (11c) bears the following
equivalent reformulation.[

Wc + τIMN , Wcvec(H̄)

vec(H̄)HWc, γ̄ − Nµ
η(1−ρ2) − τδ

2
h

]
� 0, (13)

for some τ ≥ 0, where we define γ̄ = vec(H̄)HWcvec(H̄)
for notational convenience.

The proof for Proposition 5 follows a similar idea to that for
Proposition 4. The detailed proof is relegated to Appendix D.
Note that the equivalence in (13) has a much simpler form,
which is linear in W for some fixed ρ. Hence, we can
reformulate the robust counterpart (11) as follows:

min
ρ,Θn,n=1,W�0,t≥0,τ≥0

{Tr(W) | (12) and (13)} . (14)

Though problem (14) is still difficult to solve directly, we
can consider a similar decomposition as that for the non-
robust problem (3) and thus follow the two-stage optimization
framework in Algorithm 1. In particular, we keep the search
for ρ in the outer loop and then optimize (W,Θ) in the inner
loop with a fixed ρ. In the sequel, we present the details for
each optimization stage.

B. Two-stage Robust Beamforming Optimization

1) Inner-loop beamforming optimization: Given a fixed
reflection amplitude ρ in the outer loop, the inner-loop opti-
mization of (W,Θ) can follow a similar AO method as that in
Algorithm 1. In particular, we can firstly initialize the phase
vector θ and the corresponding phase matrix Θ randomly.
Hence, the matrix inequalities in (12) and (13) all become
linear forms in terms of the active beamforming matrix W
and the auxiliary variables (t, τ). On the other aspect, with
fixed W, the constraint in (12) also becomes a linear matrix
inequality in terms of Θ. This implies that the inner-loop
problem (14) with a fixed ρ can be easily handled by the
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Algorithm 2 Two-stage Robust Beamforming Optimization
with Channel Uncertainty

1: ‖w0‖2 ←∞, k ← 1, ε← 10−5, ρ(0) ← ε0
2: Solve θ according to (8) with H̄f

3: while |‖wk‖2 − ‖wk−1‖2| > ε
4: k ← k + 1
5: Update (θ,w) :

Retrieve (θ,w) in (8) and (16), respectively
Update wk ← w

6: Outer-loop update ρ :
Retrieve ρmax in (17a) by the bisection method
Retrieve ρmin in (17b) by the bisection method
ρ← (ρmin + ρmax)/2

7: end while

AO method. Similar to the Max-Gain algorithm for the non-
robust case, we can also simplify the inner-loop optimization
by optimizing the IRS’s phase vector θ directly to enhance the
equivalent channel ‖g + ρHfθ‖2. Comparing to problem (8)
for the non-robust case, the only difference for the robust case
is that the channel matrix Hf has to be replaced by its average
estimate H̄f . Given the phase vector θ, the optimization of w
can be also simplified into a convex problem:

Proposition 6: Given the solution θ to (8), the constraint
in (12) can be further simplified as:[

ρ2
(
θθH ⊗W

)
+ tIMN ρ(θ⊗W)ḡ

ρḡH(θ⊗W)H ḡHWḡ − γ0 − tδ2
f

]
� 0,

(15)

which becomes a linear matrix inequality with the fixed ρ.

Proposition 6 is a direct result from Proposition 4. Note that
the matrix coefficient θθH ⊗W can be further simplified as
(θ⊗W)(θH⊗IM ). The common term θ⊗W in (15) is linear
with regard to W. As such, we can optimize W efficiently
by solving the following SDP:

min
W�0,t≥0,τ≥0

{Tr(W) | (13) and (15)} . (16)

The AP’s beamforming vector w can be retrieved via eigen-
value decomposition if the solution W to problem (16) is
rank-one, or approximated by GRM if W has a higher rank.
By solving θ and w independently in two sub-problems, the
heuristic Max-Gain algorithm can avoid the iterations between
w and θ, and thus improve the time efficiency compared to
the AO method.

