
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

1

CARS: Dynamic Cyber-attack Reaction in SDN-based
Networks with Q-learning

Hai Hoang Nguyen∗, Tri Gia Nguyen†, Senior Member, IEEE,
Dinh Thai Hoang‡, Member, IEEE, Duc Tran Le§, and Trung V. Phan∗∗, Member, IEEE

∗Vietnam - Korea University of Information and Communication Technology, The University of Danang, Vietnam
†FPT University, Danang 50509, Vietnam

‡School of Electrical and Data Engineering, University of Technology Sydney, NSW 2007, Australia
§University of Science and Technology, The University of Danang, Danang, Vietnam

∗∗Chair of Communication Networks, Technische Universität Chemnitz, 09126 Chemnitz, Germany

Abstract—In this paper, we propose a dynamic cyber-attack
reaction system based on Q-learning, namely CARS, to effectively
defeat cyber-attacks in Software-Defined Networks (SDN). In
particular, we first examine a cyber-attack reaction system that
operates at the SDN control plane. Then, we propose a dynamic
cyber-attack reaction solution to maximize the attack defense
performance while minimizing the negative influence on benign
traffic forwarding in the data plane. Next, we model the cyber-
attack reaction system based on a Markov decision process
(MDP) and formulate its optimization problem. Afterward, we
develop a Q-learning based cyber-attack reaction control algo-
rithm to solve the optimization problem, obtaining the optimal
cyber-attack reaction policy. As our case study on denial-of-
service (DoS) attacks, the obtained results verify that CARS can
effectively prevent malicious packets from reaching the victim
server in all DoS attacks, i.e., approximately 80% of abnormal
packets are dropped. In addition, by implementing the optimal
cyber-attack reaction policy, CARS can significantly reduce the
ratio of QoS (Quality-of-Service) violated traffic flows compared
to two existing solutions, i.e., GATE (by approx. 66%) and GTAC-
IRS (by approx. 75%).

Index Terms—Cyber-attack Reaction System, Q-learning,
Denial-of-Service attacks and Software-Defined Networking.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is an innovative
networking model that departs the control from the data plane.
Specifically, the SDN controller holds a global network view
and performs forwarding decisions, while the SDN switches
only operate traffic forwarding in the data plane. In addition,
the communication between the control and data plane is
managed via the OpenFlow protocol [1], which allows an SDN
switch to perform the traffic forwarding task using flow-tables
where flow rules can be dynamically added/removed/updated
by the SDN controller. Therefore, numerous complicated net-
work control and management tasks, e.g., network security,
have been achieved by utilizing the SDN architecture [2].
However, several security vulnerabilities exist in the SDN-
based networks, and it is challenging to tackle anomalies
due to new attack surfaces at exposed networking layers [3].
Fortunately, with the recent adoption of Machine Learning
(ML) to Software-Defined Networking, many critical security

∗∗ Corresponding author

problems, e.g., denial-of-service (DoS) attacks, have been ad-
dressed [4]. Nevertheless, most researchers have paid attention
to the evolution of intelligent intrusion detection systems.
Meanwhile, only a few studies [5], [6] have discussed cyber-
attack reaction systems that protect SDN-based networks by
choosing proper policies to tackle malicious traffic flows [7].

For illustration, the authors in [5] propose a distributed
game-theoretic cyber-attack reaction design based on an actor-
critic model, namely GTAC-IRS, for SDN-based wireless IoT
networks. Concretely, intrusion detection and reaction tasks are
assigned to IoT devices by a centralized controller. Further, by
utilizing a low-dimensional response matrix, the computational
effort for intrusion detection and the training time of detection
algorithms can be diminished. Nonetheless, it is challenging to
deploy the GTAC-IRS in practice for the following reasons.
Firstly, the delegation of attack detection and reaction tasks
to IoT devices places enormous pressure on computational
and resource-constrained IoT devices. Secondly, the GTAC-
IRS module at each IoT device requires monitoring the packet
reception rate of its neighbors, which raises a critical security
issue among IoT devices. Finally, there are no collaborations
between GTAC-IRS engines; thus, the attack detection and re-
action performance might be limited, particularly for unknown
cyber-attacks.

