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A B S T R A C T

Future 6G wireless communication systems are expected to feature intelligence and automation. Knowledge-
defined networking (KDN) is an evolutionary step toward autonomous and self-driving networks. The building
blocks of the KDN paradigm in achieving self-driving networks are software-defined networking (SDN), packet-
level network telemetry, and machine learning (ML). The KDN paradigm intends to integrate intelligence
to manage and control networks automatically. In this study, we first introduce the disadvantages of
current network technologies. Then, the KDN and associated technologies are explored with three possible
KDN architectures for heterogeneous wireless networks. Furthermore, a thorough investigation of recent
survey studies on different wireless network applications was conducted. The aim is to identify and review
suitable ML-based studies for KDN-based wireless cellular networks. These applications are categorized as
resource management, network management, mobility management, and localization. Resource management
applications can be further classified as spectrum allocation, power management, quality-of-service (QoS),
base station (BS) switching, cache, and backhaul management. Within network management configurations,
routing strategies, clustering, user/BS association, traffic classification, and data aggregation were investigated.
Applications in mobility management include user mobility prediction and handover management. To improve
the accuracy of positioning in indoor environments, localization techniques were discussed. We classify existing
research into the respective KDN architecture and identify how the knowledge obtained will enhance future
networks; as a result, researchers can extend their work to empower intelligence and self-organization in the
network using the KDN paradigm. Finally, the requirements, motivations, applications, challenges, and open
issues are presented.
1. Introduction

Fifth-generation (5G) wireless communication systems provide
higher data rates, massive connectivity, and low-latency communi-
cation. However, the current 5G cellular architecture lacks intelli-
gence and sufficient flexibility to handle massive machine-type com-
munication (mMTC), low-latency, and enhanced mobile broadband
(eMBB) [1]. The sixth-generation (6G) cellular network is a promising
technology to address 5G shortcomings. To achieve this, 6G will enable
greater intelligence within the network to overcome a number of
challenges and improve performance [2]. As a result, an architectural
transformation is required for 5G to 6G cellular networks.

The concept of the knowledge plane (KP) was introduced by Clark
et al. [3]. As shown in Fig. 1 KP is an additional plane over a network
with inbuilt machine learning (ML) capabilities. The incorporation of
KP in software-defined networking (SDN) architecture is referred to as
knowledge-defined networking (KDN) [4], where knowledge is the pro-
cessed network information using an ML algorithm. Knowledge is used
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for recommendation and automation across different applications in
wired and wireless networks. Therefore, knowledge can be referred to
as intelligence over a network, and having intelligence over a network
with different environmental characteristics can be a breakthrough in
network performance. For instance, in resource management problems,
parameters such as bandwidth, quality of service (QoS), and power
can be obtained and processed using an ML algorithm in different
network situations. The output of ML is then stored as knowledge for
network automation. Moreover, in networking applications, routing
decisions can benefit from knowledge for better route discovery while
the network is overpopulated. Further, user information, including mo-
bility patterns and velocity, can be used as an initial stage to generate
knowledge to improve the accuracy of localization and handover.

KDN can also be referred to as an application of autonomous
networking. The concept of an autonomous network comes from the
growth of ML and artificial intelligence (AI); for instance, in self-driving
cars, an ML agent will run the car without a human operator. Similarly,
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Fig. 1. Knowledge-defined orchestration in wireless networks.

an autonomous network can manage and optimize network applica-
tions without human intervention. In autonomous networks, network
information or telemetry is collected and used by ML techniques to
automatically troubleshoot, instruct, or manage the network. Hence,
monitoring and retrieval of network telemetry data in real time will
provide an opportunity for ML-based optimization algorithms to enable
intelligence for 6G networks.

The fundamental building blocks in KDN are network telemetry,
SDN, and ML. Network telemetry is network information, such as Net-
Flow data, sFlow data, queue occupancy, policy rules, and processing
time. However, to fully auto-mate the network, information such as hop
latency, link utilization, packet drop, and queue congestion states are
also required. This temporary data is available through in-band net-
work telemetry (INT) or packet-level network states. The packet-level
network state information can be collected using a new southbound
domain-specific language called P4 [5], which allows the collection
of information directly from the data plane. As shown in Fig. 2 the
southbound and northbound interfaces are part of the SDN communi-
cation protocol, where the southbound interface allows communication
between controllers and switches, and other low-level network com-
ponents. The northbound interface enables communication with high-
level components [6]. The next building block of KDN is SDN, which
enables the global network view, network programmability functions,
and flexibility to manage the network. The combination of network
analytics and SDN provides a foundation for the KDN paradigm. How-
ever, an ML algorithm will be the heart of KDN, meaning that an ML
technique can provide an efficient and optimized strategy to operate the
network autonomously.ML is a key component of the KDN paradigm
that provides a solution given the telemetry data.

One of the indications of the KDN concept is the open radio access
network (O-RAN). O-RAN is an emerging technology that enables
service heterogeneity, on-demand service deployment, and simulta-
neous coordination of heterogeneous devices [7]. Over the past few
2

Fig. 2. The SDN northbound and southbound interfaces.

years, various efforts from the research industry have been made to
enhance the radio access network (RAN) [7,8]. Among them, cloud-
RAN or centralized-RAN (C-RAN) is a promising RAN architecture
that helps to reduce base-band expenses. Further, a virtualized radio
access network (V-RAN) brings the benefit of cloud and virtualization
to increase the network’s agility, scalability, and flexibility. This ar-
chitecture has helped RAN with new opportunities for virtualization
and cost reduction. V-RAN simplified the management of RAN devices
and deployment. Although C-RAN and V-RAN are both cost-effective
and readily available to any changes to service requirements, they lack
openness to maximize the benefit of virtualization. To overcome the
limitations associated with both C-RAN and RAN, O-RAN accommo-
dates the baseband unit (BBU) and remote radio unit (RRU) software
and hardware from different vendors [9]. O-RAN is open hardware with
an operator-defined RAN architecture that provides intelligent radio
control for future cellular networks. The other innovative technology
that is going to help accommodate intelligence in the network is disag-
gregating the traditional control and data plane of the RAN to introduce
an RAN intelligent controller (RIC) [10]. O-RAN uses the SDN and
network function virtualization (NFV) principles and apply the ML al-
gorithm to create automation in cellular networks. O-RAN standardizes
the control plane using open infrastructure and provides programma-
bility. These are clear indications of demand for KDN architecture to
simplify the process by adding the KP and incorporating ML algorithms
to empower network intelligence with ML-enabled applications [11].

Owing to the evolution of ML applications in wireless networks
and the presence of SDN, less effort has been made to survey related
studies that are compatible with KDN architecture. The authors of [4]
introduced the basics and applications of ML algorithms in KDN to
control and operate networks. They used SL to obtain an intermedi-
ate knowledge of the traffic load to perform network configurations.
In [12], a deep RL with a convolutional neural network (CNN) in
the context of KDN was utilized to make routing decisions based on
QoS in complex networks. In [13], deep learning (DL) algorithms
were proposed to produce three artificial intelligence (AI) modules to
manage the scalability and energy consumption in data center net-
work (DCN) systems. In this study, a hybrid optical/electronic DC
network is designed with the management of the knowledge-defined
network orchestrator (KD-NO) software module. The software module
uses the KDN architecture and deploys three DL-based AI modules in
the knowledge plane of the KD-NO to make intelligent decision-making
and precise predictions of traffic volume, data latency, and hardware
demands. In [14], the authors presented a new network architecture
and networking solution for high user density in 5G. Their research
utilizes SDN, KDN, and NFV, where they take advantage of ML in
the context of KDN. Additionally, owing to the massive connectivity
of devices, the concept of self-driving networks by applying KDN and
network telemetry was proposed [15]. Although there are studies on
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Fig. 3. The paper structure.
KDN, there is no survey that comprehensively studies applications of
ML in different layers of wireless networking with their relationship and
usage in the KDN architecture. Moreover, there exist some limitations
in recent works and the overall challenges in applying KDN, which
also need attention for KDN to be fully functional. Furthermore, the
benefits of having a KDN in the network are clearly stated in the pro-
posed research studies. For instance, the authors of [4,15] investigated
the general advantages and use cases of the KP and introduced the
KDN switch operator along with its architecture. More concretely, the
work in [12] examined deep reinforcement learning (DRL) for QoS-
aware routing. The literature in [13] proposed a solution for mitigating
data center congestion issues by deploying KDN in the network. Such
works demonstrate the benefits of adapting knowledge before making
decisions in wireless networks.

The motivation of this study comes from the lack of intelligence and
automated networks. In the near future, network congestion and smart
applications will force the network to have self-managing systems. Con-
sidering the shortcomings of 5G and the continuous research activities
in wireless networks to enable intelligence and automation in wireless
networks, specifically in 6G, a more structured and comprehensive
survey is required to understand the potential advantages of KDN-
based ML networks. Specifically, we first introduce three possible KDN
architectures adapted in wireless networks, including centralized, dis-
tributed, and hybrid. Then, we concentrate on the latest achievements
in applications of ML from the MAC layer up to the application layer,
including resource management, networking, mobility management,
3

and localization. ML is the heart of the KDN and any future network
that needs automation and self-organization must adapt the KDN-
based ML algorithm. This is why we are conducting a comprehensive
study about all the research conducted in the ML categories that suit
network automation. The focus of the study is to realize the new ML
achievements and take advantage of each to adapt the most compatible
ML-based algorithm in networking problems. We then mapped the ML
method to the most appropriate KDN architecture. The mapping aims
to help researchers identify the target area and the relevant ML with
the support of a suitable KDN architecture. This survey aims to offer
a comprehensive analysis of KDN applications using ML-based studies
to enable intelligence and automation for current and future wireless
networks. Our contributions are summarized as follows:

(1) Providing a concise explanation about the shortcoming of wire-
less networks and potential solutions for network automation.

(2) An introduction to KDN and representation of the main build-
ing blocks in KDN, such as SDN, network telemetry, and ML
algorithms, is delivered.

(3) A complete comparison discussion between SDN and KDN is
offered.

(4) We introduce and analyze three possible architectures of KDN in
wireless cellular networks.

(5) A comprehensive study of packet-level programming and south-
bound interfaces of SDN, including Open Flow (OF) and the
domain-specific language (DSL), known as P4, is discussed.
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Where, packet-level programming is used to perform ML algo-
rithm on collected data and apply the ML-based instructions
after the learning procedure.

(6) An overview of supervised learning (SL), unsupervised learn-
ing (UL), reinforcement learning (RL), transfer learning (TL),
and neural networks (NNs) with basic principles and common
applications in wireless networks is provided.

(7) A thorough review of the applications of ML within the KDN
paradigm is presented, covering resource management, network-
ing, mobility management, and localization. This survey focuses
on the MAC layer, network layer, and application layer (the PHY
layer is outside the scope of this study). To cover every aspect of
a wireless network, resource management is broken down into
resource allocation, power management, QoS, base station (BS)
switching, cache, and backhaul management. Networking appli-
cations are further classified into route selection, clustering, user
association, traffic classification, and data aggregation. Mobility
prediction and handover management lie within the mobility
section, and finally, indoor localization.

(8) Finally, the terms and conditions associated with ML algorithms
for generating knowledge and motivations for applying KDN
were identified. Then, a summary of the challenges and current
issues in KDN is discussed, followed by the conclusion.

The remainder of this paper is organized as follows: In Section 2
KDN, the enabling technologies for KDN are explained, such as SDN,
network telemetry, and ML. Then, in Section 3, SDN and KDN are
compared, and the potential architecture of the KDN is illustrated. In
Section 4, the southbound interfaces for packet-level programming are
thoroughly studied, OF and P4, in addition to some of the disadvan-
tages of current southbound interfaces and applications of P4. Section 5
describes some of the popular ML techniques utilized in KDN with
a brief introduction of their applications in wireless communication
networks. In Section 6, a complete study of resource management,
networking, mobility management, and localization is presented. Later,
in Section 7, terms and conditions associated with ML algorithms
for generating knowledge are discussed, including identifying suitable
ML algorithms, implementation complexity, time consumption, suit-
able dataset availability for training, and suggestions for choosing
ML algorithms. Moreover, in Section 8, motivations for applying KDN
are presented, including a lack of network knowledge, self-organizing
networks, achieving reliable and high performance, learning patterns
and predicting the future, ability to handle complex problems, and
avoiding a wrong decision, followed by challenges and open issues
in KDN in Section 9. Finally, Section 10 concludes the study. Fig. 3
depicts the survey’s structure as a graphical representation for a better
understanding of how the survey is shaped and analyzed according
to each section. Further, for readers’ convenience, Table 1 lists the
abbreviations used throughout this survey.

2. The road to knowledge-defined networking

It is estimated that by 2030, the number of connected devices in
cellular networks will reach 100 billion [16]. Furthermore, the majority
of network occupancy is due to the demand for high-definition video
data, which leads to massive data traffic [17–19]. Hence, many existing
algorithms cannot process traffic flows, resulting in a loss of informa-
tion. Moreover, algorithms are incapable of offering optimum system
performance when the network environment is dynamic and random.
Therefore, these algorithms are unable to meet the requirements of
the 6G cellular networks. To overcome these problems and achieve
better performance, researchers have developed optimization methods
to attain effective solutions to get closer to optimal and suboptimal
performance. However, many studies presume a static network environ-
ment rather than considering the random nature of networks [20,21].
Additionally, traditional centralized algorithms for network manage-
ment and simultaneous collection of global data are affected as the
4

Fig. 4. Traditional network architecture versus SDN architecture.

number of connected devices increases [2]. Consequently, one viable
solution is to use KDN to automatically optimize, diagnose, and trou-
bleshoot the network [4]. To enable KDN, a centralized controller with
ML capabilities must collect information from the network to create
knowledge via an appropriate ML algorithm. The centralized controller
for collecting telemetry data must have SDN functionalities.

Software-defined networking (SDN) is a new networking paradigm
for decoupling data and control planes [22]. Decoupling these two
planes enables SDN to operate as a centralized controller to manage
the network. The global view of the SDN controller provides advantages
such as network flexibility, programmability, and efficient management
over the traditional network. In the conventional network architec-
ture, network administrators are required to manually configure and
troubleshoot switches and routers within their organization [23]. From
Fig. 4, the difference between traditional network architecture and
SDN can be seen. SDN provides network programmability within the
control plane, whereas traditional networks do not offer any flexibility.
Traditional networks rely only on the physical infrastructure to create
connections and run the network. On the other hand, SDN enables users
to use software programs instead of physical infrastructure to provision
new devices [24].

In addition to network softwarization, adequate data collection is
required in KDN to make appropriate and accurate decisions. With
the new advancements in data plane elements, routers and switches
are capable of computation and storage, which makes the network
monitoring and network telemetry accessible [25]. Network telemetry
provides flow information, real-time packet information, and other
critical packet-level data, as well as network state monitoring and orga-
nization with centralized network analytics. Hence, network telemetry
and network analytics present a richer view of network performance
metrics, providing an extra advantage over conventional network man-
agement techniques. The incorporation of SDN and network analytics
provides essential elements required by the KP. However, the last piece
of the puzzle to make the KDN fully functional is to integrate ML. ML
uses network telemetry and historical data to process and find valuable
information about the network, where this information is stored as
knowledge to improve network performance.

ML algorithms are generally classified as supervised, unsupervised,
and reinforcement learning [26]. In SL, the learning agent learns using
a dataset as an input vector and maps the inputs to the outputs
based on the previous inputs with their provided outputs. The dataset
is a collection of labeled samples, where each element is called a
feature vector. In UL, the dataset is the collection of unlabeled samples,
where the learning agent tries to categorize the input. Finally, in RL,
the machine continuously observes the environment to improve the
decision-making process. This technique continuously provides updated
policies based on environmental feedback. Each ML algorithm can
assist in the different applications of wireless networks. For instance, in
SL, the KP learns the behavior of the network variables, such as network
configuration and traffic load, which will enable the system to increase
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Table 1
Abbreviations.