2) Outer-loop update of the reflection amplitude: The re-
maining task is to update the IRS’s reflection amplitude ρ
in the outer loop, based on the inner-loop solution (w,θ)
to problem (11). This can be performed following a similar
idea for the non-robust case in Section III-B. Specifically, we
firstly determine the upper and lower bounds on the reflection
amplitude ρ and then update it to improve the objective
in (11a). Given (w,θ), the evaluation of ρmin and ρmax for the
robust case depends on the feasibility check of two worst-case
constraints in (11b) and (11c), respectively. As (11b) and (11c)
have their SDR representations in (15) and (13), respectively.

This can simplify the feasibility check by the following two
sub-problems:

ρmax = arg max{ρ ∈ (0, 1) : (13) holds}, (17a)
ρmin = arg min{ρ ∈ (0, 1) : (15) holds}. (17b)

Though it is difficult to find closed-form expressions for ρmax

and ρmin, the following structural property implies that we can
use a simple bisection method to search for them efficiently.

Proposition 7: Given a feasible ρo to the matrix inequalities
in (13) and (15), we always have ρ1 feasible to (13) for any
ρ1 ∈ (0, ρo) and ρ2 feasible to (15) for any ρ2 ∈ (ρo, 1).

The proof of Proposition 7 is straightforward by an
inspection of (12) and (13). Given the initialization ρmin = 0
and ρmax = 1, we firstly try ρ = (ρmin + ρmax)/2 and check
whether (13) is a positive semidefinite matrix. Then, we
can tune down ρ if it is true or increase it if it is not true.
This leads to the lower bound ρmin at the convergence. The
upper bound ρmax can be determined by a similar procedure.
The detailed solution procedure is given in Algorithm 2,
which shares a similar flow of Algorithm 1. It is clear that
Algorithm 2 follows an AO framework. Within each iteration,
there are three steps to update w, θ, and ρ, respectively. Each
step relates to the solution of an SDP in the following standard
form [39]: minx∈Rn

{
cTx | Ai(x) � 0, ∀i = 1, . . . ,K

}
,

which can be solved efficiently by the interior-point
algorithm with the computational complexity given by
O
(

(
∑K
i mi)

1/2
(
n2
∑K
i m

2
i + n

∑K
i m

3
i

))
. Here mi

stands for the size of the matrix variable in each of the
matrix inequalities Ai(x) � 0 and K is the number of matrix
inequalities. Accordingly, we can evaluate the computational
complexity in one iteration as that in (18). Note that
the update of the reflection magnitude ρ depends on the
evaluation of two extreme points, denoted as ρmin and ρmax,
respectively. Each point is determined by solving a set of
SDPs via the bisection method with the error tolerance ε.
Since the number of the IRS’s reflecting elements are much
larger than the number of the AP’s antennas, i.e., N � M ,
the overall computational complexity is practically dominated
by the term M5.5N3.5. As such, the overall computational
complexity of the proposed algorithm can be characterized by
O
((
M5.5 + log2( 1

ε )M3.5
)
N3.5Imax

)
, where Imax denotes

the maximum iterations of Algorithm 2.

V. NUMERICAL RESULTS

In this part, we verify the robust beamforming optimization
algorithms and evaluate the performance variations with dif-
ferent system parameters, including channel uncertainty, the
receiver’s SNR requirement, the size of IRS, and the IRS’s
deployment location. The network topology in simulations is
shown in Fig. 3. The AP locates at (0, 0) and the IRS locates at
(dAI, 0). The receiver locates at (d0, dv) and the distances from
the AP to the IRS and from the IRS to the receiver are denoted
by dAR and dIR, respectively. We set dv = 2 m, d0 = 50 m,
and dAI = 5 m in the simulations unless otherwise specified.
We consider the AP with M = 4 antennas and the IRS with
20 ∼ 180 reflecting elements. Similar to [10], the path loss
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O

M6.5N2.5 +M5.5N3.5︸ ︷︷ ︸
optimize w

+N2.5 +N3.5︸ ︷︷ ︸
optimize θ

+ 2
(
M2.5N2.5 +M3.5N3.5

)
log2(1/ε)︸ ︷︷ ︸

optimize ρ

 . (18)