Likewise, Zolotukhin et al. [6] propose a reinforcement
learning-based approach for attack mitigation in SDN-enabled
networks. Specifically, an intelligent agent is developed to
learn and find an optimal ensemble of virtual security func-
tions, e.g., intrusion detection systems, proxies, and firewalls,
which are then implemented in a sequence to filter the network
traffic flows on the way from a source to a destination.
Thereby, the anomaly detection and mitigation performance
can be improved by installing an appropriate order of virtual
security functions. Nevertheless, this solution [6] might be in-
effective in large-scale networks with a large number of clients
in the data plane, leading to a huge number of implemented
virtual security functions.

As stated in [7], for a cyber-attack reaction system it is
essential to optimally select policies which can effectively
defend against abnormal activities. The authors in [8] propose
a solution, namely GATE, in which the response policy
selection is performed by relying on four factors: attack

2

damage, deployment cost, negative impact on QoS, and se-
curity benefit. Next, a single-objective optimization problem
is formulated by applying the return-on-response-investment
index, which is then solved by a proposed genetic algorithm
with a three-dimensional encoding approach. In particular, the
three dimensions include response policies, defense points, and
deployment orders, respectively. Nevertheless, for medium or
large-scale networks, e.g., the AttMpls network topology [9]
with 25 nodes, the GATE can be ineffective due to a massive
number of response meta-policies for the central cyber-attack
reaction system.

Therefore, this paper proposes a dynamic cyber-attack re-
action solution based on Q-learning, namely CARS, to defeat
cyber-attacks in SDN-based networks effectively. In particular,
we first study a cyber-attack reaction system associated with
an intrusion detection system (IDS) placed on top of the
SDN control plane. Subsequently, we propose a dynamic
cyber-attack reaction solution to maximize the attack defense
performance while minimizing the negative impact on the
benign traffic forwarding performance in the data plane. Pre-
cisely, we model the cyber-attack reaction system based on
a Markov decision process (MDP) approach and formulate
its optimization problem. Next, we propose a Q-learning
based cyber-attack reaction control algorithm, which solves
the optimization problem to achieve the optimal cyber-attack
reaction policy.

As our case study, we evaluate the CARS solution in denial-
of-service (DoS) attacks in comparison with two other existing
solutions, namely GATE [8], and GTAC-IRS [5]. The obtained
results confirm that CARS can dynamically deploy the optimal
cyber-attack reaction policy to tackle malicious traffic flows
while minimizing the negative impact on the forwarding of
legitimate traffic flows. Specifically, CARS can effectively
prevent the malicious packets from arriving at the victim server
in two DoS attack scenarios, i.e., approximately 80% of attack
packets are dropped on average. Further, by implementing the
optimal cyber-attack reaction policy, CARS can bypass flow-
table overflows at SDN switches and link congestions. Thereby
significantly lessening the ratio of QoS violated traffic flows
by around 66% and 75% on average compared to GATE and
GTAC-IRS, respectively.

This paper is organized as follows. Section II describes
in detail the operational workflow and the objectives of the
CARS solution in SDN-based networks. Section III provides
a model of the control system based on a Markov decision
process, and formulates the related optimization problem.
Section IV presents the application of the Q-learning algorithm
in solving the optimization problem. Section V shows the
results of the performance evaluation considering three DoS
attack scenarios. Section VI summarizes the findings of our
study and outlines some ideas for future research.