5G 5th generation MBS macro-base station
6G 6th generation MDP markov decision process
AI artificial intelligence ML machine learning
ANN artificial neural network mMTC massive machine type communication
AoA angle of arrival mmWave millimeter wave
API application programming interface MPLS multiprotocol label switching
ASIC application specific integrated circuit MRE modified Roth–Erev
BBU baseband unit MS mobile station
BM behavioral model NE Nash equilibrium
BS base station NFV network function virtualization
CHO conditional handover NLOS non-line-of-sight
CNN convolutional neural network NN neural network
CP control Plane OF open flow
C-RAN cloud radio access network ONF open network foundation
CRE cell range extension O-RAN open-radio access network
CRN cognitive radio network OSPF open shortest path first
CSI channel state information OVS open vSwitch
D2D device-to-device PBS pico-base station
DCN data center network PCA principal component analysis
DL deep learning PISA protocol independent switch architecture
DNM deep neural model POF protocol oblivious forwarding
DNN deep neural network PU primary user
DPDK data plane development kit PVS POF switch
DPPO distributed proximal policy optimization QoE quality of experience
DQN deep Q-network QoS quality of service
DRL deep reinforcement learning RAN radio access network
DSL domain-specific language RB resource block
DT decision tree RIC RAN intelligent controller
ECR energy consumption ratio RL reinforcement learning
ELM extreme learning machine RNN recurrent neural network
eMBB enhance mobile broadband RRH remote radio head
eNB evolved node B RRU remote Radio unit
ESN echo state network RSRP reference signal received power
ETL extract-transform-load RSRQ reference signal received quality
FBS femto-base station RSS received signal strength
FC femtocell RSSI received signal strength indicator
FFNN feed-forward neural network RSU roadside unit
GF gradient follower SBS small base station
gNB gigabit node B SCN small cell network
GPU graphics processing unit SDN software-defined networking
HAL hardware abstraction librar SINR signal-to-interference-plus-noise
HetNet heterogeneous network SL supervised learning
ICIC inter-cell interference coordination SMU spectrum selection utility
IDE integrated development environment SNR signal-to-noise ratio
INT in-band network telemetry SOM self-organizing map
IoT Internet of things SON self-organizing networks
IP Internet protocol SSU spectrum selection utility
ISP Internet service provider SVD singular value decomposition
IVN intelligent vehicular networks SVM support Vector Machine
JSON javaScript Object Notation SU secondary user
KDN knowledge-defined networking TL transfer learning
KD-NO knowledge defined-network orchestrator TLV type-length-value
KNN k-nearest neighbors TTP table type patterns
KP knowledge plane UAV unmanned aerial vehicle
LFU least frequently used UDN ultra dense networks
LOS line-of-sight UE user equipment
LRU least recently used UL unsupervised learning
LTE long-term evolution V2I vehicle to Infrastructure
LTE-U LTE-unlicensed V2V vehicle-to-vehicle
M2M machine-to-machine VANET vehicular ad hoc network
MAB multi-armed bandit V-RAN virtual radio access network
MAC medium access control WMMSE weighted minimum mean square error
MBM modified Bushand Mostelle WSN wireless sensor network
the network performance once the features are fed to the algorithm. UL
assists the network operator by following the correlations in the data.
For example, ML may predict the mobility effect on a user’s network
link. Moreover, in RL, the learning algorithm will discover the best
action that leads to an optimal configuration in a network. As RL adapts
to the environment, it eventually determines the target policy. This ap-
proach returns the optimal action based on the target strategy and then
applies them to the KDN controller to enable the best configuration. RL
provides extensive benefits for resource management [27]. As a result
of network softwarization, network telemetry, and integration of ML
in the KP, the foundation of KDN has emerged, which will provide
5

the advantage of overcoming the drawbacks of conventional resource
management, mobility management, networking, and localization [4].

3. Introduction to knowledge-defined networking

Traditional cellular networks suffer from complexity, lack of flex-
ibility, proprietary and expensive equipment, and compound control-
plane protocols. However, applying the idea of running network appli-
cations to a logically centralized controller changed everything. SDN
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Fig. 5. KDN architecture.

architecture enables programmability, more straightforward configura-
tions, and network management. To go one step forward in software-
defined cellular networks, KDN introduced intelligence in addition to
programmability and centralized control of SDN.

3.1. Software-defined networking versus knowledge-defined networking

The integration of the KP in SDN is a new concept called knowledge-
defined networking (KDN). The concept of KP is to add one more
plane to the traditional two planes of SDN. This new paradigm incor-
porates SDN, data analytics, and ML. The KDN paradigm has several
advantages: first, it has a global view of the network, and second, it
enables telemetry data to be collected by the management plane to
transform the data into knowledge via ML. The knowledge will later
turn into decisions by nodes to achieve efficient network operations
[18,19]. The benefit of having the KDN over traditional networks is
that it automatically operates based on the knowledge obtained from
the network. Fig. 5 illustrates the KDN architecture, including the data
plane, control plane, management plane, and KP.

The data plane in KDN is responsible for forwarding, dropping,
processing, and packet modification. This layer works precisely like
the data plane in SDN, where it consists of physical and virtual device
elements. This layer operates unaware of the rest of the network and
relies on the instructions and control rules coming from other planes.

The control plane exchanges information and updates the data
plane processing and matching strategy rules. The logically centralized
controller exchanges data and updates policies using a southbound
application programming interface (API). The controller gathers the
data and network state from the data plane and updates the flow tables
to perform actions. In KDN, the data are also utilized to allow the
KP to know which appropriate action is required. Then, the controller
receives an action from the KP and updates the flow tables accordingly.
These actions are usually used for forwarding and routing packets,
while the data plane is populated.

The management plane facilitates network topologies, support ser-
vices, and configuration of the network devices. This layer must ensure
that the network operates fully with the maximum performance. This
functionality of the network in KDN is handled by the centralized
controller as well, being responsible for monitoring the data plane and
observing network analytics. The network analytics will then be col-
lected and stored as a network state and telemetry. This information is
also monitored by the KP for possible updates of the network topology.

KP is the brain of the architecture and responsible for modeling
network behavior and decision-making. These decisions are made for
different applications in the network, such as resource management,
6

networking configurations, mobility management, and localization. In
this layer, knowledge is created by ML algorithms, and new policies are
obtained.

3.2. KDN architecture

A number of studies have introduced the KDN architecture. For in-
stance, the authors of [28] restated the concept of the KP in the context
of SDN architecture in addition to the two planes of the SDN paradigm.
As can be seen in their network architecture, the KP is located on
top of the control and management planes. The integration of the
KP generates behavioral models and reasoning processes for decision
making. This architecture enables the KP to have a full view and control
of the network through the control and management plane. Other
research studies [12,14,29] have a similar architecture to KDN. In [14]
the same KP is utilized on top of all the layers, but it uses a cross-
layer management and monitoring plane with ML algorithms to manage
the rest of the planes. The method proposed in [14] utilizes an ML-
based algorithm in both separate orchestration layers and embedded
in the management plane. Therefore, it is important to investigate the
architecture of KDN in wireless networks to identify the most suitable
architecture in terms of flexibility and performance.

It is predicted that the architecture of the KDN in wire-less networks
can be centralized, distributed, or hybrid. In a centralized architecture,
as shown in Fig. 6(a), the SDN controller is located at the center
of the network and collects information from nodes using OpenFlow
(OF), P4, network management, etc. Then, the gathered information is
processed through a centralized knowledge plane, and then instructions
and rules are transmitted back to each node. The new rules are updated
using both direct and indirect approaches. The direct approach uses
the previously processed information and sends new strategies imme-
diately back to the user equipment (UE). The indirect approach uses
an ML algorithm to determine new rules before being sent to UEs. In
the distributed architecture illustrated in 6(b), the individual devices
maintain local knowledge. In this architecture, each node collects data
from the environment and its surroundings, and then independently
applies a greedy-based ML strategy to acquire knowledge. The greedy
strategy may be determined from prior knowledge (such as TL) or
using new ML-based optimization algorithms. For instance, in a routing
scheme, a node can collect information from other nodes and use ML-
based approaches to find the best routes and then share the acquired
knowledge with other nodes. In the hybrid architecture, as depicted in
Fig. 6(c), knowledge is maintained at both the extreme edge and core.
Where it is just a matter of keeping the knowledge either updated or
synchronized. Both the controller and devices act intelligently together
based on the information they collect. This information is processed
by ML algorithms to acquire knowledge and injects new rules into
the system. The hybrid approach combines the greedy strategy and
centralized knowledge to increase the network performance. Further,
there can also be a switching strategy to switch between centralized
and distributed according to the application.

4. Southbound protocols

In this section, a brief history of SDN and its enabling standards
are presented. Then, complete clarification of P4 against OF and the
benefits of P4 over the network are presented. For KDN to be fully
functional, data collection is the key, and two powerful tools to do
this are OF and P4.Both advantages and disadvantages of these two

protocols are stated in this section.
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Fig. 6. Proposed KDN architectures.

4.1. The road to software-defined networking

There are two main problems with the traditional IP network,
mainly the complexity and difficulty of network management [30]. The
complexity is due to the configuration of individual network devices,
such as routers and switches. The difficulty in managing the network is
due to the close attachment of the data and control planes. Hence, the
7

distributed nature of the traditional architecture and difficulties in the
manual configuration of networking devices have led to the creation of
the SDN paradigm [31]. There are different ways of implementing SDN
— overlay networking and the use of the OF protocol API to control
virtual switches.

Overlay networking was the first deployment of the SDN concept
and has been used in data centers before the popularity of the SDN
paradigm. In the overlay network architecture, a network layer is added
above the basic transport layer (physical layer). Overlay networks use
virtual links to create a virtual network on top of an underlying physical
platform. A virtual connection between the two nodes at the end of
the network is created using tags/labels to create a virtual tunnel
(overlay link) from one end to another. The network is programmed
to manage the tunnels between the network switches and hypervisors
(an intermediate layer between the SDN controller and the associated
virtual SDN network). Nodes in overlay networks act based on an
overlay topology, which consists of certain behaviors: cooperative or
selfish. In cooperative mode, each node creates an overlay link to allow
other nodes to route their traffic through different nodes. In the selfish
mode, nodes create overlay links to make connections in the network
to maximize their benefit. Overlay networks aim to improve QoS by
optimum routing decisions. Overlay networks can be deployed by
overlay protocol software without the involvement of Internet service
providers (ISPs). However, there are some drawbacks to this technique,
such as increasing latency, slow-spreading data, and duplicate packets.
Moreover, the overlay has no control over routing packets; it only
knows the message trajectory before it reaches its destination [32–34].

The development of the SDN paradigm in 2008 and the separation
of the control and data planes from the individual network devices
solved many previous problems in traditional networks. Furthermore,
the programmability functionality of SDN in network simplified net-
work management and enabled innovation [34]. The SDN controller
interacts between the switches via the OF protocol API, where OF
switches contain flow tables, including rules for handling packets with
specific actions [35]. With the arrival of OF, the term SDN was born
and used by the research community as early as 2009 [36]. However,
it did not have much impact on networking vendors until 2011, when
OF eliminated the configuration complexity and automated network
management. The development of OF started in 2011, and the latest
version was released in 2016. The summary of each version is as
follows [37–39]:

• The first OF version was released in March of 2008. However, it
was not until December 2009 that OF Version 1.0 reshaped large
enterprises and service provider networks.

• Version 1.1 enables innovation by adding multiple flow tables
and multiprotocol label switching (MPLS), including modifying
packets, complex forwarding actions, and updating an action. This
version was introduced in February 2011.

• In December 2011, Version 1.2 added flexibility by authorizing
communication between a switch and multiple controllers and
supporting IPv6 for the matching process.

• In June 2012, OF Version 1.3 was released, which addressed
backbone bridging, per-flow traffic meters, and tunneling.

• Version 1.4 appeared in August 2013 and offered more accessible
ways to add new features to the protocol, including type-length-
value (TLV) formatting to match fields, role status events, flow
monitoring, etc.

• OF Version 1.5 was released in December 2014, enabled fast
synchronization among multiple switches and processing and
matching ingress packets by adding an egress table. Finally, the
latest version of OF Version 1.6 was approved, but it was only
available to the open network foundation (ONF) group.

All the versions above have subversions that include bug fixes and
minor improvements. However, the major transition in version upgrade
occurs between different version volumes (1.x). OF can populate the
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forwarding tables of switches, and it can also add and delete forwarding
entries of almost 50 different header types. Accordingly, the vendors
dictate the control plane to which the header they support using
the table-type patterns (TTPs) provided by ONF. To manage large-
scale networks, SDN operates with OF standards to provide simpler
configuration options. While SDN separates the control and data planes,
OF only applies a fixed set of protocols to populate the rules in
the data plane by using the control plane. However, these protocols
are understandable by the fraction of available hardware routers and
switches [40]. Therefore, the OF does not control the switch’s behavior
of the supported protocols. It only provides a way to populate the tables
in the switch. Moreover, the current OF has specific protocol headers
for forwarding a packet. Forwarding a packer requires forwarding
tables, which are known as flow tables in the OF standard. These
tables define how a frame is forwarded out of a switch, where the
tables operate by matching specific header fields. These tables have
grown from 12 to 41 fields in just a few years, presenting a huge
challenge. This increased the complexity of the specifications without
providing any flexibility by adding new headers. P4 is a tool that
reduces the complexity of OF. The necessity of P4 alongside (or op-
erating separately without OF) OF for improving network functionality
is promising [5,41]. Fig. 7 depicts the hybrid network utilization of the
OF and P4 [40].

4.2. P4

The programming protocol-independent packet processor language
is abbreviated as P4. In 2013, the P4 high-level language for pro-
grammable protocol-independent packet processors was developed
through the collaboration of Barefoot Networks, Intel, Stanford Uni-
versity, Princeton University, Google, and Microsoft [5]. P4 enables
the programmability of the data plane and allows switches to process
the packet. Hence, vendors and enterprises will be able to develop
their own application-oriented software for a programmable switch
chip, resulting in several benefits to the network, such as reducing
the packet processing time, modifiable packet headers, and switch
protocol independence. These programmable switch chips are based on
a protocol-independent switch architecture (PISA).

P4 was first introduced in 2014 to address the limitations of the
data plane by providing flexibility in programming the data plane
in network switches that support OF standards [42,43]. The original
P4 language was called 𝑃 414 which only assumed distinct/specific
device capabilities and was able to program a subset of programmable
switches [40]. With the evolution of the language, 𝑃 416 brought new
functionalities, such as stable language definition, supporting many
switches, and removed the assumption of device capabilities. Generally,
P4 processes packets by the pipeline of networking elements, including
switches, routers, etc. It is based on a fundamental forwarding model
that uses a parsing of the packages and applies match+action table
recourses to ingress [41], where the abstract packet forwarding model
is shown in Fig. 8. The parser is the process of identifying the headers
from each incoming packet. As the header is identified, a lookup func-
tion is performed to find the appropriate match according to the header
fields, and then applies the action corresponding to the match within
the table. The P4 programming language focuses on the specifications
of these two procedures and the control flow through the pipelines.
These specifications are controlled by programmers who write and
execute P4 files. Translation tools are required to execute a file from
the P4 program. There are two options for translation: one is by the
interpreter on every cycle of execution, and the second is by a compiler
once the program is executed. Both approaches possess advantages;
while the former has the ability to minimize the error in optimization
operations, the latter method can reduce the translation time of each
cycle between the development and runtime of the program. The P4
compiler consists of different parts, as depicted in Fig. 9. Some of
the most commonly used compilers available to execute a P4 file are
summarized as follows:
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Fig. 7. P4 with OpenFlow architecture.

