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Distributed Computing over Heterogeneous

Wireless Edge Networks

Cong T. Nguyen, Diep N. Nguyen, Dinh Thai Hoang, Khoa Tran Phan,

Dusit Niyato, Hoang-Anh Pham and Eryk Dutkiewicz

Abstract

Coded distributed computing (CDC) has recently emerged to be a promising solution to address the

straggling effects in conventional distributed computing systems. By assigning redundant workloads to

the computing nodes, CDC can significantly enhance the performance of the whole system. However,

since the core idea of CDC is to introduce redundancies to compensate for uncertainties, it may lead to

a large amount of wasted energy at the edge nodes. It can be observed that the more redundant workload

added, the less impact the straggling effects have on the system. However, at the same time, the more

energy is needed to perform redundant tasks. In this work, we develop a novel framework, namely

CERA, to elastically allocate computing resources for CDC processes. Particularly, CERA consists of

two stages. In the first stage, we model a joint coding and node selection optimization problem to

minimize the expected processing time for a CDC task. Since the problem is NP-hard, we propose a

linearization approach and a hybrid algorithm to quickly obtain the optimal solutions. In the second

stage, we develop a smart online approach based on Lyapunov optimization to dynamically turn off
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straggling nodes based on their actual performance. As a result, wasteful energy consumption can be

significantly reduced with minimal impact on the total processing time. Simulations using real-world

datasets have shown that our proposed approach can reduce the system’s total processing time by more

than 200% compared to that of the state-of-the-art approach, even when the nodes’ actual performance

is not known in advance. Moreover, the results have shown that CERA’s online optimization stage can

reduce the energy consumption by up to 37.14% without affecting the total processing time.

Index Terms

Coded distributed computing, Maximum Distance Separable code, resource allocation, INLP, Lya-

punov optimization, edge computing, and straggling effects.

I. INTRODUCTION

The core idea of distributed computing is to distribute an intensive computing task among

multiple nodes in a network, thereby utilizing the computing resources of multiple devices (e.g.,

edge and mobile devices). As a result, distributed computing has significant advantages over

conventional centralized computing. First, distributed computing can achieve a high processing

speed as the workload can be shared among various computing nodes. Second, distributed

computing systems are scalable, i.e., more devices can be easily added, and thus low-cost devices

can be utilized [11]. These outstanding advantages have enabled distributed computing to be

widely applied in areas such as wireless edge computing [2], [3], Internet-of-Things [4], [5],

and distributed learning [6], [7].

Despite its advantages, applications of distributed computing face critical challenges, especially

in heterogeneous wireless edge networks. Particularly, straggling problems caused by uncertain-

ties of computing processes, e.g., inconsistent computation time and/or failures, can lead to

unpredictably severe latency in some computing nodes. The reason is that a task requires the

calculated results from all nodes, and thus the total processing time of a task will be determined

by the slowest node in the system. Moreover, communication links in wireless networks can

be unstable, resulting in even more latency for the whole process [8]–[10]. Coupled with

the straggling problems at the nodes, this can dramatically slow down the whole distributed

computing system.
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To address this straggling issue, Coded Distributed Computing [11] (CDC) has recently

emerged to be an effective solution. The core idea of CDC is to assign redundant workloads

to edge nodes via advanced coding theoretic techniques. Such redundancy can compensate for

the uncertain computation and transmissions time, thereby improving the stability and latency of

uncoded distributed computing [11]. Among CDC techniques, the maximum distance separable

(MDS) code has been widely used [8], [11]. The general procedure of a CDC system using

MDS code is illustrated in Fig. 1. First, once a task arrives, it can be encoded into n equal-sized

sub-tasks and sent to n nodes. With the MDS code, any k results from those n sub-tasks can be

used to derive the final result (k ≤ n). Thus, the server only needs to wait for the fastest k nodes,

thereby mitigating the effects of straggling edge nodes and unreliable wireless communication

links.

It can be observed that there are three factors that have significant impacts on the effectiveness

and efficiency of the CDC process using the MDS code. First, a higher value of k means

that each node has a sub-task with a smaller size to process, as k is inversely proportional to

each sub-task’s size [11]. On the other hand, it also means that the server needs to wait for

more nodes to send back their computing results to be able to complete the computing task.

In cases where there are many straggling nodes and communication links, this can potentially

lead to a very long processing time for the whole system. Second, besides the total processing

time, the value of k dictates the efficiency and energy consumption of the CDC process.

Specifically, since the final results can be obtained from the computations of any first k nodes,

the computational workload of the remaining n − k nodes will be wasteful. However, without

such redundancy, the uncertainties of the nodes’ performances might significantly prolong the

processing time. Thus, it is critical to optimize the trade-off between the total processing time

and energy efficiency in the CDC process. Third, most of the existing approaches, e.g., [14]–

[17], [24], focus on optimizing the number of nodes (finding optimal values of (n, k)) without

considering node selection. However, edge nodes often have different computing capacities and

communication links in practice. Consequently, this can significantly impact the effectiveness of

CDC in heterogeneous environments such as wireless edge networks. Therefore, to improve the

future system performance for CDC processes over heterogeneous wireless edge networks, all

three abovementioned factors must be carefully taken into account.
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To address the above challenges, this work develops a novel optimization framework, namely

CERA (Coded distributed computing Elastic Resource Allocation), to jointly minimize the total

processing time and the energy consumption for the whole system. In particular, CERA consists

of two stages. In the first stage, once a task arrives at the server, the server needs to make optimal

decisions regarding the (n, k) values as well as which nodes to be selected. To this end, we

first formulate the joint code and node selection problem as an Integer Non-linear Programming

(INLP) optimization problem. Since this problem is NP-hard, we develop a linearization approach

to transform the INLP into an equivalent Integer Linear Programming (ILP) problem. Moreover,

we leverage the unique characteristic of this problem to develop a highly effective hybrid

algorithm based on Branch-and-Bound (BB) and binary search algorithms. Both the linearization

approach and the hybrid algorithm can help to solve the original NP-hard problem with a low

complexity, allowing them to be deployed at the servers to efficiently obtain optimal solutions.

In the second stage of CERA, we observe that severely straggling computing nodes can be

early/temporarily turned off (removed from their current task) to conserve the system’s energy.

For that, we design an online optimization approach based on Lyapunov optimization [30]

to optimize the CDC system’s control policy, i.e., removing straggling nodes from the task

computing process. For example, considering a CDC system with (n, k) = (5, 3), and at a

certain time, we observe that 4 nodes have done more than 95% of their workload, while the

last node has done only 10% of its workload due to straggling effects. In this case, we can turn

off the straggling node because it is likely that it will not be among the first 3 fastest nodes

to complete their task, thereby reducing wasteful energy for the whole system. Nevertheless,

choosing which node to turn off is not an easy task because each node has a different energy

consumption rate and removing off a node too early may negatively impact the system’s total

processing time. Therefore, we develop a dynamic optimization approach that helps the server

to decide when and which nodes to turn off to save energy while ensuring the total processing

time is not affected by the control decisions. Particularly, our Lyapunov-based approach can

optimally control the trade-off between energy consumption and actual workload remaining at

each node via an adjustable control parameter (which can be freely adjusted by the server).

