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A B S T R A C T   

Switched reluctance machines (SRMs) provide a potential candidate and a feasible solution with increased in-
terest for industrial applications due to their simple and rigid structure without permanent magnets, low 
manufacturing cost, excellent power-speed characteristics, and high reliability. However, the nonlinear induc-
tance/flux linkage characteristics caused by the double-salient structure of SRM have created the challenges like 
high torque ripple and vibration. To solve this problem, a significant number of research works focus on the 
design and optimization of SRMs. Accordingly, this paper presents an in-depth literature review on the status and 
potential trends of design optimization techniques for SRMs, including design theory, electromagnetic and 
thermal modeling methods, novel topologies, optimization classifications, and techniques for optimization ef-
ficiency and effects. Existing approaches regarding the above aspects of SRMs are extensively discussed and 
comprehensively summarized. In addition, some essential trends in design optimization development are pre-
sented and highlighted as future perspectives. All the highlighted insights and recommendations of this review 
will hopefully lead to increasing efforts toward the performance and reliability enhancements of SRMs for future 
applications.   

1. Introduction 

Over the past decades, the academic and industrial communities 
have witnessed a rapid development of electrical machines which have 
been successfully designed and applied to electric vehicles (EVs)/hybrid 
electric vehicles (HEVs) [1–3], aircraft/aerospace systems [4–6], energy 
generation systems [7–9], and energy storage device [10,11]. Among all 
types of electrical machines, switched reluctance machines (SRMs) are 
attracting increased attention due to their simple and rugged structure, 
the absence of permanent magnets (PMs), wide operation speed range, 
and low manufacturing cost [12–14]. Moreover, for industrial applica-
tions, high energy efficiency and some other specifications like high 
power density and low weight are required. The high-efficiency SRMs 
are expected to be a competitive alternative to PM machines. Thus, in 
order to further improve the machines’ performance, design and opti-
mization methods have gained excessive attention. 

Design and optimization are two major coupled stages when devel-
oping electrical machines. The main purpose of the design stage is to 
find a feasible solution meeting the specifications by investigating the 

machine type/topology design method, material properties, and per-
formance analysis through tools or design experience. Optimization of 
electrical machines aims to identify the best configuration(s) among a 
great number of evaluated design candidates [15,16]. With the devel-
opment of metamodeling techniques and an increase in computational 
power, most optimization problems of electrical machines are per-
formed by means of intelligent algorithms. A number of innovative 
multi-objective algorithms have been proposed and applied to machine 
optimization, such as genetic algorithm [17–19], particle swarm opti-
mization [20,21], and differential evolutions [22,23]. 

In this paper, an attempt is made to provide a comprehensive liter-
ature survey on the methods for design optimization of SRMs encom-
passing various aspects of design methodologies, optimization 
classification and techniques, and robust approaches, thus, offering re-
searchers and engineers the most up-to-date information on the devel-
opment and progress with the design and optimization technologies for 
SRMs. The remaining part of this article is organized as follows. Section 
2 is devoted to discussing the existing design approaches for SRMs, 
including the design theory, and electromagnetic and thermal modeling. 
Section 3 presents the various novel topologies of SRMs for performance 
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enhancement and specific applications. Section 4 classifies the optimi-
zation methods, and then the state-of-the-art optimization strategies and 
techniques are investigated in Section 5. This is followed by Section 6, 
dedicated to ongoing and future work. The conclusive remarks are 
presented in Section 7. 

2. Design and modeling methods for SRMs 

2.1. Design theory 

In this section, the foundational rules of SRMs along with some 
empirical design formulas of SRMs will be introduced. The flux linkage 
characteristics of SRMs exhibit nonlinear relations concerning the phase 
currents and rotor positions, as presented in Fig. 1. The 0◦ and 180◦

trends reported in Fig. 1 represent the unaligned and aligned positions of 
SRM respectively, which correspond to the positions of minimum and 
maximum inductance, respectively, as illustrated in Fig. 2. Accordingly, 
this inherent characteristic makes the design of SRMs exhibits many 
uncertainties, and most size determinations are based on empirical 
formulas which are associated with specific topologies in the initial 
design stage. 

The electromagnetic torque can be calculated by 

Te =
∂Wco

∂θ
 ,  and  (1)  

Wco =

∫ i

0
ψ(θ, i)di=

∫ i

0
[L
(

θ, i
)

i
]

di=
i2

2
∂L(θ, i)

∂θ
 ,  (2)  

where Wco is the co-energy of the field, θ and i are the rotor position and 
current respectively, and ѱ and L are the flux linkage and inductance 
respectively related to θ and i. The equations indicate that the torque is 
proportional to the area of the conversion loop, which starts from the 
coordinate origin in Fig. 1 and is between the two curves of 0◦ and 180◦. 
The electromagnetic torque can be qualitatively analyzed by (2). When 
the motor is excited in the inductance rising stage from the unaligned 
position to the aligned position shown in Fig. 2, the motor produces 
positive torque. Otherwise, braking torque will be generated. 

Fig. 3 presents four representative topologies of conventional SRMs 
with three, four, five, and six phases. The numbers of stator and rotor 
poles of the conventional SRMs should follow [24] 

Lcm(Ns,Nr) = NphNr (3)  

where Ns, Nr, and Nph represent the numbers of stator pole, rotor poles, 

List of abbreviations 

AFSRM Axial-flux switched reluctance machine 
BEM Boundary element method 
CFD Computational fluid dynamics 
DOE Design of experiments 
DRSRM Double-rotor switched reluctance machine 
DSSRM Double-stator switched reluctance machine 
EV Electric vehicle 
FEA Finite element analysis 
HESRM Hybrid-excitation switched reluctance machine 
HEV Hybrid electric vehicle 
LPTN Lumped parameter thermal network 
LSRM Linear switched reluctance machine 
MEA More electric aircraft 
MEC Magnetic equivalent circuit 
PM Permanent magnet 
RFSRM Radial-flux switched reluctance machine 
SRM Switched reluctance machine 
SRSRM Segmented-rotor switched reluctance machine 
SSSRM Segmented-stator switched reluctance machine 
STSRM Skewed-teeth switched reluctance machine  

Fig. 1. Flux linkage characteristics of SRMs.  