Fig. 8. P4 forwarding model.

(1) Behavioral Model (BM): This is a P4 software switch compiler
written in C and C++. The compiler takes a P4 program as
an input and then creates a C/C++ program based on the
input. The first version of BM is called p4c-behavioral, which
depends on a program to generate a high-level intermediate
representation of P4 (nicknamed P4-HLIR). P4-HLIR produces a
target-independent P4 parser in the Python programming lan-
guage, which assists the compiler in developing the correct C
code for the intended targets. However, this behavioral version
has some issues, such as generating extra codes and recompiling
codes every time a modification is made to the P4 program.
Later, the new version of BM was introduced, 𝐵𝑀𝑣2, which
is written in C++ and supports static behavior. To run a P4
program on the switch, the P4 source code is first converted to a
JavaScript Object Notation (JSON) file, which is then combined
with the P4 file and fed as an input to the interpreter. There
is a module in 𝐵𝑀𝑣2 called p4c-bm that generates the JSON
configuration and C++ code. The C++ file enables communi-
cation between the control plane and data plane on the switch.
Finally, the 𝐵𝑀𝑣2 compiler supports both 𝑃414 and 𝑃 416, and has
practical capabilities such as supporting different tools (e.g., con-
trol plane, integrated development environment (IDE) software,
etc.), multiple back ends, and extensible architecture [44].

(2) Independent Hardware Target : The authors in [45] proposed a
target-independent compiler so that it can reduce the complexity
of implementation. In their technique, the independent target
program is linked to a library called the hardware abstrac-
tion library (HAL), where this library is implemented for each
target. They separate hardware specifications and hardware-
independent functionalities to improve portability. However,
their method was only implemented for the Intel platform and
the Intel data plane development kit (DPDK). In addition, the
performance of the compiler is lower than that of hardware-
dependent compilers.

(3) Protocol-Independent Software Switch: This is a programmable
protocol-independent software switch, also known as PISCES.
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Fig. 9. Inside P4 compiler.

PISCES is a software switch in which forwarding behavior is
obtained by high-level DSL or P4. PISCES is derived from Open
vSwitch (OVS) and is configured by P4. In this protocol, the pro-
grammer must specify how to process the packets. For instance,
if in P4 we assign PISCES to process IPv6 packets, the program-
mer needs to introduce IPv6 packets, including the format and
fields of the IPv6 headers. PISCES brings several benefits, such as
a personal protocol header, adding/removing a standard header,
and easy to add new features [46].

Most of the available P4 programming translators are compilers.
However, there exists research for developing interpreters [47], which
still needs further attention. Currently, most of the focus is on pro-
grammable hardware switches with PISCES that are compiled to a
customized software-based POF switch (PVS), where POF stands for
protocol oblivious forwarding.

Therefore, P4 enables a new functionality for controlling the for-
warding behavior of the switch by populating the tables. Moreover,
P4 compilers allow us to use different APIs for switch chips. For
most of the current switches in the market, this chip has an on-board
invariant programmed module. These APIs are auto-generated by the
P4 compilers to populate the switch tables. The new capability to
utilize programmable switches will change the way switches operate,
but never the less OF is still useful in networking for the old fixed-
function switches. Therefore, a program called openflow.p4 has the
ability to program switch chips with the support of OF. Hence, P4 and
OF can work together for networks such that P4 is the language and
OF is the program. Additionally, while OF was essentially designed
for SDN networks where the control and data planes were separated,
P4 was designed to program the behavior of the switch or the router
with no restriction on whether controlled locally by a switch operating
system or automatically by an SDN controller. Network information can
be obtained using both OF and P4, and can be processed in the KDN
to inform the data plan for the new policy. Researchers can choose
their own plan toward how and which protocol suits their work, and
based on that, they can identify the appropriate translation tools for
packet-level programming.

5. Overview of machine learning techniques

Artificial intelligence (AI) is a progressive branch of computer sci-
ence that deals with automation across various fields, and ML is an
application of AI. ML is applied to developing systems to learn from
patterns and data without explicitly being programmed [48]. The KDN
architecture requires adapting an ML technique to optimize and create
intelligence for the network. ML applications have been successfully
utilized for network analysis, online customer support, search engines,
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computer vision, and signal processing applications [49]. As a result,
research studies based on ML on various aspects enable the KDN
paradigm to access and adapt a suitable ML algorithm for the ap-
propriate task. In this section, we survey a number of KDN-relevant
ML methods, including SL, UL, RL, NNs, and TL. We briefly explain
each algorithm and explore different techniques before using them in
Section 6. Therefore, anyone interested in the field will acquire abstract
knowledge of ML-based techniques and understand why and how an ML
algorithm can be utilized in wireless communication applications.

5.1. Supervised learning

Supervised learning (SL) is a basic ML algorithm that takes an
input feature network 𝑥 and tries to produce a model from the output
information 𝑦. SL is further divided into two categories: regression
and classification. In regression problems, we try to predict continu-
ous value output, and in classification problems, the prediction is for
discrete value output. Classification problems are used to distinguish
between different things, such as prediction in image processing, to
differentiate between a cat and a dog [50]. In contrast, regression
problems cannot be considered as a classification problem [51]. The
following are the popular survey works on SL techniques:

(1) Linear Regression: Linear models are provided for prediction as
a weighted sum of feature inputs. Linear regression uses gra-
dient descent to minimize the loss function and optimize the
system performance. Linear regression can only represent linear
relationships, which reduces the prediction performance, but de-
livers a fast and acceptable result for many applications. Further
specifications and information regarding linear regression are
available in [52].

(2) Logistic Regression: Classification problems are used for logistic
regression to assign observations to a discrete set of input classes.
For example, the common use of this algorithm is to predict
spam emails, student pass or fail grades, fraudulent websites,
and so on. This learning algorithm uses the gradient descent
method to optimize the solution. In contrast to linear regression,
in the logistic regression model, a number between 0 and 1 is
assigned to each data point instead of fitting a straight line or
hyperplane. The predicted values are the probabilities generated
by the sigmoid function. In other words, from the function out-
puts, the learning algorithm decides which category the output
data belongs. This algorithm has some drawbacks that can also
be applied to linear regression. For instance, if the data are
perfectly separated, the algorithm can no longer be trained, or
interpretation is more difficult because the interpretation uses
multiplication rather than addition. However, some advantages
make the algorithm interesting, including multiclass classifica-
tion and the probability distribution of the data. More details
about the logistic regression are found in [52].

(3) Support Vector Machine (SVM): This method is a linear clas-
sifier that separates the training data that are 𝑛-dimensional
vector by using an 𝑛 − 1 hyperplane. The optimum hyperplane
must be selected to increase the marginal space between the
two given classes. Furthermore, this algorithm works for non-
linearly separable (non-linear classifier) datasets using kernel
functions, including Gaussian and polynomial kernels. Although
SVM requires a long time to distinguish the alarmed dataset and
degrade as the noise increases in the dataset, this method works
effectively with high-dimensional spaces. This method uses a
fraction of the memory and tightly margins the separation [53,
54].

(4) K-Nearest Neighbors (KNN): The KNN algorithm is a straightfor-
ward and valuable algorithm with no explicit training require-
ments. This method is used for both classification and regression
problems, where the input data consist of the 𝐾 closest training
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Fig. 10. An abstract model of the KNN algorithm.

dataset in the feature space. The 𝐾 value is the hyperparameter
and should be selected carefully, but the optimal K-value can
be chosen after running the KNN several times with different
K-values. The resulting KNN outputs can be used for both classi-
fication and regression. In classification, the basic principle is to
decide the category of a test point based on the decision made by
the majority votes of K nearest neighbors. In the regression, the
test point is categorized in a class by the average values of its
K nearest neighbors. Additionally, this method can be adapted
by assigning weights to neighbors such that the nearest points
are more involved than the distant points. The KNN method is
illustrated in Fig. 10. A more detailed explanation of KNN can
be obtained in [55].

(5) Decision Tree: One of the most common ML algorithms is DT,
which is a statistical model for classification problems. This ML
technique is used to classify data and formulate a dataset in a
hierarchical structure, such as a flowchart representation. This
flowchart is usually a tree-based structure, and the algorithm
starts from the root and classifies the dataset until it reaches the
leaf. The representation of one class DT is as follows: Each split
of the tree is based on a condition on a particular attribute, and
leaves are the classes. For a simple example of DT, the iterative
Dichotomiser 3 (ID3) is explained as follows:

(i) First, it assigns the original dataset (𝐷) to the root node.
(ii) Iteratively calculate the entropy 𝐻(𝐷) or the information

gain 𝐼𝐺(𝐷) of every attribute of set 𝐷.
(iii) Then, it partitions set 𝐷 into subsets using the smallest

resulting entropy from step ii.
(iv) Making a DT node consisting of that attribute.
(v) Recurse on 𝐷 using the remaining attributes.

The DT method works for both regression and classification
problems with many advantages, such as ease of interpretation,
requires fewer data points to learn, and works well with a large
dataset. However, minor changes to the large dataset require a
new training sequence, and overfitting is the algorithm’s limita-
tion. For implementation and further information, refer to [55].
Fig. 11 provides a simple example of a decision tree.

5.2. Unsupervised learning

In unsupervised learning (UL), the input data are unlabeled data,
where the algorithm has to find patterns and hidden structures to learn
a useful function. The enormous data collection by devices and sensors
results in a lack of labeling due to the unavailability of funds to pay for
manual allocation or the nature of the data itself. The UL is extensively
used in clustering and data aggregation [56]. The following algorithms
are the most common UL techniques:
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Fig. 11. An illustration of decision tree model to find out whether a person is
overweighted.

Fig. 12. An abstract view of K-mean clustering.

(1) Clustering Algorithms: In clustering algorithms, K-mean clustering
is widely used to segregate 𝑛 unlabeled data points into 𝐾 clus-
ters. To initiate this algorithm, only the dataset and the desired
number of clusters are required. The most popular version of
this method is iterative refinement, where 𝐾 is randomly chosen,
and after every iteration, the algorithm corrects itself [55]. The
difference between this algorithm and KNN is that in every
iteration, every point is assigned to a cluster using the Euclidean
distance (closest to the centroid). In each iteration, the algorithm
learns and updates the centroids of each cluster. The algorithm
operates until the end of the iterations, or when the centroids of
the clusters do not change significantly. A basic observation of
this algorithm is shown in Fig. 12.

(2) Principal Component Analysis (PCA): This is a statistical proce-
dure that transforms a set of correlated variables into a set
of linearly uncorrelated variables using orthogonal transforma-
tions [55]. The fundamental idea of PCA is to reduce the di-
mensionality of the data and optimize it to major components
or features. This statistical method represents the datasets in
more economical and smaller observed variables for faster data
processing in ML. Moreover, PCA works optimally with linear
models for feature extraction, data compression, and redundancy
of variables, such as image processing, signal processing, com-
munications, and control systems/theory [57]. In this algorithm,
singular value decomposition (SVD) plays an essential role in
computing lower-dimensional data. SVD extracts the eigenvalues
from the covariance matrix, which is the best approximation of
the original dataset with fewer arguments. For more information
on computation and simulation, refer to [55,58].

5.3. Reinforcement learning

Reinforcement learning is a popular ML techniques that through
interaction with the environment, the RL agent learns from trial and
error using consequences of its experiences and actions [59]. Some of
the commonly used RL-based algorithms are described below.
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Fig. 13. An abstract view of Q-learning method, where every action taken in any state
will be observed by the environment and generates a reward to provide insights about
how good was the agent’s action.

Fig. 14. The procedure of deep reinforcement learning.

(1) Q-learning : Q-learning is the most popular RL technique that uses
Q-value and Q-function to find optimum action policies. Specifi-
cally, the agent interacts with the current given environment to
continuously learn the Q-values and maximize this value. This
algorithm starts with an initial state and an action, followed
by the epsilon-greedy policy. For each performed action, the Q-
value is learned through the optimal (greedy) policy, enabling
the agent to take any action based on the largest Q-value under
the current state. Details of the Q-learning method can be found
in [26,60]. Moreover, fuzzy Q-learning is used to deal with con-
tinuous state spaces with a certain number of given rules [61].
A flowchart of the Q-learning method is presented in Fig. 13.

(2) Deep Reinforcement Learning (DRL): Deep RL is a combination
of deep learning and RL, which correlates the value function
with corresponding actions and states [62]. DRL uses these
two principles to approximate the optimal Q-values. Moreover,
DRL techniques facilitate an NN with an RL architecture to
enable agents to learn the best action in a specific environ-
ment. DRL is mostly used in complex decision-making tasks
with unstructured environments and can handle large datasets.
Recently, DRL has made great strides in vehicle-to-vehicle (V2V)
communication [63], wireless communications [64], and video
games [65,66]. More details on DRL can be found in [67] for the
readers. An overview of this concept is shown in Fig. 14.
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Fig. 15. An illustration of actor–critic learning algorithm.

Fig. 16. Joint utility and strategy estimation-based learning process.

(3) Actor–Critic Learning : There are two main types of RL: value-
based and policy-based. Value-based attempts to approximate
the optimal value by mapping between the action and value to
find the optimal policy without the Q-value. At the same time,
policy-based policies such as policy gradients rely upon optimiz-
ing parametrized policies. To take advantage of both types, these
two were merged and established actor–critic learning, which
means that one will compute an action based on the current
state and the other approximates the Q-value of the action [68].
An actor–critic learning method comprises an actor for error
correction, a critic for interaction, and an environment where
the actor interacts. As a result, the actor selects an action based
on the current policy, producing a cost metric. Subsequently,
the critic updates the state value function according to the
time-difference error. Finally, the actor updates the policy. Each
action is reviewed a finite number of times for each state such
that the algorithm converges to optimal values. Additionally, the
strategy of the system is updated according to the learned poli-
cies using the Boltzmann distribution [69]. The basic principles
and procedures are shown in Fig. 15.

(4) Joint Utility and Strategy Estimation Based Learning : The util-
ity and strategy estimation-based learning relies on the same
concept as the classical RL. However, the main difference is
that the agent receives an estimation of the expected utility
from the environment and the updated reward. The probabil-
ity distributions are modified based on the utility estimation,
where the probabilities (also known as strategies) are selected
actions [70,71]. Using this algorithm, the regret of each action in
the process can be obtained using the received reward and utility
parameters. Then, regret can be used to update the strategy. The
main advantage is that the algorithm can be fully distributed
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Fig. 17. The architecture of DNN.

Fig. 18. An overview of training process of a convolutional neural network
architecture.

when the reward is immediately calculated locally; for instance,
the transmission rate between the transmitter and receiver. This
algorithm is often referred to as an equilibrium concept in
game theory in many survey papers, such as coarse correlated
equilibrium and logit equilibrium. The concept of this algorithm
is illustrated in Fig. 16.

5.4. Neural network

A neural network is a type of artificial intelligence for information
processing that imitates the human brain. The neural network structure
consists of thousands of closely connected, simple processing nodes.
Neural networks are organized into layers, and in each layer, many
nodes move the data. With the development of graphics processing
units (GPUs) to accelerate the processing time, NN has attracted con-
siderable attention from researchers and companies [72]. The following
NN techniques are explained in this study.

(1) Deep Neural Network (DNN): As shown in Fig. 17, the compo-
nents of the structure are densely connected by the neurons in
the network layer. Each neuron in a layer is connected to the
rest of the neurons, resulting in the structure of the DNN. Each
neuron corresponds to a weight for the input and an activation
function for the output. The input data are transformed from
layer to layer, with no direct connection between the two non-
consecutive network layers. The main advantage of a DNN is
that it can automatically deduct and tune the features to obtain
the desired output. For the optimization of network parameters,
DNN uses backpropagation (one of the most popular learning
techniques for multilayer neural networks) and various gradient
descent algorithms, such as Adam and Momentum [73].