Moreover, this approach can minimize the redundancy in the CDC process without requiring

perfect knowledge about the nodes’ real straggling effects. Instead, our approach only relies on
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observable parameters such as expected straggling parameters and the actual remaining workload

at the nodes. Furthermore, we theoretically prove that the average system’s energy consumption

can be effectively bounded by the control parameter. The major contributions of this paper can

be summarized as follows:

• We propose a novel two-stage optimization framework, namely CERA, to jointly optimize

the coding, node selection, and online control policy for CDC over a heterogeneous wireless

edge network. To the best of our knowledge, this framework is the first in the literature that

can simultaneously and dynamically minimize the processing time and energy consumption

for the CDC.

• We develop an effective INLP model to jointly optimize the coding and node selection. Since

this problem is nonlinear and NP-hard, we propose a linearization approach to transform the

INLP model into an equivalent ILP problem. To further enhance the efficiency of CERA, we

develop a novel hybrid algorithm that can significantly reduce the problem’s computational

complexity, enabling CERA to be employed at edge servers to quickly find optimal solutions.

• We develop a smart Lyapunov-based online optimization approach to dynamically optimize

the control policy of the server. This approach enables the server to optimize the trade-

off between the total processing time and the system’s resource efficiency, thereby greatly

improving resource utilization. We also theoretically prove that the average system’s energy

consumption can be effectively bounded by an adjustable control parameter.

• We conduct simulations based on real-world datasets to evaluate and compare the perfor-

mance of our proposed approach with other existing approaches. The results show that our

proposed approach can outperform the state-of-the-art approach [14] by more than 200%

in the first stage. Moreover, the results also show that CERA can reduce the total energy

consumption for the whole system by up to 37.14% without affecting the total processing

time.

The rest of the paper is organized as follows. The related work is discussed in Section II.

Section III presents the system model and the problem formulation. The CERA framework

is presented in details in Section IV, and its performance is evaluated in Section V. Finally,

conclusions are drawn in Section VI.

Page 5 of 83 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Node 2 Node 3

X

Send to nodes

Straggling 
link

TaskTask

Straggling 
node

Node NNode N

MDS Code

Receive k=2 results

22R

R

Decode to 
final result

Node 1Node 1
. . .

Server

111 222

333 444

Encode into n=4 
coded sub-tasks

TaskTaskTask

11R1R

X

11R1R

33R3R

33R3R

Fig. 1: Illustration of a coded distributed computing system. In this example, a task D is encoded

into 4 sub-tasks D1, . . . ,D4 using the (n, k) = (4, 2) MDS code. The sub-tasks are then sent to

4 nodes (among a set of N nodes), namely Nodes 1, 2, 3, and N . Among them, Nodes 2 and N

cannot send the results back due to straggling links and computation. Nevertheless, the server

still can decode the final result based on the results of Nodes 1 and 3.

II. RELATED WORK

In [14], the authors propose to apply the MDS code for matrix multiplication computations in a

distributed learning system. The core idea of this approach is applying the MDS code to introduce

redundancy in the computing process to compensate for the straggling effects. Moreover, the

authors also find the optimal formulas for determining (n, k) and theoretically prove that the

proposed solution can speed up the distributed learning process. Nevertheless, the formula and

the results only apply for homogeneous settings, i.e., where all nodes have equal computing

and straggling parameters. Similarly, in [15], the authors introduce a coding theoretic framework

based on the MDS code to mitigate the straggling effects in distributed learning. Particularly, the

authors propose to apply the MDS code to replicate portions of data across the nodes for gradient

computing tasks. This replication ensures that the server only needs the results from a portion

of the nodes to compute the final gradient. Simulation results show that the proposed framework

can shorten the learning time by up to 2.4 times compared to that of the uncoded approach.
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7

A similar framework is proposed in [16], where redundancy is introduced for datasets of linear

regression tasks. This helps the server to compensate for the missing results from straggling

nodes by using the redundant data. Simulation results show that the proposed framework can

significantly improve the computing speed compared to that of uncoded distributed learning.

However, similar to [14], the approaches in [15] and [16] only optimize the coding mechanism

without considering the node selection and energy optimization for the whole system.

Moreover, the frameworks proposed in [14]–[16] do not take into account the straggling

communication links. In wireless edge networks, these straggling links may have a significant

impact on the total processing time, especially in the cases of distributed learning where large

amounts of data need to be sent. To tackle this problem, a coded federated learning framework is

proposed in [24]. In this framework, each node, besides its learning tasks, also sends a portion

of its data to the server. The server can then use these data to compensate for the missing

gradient updates caused by straggling. Moreover, the authors also propose to optimize the coding

mechanism to find the optimal coding redundancy, taking into account the straggling parameters

of the nodes and their communication links. Simulation results show that the framework can

improve the total processing time by up to 15 times compared to that of uncoded approaches.

Similar to [24], the coding mechanism proposed in [17] also considers the straggling effects of

wireless communication links. However, unlike the abovementioned frameworks, this mechanism

allows the nodes to submit partially computed results to the server, and the server can perform

recovery computation on these results. In [33], an automatic repeat request scheme is proposed to

address the straggling wireless links for computation over multiple access channels. Particularly,

the authors propose new designs for transmitters and procedures for signaling to optimize

the trade-off between rate and delay. In [18], a framework is proposed for designing optimal

MDS coding schemes for CDC systems with packet erasure channels. Different from previous

works that aim to minimize the expected total processing time, the authors in [18] introduce a

metric minimum latency, i.e., a value of the total processing time that can be guaranteed with

overwhelming probability, and focus on minimizing this metric. By thoroughly analyzing the

considered system, the authors prove theoretical bounds of the latency and provide guidelines

on designing optimal MDS codes depending on the channel conditions.