Fig. 2. (a) Unaligned and (b) aligned positions of the 10/8 SRM.  

Fig. 3. Machine topologies of conventional SRMs. (a) Three-phase 12/8 SRM, 
(b) four-phase 8/6 SRM, (c) five-phase 10/8 SRM, and (d) six-phase 12/ 
10 SRM. 
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and phase, respectively, and Lcm means the least common multiple. 
To achieve comparable power density and efficiency with respect to 

other machine types, SRMs are mostly designed by making use of 
saturation where nonlinear characteristics have to be handled, as pre-
sented in Fig. 1. The profile sizes of the conventional SRMs are deter-
mined by the empirical formula as [25,26] 

D2l =
6.1
BδA

⋅
ki

km

Pem

n
(4)  

where D and l are the diameter of the airgap and the stack length, 
respectively, ki and km are the winding current coefficient and square 
wave current coefficient, respectively, Bδ is the magnetic load, A is the 
electrical load, Pem is the electromagnetic power, and n is the rotor 
speed. 

2.2. Electromagnetic modeling 

Accurate electromagnetic modeling provides the foundation for the 
subsequent optimization process. A number of studies considered the 
electromagnetic performances of different types of machines. These 
approaches can be basically classified into two categories, i.e., numeri-
cal and analytical methods. 

2.2.1. Numerical methods 
Numerical methods are the commonly used approach for offering a 

trustworthy electromagnetic solution for a variety of electrical machines 
considering any topology. There are two main types of numerical 
methods, i.e., finite element analysis (FEA), and boundary element 
method (BEM). 

2.2.1.1. FEA. The most promising and popular numerical method is 
FEA [27,28]. In FEA, the analysis domain is divided into sub-regions, 
and each sub-region becomes a simple and small part called a finite 
element. In FEA, a suitable approximate solution is assumed for each 
element, and the solution of this domain which satisfies the conditions 
like the equilibrium condition of the structure is deduced. Dirichlet, 
Neumann, and periodic boundary conditions are applied for solving FEA 
problems. The definition and assignment of finite elements are flexible, 
which makes FEA suitable for any complex machine topologies and 
provides an accurate performance solution like the magnetic field dis-
tribution within any component. The computational burden is the main 
limit of FEA, since it needs to mesh the entire solution domain. With the 
increase in computational power, this problem has been gradually 
improved, which makes FEA the most commonly used tool. 
Two-dimensional (2-D) FEA instead of three-dimensional (3-D) FEA is 
commonly used and has become a mature technology applied for the 
design of SRMs [29,30]. The major deficiency of 2-D FEA is that it is 
generally not possible to model the variations of material properties 
along the axial direction, and skewing and end winding effects [31]. 
Consequentially, for complex topologies, especially machines with axial 
flux paths or skewed components, 3-D FEA provides more accurate re-
sults [32]. In addition to its application in the motor design stage, FEA is 
also widely used in the optimization process to, e.g., maximize the 
output torque and minimize the loss or ripple [33–36]. 

2.2.1.2. BEM. BEM is an alternative numerical method to obtain a 
precise magnetic solution, which also has been applied in the design 
optimization of SRMs [37,38]. Similar to FEA, a number of equations are 
assembled into a matrix form and are solved to obtain the solution. In 
contrast to FEA, BEM forms the boundary value problems as integral 
equations with boundary conditions, rather than differential equations 
throughout the whole design domain [39]. The main drawbacks of BEM 
are that the system matrix lacks symmetry and its ability to deal with 
nonlinear problems is poor due to the coarse treatment of anisotropic 
material properties. Accordingly, it is usually combined with FEA or 

MEC for the design and optimization of devices [39,40]. 

2.2.2. Analytical methods 
Compared with numerical methods, analytical techniques can 

significantly reduce the computational effort often at the expense of 
accuracy. Moreover, numerical methods are unable to give a direct 
insight into the influence of geometrical parameters on the machine’s 
performance, and thus the natural characteristics could not be well 
explained by this kind of method. In contrast, analytical techniques 
facilitate studying those circumstances. The main challenge of the 
analytical method is that it could not well approximate a complex ge-
ometry by taking an accurate evaluation of core saturation and end- 
winding inductance into account. The analytical methods can be clas-
sified into Maxwell’s-equations-based methods, curve-fitting methods, 
and magnetic equivalent circuit (MEC) methods. 

2.2.2.1. Maxwell’s-equations-based methods. Maxwell’s-equations- 
based methods provide magnetic field analysis by solving the partial 
differential equations of magnetic potentials based on Maxwell’s equa-
tions [41,42]. In Ref. [43], an analytical model is developed for the 
unaligned inductance of the SRM. The contributions of stator and rotor 
slots have been accounted for. However, the stator and rotor are 
reshaped into rectangles for simplification, and they cannot be applied 
to other positions where the iron core is saturated. An enhanced model is 
presented in Ref. [44] to calculate the phase inductance over the full 
rotor position ranges. The conformal mapping is employed to calculate 
the permanence of the air region, and the saturation effects are 
considered by the combination with the MEC model. It has been proved 
that the slotting effects could be reduced by means of harmonic 
modeling and the Schwarz-Christoffel mapping method [45]. 

2.2.2.2. Curve-fitting methods. Curve-fitting methods approximate the 
models like the flux linkage or static torque with respect to rotor position 
and phase current. It estimates the profiles of SRM’s characteristics 
based on a limited set of data from simulation or experiments rather 
than a full set of data, which can reduce the modeling cost to some 
extent. There are four main types of curve-fitting method, i.e., a Fourier 
series based approach [46–48], lookup based versions [49–51], line-
ar/nonlinear curve-fitting formulas [52–54] and the application of the 
artificial intelligence method [55–58], which all have been successfully 
applied in SRMs. 

The Fourier series based methods have been extensively used to 
characterize the nonlinearity of flux linkage, inductance, or torque of 
SRMs. The accuracy of the model typically increases with the number of 
considered orders. In Ref. [59], the flux-linkage models are represented 
by the second- and fourth-order Fourier series, respectively, as presented 
in Fig. 4. It can be found that in the second-order model the flux linkage 
at the aligned position is lower than the adjacent positions, which obey 
the consensus. Furthermore, the initial data used for Fig. 4 is based on 
the experimental results of torque-balanced positions where the static 
torque is zero. Thus, the cost could be greatly reduced compared with 
the full range of measurements. 