(2) Convolutional Neural Network (CNN): The convolutional neural
network is a class of artificial NN that was developed during the
12
Fig. 19. The architecture of RNN.

1980s [74]. A CNN is designed to adaptively and autonomously
learn spatial hierarchies of patterns by using different building
blocks, including convolution layers, pooling layers, and fully
connected layers. Among them, convolutional and pooling op-
erations are the two main building blocks in CNNs, which are
feature extraction [75]. Using these two layers enables the CNN
to solve relatively complex models based on the progressive
nature of the structure, as shown in Fig. 18.

(3) Recurrent Neural Network (RNN): The principle of RNN is to save
the previous output and feed it back to the input while having
hidden states to assist the algorithm in predicting the outcome of
the layer [76]. Additionally, there are connections in the hidden
layers of the RNN architecture, where all the inputs, including
the current and former inputs, impact the output. Hence, an RNN
has the ability to remember [26]. Fig. 19 shows the hidden layers
and connections of the RNN architecture.

(4) Autoencoder : The autoencoder aims to model a set of data to
learn and approximate the system function. The autoencoder
has other variations, such as sparse autoencoder and denoising
autoencoder. The autoencoder also applies backpropagation and
sets the target output equal to the input. The components and
process of the autoencoder are shown in Fig. 20; after the
autoencoder is fully trained, the decoder is removed from the
network, and only the encoder is kept as a feature extractor. This
powerful NN can learn a robust representation of the input with
a limited number of neurons such that the network can construct
the input at the output. However, the autoencoder has some
disadvantages that worth mentioning. First, an autoencoder re-
quires an identical distribution of the training data at its input
before it can work properly. Second, the number of neurons in
the hidden layer has a direct impact on its performance [26].

(5) Extreme Learning Machine (ELM): The extreme learning machine
is an NN with multiple hidden layers with randomly chosen
parameters, often referred to as a feed-forward neural network
(FFNN). This is the simplest and the first artificial neural net-
work, which aims to approximate a function to map an input
to an output such as the XOR function. Different layers connect
each node to other nodes in the network, including the hidden
layer, input, and output layers. The information flows only in
one direction, and it does not include any feedback, or the nodes
do not form a cycle, differentiating it from the RNN.

5.5. Transfer learning

Transfer learning is the process of avoiding learning from scratch
and utilizing knowledge from a specific task to the target domain to
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Fig. 20. Illustration of the structure of an autoencoder.

assist learning more robustly. For deep learning and RL, knowledge can
be defined as weights and Q-values, respectively. For instance, when
deep learning is adapted for resource management, the ML process can
use the weights that have been trained for other resource management
tasks as the initial weight. For example, a similar network with the
same number of nodes and similar behavior with a trained ML and a
fully operational resource management policy can provide knowledge
for other similar networks. Moreover, in RL, the Q-values learned from
an environment can be used in a similar environment to make better
decisions during the initial stage of learning. The specifications for
utilizing TL with RL can be further studied in [77]. While there are
advantages of having prior knowledge for learning a pattern, there
are some limitations and negative impacts on the performance, which
needs further attention that exceeds the scope of this study.

Most of the above ML techniques can be deployed in several net-
work applications for automation and optimization. ML algorithms
provide information and knowledge for different tasks. In the next
section, the application of ML in KDN for wireless networks is dis-
cussed. First, a general introduction to each application was explored.
Second, the important characteristics of each surveyed study with
supporting ML algorithms were investigated. Finally, a possible KDN
architecture that can be adapted for this specific study is presented.
This study was expanded over various parts of a wireless network,
including resource management, networking, mobility management,
and localization. Therefore, it is crucial to identify the studies within
these parts that can be potential use cases in generating knowledge in
the KDN paradigm. These studies are the building blocks for achieving
a fully knowledge-based network in future wireless networks. Table 2
presents the selected number of surveys with different applications
supporting various parts of wireless networks.

6. Application of machine learning for knowledge defined net-
working

Owing to the exponential growth of data traffic, wireless networks
will require advanced technical solutions in the near future. As a
result, the traffic load among BSs, the complexity of wireless chan-
nels, the emergence of self-driving vehicles, device-to-device (D2D),
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and machine-to-machine (M2M) communication requirements make
traditional networking intolerable. To overcome such issues, key tech-
nological advances in the network, such as the KDN, can support and
potentially solve our problems. In the following subsections, four major
parts of the communication stack are reviewed based on previous
research.

(1) Resource management applications based on spectrum utiliza-
tion, power allocation, QoS, BS switching, cache, and backhaul
management were investigated.

(2) Networking applications, such as routing, clustering, user/BS
association, and data or traffic aggregation have been explored.

(3) Mobility issues, such as user mobility prediction and handover
management, were investigated.

(4) The importance of indoor localization is presented.

These four criteria are the essential parts of each network, and they
need optimization to keep up with standards and demands in future
heterogeneous networks. In this section, we discuss recent ML studies in
a wireless network. Here, ML-based information is stored as knowledge
for that specific network to facilitate other similar networks.

6.1. Resource management

Nowadays, resources among networks are scarce and expensive.
Many studies have started to use optimization methods and introduced
new ideas for resource management [78]. However, recent studies have
utilized ML algorithms to improve the efficiency. These studies focused
on spectrum allocation, power management, QoS, BS switching, cache,
and backhaul management. Knowledge that KDN provides is beneficial
to these standard problems in wireless networks. Once the complex-
ity of the network increases in 6G, there needs to be a centralized
intelligence that can receive general network information and process
that information through an ML algorithm to produce meaningful
knowledge. Therefore, it is an excellent opportunity to study research
works and identify those with the potential to attain useful knowledge
in the KDN framework.

6.1.1. Spectrum allocation
As the number of devices increases in the network, such as IoT, cel-

lular, and sensors, spectrum shortages have drawn significant attention.
The increase in data traffic now forces efficient spectrum allocation
and management strategies to enhance scalability and improve QoS.
In the following section, RL is investigated for possible knowledge
extraction for spectrum management when using the KDN framework
in the network. Table 3 summarizes the studies surveyed in this section.

Knowledge derived from reinforcement learning : In [79], spectrum
allocation in cognitive radio networks (CRN) is presented, and the non-
dominated sorting genetic algorithm-II (NSGA-II) is used as a method
to combine the evolutionary algorithm and RL method. As a result,
they proposed NSGA-RL for self-tuning and spectrum allocation in an
efficient manner. They used the RL algorithm to learn the value of the
control parameter during the training phase. Their method evaluates
the initial values of the Q-table and updates the Q-values iteratively to
obtain optimal values. Based on their algorithm after network initializa-
tion, non-dimensional sorting via tournament selection, crossover, and
mutation is calculated, representing offspring population generation.
They use population as knowledge to find the near-optimal and self-
tuning control parameter to allocate spectrum-based and increase the
overall network capacity. This algorithm is suitable for the centralized
architecture of the KDN, where a multi-objective optimization problem
for spectrum allocation is modeled based on the RL algorithm.

In [80], the authors developed a dynamic spectrum allocation algo-
rithm in a distributed manner using a deep multi-user RL. Their method
allocates the shared bandwidth into orthogonal channels, and users ac-
cess the spectrum at each time slot based on a random-access protocol.
First, users attempt to transmit packets with a certain probability. Then,
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Table 2
The application of machine learning methods on different areas of telecommunication.
each user receives an acknowledgment of whether the packet has been
received. Subsequently, each user maps its current state to an action
based on the spectrum access obtained by a trained deep Q network.
Their algorithm proves that users can learn the best policy based on the
objective network utility. The proposed algorithm provides twice the
channel throughput compared to slotted-aloha with optimal probabil-
ity, which requires full knowledge of the number of users. Hence, this
suggests that the output of the Q-learning algorithm in their study can
be used as knowledge for KP in wireless networks, where the number
of nodes is not visible by the controller, and the controller needs to
perform the best action and allocate an efficient channel to users. The
proposed algorithm suggested a distributed adaptation of transmission
parameters, where the knowledge obtained from a network by users
can be used in a distributed manner in the KDN architecture.

As data traffic increases in mobile networks and fixed spectrum allo-
cation of operators becomes a major problem, inter-operator spectrum
sharing has been proposed as a solution. This solution brings benefits
but also introduces new challenges. The authors of [81] introduced a
new paradigm called inter-operator proximal spectrum sharing (IOPSS)
to intelligently offload users from an overloaded BS to the neighbor-
ing BSs based on the spectral proximity. A Q-learning framework is
equipped with each BS to dynamically determine the network load
and efficiently utilize its spectrum in a self-organizing manner. The
state of the system depends on the network load experienced by the
BS and is defined as a discretized value. At the same time, the action
of each state is determined by the tuple of spectral sharing parameters
associated with each neighboring BS. The spectral sharing parameter
for a BS includes the required spectrum resources (where spectral
resources in this study are considered as resource blocks (RBs)) from
a neighboring BS, the probability of a user that the neighboring BS
can support with the strongest value of the signal-to-interference-plus-
noise ratio (SINR), and the fraction of RBs that need to be reserved
as requested. Simulation results demonstrate that the IOPSS-based Q-
learning algorithm can intelligently offload users from congested BSs
14
and help cellular operators to enhance the user’s quality of experience
(QoE) and efficiently share spectrum resources. In this study, the IOPSS
Q-learning framework was executed in a distributed manner at every
BS. This framework is suitable for both centralized and distributed KDN
architectures. If the network is seen based on every cluster, where
all the BSs in a network are assumed to be a greedy-based BS, then
a distributed KDN using the proposed work will maximize each BS’s
resources. However, this method can also be assumed as a centralized
algorithm for the master controller that manages all the BSs, which
eventually suggests a hybrid structure of KDN using the output data
resulting from the proposed study.

In [82], the authors proposed a dynamic spectrum allocation strat-
egy for maximizing throughput in millimeter-wave (mmWave) ultra-
dense networks. They proposed a temporal–spatial spectrum-reuse
scheme to improve spectrum management. Similar to other works,
spectrum management is formulated using a non-cooperative game,
which ensures Nash equilibrium (NE). Using this technique, secondary
users (SUs) are adapted with a distributed Q-learning algorithm to
interact with the environment and achieve NE without any global
information exchange between SUs. The actions and rewards of the
Q-learning algorithm are based on the system’s channel selection and
channel rate, respectively. In contrast to other Q-learning methods,
where the state–action pairs will result in a Q-value, the action only
defines the Q-value. The player’s Q-value is updated in each iteration
based on the weighted sum of the current Q-value and the achieved
reward. From their comprehensive analysis, their learning algorithm
speeds up the convergence procedure and helps users with minimum
access latency. Similarly, a heuristic channel allocation policy focusing
on temporal–spatial spectrum reuse with the help of multi-armed
bandit (MAB) theory is presented [83]. They incorporated a three-
stage policy to improve the computational cost of a centralized channel
allocation policy. The algorithm uses a distributed greedy graph col-
oring method to determine the optimal channel access ranks of SUs
during the first two stages. In the third stage, based on the MAB
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Fig. 21. An abstract system model of D2D enabled C-RAN.

theory, optimal channel allocation is obtained. The simulation results
suggest that the proposed policy outperforms other policies in the
literature based on temporal–spatial spectrum reuse. The study in [82]
can assist in knowledge extraction and maximize the network benefits
for a distributed KDN architecture. In contrast, in [83] the spectrum
allocation problem is formulated into centralized and distributed parts,
which can best fit our hybrid architecture in KDN.

To improve resource management, D2D communication was intro-
duced to decrease the load on the BS. In [84], the authors proposed a
distributed approach for resource allocation and communication mode
selection for potential D2D pairs using a joint utility and strategy
estimation algorithm. The proposed system model is shown in Fig. 21
consisting of potential D2D pairs, BS, C-RAN, and user equipment
(UE) that are unable to perform D2D communication. They investi-
gated D2D-enabled C-RANs to improve the spectral efficiency using
RL techniques. The action of the learning algorithm consists of the
communication mode selection and subchannel allocation for each D2D
pair. After each pair selects its action, the remote radio head (RRH)
association and power control of the D2D pairs is modeled. Then, based
on the reinforcement algorithm, the system obtains the instantaneous
utility (known as the received spectral efficiency), which is updated for
each action continuously. This study aims to enable D2D pairs to self-
optimize their resource allocation and perform mode selection under
different practical constraints, including fronthaul capacity and inter-
tier interference constraints. The numerical simulations demonstrated
near-optimal performance and better spectral efficiency. From the pro-
posed method, it is evident that this study best suits the distributed
architecture of the KDN, where D2D pairs will maximize their resources
using the proposed algorithm.

In heterogeneous networks, the authors of [85] proposed a multi-
objective fully distributed strategy based on RL for self-configuration
and optimization in LTE small cells. The proposed algorithm uses a
joint utility and strategy estimation under QoS constraints to minimize
the received intra- and inter-tier interference for femtocells (FCs) and
reduce inter-tier interference from FCs to eNBs. Their algorithm utilizes
RL techniques to simplify their problem formulation compared to works
where global knowledge and complete CSI are unavailable. Hence, we
can utilize the RL ability to gather information from the interaction
between BSs and users. They identified two sequential learning levels.
During the first phase of learning, available spectrum resources were
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selected, while resource optimization was performed during the second
phase. Different utilities are defined for each level, namely the spec-
trum modeling utility (SMU) and spectrum selection utility (SSU) for
levels one and two, respectively. To make the learning more accurate,
FCs use three different learning algorithms, including the modified
Bush and Mosteller (MBM), modified Roth–Erev (MRE), and gradient
follower (GF) learning algorithms. During each learning process, each
FC chooses one learning strategy based on its objectives and capabili-
ties. The algorithm can self-organize the available resources and tune
the SBS parameters based on interference and QoS. The simulation
results prove the higher cell throughput and significant reduction in
inter-and intra-tier interferences. A thorough study was conducted for
spectrum allocation, user association, and load balancing for hetero-
geneous small-cell networks (SCNs) in [86]. An echo state network
(ESN) framework is utilized with RNN [87,88] to optimize resource
allocation with uplink and downlink decoupling in SBS-LTE-U systems.
They formulated a non-cooperative gaming system where the SBSs were
the players with the goal of finding the optimal utility function. Every
SBS seeks to attain optimal spectrum allocation to enhance the utility
function. The utility function must maximize the downlink and uplink
sum rates while managing the traffic load in both the licensed and
unlicensed bands. Further, based on ESN, resources can be scheduled,
and the optimal utility function can be established with minimum
knowledge of all users. The algorithm enables BSs to autonomously de-
cide on a spectrum allocation strategy with the maximum throughput of
each user. Their simulation results showed a performance improvement
of 167% compared to the Q-learning algorithm. In [85] a distributed
self-organized spectrum allocation scheme was proposed for FCs. The
proposed method is suitable for both distributed and hybrid schemes
in the KDN. Similarly, the method in [86] can also be adapted for both
distributed and hybrid architectures, in which the hybrid scheme, the
centralized SBSs use this technique to act greedy for load balancing and
efficient spectrum reuse.

6.1.2. Power management
Power management is a key feature of wireless networks. One of

the biggest concerns is that as the number of devices in the network
increases, each node will eventually demand a higher data rate, which
forces the transmitter to increase its power. However, increasing power
increases the interference between the devices. Therefore, the devel-
opment of a suboptimal power allocation algorithm is necessary for
future wireless networks. Exploiting knowledge from ML algorithms
enables us to deploy the KDN architecture in 5G and beyond. In power
management problems, knowledge is essential to decrease both the
interference and energy consumption. In the following sections, super-
vised and reinforcement learning algorithms are explored to examine
how knowledge can be extracted and deployed in the KDN. Table 4
summarizes the studies surveyed in this section.