Another limitation of most existing works on CDC is that they do not take into account the
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different computational capacities of nodes. To address this gap, the authors in [20] propose a

load allocation scheme for a CDC system where nodes with the same computing capability are

grouped together. Moreover, the authors prove that their proposed scheme is optimal if there is

a sufficiently large number of nodes in the system. Simulation results show that the proposed

scheme can reduce the expected processing time by up to 52%. A similar framework is also

proposed in [19]. However, unlike other works, this framework is developed specifically for

optimizing the MapReduce scheme [21]. Simulation results show that the proposed framework

can significantly reduce the communication load compared to state-of-the-art approaches. In [32],

a new coding scheme is proposed to enable the computing nodes to further divide their assigned

sub-tasks. Particularly, when a node receives its sub-task, the node can divide the sub-task into

multiple blocks. Then, the node proceeds to compute each block sequentially, and the results of

the blocks can be sent to the server separately. As a result, partial results from straggling nodes

can be utilized. In [22], a new framework is proposed to design optimal load assignment scheme

for distributed learning, which also takes into account the heterogeneity in computing capability

of edge nodes. However, this work focuses more on the incentive aspect of distributed learning,

and thus the coding scheme is optimized based on the nodes’ computing costs.

Although all the abovementioned frameworks are shown to be effective in their respective

systems, none of them can simultaneously address all the current challenges in CDC. Par-

ticularly, they either do not take into account the straggling effects of communication links

or the heterogeneity of edge nodes. Recently, a new framework is introduced in [23] that

can jointly optimize coding and node selection in coded distributed learning while taking into

account the heterogeneity of edge nodes. To this end, the authors develop a deep reinforcement

learning to find the optimal solutions to the joint optimization problem. Simulation results

show that the proposed approach can reduce the total learning time of the system by up to

66%. Nevertheless, [23] and other existing frameworks cannot minimize the redundant energy

consumption in CDC processes. To the best of our knowledge, our framework is the first in the

literature that can dynamically control activities of edge nodes, thereby significantly reducing

energy consumption with nearly no negative effects on the processing time of the whole system.
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III. SYSTEM MODEL

A. System Overview

Fig. 1 illustrates the CDC-based system that we consider in this paper. Moreover, the notations

we use are summarized in Table I. The considered system consists of a server and a set N of

N edge nodes. Using the (n, k) MDS code for a computing task D, the server first divides

the task into k sub-tasks with an equal size. For example, to multiply Ax and the (3, 2) MDS

code, the server can split A = [AT
1A

T
2 ]T , and then assign 3 nodes to compute A1x, A2x, and

[A1+A2]x, respectively. Then, these sub-tasks are encoded into n coded sub-tasks and sent to n

nodes (k ≤ n ≤ N ) [23], [24]. The nodes then perform the computations locally upon receiving

their designated sub-tasks. As a node performs the computation, it can periodically measure the

remaining workload and reports the percentage of work done to the server [13]. Once they finish,

the nodes send the results back to the server. As soon as the server receives any first k results

among those of the n sub-tasks, it can derive the final result of D. For example, assume that

the server decides to encode a task of size D using the (n, k) = (4, 2) MDS code. As illustrated

in Fig. 1, the server first splits the task into k = 2 sub-tasks of size Di = D/2. Then, these

sub-tasks are encoded into n = 4 coded sub-tasks (D1 to D4) using the MDS code. These 4

sub-tasks are then sent to 4 available nodes to compute. Then, for example, Node 1 and Node 3

are the first two nodes to return their results R1 and R2 to the server, respectively, while other

nodes (e.g., Node 2 and Node 4) fail to compute/send the results due to straggling effects. With

the MDS coding mechanism, the final result of D can be computed using only the results from

Node 1 and Node 3.

In this case, the total time ti needed for node i to complete a sub-task consists of the

computation and the communication time, i.e., ti = tsi + tci , where tsi is the total time that

the server needs to send sub-task Di to node i and for node i to send result Ri back to the

server, and tci is the computation time required at node i to finish its assigned sub-task Di [23],

[24]. Let K be the set of the first k nodes that send the results back to the server. Then, the total

actual processing time T of the CDC process can be defined by

T = max{tk : ∀k ∈ K}. (1)

In the example shown in Fig. 1, assume that the completion time of each node (when it
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10

TABLE I: Summary of Notations

Notation Description

n Number of nodes chosen using the MDS code

k Number of fastest nodes among the n nodes

N Total number of nodes in the system

D The computing task to be processed by the system

D1 . . .Di . . .Dn The n sub-tasks encoded using the (n, k) MDS code

ti Total time needed for node i to complete its assigned sub-task

tsi The communication time of node i

tci The computation time of node i

K The set of the fastest k nodes

T The total actual processing time of D

Ri The result of sub-task Di

τi The deterministic time for node i to upload/download a sub-task/result

Nd
i Number of attempts required for node i to successfully download sub-task Di

Nu
i Number of attempts required for node i to successfully upload its result Ri

pi The probability of the geometric distribution of Nd
i and Nu

i

tdi The deterministic computation time of node i

tri The stochastic computation time of node i

ηi The number of computations per second that node i can perform

αi The stochastic component of computation time from random memory access of node i

D The size of task D

φ The total expected processing time of task D

ci, xi, yi, θi(t) Binary decision variables used in the optimization models

ρ The maximum time required to solve a relaxed sub-problem

t = 1, 2, . . . , T Time is divided in T slots

Q(t) The system’s average workload at time slot t

I The set of n chosen nodes

b(t) The average work done during slot t

ξ The fixed duration of a time slot

L(Q(t)) The Lyapunov function

δ(Q) The Lyapunov drift

E(t) The total energy spent during slot t

V The control parameter
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successfully sends the result back to the server) is {ti} = {10, 90, 30, 150}. Then, T can be

determined by the second smallest completion time, i.e., T = t3 = 30.

B. Communication Model

The communication time of a node depends on the communication link between the node and

the server, which might be different across the nodes. Typically, the communication time can

be determined by tsi = τi(N
d
i + Nu

i ), where τi is the deterministic time to upload/download a

sub-task. Nd
i and Nu

i are the numbers of attempts required for a successful transmission. We

assume that Nd
i and Nu

i follow a geometric distribution with probability pi. Moreover, we assume

Nd
i = Nu

i because the same channel can be used for uplink and downlink communication, and

thus the retransmission probability is usually the same [8], [23], [24]. Then, the expected value

of tsi is

E[tsi ] = 2τi/pi. (2)

C. Computation Model

The computation time of a node consists of the deterministic and stochastic components, i.e.,

tci = tdi + tri . The deterministic computation time is given by tdi = d/ηi = D/kηi, where ηi

is the number of computations that node i can perform per second, and D is the size of (i.e.,

total number of computations required to complete) task D [23], [24]. The stochastic component

of the computation time is assumed to follow an exponential distribution, i.e., ptri = λie
−λit,

where λi = αiηi/d, and αi represents the stochastic component of computation time coming

from random memory access [12], [23], [24]. Thus, the expected value of tri is

E[tri ] = 1/λi = D/kηiαi. (3)

IV. TWO-STAGE OPTIMIZATION APPROACH

To jointly minimize the processing time and energy consumption for the whole system, we

develop a novel two-stage approach, namely CERA. In the first stage, the server solves the

problem (P1) to obtain the optimal coding and node selection based on expected values of the

straggling parameters. Then, in the second stage (during processing time), using our proposed

Lyapunov-based optimization method, the server observes the performance of the wireless edge
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12

nodes and dynamically controls the nodes based on their current status to reduce the energy

consumption. The two stages are presented in the following.

