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Abstract— State of Charge (SOC) estimation is significantly 

important for the optimal utilization and protection of batteries. 

This paper implements and compares the performance of a 

neural network (NN) algorithm and Coulomb Counting method 

for estimating state of charge (SOC) for batteries. This 

algorithm is applied to a battery management system (BMS) in 

electric vehicles. Accurate SOC information can avoid over 

charging and over discharging of battery, and thus increase 

battery life. Also, control system uses accurate SOC information 

to make rational decisions to save energy in electric vehicles. The 

advantage of NN model over Coulomb Counting method is it can 

be implemented in BMS Hardware where online measurements 

like current, voltage and temperature are available. The feature 

of this neural network approach is that it optimizes two 

important hyper-parameters to achieve a reasonable MAPE 

error. The performance of the proposed method is tested using 

two Datasets for city driving conditions. The results reveal that 

both methods (NN and Coulomb counting) can predict SOC 

with reasonable error (<6%). However, Coulomb counting 

outperforms Neural network MAPE for both Datasets. 

Keywords—Electric Vehicles, Battery Management System, 

Lithium-ion batteries. 

 

I. INTRODUCTION  

Lithium ion batteries is adopted because it brings higher 

terminals voltage and higher power and energy density to its 

application in electric vehicles. Accurate state estimation 

model is required as an aid in circuit design process to 

forecast, display and manage energy consumption of battery. 

State of charge (SOC) and state of health (SOH) are two 

critical parameters required for Battery Management System 

(BMS). SOC is a runtime battery gauge that indicates the 

remaining charges relative to the rated capacity. SOH is 

another parameter that shows the performance level of the 

battery relative to the beginning of life conditions. 

Difficulties obtaining SOC and SOH is that its needs 

prediction methods and models to estimate as it deteriorates 

over its discharging/charging cycles.  

 

There are many types of Model methods and Hybrid methods 

in literature. Therefore, Model methods are categorized as 

white-box models (electro-chemical) and grey-box models 

(equivalent-circuit) and some/many Hybrid methods are 

categorized as black-box models. The white-box is based on 

physical characteristics and first principle modelling [1]. The 

black-box proposes a much simpler structure based on 

statistical or mapping models [1]. Grey-box model is a 

combination of both black-box and white-box models [1]. 

This paper [2] uses electro-chemical model to recast cell into 

complex high dimensional equations as spatially distributed 

system. By defining constant parameters of cell and by 

building constant matrices of state space electro-chemical 

model, SOC is obtained. A drawback of this approach is 

substantial effort is required to parameterize the electro-

chemical model [3]. Equivalent-circuit models used in 

literature are internal resistance (Rint), resistor-capacitor 

(RC), Thevenin and Partnership for new generation of 

vehicles (PNGV) models. An improved Thevenin model is 

used in this paper [4] to estimate SOC. The battery 

equivalent-circuit parameters based SOC method is 

developed in this paper [5]. This original approach combines 

data points obtained from enhanced multiple hybrid pulse 

power characterization (EMHPPC) tests. To improve the 

accuracy higher degree equivalent circuit model is used [6]. 

However, this increases the complexity of design. Hybrid 

methods are also employed in literature [7] for SOC 

estimation. This method improves accuracy of estimation 

however this too over complicates the design and/or requires 

higher complexity of BMS. 

 

This paper investigates feed forward neural network 

architecture. The neural network is optimized by 

hyperparameter tuning to estimate SOC. Firstly, the structure 

of feedforward neural network model for SOC estimation is 

designed. Secondly, the feedforward model is trained and 

optimized using by splitting dataset into training and 

validation set. Finally, the error for validation data is 

forecasted. In this research, for measuring consistency, two 

discharging profile datasets is used. The first dataset is the 

neural network drive cycle set. Neural Network drive cycle 

consists of combination of portions of US06 and LA92 drive 

cycles. The second dataset is the UDDS drive cycle. Both 

datasets (and all three drive cycles) represent typical driving 

conditions in a city. In this paper, the results for two datasets 

is evaluated and compared with each other. Finally, the 

efficacy of the neural network method is compared with the 

Coulomb Counting method in this paper.  

 

II. SOC ESTIMATION METHODS  

Figure 1 illustrates the key SOC estimation methods. The 
first method for SOC estimation is the Coulomb Counting 
method. The formula for discretised SOC is given in equation 
1. 

SOC(k) = SOC(k-1) + I(k-1). 𝛥t/(Qrated)        (1) 
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Where, Qrated is rated capacity (Ah), I is current (A), 𝛥t is 
change in time (h). Drawback for Coulomb counting method 
is it requires live time stamped parameters.  