II. SYSTEM MODEL

Given an SDN-based network represented by an undirected
graph G = (N ,E), as illustrated in Fig. 1, where N = {#8}
denotes the set of SDN switches, and E = {;8 9 } is the set of
links between the SDN switches in the data plane. In this

Intrusion Detection
System (IDS)

Information
Collector Storage Reaction Policy

Placement

Control
Agent

a

R(s',a)

R(s,a)

s'

s

Results

Data plane
metrics

Flow rule
installationNorthbound APIs

Southbound APIs

N1

N2

N3

N4

N5
Ni-1

Ni

SDN Control Plane

Data Plane

Information
Collector

Information
Collector

s

CARS

Fig. 1. CARS solution in an SDN-based network.

study, we propose a dynamic cyber-attack reaction system,
called CARS, for SDN-based networks. As illustrated in Fig.
1, an intrusion detection system (IDS) and the CARS locate on
top of the control plane to detect and react against anomalies
in the data plane, respectively.

A. System Operation

Regarding anomaly detection at the IDS, the traffic in-
formation is regularly observed from the control plane and
then analyzed by a detection engine where malicious traffic
behavior can be identified through intelligent methods, e.g., a
deep learning-based approach [4]. If an anomaly is recognized,
the detection result and the attack information are transferred
to the CARS.

For the CARS operation, we propose a dynamic cyber-
attack reaction system consisting of the following modules:
an information collector, a control agent, a data storage, and
a reaction policy placement. Specifically, whenever the IDS
detects an anomaly, the attack information, i.e., the attack type
g, the IP addresses of the attacker �%� and the victim �%+ ,
and the malicious traffic path P� (dashed red line in the data
plane in Fig. 1), is transferred to the CARS. Precisely, the
path P� consists of a set of switches and links, referred to
as N� and L�, respectively, where N� ⊆ N and L� ⊆ E.
Meanwhile, the information collector periodically gathers the
following metrics: the flow-table utilization 58 concerning the
flow rule quantity in every SDN switch #8 on the path P�,
the link utilization D8 9 of every link ;8 9 on path P�, and the
average throughput Ω (Mbps) of all SDN switches that are not
on the path P�.

Based on the above attack information and the gathered
metrics, the control agent defines an appropriate reaction
policy to defend against the attack effectively and minimize
adverse effects on traffic forwarding in the data plane. Next,
the reaction policy placement module maps the policy into
flow rules that are consequently installed in flow-tables of
selected SDN switches to prevent malicious traffic. Details
of the switch selection for reaction policy implementation

3

are provided in Section III (Action Space). Afterward, by
using northbound APIs, the flow rule installation request is
forwarded to the SDN control plane to implement the reaction
policy in the data plane. Lastly, the control agent gathers
the IDS results and the data plane metrics to evaluate the
reaction policy’s effectiveness in the subsequent observation.
The above processes are periodically repeated to investigate
different policies and observations.

B. System Objectives

Our ultimate intention is to maximize the attack defense
performance of the CARS while minimizing the adverse
effects on the benign traffic forwarding process. To accomplish
this goal, we examine the following sub-objectives:

Attack damage minimization: The more malicious packets
are dropped before reaching the victim since the anomaly is
identified, the less harm the victim and the network infrastruc-
ture suffer; therefore, the total number of malicious packets,
M, that is dropped by the switches should be maximized.

Negative impact minimization: Whenever a response policy
is activated, it can negatively impact the legitimate traffic
forwarding process. In this paper, we consider the reduction
of the average throughput ΔΩ of all switches that are not on
the attack path P�.

Accordingly, the objective function of the CARS is defined
as follows:

min
(

[

|N� | ×
∑
#8 ∈N�M8

+ XΔΩ
)
, s.t.

{
58 < 1.0,∀#8 ∈ N�,
D8 9 < 1.0,∀;8 9 ∈ L�,

(1)
where [and X denote the normalization factors of M and
ΔΩ, respectively and |N� | is the number of SDN switches
on the path P�. 58 < 1.0 shows that there is no flow-table
overflow at any switch #8 [10] while D8 9 < 1.0 represents that
legitimate packets can be successfully forwarded over links on
P�. For our convenience, Θ = [

|N� |×
∑
#8∈N�M8

+ XΔΩ is used
in the paper remaining.

Theoretically, the control agent might get closer to its
objectives by performing different reaction policies in the data
plane. Nevertheless, it is challenging to obtain an optimal
reaction policy at a time step because of the high number
of traffic flows in the data plane [5], [7].