�������� ( , )

!" (0, 0) #�$ ( AI, 0)

%

&&

Fig. 3: Simulation environment of an IRS-assisted MISO system.

follows a log-distance propagation model. The loss exponents
of the AP-IRS, AP-receiver and IRS-receiver channels are
given by 2, 3.5, 2.8, respectively. The path loss at the reference
distance (1 meter) is 30 dB. The energy consumption of
one IRS element is set to 1 µW [40]. To characterize the
channel uncertainties, we define uncertainty levels as βh ,
δ2
h/Tr(H̄H̄H) and βf , δ2

f /Tr(H̄fH̄
H
f ), respectively, for the

uncertain channels H and Hf . For simplicity, we consider
β = βh = βf in the following simulations. A larger β implies
a higher variation of the channel conditions and thus larger
errors in channel estimation. For each simulation setting, we
run the experiment 10 times with randomly generated channel
conditions and record the averaged performance.

A. Convergence of the Two-stage Optimization Algorithm

We firstly verify the convergence of the proposed algorithm
and explain its efficacy. In Fig. 4, we show the convergence
of the AP’s transmit power and the IRS’s reflection amplitude
in Algorithm 2. Four groups of different parameter settings
are evaluated. For each setting, the AP’s transmit power starts
with a relatively high value to ensure the fulfillment of the
worst-case SNR requirement at the receiver and the worst-case
power budget constraint at the IRS. As the algorithm iterates,
the AP’s transmit power decreases significantly within a few
iterations and then converges to a small value meanwhile the
reflection amplitude ρ increases to reflect more RF power to
the receiver. By dynamically adjusting the operating parame-
ters at both the AP and the IRS in an iterative manner, the
AP can tune down its transmit power gradually while still
maintaining the desired service provisioning to the receiver.
For four groups of simulation settings, the algorithm is shown
to converge within a few iterations as shown in Fig. 4, which
verifies the efficacy of Algorithm 2. Besides, we observe that
a small uncertainty factor β or a low SNR requirement γ0

can lead to a reduced transmit power at the AP and also
a lower reflection amplitude at the IRS. For example, for
(N, β) = (20, 0.05), the AP’s transmit power is 15.61 dBm
when the SNR requirement is set to 15 dB, the AP’s transmit
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Fig. 4: The AP’s transmit power and the IRS’s reflection amplitude
in Algorithm 2 with different channel uncertainties.

power increases to 20.32 dBm when the receiver increases
its SNR requirement to 20 dB. Note that the 4.7 dB increase
to the AP’s transmit power is less than the 5 dB increase
to the receiver’s SNR requirement. This is due to the IRS’s
reconfigurability. When the AP’s transmit power increases, the
IRS can tune up its reflection amplitude and optimize its phase
shifting matrix to reflect and focus more RF power towards
the receiver.

B. The Price of Robustness

The price of robustness can be viewed as the increase of the
AP’s transmit power to maintain the same quality provisioning
to the receiver under uncertain channel conditions. In Fig. 5(a),
we compare the performance of the robust Algorithm 2 with
that of Algorithm 1 for the non-robust case. We also show the
baseline performances for non-IRS-assisted case and the IRS’s
random phase shifting scheme. Once we obtain the matrix
solution (W,Θ) within each iteration, we can apply the Gaus-
sian randomization method (GRM) to derive the approximate
rank-one solution (w,θ). Our results in Fig. 5 shows that
Algorithm 2, by using the GRM method, can achieve the same
performance as that of Algorithm 2 without using the GRM
method. This verifies the efficacy of Algorithm 2 in robust
beamforming optimization.