 

Fig. 1. SOC estimation methods (Adapted from [3]) 

 

The look-up table method directly maps relationship between 
SOC and the external characteristics parameters. The 
parameters can be open-circuit voltage (OCV) or impedance 
of battery. The measured parameters can be used to correlate 
with SOC through the lookup table [3]. The drawback of this 
method is it is limited to battery in laboratory conditions and 
not suitable to battery in online battery management system 
[3].  

Four model based estimation methods are applied to estimate 
the SOC of Li-ion batteries [8]. The first order RC model is 
utilized to describe the equivalent-circuit behavior of battery. 
However, this method suffers from problem of relatively large 
errors [8]. To improve the accuracy higher degree equivalent-
circuit model is used. However, this increases the complexity 
of design. Model based electro-chemical model has been 
described, in the above section [2]. Electro-chemical model 
suffers from substantial effort required to parameterize the 
model. Survey of literature [7, 9] shows hybrid methods used 
to estimate SOC. However, implementation of hybrid method 
complicates design and/or complicates the BMS hardware. 

The following Data-driven approaches are investigated 
with drawbacks of each method: 

Fuzzy Logic – Fuzzy logic method is a data driven method 
where the discharge current and temperature is used as fuzzy 
inputs and (SOC) as fuzzy output using the min-max inference 
method in fuzzy inference system as is highlighted in this 
paper [10]. The estimation error is still relatively high, 
however from knowledge of theory, learning mechanism can 
be implemented to reduce error. 

Support Vector Machines - SVMs are a set of related 
machine learning methods used to approximate this regression 
problem to high level of accuracy [11]. The Support Vector 
machine (SVM) also uses measurement like voltage, current 
and temperature. SVMs are not very computationally 
efficient, when using observation of more than one thousand 
rows in dataset.   

Deep Learning Deep neural network predicts the SOC to 
reasonable accuracy. According to this paper [12] four hidden 
layers is optimum number of layers after training network. 

Feed forward neural network model achieves same ballpark 
figure error as deep neural networks (Feed forward network: 
3%, deep neural network: 3.68% [12, 13]) without its 

complexity. Cited papers [13, 14] use feedforward model to 
predict SOC with an established number of hidden neurons. 
However, proposed research extends to tuning 
hyperparameters such as learning rate as well as hidden 
neurons. This paper [15] uses advanced Backtracking Search 
Algorithm (BSA) to tune hyperparameters. Proposed 
algorithm uses simpler grid search to perform the same task. 

 

III. COLOUMB COUNTING AND FEEDFORWARD NEURAL 

NETWORK WITH HYPERPARAMETER TUNING 

Battery discharging load profile data is obtained from 
battery degradation experiment from the Panasonic 18650PF 
Li-ion - Mendeley Datasets. A reasonable sized data samples 
is extracted from two datasets representing typical city driving 
conditions. The Datasets consist of discharge current (I), 
terminal voltage (U), temperature (T) and state of charge from 
raw data consisting of large samples of time, voltage, current, 
temperature and time stamped Amp hour (Ah) capacity. Eq 
(1) is used to calculate SOC using Coulomb counting method 
for each Dataset. 

The Feedforward Neural network architecture (Figure 2) is 
employed to forecast test error after training and validation in 
MATLAB. This architecture has 5 features (Input), hidden 
neurons, weights, activation functions and 1 dependant 
variable (Output). The default bias is used. The 5 features are 
U(k), and T(k) from current sample and U(k-1), I(k-1) and 
T(k-1) from previous sample. The dependant variable is SOC. 

 

 

Fig. 2. Proposed Feedforward Neural network (Adapted from 
[16]) 

  

The Flow diagram of neural network algorithm is shown in 
Figure 3. The neural network main code uses the 
backpropagation algorithm to adjust random weights, and the 
goal is to reduce the error until the neural network learns the 
training data. The forward propagation and back propagation 
of signals represent this neural network learning process. The 
hidden activation function used in this architecture is the 
sigmoid function. Data must be divided in two sets: training 
and validation. The training is performed to minimize error. 
And validation is performed to select the optimum number of 
iterations to avoid overlearning. Validation set is implemented 
on unseen data. This network algorithm ends up going over 
the entire training set and completes iteration, batch and 
epoch. When maximum iterations reached and the 
requirements of training/validation is met, network 
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generalizes. The idea of learning from some data and applying 
the gained knowledge on other unseen data is called 
generalization. 

 

 

Fig. 3. Flow diagram of Neural Network Algorithm 

 

The hyper-parameter pairs (learning rate and hidden neurons) 

are varied with two for loops at start of the code until the 

neural network model is fully qualified. The main body of 

code is represented by flow chart. Thus, learning is performed 

in training phase, generalization and forecasting in validation 

phase.  