A. First Stage - Mixed Integer Programming

1) Problem Formulation: In the first stage, once a task arrives, the server needs to find

the optimal values of the (n, k) code and select the best nodes to minimize the expected

total processing time φ of a task, taking into account the heterogeneity of the wireless edge

environment where the edge nodes may have different computing power ηi and transmission

time τi. To this end, we formulate the considered problem as (P1) as follows:

(P1) min
n,k,c,x

φ, (4)

s.t.
∑
i∈N

ci = n, (5)

xi ≤ ci, ∀i ∈ N , (6)∑
i∈N

xi = k, (7)

φ ≥ xi
(2τi
pi

+
D

kηi
+

D

kηiαi

)
, ∀i ∈ N , (8)

k ≤ n, (9)

n ≤ N, (10)

ci, xi ∈ {0, 1}, ∀i ∈ N , (11)

n, k ∈ N+. (12)

In (P1), the objective function (4) is the expected total processing time φ of task D. Constraint (5)

set the values for c which are binary variables representing the node selection decisions. Specif-

ically, ci = 1 if node i is among the n nodes selected, and there are exactly n nodes selected.

Constraints (6) and (7) determine the values of x which are auxiliary variables introduced to

determine the fastest k nodes. Particularly, xi = 1 only when i ∈ N is among the fastest k

nodes to send the results back to the server. Then, constraints (8) ensure that φ is bounded only

by the k fastest nodes, i.e., if xi = 0 then φ is not bounded by the completion time of node i.
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The expected completion time of the node i is determined by

tdi + E[tri ] + E[tsi ] =
2τi
pi

+
D

kηi
+

D

kηiαi
. (13)

The remaining constraints set the conditions and value domains for n, k, ci, and xi.

2) Complexity of the INLP Formulation: From (P1), we can observe two characteristics

regarding its complexity. First, (P1) is NP-hard as proven in Proposition 1.

Proposition 1. The optimization problem (P1) is NP-hard.

Proof: The considered problem can be decomposed into two sub-problems, namely MDS

code optimization and node selection. The node selection sub-problem in (P1) is equivalent to the

0-1 knapsack problem [27]. Therefore, the node selection sub-problem is NP-hard. Consequently,

the considered joint optimization problem is NP-hard.

Moreover, constraints (8) are nonlinear, and thus they make (P1) to be an INLP problem

which is harder to solve than that of the ILP problem [28]. Thus, we first propose an effective

linearization technique to transform (P1) into an equivalent ILP problem. As a result of the

linearization, the problem can be effectively solved by using the BB algorithm. Given sufficient

time, the BB algorithm can always find the optimal solutions for ILP models [29]. In contrast,

optimal solutions are not guaranteed for all INLP models. Moreover, even if the optimal solution

can be found, it requires much more time than that of ILP models.

3) Proposed Linearization Approach: To transform (P1) to an equivalent ILP problem, we

first introduce the following constraints:∑
j∈N

jyj = k, (14)

∑
j∈N

yj = 1, (15)

ti + (1− xi)M ≥
2τi
pi

+
N∑
j=1

yj(
D

jηi
+

D

jηiαi
) ,∀j ∈ N , (16)

φ ≥ ti ,∀j ∈ N , (17)

yj ∈ {0, 1}, ∀j ∈ N . (18)
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Constraints (14) and (15) ensure that the newly introduced binary variables yj equal 1 only

when j = k. For example, if k = 2 then y2 = 1, while yj = 0,∀j 6= k. Then, constraints (16)

determine the expected processing time ti of each node. In this constraint, M is a large number

to ensure that ti is bounded only when xi = 1. Specifically, if xi = 0, the left hand side of (16)

becomes ti + M . Since M is a large number, ti + M is always larger than the right hand side

regardless of ti, and thus the constraint is always satisfied. As a result, ti is not bounded if

xi = 0. Conversely, when xi = 1, the left hand side becomes ti. Then, φ is bounded by the

highest ti in constraints (17). The ILP problem (P2) can now be defined by

(P2) min
n,k,c,x,y,t

φ, (19)

s.t. (5)-(7), (9)-(18), (20)

Next, we prove in Proposition 2 that (P2) is equivalent to (P1).

Proposition 2. (P2) is equivalent to (P1).

Proof: Let k′ be the value of k in a feasible solution of the considered (P1). Then, (14)

becomes
∑

j∈N jyj = k′. Moreover, since
∑N

j=1 yj = 1 (from (15)), we have yk′ = 1 and

yj = 0,∀j 6= k∗. Thus, (16) becomes:

ti + (1− xi)M ≥
2τi
pi

+
∑
j∈N

yj

(
D

jηi
+

D

jηiαi

)

=
2τi
pi

+

(
D

k′ηi
+

D

k′ηiαi

)
.

(21)

Then, when xi = 1, (17) becomes

φ ≥ ti ≥
2τi
pi

+

(
D

k′ηi
+

D

k′ηiαi

)
. (22)

which is equal to (8). As a result, constraints (14)-(18) are equivalent to constraints (8), and the

proof is now completed.

As a result of the proposed linearization, the BB algorithm can be employed to solve (P2)

to find the optimal solution. However, the BB algorithm’s computational complexity grows

exponentially as the problem size increases. Particularly, the worst-case complexity of (P2) is

O(ρ8N), where ρ is the maximum time required to solve a relaxed sub-problem [29]. Therefore,
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in the following, by leveraging a unique characteristic of the considered optimization problem,

we develop a hybrid solution to significantly reduce its computational complexity.

4) Hybrid Algorithm: Typically, a generic BB algorithm [29] can be applied to solve (P2) as

follows. At the beginning (step 1), a relaxed master problem is created from (P2) by relaxing all

integer restrictions on its decision variables, i.e., c, x, y n, and k. This relaxed problem forms

the parent node. Then, using linear programming approaches [27], the problem is solved (step

2) to obtain the optimal solutions as well as the lower bounds of the objective value. Note that

the obtained optimal solutions will most likely contain non-integer solutions, e.g., 0 < xi < 1.

For each of these variables, two child nodes are then created, one with xi = 1 and another one

with xi = 0. Next, the two relaxed sub-problems (step 3) are solved to obtain the solutions and

bounds. At step 4, we choose one of the children nodes to branch. When a child node is solved,

if there is no feasible solution found, the node can be eliminated (step 5). Otherwise, we continue

to branch and create two more child nodes (step 6). Once an integer (incumbent) solution is

found (step 7), the bounds of that solution and those of the other branches are compared. All

the branches with worse bounds than those of the incumbent solutions can be removed from the

search space (step 8), as they cannot produce better solutions. If an integer solution is found

with better bounds than those of all the unexplored branches, it is the optimal solution, and the

algorithm can be stopped.