(i) Knowledge derived from SL: In [89], the authors investigated the
problems of optimization algorithms, which often lack adequate
performance in real-time processing and suffer from complexity.
They proposed a centralized SL algorithm to train a deep neural
network (DNN). In particular, their algorithm is compared to
the weighted minimum mean square error (WMMSE) optimiza-
tion algorithm [90], which achieves 90% or higher efficiency.
The WMMSE is used in interference management and requires
complex matrix operations and bisection in each cycle [90,91].
Further, they used a fully connected NN with channel coeffi-
cients at the input layer, multiple hidden layers, and an output
layer. The system output is the optimal allocated power value.
As a result, their algorithm can be adapted for power allocation
in wireless networks and utilized as centralized knowledge to
obtain efficient power values and mitigate interference. Having
the knowledge of the DNN at the KP layer empowers the system
to operate at its best and perform optimization simultaneously.
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Table 3
Knowledge-based strategies for spectrum management.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[79] Utilizing optimal
values of Q-table for
similar CRNs

Centralized Q-learning Self-tuning spectrum
allocation, near-optimal
solution and improving
network capacity

Handles high computational
complexity, however
performance is highly
dependent on the control
parameters

[80] Providing a general
real-world solution
for spectrum access
using a trained
multi-user DQN

Distributed Deep reinforcement
learning

Better channel throughput
compared to slotted Aloha
and optimal spectrum
allocation

Offline learning and online
real-time spectrum access,
decreasing routing overhead
but subjected to time
constraint for mobile users

[81] Intelligent user
offloading and
self-organizing
spectrum allocation

Hybrid Distributed
Q-learning

Maximizing the user’s QoE Efficiently share the spectrum
between BSs to offload users
but challenges of user mobility
have not been studied yet

[82] Self-adaptation of
SUs based on
trained Q-learning
algorithm

Distributed Distributed
Q-learning

Achieving NE Maximizing transmission
efficiency while coordinating
interference and suitable for
5G communications but
include redundant information

[83] Efficient channel
reuse for SUs once
the optimal policy
is learned

Hybrid Multi-armed Bandit
techniques

Enhancing spectrum
utilization with
temporal–spatial spectrum
reuse

The channel allocation policy
has fewer regrets than other
policies, but it works work
static networks

[84] Using the built-in
strategy profile for
intelligent
communication by
using mode
selection (referred
to as selecting D2D
or C-RANs data
transmission) and
resource allocation
of D2D pairs

Distributed Joint utility and
strategy estimation
based learning

optimizing spectral
efficiency

D2D pairs can self-optimize
their mode selection and
resource allocation, although
it is time consuming

[85] Autonomously
identifying and
optimizing spectrum
usage in femtocells
using the learning
strategy

Distributed or
Hybrid

Joint utility and
strategy estimation
based learning

Minimizing the
intra/inter-tier interference
and increasing the
throughput

Reduces waste of memory and
the unnecessary information

[86] Self-organizing
framework to
optimize resource
allocation in both
uplink and downlink
LTE networks

Distributed or
Hybrid

Multi-agent
reinforcement
learning based on
echo state networks

Load balancing and
efficient spectrum
allocation

Choosing the optimal
resources by SBS given
minimum information about
users and network
(ii) Knowledge derived from reinforcement learning : Research in [92]
introduced a deep Q-learning algorithm for dynamic power al-
location based on collected channel state information (CSI) and
QoS. Their proposed distributed algorithm is based on the model
described in [93], which does not rely on the network size,
and it uses a robust technique for the dynamic changes of the
network. They considered a single frequency band for transmis-
sion with synchronized time slots. A classical power allocation
method is utilized in the initial stage of the network. Then,
an RL agent interacts with the environment and learns by ob-
serving the rewards by trial and error over time [59,94]. To
optimize the system and mitigate the problems with Q-learning,
a deep Q-network (DQN) is used to estimate the Q-function.
Their algorithm showed a fast and suboptimal power-allocation
technique for various dynamic wireless networks. This will have
a massive opportunity in the future for heterogeneous networks
to be implemented and used as prior knowledge and facilitate
the users such that optimum power is allocated to all the users
quickly and efficiently. This method is more reliable than the
other methods because of its response to dynamic changes in
the network. A distributed knowledge plan can benefit from this
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algorithm and utilize the information to optimize power when
the network experiences abrupt changes.
For heterogeneous networks, the authors of [95] proposed a de-
centralized solution for power management and cell association
using RL techniques. They have focused on inter-cell interfer-
ence coordination (ICIC) using both time-domain and frequency-
domain, where macro-cells and pico-cells autonomously learn
to optimize their transmission power. In the time domain, the
learning agent on pico-BS (PBS) intelligently self-organizes the
cell range to effectively offload traffic from the macro-BS (MBS).
The action performed by the two agents on both BSs is range
expansion and power adjustments on each resource block, where
PBS performs range expansion and power adjustment by MBS.
The future state of each agent depends on the SINR condition
of each UE in the network, while the received cost is the target
value of the SINR to serve each UE to meet the total transmit
power constraint. In each iteration of learning, PBS chooses
an action resulting in the smallest Q-value, and based on this,
MBS chooses its action. In the frequency-domain scenario, the
action of Q-learning differed from the time domain. It uses single
and multi-flow carrier aggregation in which a single UE can be

served simultaneously by different BSs over different tiers/layers
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(with two different carrier frequencies). Therefore, using Q-
learning will enable PBS and MBS to self-optimize system per-
formance using ICIC. Moreover, a fully automated multi-agent
Q-learning technique was developed to facilitate heterogeneous
cellular networks and to model the channel and power levels
of D2D pairs [96]. Each pair attempts to maximize the value
obtained by the difference between the throughput and power
consumption cost, which is achieved via the defined SINR con-
straint. The proposed model is formulated using a stochastic
non-cooperative game, where each pair of devices becomes a
learning agent to learn the best policy from locally observed
information. Their simulation results showed an acceptable con-
vergence rate and near-optimal performance with a few learning
iterations. The study proposed in [95] suggests a distributed
policy for KDN to incorporate self-healing, self-optimizing, and
self-configuration of the network. Similarly, in [96] users act
selfishly to choose the wireless channel and power level to max-
imize their throughput, which in fact represents a distributed
manner for the knowledge plane. However, the information can
be used at the centralized controller to make optimal decisions
when congestion in the network is high. Hence, both the dis-
tributed and hybrid architectures of the KDN are suitable for this
study.
In [97], the authors integrated two DRL techniques for power
control between primary users (PUs), SUs, and wireless sensors.
Their work is based on an asynchronous variant of the actor–
critic learning algorithm, where an A3C-based power allocation
method and distributed proximal policy optimization (DPPO)-
based power control are utilized. These two methods are based
on the actor–critic learning mechanism for optimizing power
control policies and making spectrum sharing more accurate.
The aim is to model the information interaction between users
and wireless sensors to learn the simultaneous power allocation
scheme and optimize power consumption. In their algorithm,
first, each SU gathers information from a centralized controller,
and based on the experiences of other SUs, it performs power
control strategies and simultaneous power control management
policies at the controller. PUs cannot obtain power allocation
policies using other PUs. They only adjust their transmission
power based on a power-control scheme. Finally, the simulation
results indicate that the proposed power control scheme per-
forms better than the DQN-based power allocation in terms of
power efficiency, spectrum sharing, and network convergence.
To allow spectrum sharing, the authors of [98] proposed an
optimization-based algorithm for power management at small
BSs (SBS) with a Q-learning method to reduce the interference
of each RB. Initially, power is randomly allocated by SBS, based
on the assumption that the SBS is concerned about maximizing
its expected data rate in the long term, Q-learning is used to
find the optimal power for SBS. The state of each SBS is a
binary value that indicates whether the QoS has been violated,
while the action of the learning algorithm is the selection of
the optimal power level. The system reward is represented as
the instantaneous rate of the SBS. Simulation results show the
ability of Q-learning to increase the long-term expected data
rate of SBSs. The centralized power control mechanism in [97]
represents a centralized KDN, where the latest power control
strategies are updated. The power allocation scheme in [98]
relied only on local information at the SBSs. Local data are not
shared within the SBSs. Hence, the algorithm can be applied to
the distributed architecture of the KDN.
In addition, a research study in [99] utilized the RL technique
to self-organize the transmission power in femto-BS, pico-BS,
and micro-BS. Their goal is to mitigate interference in SCNs and
increase the spectral efficiency. Here, the interaction between
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SBS and macro-BS is modeled as a non-cooperative game, where
a joint utility and strategy estimation algorithm is proposed to
help the SBS reach the desired equilibrium network operating
point. In each iteration, the femto-BS selects an action based
on its current strategy and receives a reward representing the
data rate. The reward of the algorithm ensures that the QoS of
the macro-BS users is satisfied. The self-organizing algorithm for
interference management is fully decentralized, which suggests
a distributed KDN architecture.

6.1.3. Quality-of-Service
Interest in the application of wireless networks is increasing daily.

Hence, the future of wireless technology requires better and more
reliable communication. Improving QoS with complex and colossal data
traffic has always been a challenging research problem. As a result,
having prior knowledge to enhance the QoS based on ML algorithms
is crucial to ensure scalability. In this section, recent approaches for
optimizing QoS based on supervised and reinforcement learning are
explained. Table 5 summarizes the studies surveyed in this section.

(i) Knowledge derived from supervised learning : In [100], an SL-based
QoS assurance architecture was introduced for 5G networks.
Their algorithm uses past QoS information and learns the net-
work environment and dynamic changes. The QoS prediction in
this study uses a decision tree strategy to estimate the future QoS
of the network. The proposed model consists of a layer called the
history QoS data repository that collects all the information for
training. The information collection comes from two parts: QoS
data collection and QoS data preprocessing. Two methods are
used for data collection: passive and active, enabling intelligent
decision-making and quick QoS optimization across a wide range
of applications. The rest of the system consists of modeling,
training, QoS anomaly detection, and prediction. Based on the
output of the anomaly detection and prediction, the system
determines the QoS policies. Consequently, using trained SL to
improve the QoS is beneficial, and the network can leverage the
acquired knowledge produced by the ML to make appropriate
decisions and predictions. Using an extract-transform-load (ETL)
allows us to collect QoS data from heterogeneous networks
and turn them into understandable and easy to comprehend
structures. Therefore, it is vital to have extensive knowledge
about network behavior and implement an algorithm to change
based on the collected data. However, the drawback of this
approach is the amount of data stored in the system repository.
The algorithm is suitable for centralized KDN, where information
regarding the QoS is available for automatic anomaly mitigation
and action suggestions.

(ii) Knowledge derived from reinforcement learning : In [101], a univer-
sal deep neural model (DNM) for predicting multiple-attribute
QoS is presented. Two loss functions are used to make accurate
QoS predictions: the least absolute deviations and least square
errors. During the training, gradient descent was used to de-
termine the optimal learning parameters. The predicted QoS
values are the knowledge extracted from this algorithm. After
the training procedure, their method was compared to the mean
absolute error (MAE) and root mean square error (RMSE) for
prediction accuracy. The proposed technique achieves a higher
prediction accuracy compared to the two methods. Their method
can be used in a centralized KDN for a fast user’s QoS prediction,
where DNM is deployed in the KP to process information and
generate useful knowledge in terms of QoS prediction.
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Table 4
Knowledge-based strategies for power management.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[89] Real-time power
allocation

Centralized Supervised learning
with DNN

Power control and
interference management

Decreasing the computational
cost but cannot be utilized for
directional antennas

[92] Adaptable to large
networks with
real-world scenarios

Distributed Deep Q-learning Suboptimal power
allocation with faster
convergence compared to
WMMSE and FP

Robust to unpredictable
changes of the wireless
medium as well as
delayed/incomplete CSI,
although it lacks global
knowledge that might degrade
system performance

[95] Smartly offload
traffic and
autonomous
optimization of cell
range expansion
(CRE) in
heterogeneous
networks

Distributed Reinforcement
learning

Significant improvement in
throughput

Joint power allocation and
cell association by achieving
target SINR for each UE but
some backhaul constraints

[96] Intelligent joint
selection of power
level and spectrum
channel by D2D
users in a multi-cell
network

Distributed or
hybrid

Multi-agent
Q-learning

Reducing the power
consumption and
maximizing throughput

Near-optimal and fast
convergence for D2D pairs,
although it does not support
multi-hop D2D

[97] Simultaneous power
allocation in
wireless sensor
networks

Centralized Actor–critic based
learning with DNN

Efficient power
management with less
frequent updates

Guarantees QoS but does not
involve mobility

[98] Trained Q function
is capable of
adjusting the SBS
transmission power

Distributed Distributed
Q-learning

Maximize the data rate of
SBSs while keeping
acceptable QoS

Optimization of power
strategies for maximizing the
long term data rate

[99] Self-organization
and optimization of
throughput by the
femtocell user
equipment (FUE)
under QoS
constraint

Distributed Joint utility and
strategy estimation
based learning

Achieving NE with less
overhead

High spectral efficiency when
utility function is the network
performance of FBSs, but the
network is static during the
learning process
Table 5
Knowledge-based strategies for QoS.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[100] Automatic QoS
prediction for
correction and
suggestion for 5G
networks

Centralized Decision tree reliable QoS A new architecture for QoS
prediction and reaction to
dynamic changes of network

[101] Efficient QoS
prediction strategy

Centralized deep neural network High QoS prediction
accuracy

Proposed algorithm has a
quick response-time, which
crucial for autonomous
systems
6.1.4. Base station switching
One significant difference between 5G and 4G is the network ar-

chitecture and deployment of a large number of SBSs. Because of
mmWave signals in 5G cellular networks, BSs need to be closer to
users to reduce the propagation loss and improve the channel capacity.
However, deploying a large number of SBSs comes at a price and a
significant increase in the total energy consumption of the wireless
network. One of the promising solutions is BS on/off switching, which
saves approximately 36 million kWh per year [102]. Considerable effort
has been dedicated to finding the best strategy for on/off switching
mechanisms in 5G wireless networks. Among them, ML algorithms have
attracted attention for their self-optimization and self-management
abilities. The extracted knowledge from a trained ML can be used in
a centralized KDN architecture to manage the entire network BS on/off
switching. Table 6 summarizes the studies surveyed in this section.
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Knowledge derived from reinforcement learning: The authors of
[103] proposed a Q-learning-based algorithm for heterogeneous net-
works to reduce the overall energy consumption of SBSs. Users’ infor-
mation is utilized with a heuristic algorithm for the implementation
information case (HAIIC) with an offline solution to reduce energy
consumption. In this work, the on/off switching of SBSs is discussed
by gathering complete and incomplete information, which correspond
to the future and current information, respectively. With complete
information, the critical sections of a cell are defined. Based on an
offline approach, the cumulative energy consumption of the SBS is
obtained, and the best policy is attained. For incomplete information,
the HAIIC was used to categorize the on/off switching policy of the
BSs. The HAIIC uses an upper-bound threshold based on the energy
consumption ratio (ECR). The learning algorithm defines the SBS on/off
switching operation as an action. The state depends on the number of
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active users and SBS. Finally, the reward of the learning algorithm is
achieved through a switching action in any particular state. The reward
of the algorithm is entitled to energy consumption and transmission
gain constraints. The procedure is iterative, and the calculated reward
updates the Q-value until it converges. From the simulation results,
it is concluded that the proposed HAIIC algorithm minimizes energy
consumption. Similarly, studies were conducted, such as the work
in [104], which used actor–critic learning to control the on/off BS
switching. The RL technique defines the BS switching operation as the
action and the amount of traffic load on the controller as the state. The
controller decides an action based on the traffic load in a stochastic
manner to minimize the overall energy usage. The authors of [103]
used the coverage of the BS to switch off the SBSs in their vicinity,
which suggests a centralized KDN architecture at the main controller.
Similarly, in [104], the overlap between the coverage areas of BSs
is considered to turn on/off a BS, which also suggests a centralized
architecture of KDN.