Comparing Algorithm 2 with Algorithm 1, we observe a
significant increase in the AP’s transmit power. The increase
becomes even higher with a larger uncertainty level. This is
intuitive as the AP has to raise its transmit power when the
channel becomes highly fluctuating to met the receiver’s SNR
requirement or the IRS’s power budget constraint. Such an
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Fig. 5: Performance comparison between the robust and the non-
robust algorithms.

increase in the AP’s transmit power represents the price of
robustness to fight against the channel uncertainties. For exam-
ple, when β = 0.01, the AP’s transmit power in Algorithm 2 is
increased by 24% comparing to that in Algorithm 1. Such an
increase comes up to 67% when β = 0.05. However, we also
observe that the robust beamforming design in Algorithm 2
achieves significant power saving comparing to the non-IRS-
assisted case or the random phase shifting scheme. In partic-
ular, when β = 0.05, the AP’ transmit power can be saved by
about 60% comparing to random phase shifting scheme and
about 80% comparing to the non-IRS-assisted case.

An outage event occurs when either the receiver’s SNR
requirement is not fulfilled or the IRS’s power budget con-
straint becomes failed due to the channel uncertainties. For a
comparison, we also evaluate the outage performance of the
non-robust Algorithm 1. In the simulation, the channels are
generated randomly with the variance ranging from 1 to 5 dB.
Both the robust and the non-robust algorithms estimate the CSI
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Fig. 6: A larger-size IRS can be used to fight against channel
uncertainties.

with the channel observations. The non-robust Algorithm 1
is implemented with the averaged channel estimations, while
the robust Algorithm 2 allows the channel conditions to be
fluctuating within a predefined range, which is characterized
by the uncertainty level β. This provides extra protection for
the receiver’s SNR and the IRS’s power budget constraints. In
Fig. 5(b), we show the outage probabilities against different
channel variances. We observe that barely no outage happens
in the robust Algorithm 2. The outage probability of the non-
robust Algorithm 1 is significantly larger than that of the robust
case, and is further increasing with the channels’ variance of
fluctuation. Besides, the outage performance of the non-robust
Algorithm 1 is very sensitive to the increase of the receiver’s
SNR requirement.

C. IRS’s Size and Uncertainty Tradeoffs

We then evaluate the impact of IRS’s size on the AP’s
minimum transmit power by varying N from 20 to 180. The
receiver’s SNR requirement is fixed at 20 dBm. It is obvious
on one hand that a higher uncertainty level always implies a
higher transmit power at the AP for a fixed size of the IRS.
On the other hand, by increasing the IRS’s size, it becomes
possible to compensate for the performance loss due to the
channel uncertainty. As shown in Fig. 6, given the IRS’s size
N = 60, the minimum required transmit power at the AP will
be increased from 16.3 dBm to 17.3 dBm if the uncertainty
level increases from β = 0.01 to β = 0.03. However, instead
of increasing the AP’s transmit power, we can also increase
the IRS’s size from N = 60 to N = 100 to fight against
the channel uncertainty. As such, the AP’s minimum transmit
power for β = 0.03 can be reduced to 15.7 dBm, which is
even less than that of the case with (N = 60, β = 0.01). The
reason is that a larger-size IRS can provide more channel gain
in the AP-IRS-receiver link and thus improve the receiver’s
SNR and also reduce the AP’s transmit power.

However, such a benefit diminishes when the IRS’s size ex-
ceeds a certain value due to the IRS’s power budget constraint.
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Fig. 7: Simulation topology to evaluate the IRS’s deployment.

For example, the minimum transmit power required by the AP
is raised up to 18.5 dBm with 180 elements under β = 0.03,
which is about 2.8 dB higher than that with 100 elements. The
reason is that the energy consumption of the IRS increases
with its size linearly. However, the energy harvesting of the
IRS does not increase linearly with its size since the AP’s
beamforming cannot targets at every single element on the
IRS at the same time. In summary, increasing the IRS’s size
provides an efficient way for power saving at the AP. However,
the large-size IRS also requires more energy harvesting from
the AP, which implies that we need to carefully design the
IRS’s size to balance between its power demand and the
performance gain under uncertain channel conditions.