2.2.2.3. MEC. MEC is a fast and powerful tool to provide a good 
compromise between computational burden and modeling accuracy. It 
is analogous to an electric circuit in which the electric machine is rep-
resented by a reluctance network [67]. The accuracy of MEC is mainly 
characterized by the level of physical geometry discretization. The re-
luctances of each region depend on the geometry and material perme-
ability. The reluctance value regarding the airgap region continuously 
changes with the rotor position. Fig. 5 presents an MEC model for an 8/6 
SRM, investigated in Ref. [66]. There are three main types of reluctance 
types considered in SRM, i.e., the linear reluctance with constant 
permeability, nonlinear reluctance decided by the material property, 
and reluctance changed with regard to the rotor position [62]. The slot 

K. Diao et al.                                                                                                                                                                                                                                    



Renewable and Sustainable Energy Reviews 168 (2022) 112785

4

leakage reluctance is the modeling of flux flow through the stator or 
rotor slot. It is determined by the stator and rotor structures and can be 
ignored at the aligned position. Both the stator and rotor are divided into 
two types of reluctance, for instance, as shown in Fig. 5, Rsy and Rst 
represent the reluctances of stator yoke and teeth, and Rry and Rrt 
represent the reluctances of rotor yoke and teeth. The flux passing 
through the stator and rotor iron cores would be nonuniform with the 
rotation of the rotor. Therefore, more discretization of the stator and 
rotor region is beneficial to improve the modeling accuracy. 

For better visualization and understanding, the above major elec-
tromagnetic modeling methods for SRMs are summarized in Table 1, 
including the classifications, advantages and disadvantages of each 

model. 

2.3. Thermal modeling 

The thermal analysis in the machine is significant since the life of 
winding and lamination insulation materials is determined by temper-
ature rise. Moreover, the properties of materials vary with the temper-
ature. Therefore, it is necessary for the designers to put forward a 
solution to balance the motor performance and heat dissipation and 
make full use of the cooling ability. Thermal circuit approaches and 
numerical techniques are two ways of approaching thermal analyses. 
More illustrations regarding the thermal analysis methods of electric 
machines can be found in Refs. [68,69]. 

The thermal circuit approaches rely on an equivalent lumped 
parameter thermal network (LPTN), where different parts of the elec-
trical machine are modeled by lumped parameters of interconnected 
thermal resistors and capacitors. The network is developed by consid-
ering effects related to conduction, convection, and radiation resistances 
for different parts of the motor construction [70]. This approach has 
been widely used since it is computationally efficient and exhibits 
acceptable accuracy subject to the complexity of the established 
network. A 3-D transient LPTN conserving the axial and radial heat 
transfer has been proposed in Ref. [71], as shown in Fig. 6. The LPTN can 
solve the temperature of both interior and housing of the motor. The 
convection-heat-transfer coefficient is most often based on empirical 
formulations which are available for most of the basic geometric shapes. 
However, the empirical formulas may be inaccurate considering 
complicated motor geometries, and errors and too coarse assumptions 

Fig. 4. Flux linkage modeling by (a) second-order and (b) fourth-order Fourier 
series [59]. 

Fig. 5. MEC model of an 8/6 SRM [66].  

Table 1 
Summary of electromagnetic modeling for SRMs.  

Classification Modeling 
approach 

Reference Advantage Disadvantage 

Numerical 
methods 

FEA [28, 
30–36] 

High accuracy; 
can model 
complex 
structures; 
obtain field 
distributions; 
considers 3-D 
effects such as 
skewing and 
winding effects 

High 
computational 
time; complex 
modeling 
process for 3-D 
geometry 

BEM [37,38] High accuracy; 
moderate 
computational 
time 

Dense system 
matrix; poor 
ability to deal 
with saturation 
or nonlinear 
problems; 
requires to solve 
the boundary 
conditions 

Analytical 
methods 

Maxwell’s- 
equations- 
based 
method 

[41–44, 
60] 

Low 
computational 
time; can 
directly obtain 
the magnetic 
characteristics 

High 
complexity; poor 
ability to deal 
with saturation 
or nonlinear 
problems 

Curve- 
fitting 
method 

[46–53, 
55–57, 
61] 

Low 
computational 
time; estimate 
the behaviours 
based on a 
limited number 
of data 

Empirical and 
heuristic; 
require preset 
data; new data is 
required if the 
topology is 
changed 

MEC [62–66] Acceptable 
accuracy; low 
computational 
time 

Empirical in 
assumptions of 
fringing/leakage 
reluctances; 
require defining 
flux paths in 
advance  
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for these coefficients can have a significant impact on model accuracy 
[68]. 

The numerical techniques mainly include FEA and computational 
fluid dynamics (CFD). FEA is used to model conduction in solids and 
predict the temperature distribution, while CFD is utilized to find the 
heat transfer coefficients of fluid flow for thermal circuits or FEA 
problems. In Ref. [72], Srinivas et al. first proposed the procedure of a 
flow-analysis-based thermal modeling method for SRMs, in which CFD 
was utilized for the evaluation of the air velocity distribution to achieve 
an accurate heat transfer and distribution, and FEA was conducted for 
the steady-state and transient thermal characteristics based on the 
airflow analysis. The main benefit of numerical analysis is that nearly 
any motor geometry can be modeled, but extended model setups and 
significant computation times are required [73]. 

The coupling between the electromagnetic and thermal fields is an 
essential and urgent issue in the design stage due to the strong inter-
action between the two aspects. The temperature rise depends on the 
losses obtained in the electromagnetic analysis and vice versa. 
Conventionally, the values and distributions of copper and iron losses 
are introduced into the thermal analysis as the heat source. An iteration 
process can be applied for the coupled analysis between the two physical 
fields to converge to a self-consistent solution [74]. However, it requires 
huge computational efforts and cannot provide real-time results for 
transient operations. 