In BB algorithms, the search space grows exponentially as the input size increases. Particularly,

in the worst case where no branch can be eliminated, we have to explore all possible values

of the binary variables. As a result, the worst-case complexity when applying the BB algorithm

to solve (P2) is O(ρ23N) = O(ρ8N) because of the 3 types of decision variables c, x, and

y. Therefore, we propose a hybrid algorithm to significantly reduce the search space in the

following.

First, we prove the monotonic behavior of the objective function over k in Theorem 1.

Theorem 1. φ(k) is monotonically decreasing ∀k < k∗ and monotonically increasing ∀k > k∗,

where k∗ is the global minimum of φ(k).

Proof: Proof of Theorem 1 is provided in Appendix A.

An important result from Theorem 1 is that the monotonicity of φ over k on both sides of the
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Algorithm 1 Proposed hybrid algorithm for (P2)
Input: Optimization problem (P2)

Output: Global optimal value φ∗ and global optimal decisions n∗, k∗, c∗,x∗,y∗

1: st← 1, en← N , mid← (st+ en)/2, φ∗ = 0.

2: repeat

3: Branch on nodes Cmid−1, Cmid, Cmid+1 with k = mid − 1, k = mid, k = mid + 1 to

find local optimum φ of each node.

4: if φ(mid) < φ(mid− 1) and φ(mid) < φ(mid+ 1) then

5: φ∗ ← φ(mid), stop algorithm.

6: else if φ(mid+ 1) < φ(mid− 1) then

7: st← mid, mid← (st+ en)/2

8: else if φ(mid+ 1) > φ(mid− 1) then

9: en← mid, mid← (st+ en)/2

10: end if

11: until φ∗ > 0

global optimum can be leveraged to reduce the search space of the BB algorithm, as presented

in Algorithm 1. Generally, Algorithm 1 is a hybridization of binary search and BB algorithms.

The general procedure of Algorithm 1 is as follows. First, we branch on the three nodes CN/2−1,

CN/2 and CN/2+1 to find their local optima. As proven in Theorem 1, if the middle node has the

best objective value compared to those of the other two nodes, it is the global optimal solution.

Otherwise, we compare the objective values of the remaining nodes to determine the search

direction. Due to the monotonic behavior of φ(k) on both sides of the global optimum, we only

need to search in the direction where φ(k) is decreasing over k. As a result, the other direction

can be eliminated, thereby reducing one half of the remaining search space after each iteration.

The algorithm continues until the optimal solution is found, i.e., until φ(k) of the middle node is

lower than both those of the two adjacent nodes. With Algorithm 1, the computational complexity

of the BB algorithm can be significantly reduced. Specifically, due to the hybridization with the

binary search algorithm, Algorithm’s 1 worst-case complexity is O(ρ4N log2N) (reduced from
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2N to log2N possible branches). Note that since only the branches that produce worse solutions

are eliminated, the optimality of the global solution is guaranteed.

B. Second Stage - Online Lyapunov-based Optimization

The optimal solution in the first stage is calculated using the expected values of the straggling

parameters of the wireless edge nodes. However, in practice, the straggling parameters often vary

significantly from their expected values, resulting in unexpected performance. Moreover, since

the core idea of CDC is to introduce redundancy to compensate for uncertainties, it is desirable

to limit the redundant workload. Therefore, in the following, we propose a Lyapunov-based

optimization approach that can minimize the redundancy in the CDC process without requiring

complete knowledge about the nodes’ real straggling effects. Our approach helps the server to

decide when and which nodes to turn off to save energy with minimal impacts on the total

processing time.

1) Lyapunov-based Approach: In our approach, time is divided into slots, denoted by t =

1, 2, . . . , T . Let I denote the set of the n nodes chosen in the first stage of CERA and Q(t)

denote the average workload remaining of those nodes at time slot t, i.e., Q(t) =
1

n

∑
i∈I Qi(t).

We construct a virtual queue Q(t), with initial value Q(0) =
1

n

∑
i∈I Qi(0) =

1

n

∑
i∈I

D

k
. After

each time slot, Q(t) is updated by

Q(t+ 1) =
(
Q(t)− b(t)

)
, (23)

where b(t) =
∑

i∈I ξ
ηi

n(1 + αi)
is the average work done during slot t, and ξ is the fixed duration

of a time slot. This virtual queue represents the average remaining workload at the wireless edge

nodes, and thus by minimizing the queue’s backlogs we can minimize the total processing time.

We define the Lyapunov function as L(Q(t)) =
1

2
Q(t)2. Then, the Lyapunov drift can be defined
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as follow [30]:

∆(Q) = E
(
L(Q(t+ 1))− L(Q(t))|Q(t)

)
,

=
1

2
E
[
Q(t+ 1)2 −Q(t)2|Q(t)

]
,

=
1

2
E
[(
Q(t)− b(t)

)2 −Q(t)2|Q(t)
]
,

=
1

2
E
[
b(t)2 − 2b(t)Q(t)|Q(t)

]
,

≤ B −Q(t)E
[
b(t)|Q(t)

]
(24)

where B =
1

2

(∑
i∈I ηi(t)ξ

)2. The drift ∆(Q) represents the changes in the queue’s backlogs

across each time slot. Next, the total energy spent during the time slot is defined by

E(t) =
∑
i∈I

Ei(t) =
∑
i∈I

ηiξ, (25)

where Ei(t) is the energy consumed by node i during time slot t. Then, the drift-plus-penalty [30]

can be defined by

∆(Q(t)) + V E{ϕ(t)|Q(t)}

=E
[
L(Q(t+ 1))− L(Q(t))|Q(t)

]
+ V E{ϕ(t)|Q(t)},

≤B −Q(t)E
[
b(t)|Q(t)

]
+ V E{ϕ(t)|Q(t)}.

(26)

The drift-plus-penalty expression in (26) contains two objectives, i.e., minimizing the total

processing time and reducing energy consumption. Moreover, the parameter V in (26) can be

used to control the trade-off between the two objectives, e.g., a high value of V means a higher

priority in saving energy. In this second stage, CERA aims to minimize the right-hand side

of (26) for each time slot t, which is equivalent to solving the optimization problem (P3) as

follows:

(P3) min
θ(t)

V
∑
i∈I

θi(t)ξ −Q(t)
∑
i∈I

θi(t)

1 + αi
ξ, (27)

s.t. θi(t) ≤ ci, (28)

θi(t) ≤ θi(t− 1), (29)∑
i∈I

θi(t) ≥ k, (30)
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where θ(t) = [θ1(t), θ2(t), . . . , θI(t)] are the binary variables representing the control decision

of time slot t, i.e., θi(t) = 0 means that node i is turned off in time slot t and vice versa.