D. Deploying IRS Closer to the AP

Given the IRS’s power budget constraint, the IRS’s deploy-
ment location is also an important design aspect to minimize
the AP’s transmit power subject to the receiver’s SNR require-
ment. Note that the IRS is self-powered by harvesting RF
energy from the AP’s beamforming signals. Hence, we expect
that it is preferable to deploy IRS closer to the AP. To verify
this result, we consider the simulation topology in Fig. 7,
where the AP and the receiver locate at (0, 0) and (50, 0),
respectively. The IRS locates at (d0, 2), where d0 denotes the
horizontal distance between the AP and the IRS. The IRS’s
size is fixed at N = 60 and the receiver’s SNR requirement is
set to 20 dB. When the IRS moves far away from the AP, we
observe that the AP’s transmit power also increases as shown
in Fig. 8(a), while the IRS’s reflection amplitude decreases as
shown in Fig. 8(b). The reason lies in two folds. Firstly, the
AP-IRS channel becomes worse off as the IRS moves away
from the AP, which implies a reduced energy harvesting rate
at the IRS. As such, the AP has to increase its transmit power
and the IRS has to tune down its reflection amplitude to sustain
the IRS’s operations. Secondly, the product of the AP-IRS and
the IRS-receiver channels deteriorates as the IRS locates in the
middle of the AP and the receiver, similar to the observations
in [10]. This requires a higher transmit power at the AP to
maintain the same quality provisioning to the receiver. In the
extreme case, when the IRS is deployed far away from the
AP, the IRS may be no longer self-sustainable by harvesting
energy from the AP’s beamforming signals, given the energy
consumption of scattering elements. In this case, the MISO
downlink system tends to operate independently without the
IRS’s assistance. For example, given µ = 5 µW, the IRS-
assisted system performs no better than the non-IRS-assisted
system when the horizontal distance between the IRS and the
AP is larger than 15 m.
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Fig. 8: The AP’s transmit power and the IRS’s reflection amplitude
change with the IRS’s deploying locations.
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Fig. 9: Performance evaluation of discrete phase shifting for both
robust and non-robust cases.

E. Higher Transmit Power under Discrete Phase Shifting

Finally, we consider a more practical scenario with discrete
phase shifting at the IRS. In this case, the IRS’s phase shifting
is given by θn = ejαn , where αn is chosen from a discrete set{

0, 2π
L , . . . ,

2π(L−1)
L

}
, where L = 2B is the total number of

phase shifting levels and B denotes the number of bits used
to encode different phase shifts. Once we find the optimal
continuous phase shifting scheme, denoted by θ∗n = ejα

∗
n , we

can always find the corresponding discrete phase shifting by
projection: l∗ = arg minl∈[1,L]|θ∗n − ejαn,l |, for each n ∈ N ,
where αn,l = 2π(l − 1)/L and l ∈ {1, . . . , L}. We set
(M,N) = (4, 60) and vary the receiver’s SNR requirement
from 10 dB to 30 dB. The AP’s optimal transmit power
under both robust and non-robust cases are evaluated and
shown in Fig. 9. The IRS’s discrete phase shifting scheme is
also evaluated as a benchmark. As shown in Fig. 9, for both
robust and non-robust cases, the discrete phase shifting scheme
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requires a higher transmit power at the AP compared to that
of the ideal continuous phase shifting scheme. Fortunately, the
IRS with discrete phase shifting can still provide significant
performance gain. For B = 3, the discrete phase shifting
achieves nearly the same performance as that of the ideal
continuous phase shifting scheme.

VI. CONCLUSIONS

In this paper, we have considered an IRS-assisted multiple-
input single-output wireless downlink system, in which the
IRS works in a self-sustainable manner by harvesting energy
from the radio frequency transmitter in the power splitting
protocol. We have proposed the joint active and passive
beamforming problem as well as its robust counterpart against
channel uncertainties. By exploiting the problem structure, a
two-stage optimization framework has been devised to solve
both design problems in the non-robust and robust cases.
Extensive numerical results have revealed that our proposed
algorithm is efficacy to balance the IRS’s energy budget and
the receiver’s signal enhancement by tuning IRS’s reflection
amplitude, even with uncertain channel conditions. Besides, a
more practical discrete phase shifting scheme with 3-bit phase
resolution can achieve nearly the same performance as that of
the continuous phase shifting scheme.