Although the studies mentioned above used on/off procedures and
significantly decreased power consumption, they lack the on/off state
transition between BSs. To this end, the authors of [105] included the
transition overhead in the cost function of the DRL-based framework
for downlink scenarios in cloud radio access networks. The state in
DRL consists of two components: the on/off state of the BS, which
is a binary value (0 for off, 1 for on), and users’ data rate demands.
The action is taken based on the state of the iteration, which leads
to the activation of a BS. The reward is calculated based on power
consumption and user demand constraints. Simulation results indicate
that the proposed advanced technique can be adapted to dynamic
environments and can provide power consumption optimization while
satisfying user demands. Moreover, the study in [106] considered the
on/off transition state, where it uses the Q-learning method and a
novel dual-threshold-based sleep-mode control for SBSs. The use of a
dual threshold for controlling the BS sleep mode minimizes energy
consumption and avoids frequent BS transitions. There is an upper user
and a lower user threshold, which defines the action of the learning
algorithm. The state of each SBS is the number of users under coverage.
When the number of users in the cell passes the upper threshold,
the small cell is switched on, and once the number of users becomes
less than the lower threshold, the small cell is switched off. Based on
the simulation, the algorithm achieves near-optimal performance by
reducing the energy consumption with a minimum BS on/off transition
state.

Moreover, a BS active/sleep scheduling scheme is proposed for k-
tier heterogeneous networks, guaranteeing coverage, QoS, and through-
put [107]. They used a fuzzy Q-learning method to put the BS in sleep,
while there was no user to serve or activate a BS once the user was
detected in the cell. To save energy, the algorithm uses an optimal
sensing probability strategy for user detection. An SBS is in the sleep
mode state when there is no active flow, and it randomly activates to
scan the coverage area for possible users based on the tuned output
sensing probability action. It is observed that the proposed algorithm
can efficiently handle user population fluctuations and increase the
energy efficiency. All three [105–107] proposed schemes can be used
in a centralized architecture of KDN to provide an energy-efficient
algorithm to reduce energy consumption.

6.1.5. Cache management
As predicted by Cisco [108], wireless networks, especially cellular

networks, will produce about 30.6 exabytes of data traffic each month.
This is due to the proliferation of smart devices and the appear-
ance of high-tech applications, such as ubiquitous social networking,
augmented reality, and high-definition live streaming. Faced with un-
precedented data traffic, intelligent learning-based caching strategies
have been introduced to alleviate backhaul traffic and shorten la-
tency [109]. In this section, we investigate ML algorithms to assist
in creating knowledge in the KDN paradigm for cache management.
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Table 7 summarizes the studies surveyed in this section.
(i) Knowledge derived from supervised learning : To construct estima-
tion methods to identify the popularity of content in cellular net-
works, an ELM neural network is used to improve the QoE and
reduce the network traffic [110]. The proposed method adapts
mixed-integer linear programming for content replacement. The
algorithm uses a perturbation stochastic approximation to select
the physical cache size simultaneously and performs efficient
cache deployment. In their method, the stochastic approxima-
tion reduces the number of neurons for ELM while ensuring
an accurate prediction of future content popularity. The pro-
posed method utilizes real-world data while making efficient
cache decisions compared to the most popular cache deployment
schemes, such as K-nearest neighbor [123] and regression [124].
The proposed caching scheme in [110] considers content popu-
larity, cache size, network topology, and link capacity to perform
efficient content caching and cache deployment. The algorithm
has a cache manager to communicate with all BSs, making it
suitable for centralized KDN.
The authors of [111] proposed a joint optimization of user
association and content placement in an unmanned aerial ve-
hicle (UAV) network. The goal of the optimization algorithm
is to maximize the QoE of the user while minimizing the total
transmit power of the UAVs. To predict the users’ mobility
patterns and content request distribution, ESN is utilized to learn
the distribution from the provided training data (user traffic
data). More specifically, the data are human-centric information,
such as gender, users’ visited locations, and requested content.
The information is fed as a vector to the ESN input, where
the output of the ESN obtains the content request probabilities.
The conceptor-based ESN model enables C-RANs to separate
user behaviors into independent patterns, which increases the
prediction accuracy of cache management and power control
systems. A similar study was conducted in [112] to predict the
mobility pattern and content request distribution of each user in
C-RANs. The objective is to minimize the delay and traffic in the
network while caching the most suitable content. The algorithm
first uses an ESN-based scheme to utilize the BBUs to learn the
user’s mobility pattern and content request. Then, a sublinear ap-
proach enables the BBUs to determine which contents to cache.
The conducted simulation was compared with random caching
with clustering and random caching without clustering, and it
showed that the sum effective capacity reached up to 27.8% and
30.7%, respectively. In [111] the entire network is connected
to the cloud’s pool for information extraction, which represents
knowledge for the entire network for centralized cache manage-
ment. The approach in [112] for content request prediction and
mobility pattern recognition is used via centralized BBUs and
cloud heads, representing a novel approach for the centralized
architecture of KDN to predict the content of mobile users in
cellular networks.
The authors of [113] used three different methods to minimize
the backhaul load by predicting the cache content from raw
video data. First, a 3D CNN is used for feature extraction, in
which a single frame of the video is analyzed alternatively.
Second, the SVM algorithm is utilized for generating represen-
tation vectors of videos, and third, a regression model predicts
the video popularity content. After obtaining the popularity of
videos, the optimal segment of each video is cached by the
BS to minimize the backhaul traffic. The proposed algorithm
predicts the popularity of a new video without any statistical
information. Here, the BS is connected to the core network,
where the core network is connected centrally to the content
server, which represents a centralized cache strategy.

(ii) Knowledge derived from reinforcement learning : To mitigate the
challenges of content caching under spatio-temporal traffic de-

mands, the authors of [114] introduced a decentralized caching
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Table 6
Knowledge-based strategies for BS switching.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[103] Offline trained
solution to minimize
energy consumption
in heterogeneous
networks

Centralized Q-learning Reducing the cumulative
energy consumption

Optimal small cell switch
policy but startup energy cost
and user mobility are not
considered

[104] The trained data is
utilized at the
controller to choose
the active BS based
on the traffic load
in RANs

Centralized Actor critic based
learning

improving the energy
efficiency

Robust BS switching solution
but eliminated inter-cell
interference

[105] Dynamic resource
allocation in cloud
RANs

Centralized Deep reinforcement
learning

Minimizing power
consumption

Adaptable to dynamic
environments while satisfying
user demands

[106] Using the trained
data for
energy-efficient and
QoS-aware in SBSs

Centralized Q-learning Minimizing network energy
consumption while
avoiding frequent mode
transition in BS switching

Effective multi-objective
energy optimization between
BS switching and QoS, no user
mobility is considered

[107] Self-organizing the
active or sleep
mode of SBS in
heterogeneous
networks

Centralized fuzzy Q-learning Improving energy
consumption while
maintaining network
capacity and coverage area

A thorough BS switching
based on user activity
fluctuations, QoS, channel
propagation, and interference
update scheme among different small cells based on joint utility
and strategy estimation. The SBSs can optimize the time-varying
caching probability distribution using the received instantaneous
utility update. The proposed algorithm is capable of minimizing
the service delay when serving user requests at the SBS. Sim-
ilarly, Wei et al. focused on distributed caching design at BSs
to reduce the traffic load via D2D communications [115]. BSs
can cooperate and exchange information regarding their locally
missing content from other BSs through the backhaul channel
to make the scheme more cost-efficient. A Q-learning algorithm
is utilized to improve the system transmission cost and enable
D2D devices to offload traffic using cache utilization. The action
of Q-learning depends on the adjustments of the cache contents
taken in a specific state for observation. The convergence of the
proposed cache replacement strategy is tested by the sequential
stage game model, meaning that the decision-making process of
each BS on cache placement is a cooperative game (every state
can be considered as a different stage). The simulation results
have shown superior performance compared to conventional
strategies, including the least recently used (LRU) strategy [125],
least frequently used (LFU) strategy [126] and randomized re-
placement strategy [127]. In [114], each SBS optimizes the
cache policy via a decentralized cache strategy, which represents
a distributed architecture of the KP for future optimization via
KDN. In [115] the traffic is offloaded from the cellular chan-
nel to the WiFi channel using D2D communication between
users, which provides a distributed architecture for users in the
network to exchange data traffic.
Cache-enabled D2D communication technology is expected to
lower the requested content and congestion at the BS by en-
abling devices to request content from nearby users. The authors
of [116] focused on joint content delivery policy and cache
content placement. Cache content placement determines the
amount of traffic unloaded from the BS to the D2D. This study
uses RNN methods, specifically ESN and long short-term mem-
ory (LSTM), to predict the users’ mobility patterns and content
popularity. Therefore, the algorithm realizes where to cache and
which content to cache. Once the user’s local cache content
cannot satisfy the content request of the user, the user will
establish a D2D link with one of the neighboring users. The
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process of selecting the most appropriate user was performed
using a DRL agent. The DRL agent optimizes content delivery
and makes dynamic decision making for user selection. The
simulation results indicate that the proposed content placement
and content delivery approaches improve the cache hit ratio and
reduce delivery delay and energy consumption. This method is
inherently distributed, where nodes find their requesting content
from nearby users. However, this information can be used in
a centralized manner to monitor the content exchanged and
minimize the network traffic on the BS.
Owing to the time-varying nature of the wireless channel, the
authors of [117] proposed a deep reinforcement approach to op-
timize the cache-enabled interference alignment. They adapted a
finite-state Markov channel (FSMC) and used a deep Q-network
to develop a caching update scheme. First, a centralized sched-
uler collects CSI and cache status information from the users.
Then, a deep Q-network feeds the optimal action for the cur-
rent instant and stores the agent’s experience of each time
instance to optimize the Q-network parameter accordingly. Their
method maximizes the Q-learning reward function based on
existing knowledge and attempts new actions to acquire new
knowledge. The proposed algorithm significantly improves the
network performance compared to other studies, in which an
invariant channel is assumed. This is a promising technique to be
used at KP in a centralized manner, where a controller collects
the CSI from the users and sends information to the deep Q-
network to obtain the optimal policy for users. The output of
the learning algorithm is the knowledge information used in
response to wireless networks with similar behavior.
The authors of [118] utilized the DRL algorithm with the Wolper-
tinger [128] architecture for content caching at the BS. The
objective of the algorithm is to maximize the long-term cache
hit rate with no information about the content popularity distri-
bution. The input of the DRL system is the requested frequency
of files and the current file request, and the action of the
system is whether to cache the requested content at the BS. The
proposed technique is compared with different traditional cache
update schemes, namely LRU and LFU [129]. The simulation
results prove that the algorithm outperforms both schemes in
terms of short-term and long-term cache hit rates. In [119],
the authors proposed a DRL approach to enable dynamic or-

chestration of caching resources, networking, and computing
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Table 7
Knowledge-based strategies for cache management.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[110] Adaptive caching
scheme for cellular
networks

Centralized Extreme learning
machine

Reduces the network
traffic and increases the
users’ QoE

The proposed scheme
outperforms industry standard
caching schemes

[111] Optimal
cache-enabled
method for UAVs

Centralized Echo state networks Maximizes users’ QoE and
minimizes the total
transmission power

The proposed algorithm
locates the UAVs and predicts
the content to cache at UAV

[112] Proactive cache
approach in
cloud-based radio
access networks

Centralized Echo state networks Maximizes the sum
effective capacity

The proposed method also
decreases the delay and traffic
in the network

[113] Applying
intelligence-based
content-aware in
cellular networks

Centralized 3D CNN, support
vector machine and
regression model

Improves the backhaul
load

The proposed scheme is
content-aware and
cost-effective

[114] Optimization and
continuous update
of caching policies
in decentralized
manner in small cell
networks

Distributed Joint utility and
strategy estimation

Minimizes the service
delay

The proposed scheme shows
15% and 40% gain compared
to other baselines

[115] Dynamic
improvement of
cache efficiency in
cellular networks

Distributed Q-learning Minimizes the transmission
cost

The algorithm is capable of
D2D offloading and cache
replacement

[116] Intelligent joint
content placement
and content delivery
using D2D
communication

Distributed or
hybrid

Deep reinforcement
learning and
recurrent neural
network

Improves the cache hit
ratio

The proposed strategies and
approaches can efficiently
reduce the energy
consumption and delivery
delay

[117] Intelligent and
realistic
cache-enabled and
interference
alignment for next
generation wireless
networks

Centralized Deep reinforcement
learning

Improving energy
consumption and the
network’s sum rate

Saving the limited backhaul
capacity using cache-enabled
opportunistic interference
alignment

[118] Content catching
with a single BS
scenarios

Centralized Deep reinforcement
learning

Maximizes both long-term
and short-term cache hit
rate

Reducing the computational
complexity, but it only
incorporates one BS

[119] Intelligent joint
optimization of
networking,
computing and
caching resources in
the next generation
vehicular networks

Centralized Deep reinforcement
learning

Improves the traffic control
and network efficiency

Joint optimization of resources
and cache content

[120] Knowledge transfer
from D2D
interactions to
improve content
popularity matrix in
the target domain

Centralized Transfer learning Increasing the users’ QoE
and improving backhaul
capacity

Optimal cache strategy at
small cells for estimating
content popularity, traffic load
and backhaul capacity

[121] Sharing prior
knowledge from
D2D communication

Centralized Transfer learning Maximizes cache-hit ratio Improves the prediction task
and caching performance

[122] Efficient caching
mechanism for
heterogeneous
networks

Centralized Transfer learning Reduces the training time The proposed scheme can
efficiently estimate the
popularity profile
resources in vehicular networks. The DRL agent assigns vehicles
to BSs and decides whether to cache the requested content by
the vehicle at the BS. The proposed algorithm jointly optimizes
the problems associated with resource allocation and caching.
Simulation results with various system parameters show that
the DRL system performs much better than existing methods,
such as edge caching, mobile edge computing (MEC) offloading,
and virtualization. Based on the requested content in [118] the
DRL agent acts as a controller to decide whether to store the
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content at the BS local storage. This method suits the centralized
architecture of the KDN to serve users directly with a minimum
delay. A more sophisticated strategy was adopted in [119] to
perform caching, computing, and networking in a systematic,
centralized manner using the SDN controller, which is a close
research study to initiate knowledge to accomplish different
networking tasks.

(iii) Knowledge derived from transfer learning : In [120], contextual
information from D2D interaction, including users’ social ties
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and content viewing history, is observed to execute a TL at each
SBS in the network. Their method improves backhaul offloading
based on the popularity of the content. This information comes
from source domain sharing and accessing D2D data between
users in a social community. The information is later used as
prior knowledge for a content popularity matrix for estimation
in the target domain. Moreover, they utilize the traffic load
and backhaul capacity as feedback to the system for further
improvements. From the simulation results, it is clear that the
proposed TL cache procedure enables wireless systems to have
prior knowledge instead of starting from scratch and also deals
with data sparsity. Generally, TL acts as a knowledge plane
and provides essential information to networks with similar
behavior. Using caching optimization using TL is a significant
step toward KDN, and one of the significant breakthroughs in
this method is the maximization of QoE. Similar work was
conducted in [121] to extract knowledge from the interaction
between users by accessing, sharing, and recommending files.
Instead of learning from scratch, the information obtained via
D2D communication among users is used for caching content
at the network edge. The proposed TL approach increases the
cache-hit ratio and outperforms classical collaborative filtering
(CF) methods [130]. Both studies provide centralized knowledge
for the network to reduce backhaul traffic and improve content
management.
In heterogeneous networks, SBSs are assumed to have high
storage capabilities to cache popular files, such that the user
can capture the file in a faster and more efficient manner. In
particular, SBSs must distinguish the popularity of files and esti-
mate the user demand for that file within a specific time interval.
The authors of [122] proposed a TL-based approach to increase
the performance of estimating a popularity profile. The central-
ized approach uses prior knowledge to compute and estimate
the popularity of a file based on requests during a predefined
observation period. The estimation was then used to optimize
the catching probability. The proposed approach reduced the
convergence time of the training phase. In this study, centralized
knowledge is generated based on the popularity profile of the
cache content.