III. PROBLEM FORMULATION

To achieve the objectives in (1), we adopt a Markov decision
process (MDP) based approach [11] to represent the CARS
operation, which allows the control agent obtain optimal
actions based on its observations to maximize its average long-
term reward. The MDP is defined by < S,A,R > where S is
the state space, A is the action space, and R is the immediate
reward function.

State Space: We define the state space of the system as
follows:

S ,
{
(g, r, Z ,h,k) : h =

∑
#8 ∈N� 58

r
,k =

∑
;8 9 ∈L� D8 9

Z

}
, (2)

where g is the attack type, r = |N� | is the number of SDN
switches on path P�, Z = |L� | is the number of links on path

P�, h is the average flow-table utilization at the switches
on path P�, and k is the average utilization of the links
on path P�. Note that, in this paper, we consider one digit
in the decimal part of h and k, which means that h,k ∈
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. In addition, in
case there is no attack, then g=0, r = |N |, and Z = |E |. A state
is hence defined a s = (g, r, Z ,h,k) ∈ S.

Action Space: Whenever an attack is identified, the control
agent is required to select an appropriate reaction policy -
otherwise, it does nothing. Consequently, the action space can
be represented as

A ,
{
0 : 0 ∈W, if g ≠ 0,
do nothing, if g = 0, (3)

where W is a list of available reaction policies, which is
described in detail in our case study in Section V because
the list of reaction policies can be diverse for different cyber-
attacks. As stated in [8], a reaction policy can be implemented
at different defense points in the network. In this study, for
policies that require to add/update flow rules, e.g. for blocking
an IP address, the reaction policy is deployed at a switch
#8 ∈ N�, where either the flow-table of the subsequent switch
9 ∈ N� is the most utilized or the subsequent link ;8 9 ∈ L�
has the highest utilization D8 9 . As a result, both the flow-tables
of switches and the links on path P� can be protected from
overflow and overload cause by malicious traffic, respectively.

Immediate Reward Function: After performing a reaction
policy to defeat the recognized attack, the control agent
gains an immediate reward proportional to the attack defense
performance, which is denoted as 1

Θ
. However, if any switch

flow-tables get overflowed or any links reach their bandwidth
limit, the control agent should be punished by decreasing its
reward. Moreover, if there are no IDS attack warnings, the
control agent takes a zero reward. Therefore, the immediate
reward of the CARS is defined as follows:

R(B, 0) =

1
Θ
, if g ≠ 0 and 58 < 1.0,∀#8 ∈ N� and D8 9 < 1.0,
∀;8 9 ∈ L�,
1
Θ
−∑

58 −
∑
D8 9 , if g ≠ 0 and 58 = 1.0,∃#8 ∈ N�

or D8 9 = 1.0,∃;8 9 ∈ L�,
0, if g = 0.

(4)

In this study, we aim to achieve the optimal cyber-attack
reaction policy, c∗ (B), that maximizes the average long-term
reward of the CARS:

max
c
ℜ(c) =

∞∑
C=1
E
(
R(BC , c(BC))

)
, s.t. 58 < 1.0,∀#8 ∈ N�

and D8 9 < 1.0,∀;8 9 ∈ L�,
(5)

where ℜ(c) represents the average reward of the control agent
under the policy c and R(BC , c(BC)) denotes the immediate
reward under the policy c at time step t.

Note that, in this paper, for any time step t we examine a
cyber-attack that stems from a single client and is targeted
to a single server. We further develop new algorithms to
defeat attacks originating from multiple clients within one
observation period (time step) in our future work.

4

Reatcion Policy
Placement

 Data Plane

Information
Collector

Control Agent

Action at Current state st
 and reward R(st,at)

Detection
System

Q-table

a1 a2 ...

s1
s2

Q11 Q12

Q21 Q22 ...

...

N1

N2

N3

N4

N5
Ni-1

Ni

Fig. 2. Q-learning based cyber-attack reaction control in SDN.