APPENDIX

A. Proof for Proposition 1

Proof: The upper bound of ρ, denoted by ρmax, can be
easily determined by solving the equation in the constrain-

t (3c), resulting in ρmax =
(

1− Nµ
η‖HHw‖2

)1/2

. Similarly, the
lower bound of ρ, denoted by ρmin, is determined by solving
the equation in constraint (3b), which can be expanded as
follows:

ρ2|(Hfθ)
H

w|2

+ ρ
(

2 Re
(
θHHH

f wwH
)

g
)

+ |gHw|2 − γ0 = 0.
(19)

Note that (19) is a quadratic equation in the form of
aρ2 + bρ + c = 0 with the constant coefficients given
by a = |(Hfθ)

H
w|2, b = 2 Re

(
θHHH

f wwH
)

g, and
c = |gHw|2−γ0, respectively. Non-trivially, it can be verified
that a > 0, b > 0, c < 0, and a + b + c ≥ 0. The reason is
that a denotes the received signal strength via the AP-IRS-
receiver link. Besides, b denotes the real part of inner product
of the IRS-assisted signal and the direct beamforming signal.
Hence, we can expect that b > 0 as the IRS-assisted link is
an enhancement of the direct link. Furthermore, to motivate
the use of IRS, we can expect that c < 0, which means that
the received signal strength via the direct link is unable to
meet the receiver’s SNR requirement. Lastly, by setting ρ = 1
in (3b) and (19), we expect that a+ b+ c > 0, implying that
the receiver’s SNR requirement can be satisfied in the ideal
case with zero energy consumption at the IRS. With these
properties, we can solve the lower bound of ρ as the unique
solution to the quadratic equation in (19), which is given by
ρmin = (

√
b2 − 4ac− b)/2a ∈ (0, 1).

B. Proof for Proposition 2

Proof: We prove this proposition by using contradiction
theory. We assume that (ρ,w) is optimal to problem (3) and
the constraint (3c) holds with strict inequality. Depending on
the constraint (3b), we will have different strategies as follows:
1) If (3b) holds with strict inequality, it is clear that we can
properly scale down w by a scalar factor s < 1 such that
both constraints in (3b) and (3c) still hold. The scaling sw
apparently leads to a better objective in (3a), which brings a
contradictory to our assumption. 2) If (3b) holds with equality,
we can still construct a new solution that leads to a reduced
transmit power. In this case, the inequality (3b) always holds
when we increase ρ. Let ρmin and ρmax denote the lower and
upper bounds of ρ with the fixed w, respectively. We then
have the following equations:

|(g + ρminHfθ)Hw|2 = γ0, (20a)

η(1− ρ2
max)‖HHw‖2 = Nµ. (20b)

Therefore, we can simple set ρm = (ρmin + ρmax)/2 that
ensures strict inequalities in both (3b) and (3c). This becomes
exactly the first case, in which we can scale down w and
achieve a reduced transmit power. Specifically, the scaling
factor can be set as follows:

s = min

{
γ0

|(g + ρmHfθ)Hw|2
,

Nµ

(1− ρ2
m)‖HHw‖2

}
.

It is obvious that for any case above we can always improve
the objective function, which verifies that the constraint in (3c)
has to hold with equality at optimum.

C. Proof for Proposition 4

Proof: Considering the uncertainty of channel matrix
Hf = H̄f + ∆f , we can define ḡ = g + ρH̄fθ for notational
convenience and rewrite (11b) as follows:

|ḡHw + ρ (∆fθ)
H

w|2 ≥ γ0,∀ Hf ∈ Uf . (21)

Let df = ∆fθ for notational convenience and define semidef-
inite matrix such that W � wwH . The LHS of (11b) can be
easily transformed as follows:

|ḡHw + ρdHf w|2

= ρ2dHf Wdf + ḡHWḡ + ρḡHWdf + ρdHf Wḡ

= ρ2Tr
(
∆H

f W∆fθθ
H
)