3. Novel design topologies 

Over the past decades, conventional SRMs have been successfully 
designed and tested in industry applications. Moreover, various novel 
topologies are derived from the conventional structure for further per-
formance and reliability improvements or some specific applications. 
The novel structures of SRMs can be divided into the SRMs with 
segmented stator/rotor [75–77], double stator/rotor [78,79], hybrid 
excitation [80,81], skewed teeth [82], axial flux [83], and linear 
structure [84,85], or the combination of the above types [86–89]. 

3.1. Segmented SRM 

The flux path can be further shortened by incorporating the 
segmented parts into the SRMs. Besides, the electromagnetic isolation 
caused by the segmented structure can enhance the reliability and fault 
tolerance of the motor. The segmented SRM can be generally classified 
into the segmented-stator SRM (SSSRM) and the segmented-rotor SRM 
(SRSRM), it could also be the combination of segmented stator and 
segmented rotor. 

There are various topologies of SSSRM, and they can be divided into 
SSSRM with C-core, E-core and multitooth stator according to their 
tooth number of segmented-stator [86,90,91]. For instance, as reported 
in Refs. [92,93], a novel two-phase E-core SSSRM was proposed and 
investigated. The stator is E-shaped with wide and narrow teeth, as 
presented in Fig. 7(a). Compared with the conventional two-phase SRM, 
the material for producing the stator core can be saved, and the iron loss 
can be reduced. An improved 9/12 structure was proposed in Ref. [94] 
which was modified to produce higher output torque. The impact of the 
number of segmented-stator teeth on the performance was investigated 
in Ref. [95], and a novel SSSRM with a multitooth stator was proposed to 
maximize the converted energy, as shown in Fig. 7(b). 

In the literature [96], Merrow et al. presented a three-phase SRSRM 
with full pitch windings, as shown in Fig. 8(a). The rotor is composed of 
several discrete fan-shaped core blocks, embedded in the non-magnetic 
sleeve. The defect of this structure is that the windings span multiple 
stator teeth, so that the windings of different phases overlap at the end of 
the stator, which increases the end effects and reduces the fault toler-
ance. Thus, it is not suitable for applications with short axial length. To 
solve this problem, an SRSRM with two types of stator poles was pro-
posed in Ref. [97]. The windings of this topology are placed around a 
single tooth, which occupy less copper volume compared with the full 
pitch SRSRM, as shown in Fig. 8(b). The performances of the SRSRMs 
were evaluated and compared in Ref. [98]. It was concluded that both 
SRSRMs with fully pitched and single-tooth windings can deliver 40% 
higher output torque than conventional SRM at the same copper con-
sumption. The SRSRM with single-tooth windings would be more 
attractive due to its less end windings. Moreover, in Ref. [99], the 
SRSRMs with exciting and auxiliary stator poles were proposed and the 
effects of different rotor pole numbers were investigated. 

3.2. Hybrid-excitation SRM 

Compared with PM machines, conventional SRMs exhibit lower 
torque and power density. To solve this issue, one solution is to the 
employment of auxiliary flux sources to improve the flux density. 
Therefore, hybrid-excitation SRMs (HESRMs) are gaining increasing 
attention by adding PMs in order to improve torque production and 

Fig. 6. 3-D LPTN of a 12/10 SRM [71].  

Fig. 7. Machine topologies of SSSRMs with (a) E-core [92,93] and (b) multi-
tooth stator [95]. 

K. Diao et al.                                                                                                                                                                                                                                    



Renewable and Sustainable Energy Reviews 168 (2022) 112785

6

power density. 
In [100], a 12/8 HESRM was presented based on a C-core SSSRM, as 

shown in Fig. 9. By comparing it with a conventional SRM of the same 
size, it can be found that the HESRM has higher torque production. 
Furthermore, an investigation has been performed in Ref. [101] to 
present the influence of this topology with different pole numbers. Two 
HESRMs with 12/10 and 12/8 stator/rotor configurations were manu-
factured and comprehensively compared. The problem of such HESRM 
where the PMs are placed between the stator pole-tips is that the 
winding area is narrowed. This will influence the maximum output 
torque. Moreover, the heat dissipation performance gets worse. An 
alternative way is to arrange the PMs inside the stator teeth. However, it 
will cause insufficient mechanical strength [102]. Another innovative 
method of embedding PMs has been proposed in recent work [103]. A 
novel multitooth HESRM was presented where the PMs are placed be-
tween the end teeth of the adjacent modules. It can well handle the 
problems of the two other solutions where PMs are placed between 
pole-tips or inside stator teeth. 

3.3. Double-stator/rotor SRM 

Conventional SRMs suffer from the high vibration caused by the 
radial force. The double-stator SRM (DSSRM) and double-rotor SRM 
(DRSRM) presented in Fig. 10 provide a solution, since the electro-
magnetic force from the opposite directions can be offset to some extent. 
Besides, both the DSSRM and DRSRM have been proposed as high-power 
density machines [87,104,105]. 

The DSSRM presented in Fig. 10(a) was first introduced in Ref. [106], 
and the configuration including the magnetic force analysis was pre-
sented. The vibration characteristics were reported in Ref. [107] and 
compared with a conventional SRM. It was found that the vibration 

could be significantly reduced. Besides, the thermal analysis of DSSRM 
was performed in Ref. [104]. The design strategy including the calcu-
lation of dimensions and electromagnetic analysis of DSSRM was pro-
posed in Ref. [108]. In Ref. [109], a novel mechanical offset DSSRM with 
multitooth was proposed. The two stators can provide complementary 
torques when teeth of the outer and inner rotor are deliberately offset by 
conjugate angle, hence minimizing the torque ripple. Recent works 
regarding the DSSRM focus on the modification and optimization of the 
configurations for torque ripple mitigation [35,79,110]. 

As reported in Ref. [78], the DRSRM was first proposed along with 
the working principle. Since it could provide two independent me-
chanical ports, DRSRM is especially suitable for HEV transmission sys-
tems where dual electromechanical energy conversion is required. A 
segmented rotor was incorporated into the DRSRM in Ref. [87] to 
improve the torque production. Based on those results, a unique DRSRM 
with a shared back-iron was presented in Ref. [105] for reducing the 
overall size. Yang et al. [111] present the detailed design procedure of 
the DRSRM including the analytical calculations and FEA. A novel 
DRSRM presented in Fig. 10(b) was designed and optimized in which 
both the two rotors can be controlled independently. Moreover, a family 
of DRSRM configurations has been introduced and compared. 