IV. Q-LEARNING BASED CYBER-ATTACK REACTION
CONTROL IN SDN-BASED NETWORKS

In this section, we propose a Q-learning based cyber-attack
reaction control algorithm to solve the optimization problem
stated in (5). Precisely, as illustrated in Fig. 2, a Q-table is
deployed to store all state-action pairs of the data plane, and a
control agent can learn from its decisions at each time step or
learning iteration [11]. In addition, the Q-learning algorithm
can obtain the optimal control policy c∗ (B) after a certain
number of learning iterations [11]. In addition, the expected
return for the control agent at state s under policy c is referred
to as oc (B) : S −→ R, which is determined as

oc (B) = Ec

[∞∑
C=0
WR(BC , 0C) |BC = B

]
= Ec [R(BC , 0C) +Woc (BC+1) |BC = B] ,∀B ∈ S,

(6)

where W ∈[0, 1] is the discount factor that represents the
importance of the long-term reward [11]. To acquire the
optimal policy c∗ (B) at a state s, the optimal action can be
obtained by applying the optimal value function as follows:

o∗ (B) =max
0
{Ec [R(BC , 0C) +Woc (BC+1) |BC = B]} ,∀B ∈ S. (7)

Hence, for all state-action (s,a) pairs, the optimal Q-functions
can be defined as

&∗ (B, 0) , R(BC , 0C) +WEc [oc (BC+1)] ,∀B ∈ S. (8)

Therefore, the optimal value function o∗ (B) are determined
as o∗ (B) =max0 {&∗ (B, 0)}. Moreover, by deploying different
actions a to the data plane, the optimal Q-function value for
all state-action (s,a) pairs can be achieved. In particular, the Q-
function is updated at each iteration by the following function:

&C+1 (BC , 0C) =&C (BC , 0C) +U[R(BC , 0C)
+Wmax

0
&C (BC+1, 0C+1) −&C (BC , 0C)], (9)

where BC ∈ S, 0C ∈ A, and &C (BC , 0C) is the Q-value for a
state-action pair (BC , 0C), and R(BC , 0C) is the immediate reward
obtained from the data plane at iteration t, and U ∈[0,1] is the
learning rate. Furthermore, we use the n-greedy scheme [11]
to relieve the exploration and exploitation. Finally, Algorithm
1 gives details of our Q-learning based cyber-attack reaction
control algorithm.

Algorithm 1 Q-learning based Cyber-attack Reaction Control
1: Initialize a Q-table, and initialize a Q-table entry for a

state-action pair (s,a) ∀B ∈ S, 0 ∈ A.
2: Initialize values of U, W, and n , and) (terminal condition

in an episode), respectively.
3: for episode q ∈ {1,2, ..., q<0G} do
4: for C ∈ {1,2, ...,)} do
5: Given current state BC .
6: Select a reaction policy 0C with probability n , and

implement 0C at the data plane.
7: Observe a new state BC+1 and calculate an immediate

reward R.
8: Update the Q-table entry for Q(BC ,0C) using Eq. (9).
9: Update BC ←− BC+1.

10: Go to next episode if C =) .
11: end for
12: end for
13: Output c∗ (B) = argmax0&∗ (B, 0).

TABLE I
PARAMETER SETTINGS OF THE Q-LEARNING ALGORITHM

Discount factor W 0.99
Epsilon-greedy policy n [start, end] [1.0, 0.1]
Learning iteration t (seconds) 5.0
Iterations in an episode T 100
Learning rate U 0.6

V. PERFORMANCE EVALUATION

A. Environment Setup

To evaluate the performance of the CARS, we emulate an
SDN-based network by using the MaxiNet tool [12]. The
network topology is adopted from a real-life network example,
namely AttMpls [9], and comprises 25 OvS (Open vSwitch)
switches (|N | = 25) and 57 links. Specifically, 10 virtual
container-based clients, one Web server and one honeypot are
connected to every OvS switch. All OvSes are under the super-
vision of an ONOS SDN controller. The emulation operates
on a physical machine with an AMD Ryzen 7 3800X CPU
with clock speed 8x3.9GHz, 32 GB RAM, and an NVIDIA
GeForce RTX 3060 GPU. The CARS modules are located at
another physical machine with the same configuration.