+ ḡHWḡ

+ ρTr
(
∆H

f WḡθH
)

+ ρTr
(
θḡHW∆f

)
. (22)

In the sequel, we have Tr(AHB) = vec(A)Hvec(B) and
vec(ABC) = (CH ⊗ A)vec(B). As such, we can further
rewrite (22) as follows:

|ḡHw + ρdHf w|2

= ρ2vec(∆f )H(θθH ⊗W)vec(∆f ) + ḡHWḡ

+ ρḡH(θ⊗W)Hvec(∆f ) + ρvec(∆f )H(θ⊗W)ḡ. (23)

Till now, the LHS of (21) can be rewritten in a quadratic

form, i.e., xHMx ≥ 0, where x =

[
vec(∆f )

1

]
and the matrix
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coefficient M is given as follows:

M =

[
ρ2
(
θθH ⊗W

)
ρ(θ⊗W)ḡ

ρḡH(θ⊗W)H ḡHWḡ − γ0

]
.

It is easy to see from (21) that xHMx ≥ 0 holds for any
∆f satisfying vec(∆f )Hvec(∆f ) ≤ δ2

f . By S-Lemma [41],
we can always find some t ≥ 0 such that[

ρ2
(
θθH ⊗W

)
+ tIMN ρ(θ⊗W)ḡ

ρḡH(θ⊗W)H ḡHWḡ − γ0 − tδ2
f

]
� 0.

(24)

Note that the IRS-assisted channel ḡ = g + ρH̄fθ also
depends on the choice of phase shift vector θ. In the sequel,
we rearrange matrix terms in (24) and verify that the matrix
inequality is linear in terms of θ and its semidefinite relaxation
Θ � θθH . It is clear that ḡHWḡ can be rewritten as follows:

ḡHWḡ = ρgHWH̄fθ + ρθHH̄H
f Wg

+ gHWg + ρ2Tr(H̄H
f WH̄fΘ), (25)

which is linear with respect to θ and Θ for any fixed (ρ,W).
Furthermore, the off-diagonal element in (24) can be expanded
as ρ(θ⊗W)ḡ = ρ(θ⊗W)g + ρ2(θ⊗W)H̄fθ, where the
second term can be further transformed by using the following
equalities:

(θ⊗W)H̄fθ = (WcH̄f )(θ⊗ θ) = (WcH̄f )vec(Θ), (26)

where Wc = IN ⊗W for notational convenience. By substi-
tuting (25) and (26) into (24), we can arrive at the equivalent
semidefinite representation in (12).

D. Proof for Proposition 5

Proof: The proof of Proposition 5 follows a similar
idea to that for Proposition 4 by rewriting the semi-infinite
constraint (11c) into a quadratic form. Let γ0 = ‖HHw‖2
and γ̄0 = ‖H̄Hw‖2. We have the following reformulations:

γ0 = wH
(
H̄ + ∆h

) (
H̄ + ∆h

)H
w

= wH∆h∆H
h w + wH∆hH̄Hw + wHH̄∆H

h w + γ̄0

= Tr(∆H
h W∆h) + Tr(∆H

h WH̄) + Tr(H̄HW∆h) + γ̄0.

Similarly, by using the trace equalities, i.e., Tr(AHB) =
vec(A)Hvec(B) and vec(AB) = (IN ⊗A) B for the ma-
trices A and B with the dimensions M ×M and M × N ,
respectively, we can rewrite γ0 as follows:

γ0 = vec(∆h)HWcvec(∆h) + vec(∆h)HWcvec(H̄)

+ vec(H̄)HWcvec(∆h) + γ̄0, (27)

where Wc = IN ⊗ W. Note that we can write γ̄0 as
γ̄0 = vec(H̄)

H
Wcvec(H̄). As such, we can reformulate the

constraint (11c) into a quadratic form of the uncertain vector
vec(∆h). Note that vec(∆h)Hvec(∆h) = Tr(∆H

h ∆h) ≤ δ2
h.

By S-Lemma, the worst-case power budget constraint in (11c)
can be equivalently represented by (13).
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