3.4. Skewed-teeth SRM 

Fig. 11 presents the prototypes of skewed SRM’s stator and rotor. 
Considering the combination of skewed stator and rotor, the skewed- 
teeth SRM (STSRM) can be divided into three categories, the stator- 
only, the rotor-only, and the stator-rotor combination skewing struc-
tures. The SRMs suffer from large vibrations due to the radial magnetic 
force generated between the double salient poles. The benefit of the 
skewed topology is that it can reduce this vibration by mitigating the 
radial force [82]. 

The effects of the three types of STSRM have been investigated in 
Ref. [112]. It was concluded that the skewing can reduce the vibration 
caused by the radial pulsating force, and skewing the stator is more 

Fig. 8. Machine topologies of (a) an SRSRM with full pitch windings [96] and 
(b) an SRSRM with single-tooth windings [96]. 

Fig. 9. Machine topologies of (a) a C-core SRM and (b) an HESRM [100].  

Fig. 10. Machine topologies of (a) an DSSRM [106] and (b) an DRSRM [111].  

Fig. 11. Prototypes of skewed (a) stator and (b) rotor [82].  
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effective than skewing the rotor for vibration suppression. Moreover, 
skewing the stator and rotor together is the most effective way to reduce 
the vibration. Furthermore, in Ref. [113], the torque production of 
skewed-teeth SRMs was investigated and compared, and it is found that 
the stator-only and rotor-only skewing structures have negative effects 
on output torque while the stator-rotor combination skewing structure 
has less impact. 

3.5. Axial-flux SRM 

The magnetic flux lines in the airgap of the axial-flux SRM (AFSRM) 
are parallel to the rotation axis of the machine. It has been recognized in 
the literature that AFSRM exhibits higher power density than radial-flux 
SRM (RFSRM) due to its larger airgap surface [114]. The airgap surface 
of the former is dependent on the diameter of the machine whereas that 
of the latter is dependent on the axial length of the machine. Accord-
ingly, AFSRM is preferred over RFSRM for applications like in-wheel 
motors with a high diameter to axial length ratio. The basic properties 
of AFSRM were presented in Ref. [115]. It has been found that the airgap 
length of AFSRM must be larger than that of RFSRM, since the AFSRM 
has a large electromagnetic force in the axial direction, which generates 
rotor distortion. An AFSRM with C-core stators and segmented rotors 
was proposed in Ref. [116], as shown in Fig. 12. It exhibits some major 
merits, such as higher power density, more flexible space for winding 
arrangement, maximized thermal dissipation, and improved fault 
tolerance capability. 

3.6. Linear SRM 

In the traditional linear motion systems, the rotary machine is usu-
ally used to drive the connecting rod to convert the rotary motion into 
linear motion. The overall efficiency will be affected due to the energy 
loss among the multistage transmission mechanism. Thus, for the ver-
tical actuation systems, the linear machine is superior to the rotary 
machine in stiffness, working life, and the other performance indices. 
Two features should be intensively observed for the application of linear 
machines. One is the ratio of the payload to the onload capability, and 
the other is the feasibility of a long stator structure [117]. The linear 
induction machine and the linear synchronous machine could achieve a 
high respective ratio with simultaneously guaranteeing a high effi-
ciency. However, they both have windings in the stator, which are not 
feasible for long-distance propulsion due to the high cost. 

Linear SRM (LSRM) is an attractive alternative that has been 
designed and applied to rail propulsion, wave energy generation, and 
elevators due to its absence of PMs, concentrated rather than distributed 
windings, and high robustness and fault tolerance [118–120]. LSRM can 
be classified as a longitudinal or transverse flux type. In longitudinal 
LSRM, the plane of the flux is parallel to the direction of motion, while 

that of the transverse LSRM is perpendicular to the direction of motion. 
The design procedure of longitudinal LSRM by converting the specifi-
cations of LSRM into the equivalent rotary SRM was proposed in 
Ref. [121]. Four longitudinal LSRM configurations are designed and 
compared in Ref. [122] for the application in vertical elevators. In 
addition, the electromagnetic force characteristics of a transverse LSRM 
were investigated in Ref. [123], and equations regarding the machines’ 
force, efficiency, operating velocity and required voltage have been 
presented in Ref. [124]. 

In recent years, the segmented stator/translator has been adopted in 
LSRM. Wang et al. [117] presented the design, sensitivity analysis, and 
optimization of an LSRM with segmented rotors， as presented in 
Fig. 13(a). It was concluded that the presented LSRM exhibits high force 
density and copper utilization ratio, and low cost. Furthermore, the 
unitized design methodology for this topology has been developed in 
Ref. [125]. Topologies for LSRM with segmented translator were 
introduced in Ref. [126], and an analytical modeling has been devel-
oped for this kind of structure as illustrated in Fig. 13(b) [60]. 

For better visualization, in Table 2, all the above novel topologies of 
SRMs have been summarized and compared. The features of each to-
pology have been clearly illustrated, and their main advantages and 
disadvantages have been listed. 

4. Optimization classification 

Optimization methods could have several forms of classification 
according to different criteria. Regarding the number of objectives, it 
could be classified into single and multi-objective optimization [134, 
135]. According to whether the ontology and control variables are 
simultaneously optimized, it could be classified into component and 
system-level optimization [136]. Moreover, in terms of consideration of 

Fig. 12. Prototypes of an AFSRM [116].  
Fig. 13. Machine topologies of (a) a segmented-stator LSRM [117] and (b) a 
segmented-translator LSRM [60]. 
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uncertainties, there are deterministic and robust optimization methods 
[137–139]. 

4.1. Single and multi-objective optimization 

Definition of the optimization problem is the primary and significant 
step of optimization. It includes the objectives, constraints, and 
boundaries. For single-objective optimization problems, it addresses 
only one performance index, which can be generally defined as 

min : f (xs)

s.t. gi(xs) ≤ 0, i = 1, 2, ..., n
xsl ≤ xs ≤ xsu

(5)  

where xs, f, and gi are the design parameter vector, objective and con-
straints of the design candidates, respectively, xs consists of motor pa-
rameters and control parameters, and xsl and xsu are the lower boundary 
and upper boundary, respectively. 