B. Denial-of-Service Attacks and Reaction Policies

Denial-of-Service (DoS) attacks are the most famous ones
and significantly challenging for mitigation. Accordingly, in
this paper, we consider two well-known denial-of-service
attacks, namely:

TCP SYN flood: The attacker tries to open as many TCP
connections as possible, leading to a flow-table overflow at
SDN switches on the attack path and an overload of the victim
server. According to [10], the flow-table capacity of an OvS
is approximately 3,000 flow rules in an emulation setup.

Link layer flood: The attacker intends to overload the
network links by continuously sending packets with a mas-
sive payload on the attack path, e.g., Ping-of-dead, making
authentic traffic unable to communicate with the victim server.

5

With respect to DoS detection, we use a deep learning-
based DoS detection approach for the IDS (see Fig. 1). Table
II represents the list W of all reaction policies for the two
mentioned DoS attacks, i.e., W={01, 02, 03, 04, 05, 06, 07}. In
addition, Table I shows the hyperparameters of the Q-learning
algorithm used in the CARS.

C. Traffic Generation Strategies

Regarding traffic generation, all clients randomly access
Web servers, making background traffic. Meanwhile, the
Hping3 tool is installed on clients to generate TCP SYN and
ICMP flood attacks to Web servers and overload the network
links. Hence, a client can simultaneously produce both legit-
imate and attack traffic flows. Furthermore, as discussed in
Section III, at a time step, we consider a DoS attack from a
single client to a single Web server. At each step, the client
who generates attack traffic and the Web server is randomly
selected. Lastly, we evaluate the CARS utilizing two attack
traffic scenarios: TCP SYN flood and Link layer flood.

D. Comparable Solutions

We compare the CARS with the GATE [8] and the GTAC-
IRS [5] concerning the DoS attack defense performance and
the ratio of QoS violated traffic flows. In particular, details of
the GATE and the GTAC-IRS are as follows:

Centralized cyber-attack reaction solution: In GATE [8],
the cyber-attack reaction system is located at a central server,
which is similar to CARS. Accordingly, to represent the GATE
operation, we employ the same network setup with 25 OvSes,
as explained in Section V-A, and place the GATE modules on
a physical machine. Moreover, the meta-policies are formed
by mixing 3 reaction policies (i.e., blockIP-1min, limitRate-
50%, and doNothing) with 25 defense points (OvSes). That
means when an attack is recognized, 75 meta-policies could
be performed by the central server to defeat the attack.

Distributed cyber-attack reaction solution: In GTAC-IRS
[5], the detection and reaction tasks are distributed and lo-
cally operated at IoT devices. Therefore, for the SDN setup
discussed in Section V-A, we used the Snort software [13] on
clients to reflect the primary concept of GTAC-IRS, i.e., de-
vices can recognize anomalies by monitoring and intervening
in the local traffic. Moreover, if the Snort puts an alert, one out
of the 3 reaction policies, i.e., blockIP-1min, limitRate-50%,
and doNothing, can be performed at the client to defeat the
malicious traffic.

E. Results Analysis

1) Convergence of Q-learning algorithm: Firstly, we inves-
tigate the convergence of the Q-learning algorithm used in the
CARS for two different DoS attack scenarios. As illustrated
in Fig. 3, the Q-learning algorithm can obtain a significant
reward (i.e., approximately 1.0) for all two scenarios after one
hundred thousand learning iterations and maintain this learning
performance in the remaining, which means that the optimal
cyber-attack reaction policy is found. Specifically, it needs
about 125,000 learning iterations for the TCP SYN flood.