6.1.6. Backhaul management
Content caching at SBSs requires backhaul management, and be-

cause of the heterogeneity of backhaul, both wired and wireless back-
haul must work together to handle the massive traffic. Wired links
use fiber cables, and wireless connections are now deploying mmWave
frequencies. Owing to the heterogeneity of backhaul links, the manage-
ment of backhaul has attracted significant attention. Different solutions
have been proposed to reduce the complexity of backhaul [131,132].
However, new studies have concentrated on ML for reliable backhaul
management. In the following section, ML studies that can be deployed
in the KDN are investigated. Table 8 summarizes the studies surveyed
in this section.

Knowledge derived from reinforcement learning: The deployment
of low-power and short-range heterogeneous SBSs and the exponential
increase in wireless traffic will cause congestion in backhaul for BSs
to communicate with each other. The authors of [133] designed a
distributed backhaul management model from a game-theoretic per-
spective. They utilized the RL technique to solve the gaming problem
using joint utility and strategy estimation. Each SBS is responsible
for predicting files to download without compromising the required
transmission rate. In this study, different SCNs with several coexisting
backhaul systems are connected using wired links, mmWaves, and sub-
6 GHz frequency bands that can only support a few files per time
slot. This work delivers a balance between downloading files and pro-
vides an equal chance for SBSs to access backhaul. The self-organizing
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nature of the RL algorithm allows SBSs to reach a Boltzmann–Gibbs
equilibrium that approximates the desired proper mixed Nash equi-
librium (PMNE). In [134], the authors proposed adaptive cell range
extension (CRE) and backhaul management based on RL techniques to
set the CRE offset values autonomously. The CRE offset value affects
both cell selection and handover, where this information is available
to all concerned cells on the access and backhaul interface. In the
proposed algorithm, the state value of each small cell is obtained via
backhaul capacity and whether it is violated, and the action is the cell
expansion or CRE bias of a cell considering whether backhaul capacity
is available or not. To maximize the total backhaul capacity, a cost
function is defined for each small cell with different constraints to
satisfy the capacity. Moreover, the cost function is optimized using Q-
learning via an iterative approach. Simulation results demonstrate the
improvement of network backhaul throughput in macrocells and the
QoE of users. Xu et al. [135] proposed a distributed load balancing
scheme based on a Q-learning algorithm to improve the backhaul re-
source utilization in heterogeneous networks. The backhaul utilization
is quantified to different levels that represent the state of the system,
and each BS determines the bias value as an action. Then, based on
the acquired reward obtained from the weight difference between the
outage probability and the backhaul capacity, the bias value is updated.
Therefore, Q-learning optimizes the bias value selection strategy to
balance system-centric and user-centric performance. The results from
the numerical analysis show that this algorithm is capable of efficient
utilization of backhaul resources, which guarantees load balancing and
improvement in QoS for each user. Solving backhaul constraints in
future wireless networks is an important factor for cache management
and load balancing. The majority of the research works, and the three
backhaul management studies investigated here [133–135] can serve
as centralized knowledge for KDN architecture.

6.2. Networking

With the exponential growth of users and data traffic in the net-
work, networking in wireless communication systems requires more
advanced solutions. In particular, challenges including the imbalanced
distribution of traffic loads among BSs and wireless channel dynamics
need to be addressed. Furthermore, emerging vehicular networks and
self-driving vehicles introduce new difficulties that are not addressed
in traditional networking algorithms. To overcome these issues, the
knowledge acquired by ML algorithms can assist networks in building
intelligence and automation. Therefore, new ML studies for routing,
clustering, data aggregation, and user associations were investigated.

6.2.1. Routing
User demands for high-resolution data with enormous sizes have led

to new RAN technologies, including cognitive radio networks, C-RANs,
and ultra-dense networks (UDNs). To facilitate effective networking,
routing strategies and policies play an important role. Traditionally,
network upgrades rely on hardware solutions, for example, by improv-
ing the core size or increasing the router size to enhance network
performance. On the other hand, the software development aspect of
traffic management for routing policies has consistently failed because
of the varying network environments. Recently, ML has made a major
technological breakthrough with efficient routing protocols to enhance
processing packets and throughput performance [136]. Accordingly,
we provide a detailed summary of the novel ML techniques-based
routing for improving the knowledge layer of the KDN to create self-
configuration and self-optimization. Table 9 summarizes the studies
surveyed in this section.

(i) Knowledge derived from supervised learning : In [137], an SL al-
gorithm based on a meta-layer was proposed to solve dynamic
real-time routing problems. In this study, a centralized SDN
controller collects node information via the OF protocol. This

information is fed to multiple ML modules in the meta-layer,
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Table 8
Knowledge-based strategies for backhual management.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[133] Enabling SBSs to
autonomously
manage and
optimize the traffic
in 5G networks

Centralized Joint utility and
strategy estimation
based learning

Minimizing the traffic
congestion in the backhaul

The proposed solution
converges to proper mixed
Nash equilibrium (PMNE) (an
approximate version of NE)

[134] Running
self-optimization
mechanism on small
cells for
backhaul-aware cell
range extension

Centralized Q-learning Backhaul management and
optimized cell range
extension

The proposed approach
improves QoE and mitigates
the backhaul traffic conflict in
macrocell

[135] Intelligent load
balancing using
backhaul resources

Centralized Q-learning Minimizing the probability
of the user’s outage and
increasing the backhaul
resource utilization

The proposed scheme
improves the average
throughput
which consist of heuristic algorithms. After the training pro-
cess, the algorithm can identify the path by satisfying system
QoS. Once the controller receives new routing requests, the
trained ML instantly provides heuristic-like results. The system
performance is compared to the classical max–min ant system
(MMAS) [154] which has been proven to be an appropriate
approach for examining the performance of routing frameworks.
MMAS is an upgraded version of the ant colony optimization
method taken from ant routing [155]. The proposed study [137]
can be adapted to the centralized architecture of the KDN for this
particular study. The reason is that the routing framework uti-
lizes the SDN functionality to gather global information and then
predict a route. Therefore, the proposed protocol is inherently
centralized and suitable for the centralized architecture of O-
RAN networks. The proposed technique enables the knowledge
plan in the KDN to identify routes that maximize the network
QoS.
An autonomous vehicle or self-driving car can communicate
with other vehicles, roadside units, and infrastructure. This ca-
pability is known as vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication to exchange essential in-
formation, such as speed, location, environmental conditions,
etc., to nearby vehicles and the controller. Authors of [138]
proposed a delay-bounded routing framework for vehicular ad
hoc networks (VANETs). They focused on delivering messages
with user-defined delay parameters and minimum usage of the
radio spectrum. The delay-bounded routing protocol uses linear
regression to predict the traveling distance and available time
for forwarding a message. Their algorithm has two schemes, the
greedy and centralized schemes, which are both based on linear
regression. The greedy strategy predicts the available time by
using current sampling data, and the centralized scheme uses
global statistical information to choose the optimal path for
routing. The simulation results illustrate that the radio usage
is greatly reduced. Moreover, the functionality of using both
greedy and centralized-based techniques establishes a connec-
tion for the hybrid architecture of KDN to enable the installation
of routing protocols in VANETs.
In [139], the authors combined two SL classifiers; decision
tree learner and rule learner, for routing optimization in a
wireless sensor network. They proposed a MetricMap based on
MintRoute, which collects the routing protocol to obtain the link
quality. MetricMap uses two components, the first component
updates the features for the learning strategy when a packet
arrives. The second component controls the link classification
with input from the features, and the output values indicate
the link quality. For their performance measurements, they
considered data latency, data delivery rate, and fairness index.
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From the evaluation of the 30 sensor nodes in the network, the
MetricMap achieves up to 300% improvement in data delivery
with no effect on other performance matrices. As indicated in
the study, the training phase is made at a backend server, which
suggests a centralized unit that collects all the information,
trains a machine, and then instructs the nodes. This means that
a centralized knowledge plane is created in this study to guide
the nodes. The reason for a centralized KDN is that the authors
introduce a two-stage route prediction where the first stage
updates the learning strategy, and the second stage identifies
the route. The learning strategy requires global information to
converge to optimum performance. Therefore, a centralized KDN
architecture can provide better information than a distributed
architecture. Moreover, the first stage of the learning algorithm
is an excellent example of deploying a machine learning in
the knowledge plane. The controller uses the second stage to
prescribe routing decisions for the network layer.
Sharma et al. [140] proposed a routing protocol for efficient
routing in opportunistic networks called MLProph, which uses a
decision tree and NN algorithms to compute the node’s success-
ful delivery probability. The algorithm uses past network routing
data to compute the probability of whether the data will be
delivered to the destination by the relay nodes. The probability
value helps to decide on the next-hop selection. The ML method
trains itself based on different network characteristics, such as
node density, buffer capacity, hop count, node energy, mobility
rate, and number of successful deliveries. Here, the NN is trained
to determine whether the forwarded message has been delivered;
it can have two outputs p=1 for successful deliveries and p=0
otherwise. The NN is trained iteratively by setting initial values,
and subsequently, it provides optimal predictions for successful
and unsuccessful deliveries. The simulation results indicate that
the proposed algorithm performs much better than previous
works in terms of overhead ratio, average latency, and packet
delivery ratio. They also compared the two ML models and found
that the NN performs better than the decision tree in terms
of overhead, delivery probabilities, and packet loss. As much
as the algorithm looks more distributed, it needs to be fitted
to a centralized KDN owing to the next-hop selection strategy.
The proposed protocol uses the successful data delivery of the
nodes to make routing decisions. In distributed frameworks,
nodes might not be able to monitor the whole network and
build routing tables because the information they can collect is
limited. Hence, the proposed protocol is more suitable to be used
in a centralized framework. Moreover, this strategy depends on
various attributes, such as the distance from the source node to
the destination, current hop count, mobility rate, and energy, all
of which are available at a centralized controller.
To improve the traditional routing strategies and increase the

performance of the wireless backbone, the authors of [141]
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Table 9
Knowledge-based strategies for routing.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[137] Real-time route
discovery by the
trained dataset

Centralized Deep neural
network

Improves network
performance by efficient
traffic engineering

Simple framework and
computationally efficient, but
it lacks some network features
including node mobility,
backhaul traffic, etc.

[138] Routing strategy can
be used for similar
VANETs

Hybrid Linear regression Efficient spectrum usage
and high packet delivery
ratio

Introducing delay-bound
routing protocol with accurate
route prediction with high
efficiency

[139] Optimized route
selection in wireless
sensor networks

Centralized Decision tree and
rule learner

Significant improvement in
data delivery ratio

Efficient sensor
communication via user link
quality

[140] Enabling efficient
route selection

Centralized Decision tree and
neural networks

Decreasing average latency,
improving overhead and
packet delivery ratio

Highly efficient route selection
based on various network
parameters

[141] Real-time updating
and routing
judgments in
heterogeneous
networks

Centralized Supervised learning
and deep CNN

Minimize the average
delay and improves packet
loss ratio

Intelligent traffic control

[142] Self-driving
networks by
learning traffic
control mechanism
in heterogeneous
networks

Distributed Supervised deep
neural networks

Better signaling overhead,
delay, and throughput
compared to OSPF

Capable of learning complex
patterns and functions to
predict the least cost path

[143] Efficient and
intelligent route
decisions in wireless
mobile networks
based on KDN
architecture

Centralized Principle component
analysis and neural
network

Lower packet loss ratio
and acceptable throughput
and E2E delay

Provides a
dimension-reduction vector
matrix to reduce the algorithm
response time but it must be
verified over larger networks

[144] Trained algorithm
can select next hop
with a least total
average hop count
and successful
delivery probability
in wireless networks

Centralized K-mean clustering Less dropped packets and
network overhead

Simple, efficient routing
protocol but needs
improvement in average
message latency and should
involve energy consumption as
a node feature

[145] Optimal route
selection and
prediction capability
using global
information for
VANETs

Centralized Unsupervised
learning-based
algorithm

Better transmission delay
compared to existing
VANET routing protocols

The proposed scheme is robust
to varying mobility rates

[146] Smart routing
decision in
IoT-based smart
cities

Centralized Deep reinforcement
learning

Mitigating the network
congestion and load
balancing

Simultaneous QoE satisfaction
and crowd management

[147] Finalized updated
route table can be
used as the routing
policy in wireless
sensor networks

Distributed Q-learning Extending the network
lifetime

Acceptable communication
and computational overhead,
it can be extended with more
node characteristics, such as
mobility and traffic

[148] Identifying stable
routes in cognitive
radio networks

Distributed Q-learning Minimizing the
interference between SUs
and PUs and less frequent
route discovery

Boosting network scalability
and functionality

[149] Route selection for
multi-hop cognitive
radio networks

Hybrid Reinforcement
learning

Improves the QoS Selecting the best possible
route in terms of throughput
and packet delivery ratio

[150] Efficient route
selection in dense
cognitive radio ad
hoc networks

Distributed Reinforcement
learning

Minimizing the
interference

Stable protocol when the
network size increases but
might be degraded in high
mobility scenarios

[151] Intelligent
QoS-aware route
selection

Distributed Q-learning Energy efficient,
QoS-aware and mobility
tolerance

Reliable, stable and extended
lifetime network

(continued on next page)
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Table 9 (continued).
Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[152] Intelligent traffic
routing control with
KDN approach for
next generation of
wireless networks

Centralized and
hybrid

Deep reinforcement
learning

Minimizing the overhead The proposed paradigm
combines distributed and
centralized intelligence to
achieve highest performance

[153] Automatic
adaptation based on
the traffic
conditions via KDN
paradigm

Centralized,
distributed,
or hybrid

Deep reinforcement
leaning

Traffic engineering Near optimal solution after
one single training step
proposed an intelligent routing scheme using a deep CNN. Their
method learns from the previous experience based on conges-
tion, and uses this information to train a two-phase procedure,
namely cold start period and intelligent running period. The cold
start period is the initialization of the training set, where the
algorithm only defines a route with a minimum hop path. After
this period, the algorithm switches to the intelligent running
period, where it performs real-time updating and routing judg-
ments. More importantly, a CNN is constructed for each routing
decision, which takes the collected information based on traffic
patterns from routers, including traffic generation rate, to pre-
dict whether the selected routing strategy can cause congestion
in the network. This process is periodically updated until it is
predicted that the chosen route will cause no congestion. Simu-
lation results prove that the proposed algorithm performs much
better in terms of E2E delay and packet loss ratio compared to
conventional routing strategies, where there is no intelligence.
The proposed method is a real-time intelligent network traffic
control method that can be adopted in a centralized KDN. A
centralized KDN can collect traffic congestion information from
the network and tune the deep CNN to converge to optimum per-
formance within the timeframe threshold. It is not recommended
to use the distributed knowledge plane due to the algorithm’s
real-time updates, which require the maximum amount of data
from a large number of nodes to make appropriate routing
decisions.
In [142], a supervised DNN was proposed for routing optimiza-
tion in heterogeneous networks to predict the path from the
source to the destination node. Each router in the network uses a
DNN to predict the next hop; the DNN takes traffic patterns as in-
puts, and based on these inputs, it generates the desired output.
The output of the deep learning structure significantly improved
the network traffic management. There are three phases to ob-
tain a fully functional ML. The first phase is the initial phase,
where the traditional routing protocols, such as OSPF, provide
the network route, and the network starts to operate. At the same
time, the second phase is the training phase to train the deep
learning system from the collected information based on the
traditional operating system. Finally, the running phase is the
stage in which the machine is fully trained and can provide real-
time routing strategies. This method has been proven to have a
higher throughput and lower overhead compared to OSPF. The
proposed study suggests a greedy-based distributed architecture
over a knowledge-based network to increase the throughput.