However, the problem of single-objective optimization is that it ig-
nores and potentially influences the other important indices. Conflicting 
optimization objectives are very typical such as the output torque and 

copper loss. Thus, the required trade-offs in multi-objective problems 
should be taken into consideration. Generally, a multi-objective opti-
mization model can be defined as 

min : {f1(xs), f1(xs),…, fm(xs)}

s.t. gi(xs) ≤ 0, i = 1, 2, ..., n
xsl ≤ xs ≤ xsu

(6)  

4.2. Component and system-level optimization 

The operation performances of electrical machines contain two as-
pects, i.e., the steady-state and dynamic performances. To achieve dy-
namic performance, the electrical machine cooperated with control 
systems should be evaluated. For applications like EVs or HEVs, the 
energy efficiency of the whole system is more of a concern than just one 
component. The system-level design optimization put efforts into the 
selection of the best solution for the system, which provides a promising 
topic in recent years. The system-level optimization method for the 
electrical machine was first proposed in Ref. [136]. The framework of 
system-level optimization is presented in Fig. 14. The parameters of 
motor ontology and control are optimized and evaluated during the 
same process. It should be noted that the optimal design solution of 
system-level optimization aims to find the optimal system performance, 
but it cannot guarantee the optimal component performance like the 
optimal motor topology. 

4.3. Deterministic and robust optimization 

The deterministic optimization approach aims to provide an optimal 
solution or a Pareto front for electrical machines and drive systems 
without the consideration of uncertainties like material diversities, 
manufacturing tolerances, and assembly errors. It is acknowledged that 
manufactured products will feature inevitable deviations from the ideal 
model. The implementation of the deterministic approach potentially 
results in dissatisfying variations of output performance, especially in 
mass production [141]. 

Table 2 
Summary and comparison of various SRM topologies.  

Topology Feature Reference Advantages Disadvantages 

Segmented- 
stator 
SRM 
(SSSRM) 

Adopt the 
segmented 
stator 

[76,90, 
92–95] 

Reduce iron 
loss; improve 
output torque 
and fault- 
tolerance 
ability 

High 
manufacturing 
and assembling 
complexity 

Segmented- 
rotor 
SRM 
(SRSRM) 

Adopt the 
segmented 
rotor 

[75, 
96–99, 
127,128] 

Improve 
output torque; 
reduce 
windage loss 
and torque 
ripple 

High 
manufacturing 
complexity; 
potentially 
mechanical 
weakness 

Hybrid- 
excitation 
SRM 
(HESRM) 

Add the PMs 
for flux 
enhancement 

[80, 
100–103, 
129] 

Improve 
output torque; 

Insufficient 
mechanical 
strength; less 
inherent 
robustness 

Double- 
stator 
SRM 
(DSSRM) 

Assemble the 
rotor between 
the outer and 
inner stators 

[35,79, 
106–110] 

Reduce radial 
vibrations; 
improve 
energy 
conversion 
efficiency 

High cost; 
complex 
structure 

Double- 
rotor 
SRM 
(DRSRM) 

Assemble the 
stator 
between the 
outer and 
inner rotors 

[78,87, 
105,111] 

Reduce radial 
vibration; 
provide two 
independent 
mechanical 
ports 

High cost; 
complex 
structure 

Skewed- 
teeth 
SRM 
(STSRM) 

Skew the 
stator or rotor 
poles with the 
proper angle 

[82,88, 
112,113] 

Reduce 
acoustic noise 
and vibration; 
controlled with 
conventional 
schemes 

Complex 
fabrications 
with different 
stacks between 
two laminations 

Axial-flux 
SRM 
(AFSRM) 

The magnetic 
flux flows 
along the 
axial 
direction 

[114–116, 
130–132] 

Produce high 
power density; 
suitable for 
applications 
with a high 
diameter to 
axial length 
ratio 

High 
manufacturing 
cost 

Linear SRM 
(LSRM) 

Produce 
linear motion 
between 
stator and 
rotor 

[117–122, 
133] 

Suitable for 
vertical 
actuation 
systems; high 
fault-tolerance 
ability 

Long stator yoke 
causes 
difficulties in the 
manufacturing 
and assembling 
process  

Fig. 14. A system-level optimization framework for electrical drive sys-
tems [140]. 
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Fig. 15 presents the illustration of deterministic and robust ap-
proaches. Assume that the goal of the optimization is to minimize f(x). It 
can be observed from Fig. 15(a) that the deterministic approach follows 
the overall best solution. However, when the parameter x is subject to 
variation within the range of Δx, the optimization objective’s fluctua-
tion of the deterministic approach is significantly larger than that of the 
robust approach. Moreover, some variations of solutions for the deter-
ministic approach may exceed the constraints and become infeasible, 
this is forbidden in industrial applications and the rejects will increase 
the manufacturing cost. From Fig. 15(b), it can be seen that the robust 
approach achieves more concentrated design solutions within the 
feasible domain, while the designs of the deterministic approach are 
usually distributed close to the constraint boundary. 

Intuitive comparisons between the deterministic and robust optimi-
zation methods can be found in Refs. [136,142]. When compared with 
the robust approach, a better rated performance, i.e. without consid-
ering any kind of imperfections, is typically obtained for the determin-
istic approach. However, the reliabilities, robustness levels, and the 
probability of failure are generally worse. The reliability and quality 
cannot be guaranteed using the deterministic approach. In Ref. [143], an 
example case study for PM motor optimization was investigated. It has 
been found that the reliabilities of the motor obtained through robust 
optimization are 100% which means the probability of failure of the 
robust approaches can be decreased to zero, while those of the deter-
ministic designs can be lower than 30%. 

5. Optimization techniques 

5.1. Design of experiment (DOE) 

DOE is a field of research which aims to achieve as much information 
as possible from a minimum number of experiments. For the design of 
electrical machines, the initial samples are usually generated by the DOE 
technique. The DOE can be classified into full factorial design and partial 
factor design [144]. The full factorial design is suitable for optimization 
problems with fewer variables, and its accuracy will be increased by the 
number of design levels. For example, considering a 4-factor optimiza-
tion problem, 54 = 625 samples and 84 = 4096 are needed for the 5-level 
and 8-level full factorial design, respectively. The model with an 8-level 
full factorial design exhibits higher accuracy, but it is associated with a 
huge computational burden, which will greatly increase the runtime 
cost. In summary, the full factorial design is not suitable for 
high-dimensional optimization problems since it will influence the 
optimization efficiency and put a challenge on the computing tools. 
There are two solutions to solve this problem, one is the fractional 
factorial design, and the other is the multi-level optimization method. 