The objective of (P3) is to minimize both the energy consumption and the average remaining

workload. To achieve this objective, the server decides to turn off some nodes in each time slot.

These control decisions are constrained by (28)-(30). These constraints ensure that i) only the

n nodes chosen at the beginning can be turned off, ii) once a node is turned off it cannot

be employed for the task again1, and iii) there must be at least k active nodes. Since the

computational complexity of (P3) is low, i.e., there is only one decision variable vector θ(t), it

can be solved efficiently by standard BB algorithms to quickly obtain the control decisions for

each time slot.

The main idea of this drift-plus-penalty optimization is to reduce the energy consumption

based on the actual situation at the nodes. Since V is fixed throughout the time slots, at the

beginning when the remaining workload is high, the server prioritizes reducing the workload.

Therefore, few or no nodes will be turned off in the early time slots. As time progresses, the

remaining workload will be reduced. As a result, the server will turn off more and more nodes

later, thereby saving more energy. Moreover, the optimization problem (P3) is solved using only

observable parameters, i.e., the expected values of the straggling parameters α and the real

remaining workload at each node. Thus, CERA does not require complete information on the

nodes’ performance in advance, which is intractable to obtain in practice.

The procedure of CERA can now be defined in Algorithm 2. Once a task D arrives, the server

solves (P2) by using Algorithm 1 to obtain the optimal coding and node selection decisions.

The server then encodes the tasks D using the optimal (n∗, k∗) values and sends them to the

designated nodes (chosen using c∗,x∗). Next, at each time slot t, the server first observes the

real-time values of Qi(t) to update Q(t) accordingly. We assume that the time and energy it takes

for the nodes to send the information regarding Qi(t) to the server are negligible. For example,

sending a 2 kB message usually requires less than 5mJ and 2 ms [31]. Using these values, the

1Although employing a node for the same task again is possible, it is often usually impractical and inefficient in the context

of CDC. This is because the slow nodes will be turned off first, and employing them again will add extra latency to their already

slow computing processes. Moreover, this constraint helps to reduce the search space, as we only need to optimize the nodes

that have not been turned off.

Page 19 of 83 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

Algorithm 2 CERA
Input: η, τ , D, V, ξ

Output: Optimal coding (n∗, k∗), optimal node selection

c∗,x∗, optimal control decision θ∗

1: Obtain (n∗, k∗), c∗,x∗ by solving (P2) using Algorithm 1.

2: for t := 0 to T − 1 do

3: Observe Q(t)

4: Obtain θ(t) by solving (P3)

5: end for

server solves (P3) to determine the control decisions for the time slot. This optimization process

is repeated for each time slot until the stopping criterion is met, i.e., at least k nodes finish their

workload.

2) Performance Analysis: We analyze and prove the bounds of the average workload and

energy consumption in Theorem 2.

Theorem 2. By applying CERA, the system ’s average energy consumption satisfies

lim
T→∞

1

T

T−1∑
t=0

E
[
ϕ(t)|Q(t)

]
≤ ϕ∗ +

B

V
, (31)

where ϕ∗ =
∑

i∈I θ
∗
i ηiξ is the optimal energy consumption. Moreover, the average workload

queue of the system satisfies

lim
T→∞

1

T

T−1∑
t=0

E[Q(t)] ≤ V (ϕ∗ − ϕmin) +B

ε
, (32)

where E[ϕ(t)] ≥ ϕmin,∀t and E
[
b(t)|Q(t)] < ε,∀t.

Proof: Proof of Theorem 2 is provided in Appendix B.

An important result from Theorem 2 is that the system’s average energy consumption can be

effectively bounded based on the control parameter V . A higher value of V can lead to a lower

energy consumption. However, it also increases the time-average workload at each node, which

means that the total processing time might be longer. Choosing the value of V depends mostly

on the server’s priority, i.e., to save more energy or to prioritize reducing the total processing
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time. Nevertheless, as later shown in the performance evaluation, CERA can save energy without

any negative impacts on the total processing time in many cases.

V. PERFORMANCE EVALUATION

A. Experimental Setup

1) CERA’s first stage: We evaluate the performance of CERA’s first stage in a CDC-based

wireless edge network consisting of N = 50 nodes and 10 tasks with increasing task sizes (Task

1 has the smallest size). To this end, we use two datasets from closely related fields because there

is currently no publicly available dataset for CDC. Specifically, we adopt the task sizes D from

the Google Cloud Jobs dataset [25]. Moreover, we adopt the node capabilities parameters, such

as τi and ηi, from the GWA-T traces dataset [26] which contains virtual machines’ performance

metrics. Furthermore, to clearly show the effects of task sizes on the optimal decisions, we arrange

the tasks in ascending order of D. Finally, we set pi = 0.9 and αi = 2,∀i ∈ N [24]. The values

of the parameters used in the simulations are summarized in Table II.

TABLE II: Values of Parameters Used in Simulations

Parameter Value Parameter Value

N 50 D [15000,900000]

τi [0.05,30] ηi [1695,8932]

pi 0.9 αi 2

Moreover, we compare the performance of CERA’s joint code and node selection optimization

with the following baseline methods:

• Myopic: k is set to the maximum number of nodes, i.e., k = N . This approach is optimal

if there is no straggling effects in the system.

• OneNode: In this approach, k = 1. This is equivalent to uncoded and centralized computing.

• Static optimal code [14]: k is determined by:

k =

(
1 +

1

W−1(−e−λ−1)

)
, (33)

where W−1(.) is the lower branch of the Lambert W function and λ is the average straggling

parameter of all nodes in the network.
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Since these baseline methods do not optimize node selection, we use their k values and CERA’s

node selection optimization to determine the optimal decisions.

Then, to evaluate and compare the robustness of CERA’s first stage optimization, we create

10 sets of parameters, e.g., computation and communication time, for 10 simulation runs. For

each run, we use the decisions made by all the approaches without perfect information, i.e.,

using only the expected values, to calculate the real performance of the system with each set

of parameters. Finally, average results of 10 runs are used to compare the performance of all

approaches in each task.

2) CERA’s second stage: Afterward, the performance of CERA’s online optimization stage is

evaluated. For ease of illustration, we first simulate a small CDC system with (n, k) = (5, 3), D =

100,η = [4, 6, 6, 6, 8], ξ = 2, and α = [2, 2, 2, 5, 10]. We randomly generate the real values of

η and α for each time slot using their corresponding distribution parameters. We then conduct

the simulations with different values of V to evaluate how this control parameter can impact

the performance of the system in terms of energy consumption and the amount of redundant

workload reduced.