20 40 60 80 100 120 140 160 180 200

Iterations (x10
3
)

-3

-2

-1

0

1

2

A
v

er
ag

e
re

w
ar

d

TCP SYN Flood

Link Layer Flood

Fig. 3. Convergence of the Q-learning algorithm in the CARS.

1 2 3 4 5 6 7 8 9 10

Iterations (x10)

0

20

40

60

80

100

R
at

io
 o

f
d

ro
p

p
ed

 m
al

ic
io

u
s

p
ac

k
et

s
(%

)

CARS

GTAC-IRS

GATE

(a) TCP SYN flood

1 2 3 4 5 6 7 8 9 10

Iterations (x10)

0

20

40

60

80

100

R
at

io
 o

f
d
ro

p
p
ed

 m
al

ic
io

u
s

p
ac

k
et

s
(%

)

CARS

GTAC-IRS

GATE

(b) Link layer flood

Fig. 4. Ratio of dropped malicious packets since a DoS attack is detected.

In comparison, it requires approximately 145,000 learning
iterations for the link-layer flood to obtain the optimal reaction
policy. To sum up, the Q-learning based cyber-attack reaction
control algorithm, i.e., Algorithm 1, can efficiently solve the
optimization problem in (5).

2) DoS attack defense performance: We examine the attack
defense performance achieved by CARS, GATE, and GTAC-
IRS by measuring the ratio of discarded malicious packets
since an attack is discovered. As exhibited in Fig. 4, CARS can
efficiently stop malicious packets from reaching the victim in
all two DoS attack scenarios, i.e., approximately 80% of attack
packets are dropped on average. For GATE and GTAC-IRS,
the rate of dropped abnormal packets is significantly lower,
i.e., 30% and 45% on average, respectively. In particular,
for the GATE, due to the many meta-policies, the genetic
algorithm-based reaction policy selector could not find a set
of best policies. Accordingly, GATE cannot effectively block
the attack packets from entering the victim server. In the
case of GTAC-IRS, the Snort at the client picks one of three
reaction policies (including the doNothing policy) to counter
the abnormal packets, leading to a significant number of attack
packets that are delivered to the victim. In summary, by
employing the optimal cyber-attack reaction policy, the CARS

6

TABLE II
RESPONSE POLICIES FOR DOS ATTACKS

Policy Notation Meaning
blockIP-1min a1 Drop all incoming packets with the attacker’s IP address for 1 minute
blockIP-3min a2 Drop all incoming packets with the attacker’s IP address for 3 minutes
limitRate-50% a3 Reduce the rate of incoming packets from the attacker by 50% compared to the current rate
removeMaliciousFlows a4 Remove all abnormal traffic flow rules at SDN switches on the attack path
toHoneyPot a5 Redirect the attack traffic flows to a predefined honeypot
reRoute a6 Redirect the attack traffic flows to another path in the data plane
doNothing a7 Do nothing

TCP SYN flood Link layer flood
0

20

40

60

80

100

Q
o
S

 v
io

la
te

d
 t

ra
fi

c
fl

o
w

s
(%

) CARS

GTAC-IRS

GATE

10,5

44,25

32,5

14,5

54,4

40,5

Fig. 5. Ratio of QoS violated traffic flows.

outperforms the GATE and the GTAC-IRS considering the
attack defense performance.

3) Ratio of QoS violated traffic flows: Finally, we evaluate
the performance of CARS by measuring the ratio of QoS
violated legitimate traffic flows for two DoS attack scenarios.
As stated in [10], a traffic flow from a source to a destination
is identified as a QoS violated flow in the case at least one of
QoS requirements is not fulfilled. Hence, we consider the end-
to-end delay and the packet loss probability as QoS metrics
for benign traffic flows. As shown in Fig. 5, CARS is superior
to GATE and GTAC-IRS solutions considering the number
of QoS violated legitimate traffic flows. Specifically, for the
two DoS attack scenarios, by applying the optimal cyber-
attack reaction, CARS can reduce the ratio of QoS violated
traffic flows by approximately 66%, and 75% on average
compared to GATE and GTAC-IRS, respectively. Furthermore,
as addressed in Section 3, the CARS implements policies
to drop/limit/redirect the malicious traffic flows at an SDN
switch, where either the flow-table of the next switch on the
attack path or the following link is most utilized. Accordingly,
no flow-table overflow and link overload problems are recog-
nized, significantly increasing the probability of successfully
forwarding benign packets. By selecting random actions (e.g.,
doNothing), GATE and GTAC-IRS enable the malicious traffic
flows to consume most of the network resources, i.e., the
flow-table utilization of SDN switches and the link capacity
utilization. Consequently, only a portion of legitimate packets
is forwarded successfully and in time in the data plane. To sum
up, the CARS outperforms the other solutions concerning the
ratio of QoS violated traffic flows.