5.2. Surrogate models 

Surrogate models provide an alternative to FEA based evaluations for 
solving optimization problems specified through objectives and con-
straints. It is a statistical approach to global optimization by training a 
mathematical model on the foundation of a limited number of simula-
tions around the operating point. It can ease the computational burden 
during the optimization process and has been proved as an effective way 
to solve the optimization with a high number of variables [145,146]. 
Three popular kinds of surrogate models have been widely used in the 
optimization problems of SRMs, namely the Kriging model [147,148], 
response surface model [36,149], and radial basis functions [150,151]. 

5.3. Multi-level optimization method 

The multi-level optimization method is efficient to deal with high- 
dimensional optimization problems. It divides the initial design space 
into several low-dimensional subspaces, and the variables in each sub-
space are optimized sequentially. It has been proved that the multi-level 
optimization method provides a practically effective approach for 
design optimization problems to shorten the design cycle, reduce the 
computational cost, and improve design efficiency [152]. 

Fig. 16 illustrates the flowchart of the multi-level optimization 
method, and it has been successfully implemented for SRM in Ref. [140]. 
This is a high-dimensional optimization problem since the variables of 
the control method have been considered simultaneously as well as the 
structural parameters. The design variables have been divided into three 
subspaces according to their influence on optimization objectives, and 
each subspace is sequentially optimized. An iteration process has been 
added to the optimization process and the optimization of each subspace 
is performed sequentially until the convergence condition is met. 

5.4. Robust optimization approach 

Manufacturing imperfections and assembling errors follow inevi-
table deviations from the rated ideal output, which degrades the per-
formance of the electromagnetic device. The concept of robust 
optimization has been illustrated in the former section. There are three 
popular robust optimization approaches, i.e., the Taguchi method, 
worst-case design, and design for six-sigma [153–156]. 

The worst-case design reported for the application of SRMs was 
presented in Ref. [153]. The reliability of the designs can be ensured by 
applying this method since it focuses on the worst-case performance and 
makes sure that it meets the requirements. In Ref. [157], a Taguchi 
method based approach was applied for an SRM to reduce the variability 
of torque and torque per inertia and meet the design requirements at the 
same time. The main drawback of the conventional Taguchi method is 
that the selection of the values and the improvement in performance is 

Fig. 15. Illustration of deterministic and robust optimization approaches.  

K. Diao et al.                                                                                                                                                                                                                                    



Renewable and Sustainable Energy Reviews 168 (2022) 112785

10

significantly affected by the defined levels which highly depend on the 
number of levels selected and the human experience. Accordingly, it has 
been improved in Ref. [158], in which a sequential Taguchi method was 
incorporated including a system-level optimization method and further 
a space reduction strategy was proposed for SRM drive systems. The 
airgap was considered in Ref. [158] as the noise factor, which very likely 
undergoes fluctuations during the manufacturing and assembling pro-
cess. Lei et al. applied the design for the six-sigma approach for the 
optimization of electric machines [142,143,154], and a design example 
considering a PM machine was investigated. Design examples of 
sig-sigma on SRMs have not been reported yet. 

6. Future trends 

The previous sections were focusing on the design methods, novel 
topologies, and optimization classification and techniques. As these 
sections revealed, the research area of design optimization techniques 
for SRMs is widespread. Moreover, since PM motors take up the majority 
of the market share, most scholars have not emphasized SRMs [159, 
160]. Therefore, potential prospective research topics regarding the 
design optimization of SRMs exhibit great potential significance. In the 
following, some ideas for future trends based on the existing research 
experience shall be presented. 

6.1. Robust topology optimization of SRMs 

In general, structure optimization can be divided into three levels, 
namely, size, shape, and topology optimization. The size optimization 
aims to search for the optimal sizes of the specified components without 
changing the basic shape. Compared with size optimization, shape 
optimization is more flexible in which the geometrical parameters of the 
boundary points can be set as the design variables. The above two 
methods cannot optimize the interior domain within the boundary, for 
example, holes cannot arise unrestrainedly. Topology optimization aims 

to obtain the optimal layout of components in the prescribed design 
domain to obtain the best structural performance by transforming the 
design optimization problem into a material distribution problem [161]. 

Conventionally, most optimization problems are solved in a deter-
ministic manner, known as deterministic optimization, where various 
sources of uncertainties are not taken into account. However, un-
certainties are unavoidably observed due to the manufacturing and 
assembling errors, and changeable environment. They could cause great 
performance variations, as illustrated in Fig. 15. Therefore, there is a 
strongly increasing requirement to incorporate the robust optimization 
approach into the topology optimization for more flexible structure and 
sustainable reliability [162]. Robust topology optimization takes the 
effects of uncertainties into account for optimal topologies in structural 
design. It optimizes the objective performance by means of determining 
the ideal material distribution while simultaneously minimizing its 
sensitivity with respect to uncertainties. Previous works mostly focus on 
one side, i.e., robust or topology optimization of SRMs. For instance, in 
Refs. [153,155], worst-case scenario and Taguchi robust optimization 
have been applied in SRMs. The topology optimization method has been 
reported in Ref. [163] for a high-speed SRM to improve the static torque. 
To the authors’ best knowledge, robust topology optimization method 
has not been reported on SRMs and even other types of electrical 
machines. 

Robust topology optimization is an emerging topic which would be 
greatly suitable for SRMs to further reduce the material cost, to obtain a 
faster dynamic response, and to improve the cooling condition. SRMs 
exhibit inherent better mechanical robustness compared to motors with 
PMs. Thus, the topology design domain of SRMs is more flexible and 
more solutions can be carried out to remove the abundant materials in 
stator and rotor under the consideration of performance fluctuation. The 
main obstacles of the robust topology optimization for SRMs are the 
huge computational burden due to the huge number of degrees of 
freedom, and the coupling influence between the electromagnetic and 
mechanical fields. With the development of the co-simulation and 
metamodeling techniques, and the installation of computer clusters, 
such problems are evermore focused. 