B. Simulation Results

1) CERA’s first stage: Fig. 2(a) shows the expected total processing time of each task when

using different approaches. As illustrated in the figure, our proposed approach outperforms all

other approaches for all tasks. Particularly, our proposed approach can achieve φ that is up to

90 and 10 times lower than those of the Myopic and OneNode approaches, respectively. For

the static optimal code approach, although it applies the optimal code in [14] and our proposed

optimization to find the best nodes to perform, its performance is still not as good as that of our

proposed framework. Specifically, for the largest-sized task, our proposed solution can reduce

the expected total processing time up to 2.2 times compared with that of the static optimal code

solution. The main reason is that, compared to our proposed approach, the static optimal code

chooses a higher k. Although this reduces the sub-task size, the server has to wait for more nodes

to send their results, and thus it may suffer more from the straggling nodes and communication

links.

Fig. 2(b) shows the optimal values of k obtained by our approach and the static optimal code.
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Fig. 2: Comparisons of the considered approaches in terms of (a) the expected total processing

time and (b) the values of k.

Although their values are different, we can observe that as the task size increases, the value of

k also increases. The reason is that for tasks with smaller sizes, the nodes’ communication time

has more impact on the expected total processing time. In this case, if k is high, the server has

to wait for more nodes. In contrast, when the task size is larger, the nodes’ communication time

becomes insignificant compared to the computation time. As a result, a higher k is more desirable

to reduce the workload at each node. However, if k is too high, the delay will be increased due

to impacts of the straggling effects, as observed from the expected total processing time achieved

by our proposed approach and the static optimal code approach in Fig. 2.

To further evaluate the performances of the approaches, we compare their average results in

10 runs (in terms of total processing time) with random parameters. For each approach, we

use its optimal solution with imperfect information to see how the solution performs in cases of

uncertainty. Fig. 3 shows the average total processing time of the considered approaches for each

task. As observed from the figure, our proposed approach still outperforms the other approaches

for all tasks. Moreover, as the task size increases, the proposed approach performs much better

than the baseline methods. For example, for Task 10, our approach achieves a total processing

time of 26.11, which is 2.4 times lower than that of the static optimal code approach.
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Fig. 3: Average total processing time of 10 runs.

Additionally, an interesting observation can be made regarding the OneNode and Myopic

approaches. For the tasks with larger sizes, the Myopic approach performs much worse than

its expected performance as can be seen from Fig. 2 and Fig. 3. Conversely, the OneNode

approach performs much better than expected. The reason is that since we randomly generate

the computation and communication time in this case, there are some values that will be much

higher than their expected values, while there are also some values that will be much lower than

the expected ones. For the OneNode approach, its performance depends only on the best node.

Therefore, it can benefit from the unexpected good performance of the nodes. In contrast, the

Myopic approach relies on the performance of every node, and the total processing time in this

case is equal to the processing time of the worst node. Consequently, this approach suffers the

highest straggling effects.

Furthermore, to clearly show the relation between the task size and the communication time,

we examine the processing time of the nodes in the smallest-sized task (Task 1) and the largest-

sized task (Task 10). Note that the optimal k for Task 1 is 5, whereas the optimal k for Task 10

is 18. As shown in Fig. 4, the communication time is a significant factor in executing Task 1.

For example, communication constitutes up to 19.5% of the expected total processing time of

node 3 at Task 1. In contrast, for Task 10, the communication time occupies only 1.1% of the

processing time of the same node. Thus, for tasks with large sizes, a high k can significantly
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Fig. 4: Processing time components of (a) Task 1 and (b) Task 10.

reduce the computation time which has much higher impacts on the expected total processing

time.

2) CERA’s second stage: Fig. 5 illustrates the results of CERA’s online optimization stage

for a CDC system. As observed in Fig. 5(a), in the early time slots, no node in the system is

turned off. As time progresses, the workload at each node decreases. Note that the amount of

workload done by each node is different across time slots due to the random straggling effects

which vary over time. At time slot 11, CERA decides to turn off Node 5. The reason is that

Node 5 consumes the most energy per time slot among the nodes, even though its remaining

workload is not much higher than that of Nodes 4 and 1. Afterward, Nodes 2 and 3 finish their

sub-tasks at around time slot 17. Since k = 3, at this time, the server only needs one more

result to finish the task. At time slot 19, CERA decides to turn off Node 4 because it still has

more workload to perform and a higher energy consumption rate compared to those of Node 1.

Finally, Node 1 finishes its sub-task at time slot 25, and the server can derive the final results

from the work of Nodes 1, 2, and 3. Moreover, we simulate the case where CERA is not applied.

As observed from the figure, even if Nodes 4 and 5 are not turned off, they will not contribute

to the final result as they finish after Node 1.

Fig. 5(b) illustrates the energy consumption of each node in the above example. As observed
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Fig. 5: Results of CERA online optimization for a CDC system with V = 5: (a) the workload

remains of each node, and (b) the energy consumption of each node

from the figure, the energy consumption of each node in each time slot goes to zero as the node

either is turned off or finishes its sub-task. Moreover, we show the total energy consumed by

each node for each time slot, with and without CERA. The figure clearly shows that CERA can

save a significant amount of energy by removing the nodes, thereby reducing the unnecessary

redundant workload. This can save up to 23.49% of energy consumption in this example, without

negatively impacting the total processing time. Next, we adjust the control parameter V = 8

while keeping all the remaining parameters the same to show the effect of V . As illustrated in

Fig. 6, compared to the case when V = 5, Nodes 4 and 5 are turned off earlier in this case.

Particularly, Nodes 4 and 5 are turned off at time slots 14 and 4, which are 5 and 7 slots earlier

than the previous case, respectively. This can save up to 37.14% of energy consumption, an extra

of 13.65% compared to that of the case where V = 5.

Nevertheless, a high value of V does not always produce the best result. We simulate another

example similar to the previous one, except that α1 = 2 instead of α1 = 1. As illustrated in

Fig. 7, CERA makes the same decisions as before, i.e., turn off Nodes 4 and 5. However, in this

case, the simulated results without applying CERA show that if Node 4 is not turned off early,

it can actually finish before Node 1, thereby improving the total processing time. The reason
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Fig. 6: Results of CERA online optimization for a CDC system with V = 8: (a) the workload

remains of each node, and (b) the energy consumption of each node

is that we double the straggling parameter of Node 1 compared to previous cases, and thus

its actual performance is much worse than expected. Nevertheless, we would like to emphasize

that, the decision made by CERA is optimal according to the imperfect information available

at the time. Particularly, at time slot 16 where Node 4 is turned off, its remaining workload is

still higher than that of Node 1, and its energy consumption is also higher. Moreover, the actual

performances of the nodes are intractable to be accurately predicted in practice. Furthermore,

even if the total processing time is higher (by 5 slots), the percentage of energy saved in this

case is remarkable, i.e., 41.99%. Given that this aligns with the server’s priority in practice and

the parameter V can be freely adjusted, CERA is a powerful tool for the server to optimize their

CDC processes.