VI. CONCLUSION

In this paper, we introduce a novel dynamic cyber-attack
reaction solution based on Q-learning, namely CARS, to effec-
tively defeat cyber-attacks while reducing the negative impact

on benign traffic forwarding in SDN-based networks. To
maximize the attack defense performance, we have developed
a Q-learning based cyber-attack reaction control algorithm
to obtain the optimal cyber-attack reaction policy. For our
case study on TCP SYN flood and Link layer flood attacks,
the obtained results prove that CARS can effectively prevent
malicious packets from reaching the victim while significantly
lessening the ratio of QoS violated traffic flows compared
to GATE and GTAC-IRS. As our future study, we intend to
develop new cyber-attack reaction algorithms to defend against
different cyber-attacks simultaneously.

ACKNOWLEDGMENT

This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
Grant 102.01-2019.322.

REFERENCES

[1] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Communications Surveys Tutorials,
vol. 17, no. 1, pp. 27–51, 2015.

[2] P. Tsai, C. Tsai, C. Hsu, and C. Yang, “Network monitoring in software-
defined networking: A review,” IEEE Systems Journal, vol. 12, no. 4,
pp. 3958–3969, Dec. 2018.

[3] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[4] Y. Zhao and et. al., “A survey of networking applications applying the
software defined networking concept based on machine learning,” IEEE
Access, vol. 7, pp. 95397–95417, 2019.

[5] B. Wang and et. al., “Game-theoretic actor–critic-based intrusion re-
sponse scheme (gtac-irs) for wireless sdn-based iot networks,” IEEE
Internet Things J., vol. 8, no. 3, pp. 1830–1845, 2021.

[6] M. Zolotukhin and et. al., “Reinforcement learning for attack mitigation
in sdn-enabled networks,” in 2020 6th IEEE Conf. on Network Soft-
warization (NetSoft), pp. 282–286, 2020.

[7] P. Nespoli and et. al., “Optimal countermeasures selection against
cyber attacks: A comprehensive survey on reaction frameworks,” IEEE
Commun. Surveys Tuts., vol. 20, no. 2, pp. 1361–1396, 2018.

[8] Y. Guo and et. al., “Decision-making for intrusion response: Which,
where, in what order, and how long?,” in 2020 IEEE Int. Conf. on
Communications (ICC), pp. 1–6, 2020.

[9] S. e. a. Knight, “The internet topology zoo,” IEEE J. Sel. Areas
Commun., vol. 29, no. 9, pp. 1765–1775, 2011.

[10] T. Phan and et. al., “Deepmatch: Fine-grained traffic flow measurement
in sdn with deep dueling neural networks,” IEEE J. Sel. Areas Commun.,
pp. 1–1, 2020.

[11] R. S. Sutton and et. al., Introduction to Reinforcement Learning. Cam-
bridge, MA, USA: MIT Press, 1st ed., 1998.

[12] P. Wette, M. Draxler, and A. Schwabe, “Maxinet: Distributed emulation
of software-defined networks,” in 2014 IFIP Networking Conference,
pp. 1–9, June 2014.

[13] Docker-Snort, “Docker-snort: A free and lightweight network intru-
sion detection system (nids) software.” https://github.com/dnif-archive/
docker-snort, May 2021.

	2020 IEEE
	document