6.2. System-level based multidisciplinary design optimization of SRMs 

In traditional design optimization works, most emphasis was put on 
the magnetic behaviours of SRMs, while the performances in other fields 
like temperature and stress are ignored. As discussed before, the life of 
windings and lamination materials is determined by the temperature 
rise, and deformation will occur due to high stress. The coupling re-
lationships between electromagnetic, thermal, and mechanical fields 
should be evaluated to make full use of the performances and to ensure 
that the final design’s performance is within the constraints. Moreover, 
the motors and control systems are required to be integrated as one part 
in the applications, and thus the evaluation of the whole drive system is 
more meaningful than sequentially considering the individual parts. The 
stable operation of SRMs is limited by the temperature rise of the power 
converter, and the device performance will deteriorate if the compo-
nents in the power converter exceed the reasonable domain [164]. 

The system-level optimization of SRM has been proposed in 
Ref. [140], and the angle position control was investigated as the control 
component. Like most work, in Ref. [140], the authors superficially 
dealt with the thermal design aspects by determining a limiting value of 
current density, which does not give an insight into the temperature rise 
and coupling influence. In addition, it is hard to perform the 
system-level optimization process based on more complex control 
methods like direct torque control, direct instantaneous control and 
model predictive control due to the limited availability of appropriate 
tools. 

The solution to consider the system-level based multidisciplinary 
design optimization is to apply an iteration process for the coupled 
analysis between the physical fields to achieve the final convergence 

Fig. 16. Flowchart of the multi-level optimization method [140].  
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solution [74]. This will indispensably add computational cost. Thus, it 
requires to derive more accurate models regarding electromagnetic, 
thermal and mechanical performances with low complexity and run-
time, and develop more integrated software to deal with the calculation. 

6.3. Application-oriented design optimization of SRMs for future 
transportation 

From the perspective of engineering applications, the design opti-
mization of SRMs should meet the specific requirements and constraints, 
such as the rated torque, the efficiency, and the given volume. Thus, the 
corresponding design optimization of SRMs is oriented by applications. 

A great number of research efforts on SRMs have been shifted to the 
application of EVs and HEVs, since it has huge market potential due to 
the worldwide fossil fuel energy crisis and severe concluded rules 
regarding greenhouse gas emissions [16,165–168]. The literature gives 
evidence that SRMs could achieve similar performances as PM ma-
chines. For instance, an SRM machine was designed in Ref. [160] to be 
competitive with the interior PM synchronous machine employed in the 
2009 Toyota Prius. The simulation results show that the torque, effi-
ciency, and speed-torque region of the SRM are competitive. Load test 
results over the entire speed range which verify the predictions were 
presented in Ref. [169]. More examples could be found in Refs. [24,127, 
170,171], where 50 kW, 60 kW and 80 kW SRMs are investigated and 
designed based on the comparison with some well-known commercial 
PM machines, for instance applied in the Toyota Prius or Nissan LEAF. 
Moreover, SRMs have been developed for in-wheel applications for 
small-sized EVs [34,172,173]. A 12/26 in-wheel SRSRM was prototyped 
in Ref. [172] to replace a brushless DC machine for providing a low-cost 
solution. In Ref. [173], an 18/12 in-wheel SRM was designed by uti-
lizing a multi-objective differential evolution algorithm to satisfy the 
requirements. It can be found that the in-wheel SRMs are always 
designed with a high number of stator/rotor poles, since such configu-
rations are beneficial to minimize vibrations, and the low-speed re-
quirements for hub motors facilitate such configurations without 
requiring excessively high commutation frequencies. 

Another field of future transportation is more electric aircraft (MEA). 
Since the early 1990s, the United States Air Force has been successfully 
pursuing advancements in aircraft electrical power system technologies 
to eliminate centralized hydraulics systems and replace them with 
electrical power for the improvement of aircraft weight, volume, and 
reliability. The concept of this process is known as MEA. In this scenario, 
SRMs clearly outperform PM motors or induction motors due to their 
superior thermal and mechanical robustness without PMs and coils in 
the rotor [174,175]. In aircraft systems, the SRM is mainly utilized for 
starter/generator applications. For instance, in Ref. [176], the SRM 
operates in motor mode between 900 rpm and 26,000 rpm to provide 
torque for accelerating the engine from light-off (maximum torque 
condition) to idle speed, while the machine operates in generator mode 
to provide electric power once the speed exceeds the idle speed. 
Furthermore, a 45 kW high-speed SRM was analyzed and developed as a 
starter/generator for an MEA system in Refs. [177,178]. Here, it was 
designed to realize one more function, i.e., to spin the engine through 
the starting sequence up to light-off speed. A novel rotor structure was 
developed to enlarge the speed range, and the performance during the 
engine-starter/motoring mode and generating mode were tested. 
Finally, in Ref. [179], a five-phase SRM was designed to meet the re-
quirements of flap actuation in medium-size aircraft. The optimization 
approach was introduced in Ref. [180], and a comprehensive analysis 
and results confirming the suitability of SRMs for such applications were 
presented in Ref. [181]. 

7. Conclusion 

In this paper, the state-of-the-art on design optimization of SRMs has 
been reviewed. First, the basic design theory, and existing 

electromagnetic and thermal modeling methods are presented. Then, 
various novel topologies of SRMs are introduced and discussed. These 
advanced structures have been proposed for torque enhancement, vi-
bration reduction, or application for some scenarios featuring specific 
requirements. After that, optimization methods are investigated and 
classified according to different criteria. Several optimization methods 
including the design of experiments, surrogate models, and multi-level 
and robust optimizations, are proposed and analyzed. Finally, future 
perspectives of this emerging area have been pointed out, including the 
robust topology, system-level based multidisciplinary, and application- 
oriented optimization methods. Due to the inherent advantages in 
manufacturing cost, and thermal and mechanical robustness due to the 
absence of PMs, the authors believe that more SRM drives designed 
through applying advanced design optimization methods could take up 
more market share in promising applications such as EVs/HEVs, and 
aircraft/aerospace systems in the future. 
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