VI. CONCLUSION

In this work, we have developed CERA, a novel framework to jointly optimize the processing

time and energy consumption for CDC processes over wireless edge networks. Particularly, we

have developed a novel two-stage optimization framework. At the first stage, we have modeled a

joint coding and node selection optimization problem to minimize the expected processing time
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Fig. 7: Results of CERA online optimization for a CDC system with V = 8 and α1 = 2: (a) the

workload remains of each node, and (b) the energy consumption of each node

for the system. Then, we have developed a linearization approach to reduce the computational

complexity of the original problem. After that, a hybrid algorithm has been developed, which can

solve the considered problem much more efficiently than the conventional BB algorithm while

preserving the optimality of the obtained solutions. At the second stage, we have developed a

Lyapunov-based dynamic optimization approach to optimize the online control policy for CDC

processes. This approach can significantly reduce the energy consumption with minimum adverse

impacts on the total processing time and without requiring perfect knowledge of the nodes’ real

performance. Simulations using real-world datasets have shown that our proposed approach can

reduce the system’s total processing time by more than 200% compared to that of the state-of-

the-art approach, even with imperfect information of the node’s capabilities. Moreover, the results

have also shown that CERA’s online optimization stage can reduce the energy consumption by

up to 37.14% without affecting the total processing time. For future research directions, we can

consider other coding schemes, e.g., [32], that allow asymmetric workloads for computing nodes,

which might significantly improve the efficiency of CDC systems.
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APPENDIX A

PROOF OF THEOREM 1

We first relax the integer restriction of k for ti(k) and φ(k) to obtain the relaxed function

ti(κ) and the relaxed objective function φ(κ), respectively. We now prove that ti(κ) is convex
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over κ by taking its second-order derivative:

∂2ti
∂κ2

ti(κ) =
2D

κ3ηi
+

2D

κ3ηiαi
> 0. (34)

Therefore, ti(κ) is strictly convex over κ. Moreover, since φ(κ) is defined by the maximum of

ti(κ), i.e., maximum of convex functions, φ(κ) is also strictly convex over k(κ). Then, from the

convexity of φ(κ), we have:

φ(εκ1 + (1− ε)κ2) < εφ(κ1) + (1− ε)φ(κ2), (35)

∀κ1, κ2,∀0 ≤ ε ≤ 1. Now, without loss of generality, assume that we have k−1 < k < k+1 < k∗

where k∗ is the global minimum of φ(k). Suppose for the sake of contradiction that φ(k− 1) <

φ(k) and φ(k) > φ(k+1). Adding both inequalities yields φ(k−1)+φ(k+1) < 2φ(k). However,

from (35), if we choose κ1 = k − 1, κ2 = k + 1, and ε = 0.5, we have:

φ(0.5(k − 1) + 0.5(k + 1)) < 0.5φ(k − 1) + 0.5φ(k + 1),

2φ(k) < φ(k − 1) + φ(k + 1),
(36)

which contradicts the inequalities. Therefore, φ(k−1) < φ(k) < φ(k+ 1), and thus the function

φ(k) monotonically decreases ∀k < k∗. The proof can be straightforwardly extended to prove

that φ(k) monotonically increases ∀k > k∗.

APPENDIX B

PROOF OF THEOREM 2

The proof of Theorem 2 is adapted from [30]. We have

∆(Q) = E
(
L(Q(t+ 1))− L(Q(t))|Q(t)

)
,

=
1

2
E
[
Q(t+ 1)2 −Q(t)2|Q(t)

]
,

=
1

2
E
[(
Q(t)− b(t)

)2 −Q(t)2|Q(t)
]
,

=
1

2
E
[
b(t)2 − 2b(t)Q(t)|Q(t)

]
,

≤ B −Q(t)E
[
b(t)|Q(t)],

≤ B − εQ(t)

(37)

where B =
1

2

(∑
i∈I ηi(t)ξ

)2 and ε > 0 is a constant such that E
[
b(t)|Q(t)] < ε for all slots.
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For every slot, we have the drift-plus-penalty

∆(Q(t)) + V E{ϕ(t)|Q(t)}

=E
[
L(Q(t+ 1))− L(Q(t))|Q(t)

]
+ V E{ϕ(t)|Q(t)},

≤B − εQ(t) + V ϕ∗,

(38)

Using the law of iterated expectations [30], we have

E
[
L(Q(t+ 1))

]
− E

[
L(Q(t))

]
+ V E{ϕ(t)} ≤B − εQ(t)

+ V ϕ∗,
(39)

Summing over t = [0, 1, . . . , T − 1] and using the law of telescoping sum [30] yields

E
[
L(Q(T − 1))

]
−Q(0) + V

T−1∑
t=0

E{ϕ(t)} ≤ T (B + V ϕ∗)

− ε
T−1∑
t=0

E[Q(t)].

(40)

Rearranging (40) and dividing by V T yields:

1

T

T−1∑
t=0

E{ϕ(t)} ≤
−E
[
L(Q(T − 1))

]
+Q(0)

V T
+
V ϕ∗ +B

V

− ε

V T

T−1∑
t=0

E[Q(t)],

≤
−E
[
L(Q(T − 1))

]
+Q(0)

T
+
V ϕ∗ +B

V

(41)

As T →∞, we have

lim
T→∞

1

T

T−1∑
t=0

−E
[
L(Q(T − 1))

]
+Q(0)

T
= 0. (42)

As a result, we have

lim
T→∞

1

T

T−1∑
t=0

E
[
ϕ(t)

]
≤ ϕ∗ +

B

V
. (43)
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For the energy consumption bound, rearranging (40) and dividing it by εT yields:

1

T

T−1∑
t=0

E[Q(t)] ≤ −V
ε

T−1∑
t=0

E{ϕ(t)|Q(t)}

+
−E
[
L(Q(T − 1))

]
+Q(0)

εT
+
V ϕ∗ +B

ε
,

≤
−E
[
L(Q(T − 1))

]
+Q(0)

εT

+
V (ϕ∗ − ϕmin) +B

ε

(44)

where ϕmin is a constant such that E[ϕ(t)] ≥ ϕmin, ∀t. As T →∞, we have

lim
T→∞

1

T

T−1∑
t=0

−E
[
L(Q(T − 1))

]
+Q(0)

εT
= 0. (45)

Therefore, we have

lim
T→∞

1

T

T−1∑
t=0

E[Q(t)] ≤ V (ϕ∗ − ϕmin) +B

ε
, (46)

and thus the proof is completed.
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