 

IV. SIMULATION RESULTS 

 A “grid search” is used to find the optimal hyper-
parameters (learning rate and hidden neurons) that yield the 

neural network model with best predictive performance after 
training. The accuracy of prediction is measured in validation 
phase by two forms of error. Normalised root mean squared 
error (NRMSE) and Mean absolute percentage error (MAPE) 
is shown in equation 2 and 3 respectively [17, 18].  

 

𝑁𝑅𝑀𝑆𝐸 = √
1

𝑛
.∑ (

𝑦−ŷ

𝑦
)
2𝑛

𝑘=0
x 100%                                (2) 

𝑀𝐴𝑃𝐸 =
1

𝑛
.∑ (

∣𝑦−ŷ∣

𝑦
)

𝑛

𝑘=0
 x 100%                                     (3) 

 

Where, 

y is actual output, ŷ is predicted output, n is number of 
samples. 

The proposed neural network results of NRMSE and MAPE 
error of test dataset 1 and 2 is shown in Figure 4, 5, 6 and 7. 

 

Fig. 4. Dataset 1: NRMSE versus Hidden neurons for 
Learning rates 0.005 (Blue) and 0.065 (Red) 

 

Fig. 5. Dataset 1: MAPE versus Hidden neurons for Learning 
rates 0.005 (Blue) and 0.03 (Red) 
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Fig. 6. Dataset 2: NRMSE versus Hidden neurons for 
Learning rates 0.005 (Blue) and 0.035 (Red) 

 

 

Fig. 7. Dataset 2 MAPE versus Hidden neurons for Learning 
rates 0.005 (Blue) and 0.07 (Red) 

 

Table I shows comparison of SOC prediction method errors. 
The degree to what network weights are updated during 
training is referred as the learning  rate. A learning rate that is 
too large causes the  model to converge too quickly to non-
optimal value. Whereas a learning rate that is too small causes 
the program to get stuck and freeze. That’s why learning rate 
of moderate range of 0.005-0.075 is selected for simulation. 
After hidden neurons, learning rate is the most important 
hyper-parameter in neural network optimization. 

 

Table I. Comparison of SOC Prediction Methods 

SOC Prediction Method  
NRMSE 

(%) 

MAPE 

(%) 

Coulomb Counting method 

(Dataset 1) 
2.75 1.89 

Coulomb Counting method 

(Dataset 2) 
1.63 0.78 

 Neural Network method 

(Dataset 1) 
5.89 4.93 

 Neural Network method 

(Dataset 2) 
3.55 2.70 

 

Optimum hyper-parameters for NRMSE and MAPE is 
presented in Table II. 

 

 

Table II Optimum hyper-parameters for NRMSE and MAPE 

  NRMSE MAPE 

Dataset 
Learning 

Rate 

Hidden 

Neurons 

Learning 

Rate 

Hidden 

Neurons 

1 0.065 14 0.03 13 

2 0.035 5 0.07 6 

 

NRMSE gives a relatively high weight to large errors. This 

means that NRMSE is more suitable when maximum errors 

are significant. The linear scoring is attributed to MAPE is 

better indicator at revealing error where minimum error is 

significant. Thus, NRMSE is eliminated from this 

investigation because the maximum error is not significant in 

this nature of research.  Both datasets represent typical 

driving conditions in a city. In this paper, the results for two 

datasets is evaluated and compared with each other. Coulomb 

counting outperforms Neural network for both Datasets. 

Because the optimized MAPE error is reasonably low, typical 

simulation of predicted neural network SOC tracking the 

actual SOC is shown in Figure 8. Neural network achieves a 

reasonable tracking MAPE of 5.95% with non-linear tracking 

pattern. 

 

 
Fig. 8. Typical simulation of predicted neural network SOC 

(Red) tracking the actual SOC (Blue) 

 

V. CONCLUSION AND SIGNIFICANCE OF RESEARCH 

This paper uses feed forward neural network architecture. 

The neural network is optimized by hyperparameter tuning to 

estimate SOC. NRMSE is eliminated from this investigation 

because maximum errors is not significant in this nature of 

research. Both datasets used in this research represent typical 

driving conditions in a city. In this paper, the results for two 

datasets is evaluated and compared with each other. Coulomb 

counting outperforms Neural network for both Datasets. The 

measure of consistency is verified by outcome of both 

Datasets. To contribute to future impact of this research, 

proposed neural network method can be tested on Hardware-

In-Loop (HIL) platform by applying MicoLabBox hardware 

controller. The HIL results can be used to verify the 

effectiveness of the proposed design in real-time systems 

with reasonable error. 
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