(ii) Knowledge derived from unsupervised learning : In [143], the au-
thors focused on load balance routing based on PCA and NN for
dimension reduction and prediction of the network load status.
To obtain intelligence from the network, they combined SDN
with ML and data analytics. The use of these algorithms has led
to efficient and intelligent routing decisions. This article aims to
address the shortcomings associated with the next generation of
wireless mobile networks, such as video streaming and online
gaming, to mitigate the delay caused by traffic. They proposed
a routing strategy based on an ML scheme, where PCA was
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used to reduce the dimension of the vector matrix by applying
it to the original adjacency matrix of the network topology.
Based on the normalization, they designed a queue-utilization
routing algorithm for routing prediction. Moreover, routers were
continuously updated based on neighbors’ information to select
the routers with more resources. In this vein, they explored the
current SDN architecture and represented an ML algorithm to
predict routes. Nodes can also use the proposed algorithm to
reduce the unnecessary information in the routing table and
decrease the contention on the nodes in a distributed manner.
However, this framework represents a centralized KDN, where
the controller collects the information from the data plane and
then uses ML techniques to obtain knowledge to identify an effi-
cient route. Overall, the representation of SDN with knowledge
suggests a centralized KDN.
Owing to the fixed network architecture of some routing proto-
cols and the massive volume of data traffic exchanged between
devices, the authors of [144] introduced a context-aware routing
protocol named KROp. This protocol uses several network fea-
tures to make routing decisions based on the network conditions.
KROp uses the K-mean clustering algorithm and exploits network
features to select the best next hop. This algorithm is based on
the knowledge acquired from the node’s behavior to identify a
cluster of the best forwarders. The numerical results show su-
perior performance in KROp in terms of dropped packets, over-
head, and average hop count compared to other routing strate-
gies, such as history-based prediction routing (HBPR) [156], and
probabilistic routing protocol using the history of encounters
and transitivity (PRoPHET) [157]. The proposed protocol uses
the entire network information to make routing decisions. This
means a centralized unit has the advantage of collecting more
useful information compared to distributed. Therefore, this tech-
nique is suitable for a centralized KDN to make the next-hop
selection decision.
Tang et al. [145] proposed a centralized routing scheme with
mobility prediction (CRS-MP) for VANETs. Their method uti-
lizes an SDN controller with an ANN to gather information
and predict the user’s arrival rate. Based on the arrival rate of
each vehicle, RSUs or BSs can model statistical traffic patterns
and estimate traffic mobility. Intelligence was also used in this
study by integrating the CRS-MP model at the RSU/BS to predict
the mobility patterns of vehicles and find vehicle connections.
The ANN takes an input according to the number of arrival
vehicles at different time instances, and based on the initial
random weights, it predicts the vehicle arrival rates. The arrival
rate results in the arrival rate function, which is later used to
make routing decisions and evaluate the transmission rate and
average delay. The numerical results of the CRS-MP scheme
outperform other vehicular routing protocols, such as V2I and
V2V communication, in terms of overall vehicular service de-
lay. Furthermore, the proposed algorithm is independent of the
mobility rate, making it more robust to high mobility rates. The
proposed routing protocol utilizes multi-hop routing in vehicular

systems using an SDN controller that solves the overload on the
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BS. Hence, in the near future, centralized routing protocols for
mobile devices can use the knowledge plane to decide whether
the BS or other devices must route the packet. Centralized
VANET protocols have better performance compared to the de-
centralized topologies. In centralized VANET protocols, vehicles
are supported by the BS and road-side units (RSUs). On the other
hand in purely distributed systems, vehicles must relay any vital
information across the network using multi-hop communication.
Therefore, there is a risk of link failure in highly mobile environ-
ments, which might have catastrophic consequences. Generally,
VANET protocols are supported by a centralized controller to
collect data and inform vehicles. The proposed protocol in [145]
uses a centralized controller to collect data and process the
data through ML algorithms. Consequently, centralized KDN
architecture is usually more suitable for VANET protocols.

(iii) Knowledge derived from reinforcement learning: With the massive
growth of IoT devices connected to the edge network, the de-
sign of routing strategies is complicated. In particular, in smart
cities, routing is significantly more difficult owing to the dis-
tribution of the crowd and network congestion. The authors
of [146] designed a DRL algorithm for smart routing decisions
for load balancing and mitigating network congestion when
massive crowds are moving around the city for daily activities.
They adapted a DRL agent to directly use the NN and generate
Q-values. First, the network state information is collected by
the SDN controller on top of the network. Then, the DRL agent
makes an action (routing decisions) based on the current state,
and finally, the agent receives a reward. The objective of the
reward function is to maximize the successful service access rate,
minimize the data transmission delay, and balance the network
load. The algorithm performance was better than that of the
OSPF and enhanced-OSPF (EOSPF). Fig. 1 in this article repre-
sents the network architecture of the proposed algorithm, which
shows a solid connection to the KDN centralized architecture,
where all the information is collected at the controller and is
processed by ML in KP. The knowledge/reward is later used as
an action for the following routing strategy.
In [147], the study tackles the energy-aware routing in wireless
sensor networks (WSNs) to transmit data packets using efficient
paths within the shortest time such that the lifetime of the
network increases. Specifically, they used Q-routing algorithms
and extended them to propagate information faster with lower
energy consumption [158]. The algorithm uses Q-learning to
save the energy levels of the nodes in matrices after a sensor
sends a feedback message. When the sensor receives the feed-
back messages from neighboring nodes, it modifies the Q-values
in the achieved routing table. Once a node has a packet to
transmit, it selects the next node from the routing table with the
best Q-value in a greedy manner to relay the packet to the des-
tination. Their technique has proven optimal routing decisions
for low-energy nodes. The greedy-based approach allows nodes
to individually select the best route, which suggests a distributed
KDN.
Recently, CRN has attracted considerable attention owing to
its importance in future wireless communication systems. This
technology overcomes the scarcity of the channel spectrum by
allowing secondary users or unlicensed users to benefit from
underutilized licensed channels. However, the dynamic nature
of CRNs makes routing a complicated task. The authors of [148]
proposed a clustering mechanism or cluster-based routing to
boost network scalability and functionality. Once the cluster
heads are identified in the network, each cluster head estimates
the Q-value of each neighboring node. The routing table is
constructed based on the Q-values, and the largest Q-value is
the next chosen node for the next hop. During the learning
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procedure, the state of the network represents the destination
node, and the decision to select the next hop is the action.
Finally, the throughput resulting from the chosen hop is the
reward of the system. In this study, the knowledge is derived
from each state and action pair, which provides an appropriate
action for the next instant. The proposed cluster-based routing
is recognized as a distributed method for routing a packet in a
CRN. Because the Q-values are estimated locally by the nodes,
the highest values are used to build the routing table. This means
the routing mechanism is constructed in a distributed manner
and is more suitable for distributed KDN architecture.
In [149], the authors studied three route selection schemes in a
real testbed environment to improve the performance of multi-
CR networks. One of the schemes is based on spectrum leasing,
and the other two are based on RL. Spectrum leasing is a new
term used for communication between unlicensed and licensed
users in CR networks. The two RL algorithms are based on
Q-learning to predict the next-hop neighbor. Similar to other
studies [148] the next hop is selected based on the highest Q-
value. The state action is the destination node and the selected
next-hop node for the source node to transmit the data. The
reward is the channel-state information. The proposed routing
scheme was compared with the highest-channel (HC) protocol
in a multihop network and has shown better performance. In
the proposed study, we can adapt a hybrid KDN because both
centralized and distributed models are utilized. The proposed
protocol uses the channel data information to select the next
best hop based on the output of the Q-learning. The channel
information can be accessed by both the user and the BS, which
means the protocol
In [150], the RL technique was applied to CR networks to
obtain the influences of various network characteristics on the
network functionality, while a routing scheme called cognitive
radio Q-routing (CRQ-routing) runs in the network. CRQ-routing
is a popular approach for minimizing interference between unli-
censed and licensed users. The algorithm investigated the effects
of Q-learning-based routing strategies on the network character-
istics, including the network size. The outcome of their research
shows that network size has a slight impact on the packet
loss rate and end-to-end latency of SUs. Additionally, CRQ-
routing proved that it has better network performance than
other routing algorithms when the network size increases. Fi-
nally, they concluded that under different situations, such as
changing node position and different routing lengths, Q-learning
requires additional time to learn what degrades the network
functionality. Concurrently, to manage the network overheads
in highly mobility scenarios, the authors of [151] proposed the
mobility, residual energy, and link quality-aware multipath (MR-
LAM) for routing decisions. To do this, they used a Q-learning
algorithm to select the optimal route with energy-efficient nodes.
The proposed routing scheme aims to maintain a reliable and
stable network during a particular timeframe. They have success-
fully improved several metrics including energy cost, end-to-end
latency, convergence time, and packet loss ratio, when com-
pared with other routing techniques, including the multipath
optimized link state routing (MP-OLSR) protocol [159] and the
extension version of MP-OLSR known as MP-OLSRv2 [160].
Both the proposed protocols in [150,151] act as a distributed
network, where each node decides on the next hop. Therefore,
both studies are suitable for the distributed architecture of the
KDN.
The authors of [152] added intelligence to the network to miti-
gate the complexity of network topologies. They integrated both
centralized and distributed network functionality to guarantee
high QoS. Their hybrid approach uses AI routers for distributed
intelligence and a network mind for centralized intelligence.

AI routers are responsible for hop-by-hop IP routing to ease
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network overhead. The network mind acts as a global controller
for connection-oriented tunneling-based routing protocols, in-
cluding segment routing and multiprotocol labeled switching.
A DRL-based routing strategy is deployed in the network mind
for tunneling-based routing to ensure QoS. The state of the RL
algorithm is represented by the network traffic characteristic
information and device information, and the action is the for-
warding path. The reward it acquires is the effectiveness of an
action with respect to the delay requirements and optimiza-
tion targets. Their proposed RL method converges to the global
minimum, and the routing strategy shows better performance
compared to other routing strategies in congested areas. The pro-
posed scheme has a centralized architecture with an intelligent
control plane. In our proposed framework, this plane controls
and installs the rules in the network. Stampa et al. proposed a
DRL algorithm for optimizing routing in a centralized knowledge
plane [153]. The actor–critic learning method is used, where
the state of the learning algorithm is calculated by the traffic
matrix (which is defined by the bandwidth request between
pairs of source and destination), and the action is the path
taken to transmit data (obtained using link weights). Finally,
the reward of the algorithm is based on the average network
delay. Their method provides operational advantages compared
to traditional optimization algorithms for routing strategies. This
algorithm can be used in both distributed and centralized KDN
architectures, suggesting a hybrid structure.

6.2.2. Clustering
In wireless networks, nodes/sensors/users have always been clus-

tered to describe their distinctive features or differentiate based on their
mobility rate, coordinates, etc. Clustering different nodes for different
purposes improves the overall performance of the network. It is evident
from the introduction of ML techniques that clustering problems are
naturally solved using K-mean algorithms. However, other cluster-
ing methods have been proposed within supervised and unsupervised
learning techniques. Clustering is one of the primary and essential
applications of KDN for various purposes, such as traffic classification
and data storage. Table 10 summarizes the studies surveyed in this
section.

(i) Knowledge derived from supervised learning: One of the problems
in ML is class imbalance, where the class distributions are highly
separated. This means that the total number of minority or
scares classes (also known as positive ones) is far less than the
majority class (represented as negative) for a two-class scenario.
When we apply a traditional classifier in these scenarios, they
are likely to predict everything as a majority or negative class.
In [161], the authors used logistic regression for imbalanced
problems to improve the performance of the learning procedure.
The proposed method is called logistic regression for imbalanced
learning based on clustering (LRILC). First, K-mean clustering
was applied to the dataset to partition the majority class into
small clusters. Logistic regression is then used to overcome
the class-imbalance problem. The experimental results show a
higher accuracy in clustering the dataset compared to state-of-
the-art classification methods. The proposed method can be used
in a centralized KDN to solve imbalanced problems with large
datasets.
In [162], fraud calls are identified by investigating the user’s
behavior. Their method uses the application of SVM alongside
fuzzy clustering to identify fraudulent phone subscribers. Fuzzy
clustering takes unlabeled input data and clusters the data ac-
cording to their similarities. Furthermore, after a trained data
algorithm obtains input data, it generates a value between 0
and 1. If the output value is closer to 1, it shows a higher
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degree of similarity. Their algorithm takes large datasets and
utilizes PCA to reduce the dimension, and then uses the library
of support vector machine (LIBSVM) and least square support
vector machine (LS-SVM) with fuzzy c-means (FCM) and fuzzy
K-means (FKM) to build the user’s profile. If a call pattern does
not match any standard pattern, it is classified as a fraudulent
call. A comparative study was conducted using different methods
of SVM and fuzzy clustering, as specified above. This shows
that using LIBSVM and LS-SVM leads to better approximation
and accuracy. The proposed algorithm can be utilized in a
centralized BS to differentiate between ordinary and fraudulent
calls. Accordingly, knowledge can be derived from this study to
approximate the genuineness of calls in any BS.
Among the challenges associated with IoT, two challenges pose
threats to the overall network connectivity, including battery
life and the ability of edge devices to communicate over a long
distance. One promising technology among low-power wide-
area networks (LPWANs) is LoRa, which operates based on
spread-spectrum modulation techniques. In [163] ML algorithms
were adapted to edge devices to mitigate two challenges: life
expectancy and the ability to communicate over long distances.
To achieve this, LoRa is used for low-power transmission, and
KNN is used for the activity classification process. They have
accomplished an amazing low energy expenditure of 5.1 mJ
in power consumption for activity classification, resulting in a
battery life of 331 days. A similar technique can be deployed to
IoT distributed edge devices to increase the device lifetime in a
distributed manner.
Caching popular content at SBS for intelligence gathering in
ultra-dense heterogeneous networks effectively decreases redun-
dant data transmission and E2E delay. However, dealing with
different data content is challenging and time-consuming. The
authors of [164] used a clustering-based TDMA transmission
scheme for content placement and user association. They used
an offline training procedure using DNN to predict the user
association for each cluster, where the input to the NN is the
user channel gain and user demand. As the number of clusters
increases exponentially as the number of users served by the
SBS increases, the user cluster information and time duration of
serving each cluster are optimized using the DNN. As a result,
the user association to each cluster can be quickly identified, and
the time required to obtain the optimal user cluster information
is reduced. This method enables us to achieve efficient load
balancing and user clustering in a centralized KDN.

(ii) Knowledge derived from unsupervised learning : As the number of
connected devices in IoT for applications, such as smart cities,
smart homes, farms, and factories, reaches more than 31 billion,
providing secure communication and access control becomes a
priority. In [165], the authors proposed a mechanism based on
unsupervised clustering techniques to enable reasonable access
control throughout the communication history of IoT networks.
Their method is called INSTRUCT and has two separate algo-
rithms for different types of traffic, one for TCP traffic and
the other for UDP traffic. The proposed algorithm uses past
communication data to allow access to IoT devices by installing
new rules on the switches involved using the clustering tech-
nique. K-mean clustering was applied to distinguish between
valid and invalid traffic captured by the switches. INSTRUCT
achieves 100% classification accuracy for TCP traffic and 95%
for UDP based on their comparison with signature-based manual
analysis. This algorithm is suitable for a centralized KDN to
provide access control to IoT devices.
According to [166], the authors used the K-mean algorithm for
clustering SBSs based on location and traffic load. The proposed
scheme has a dynamic cluster-based on/off switching mecha-
nism for SBS. The clustering-based technique allows SBSs to



Array 14 (2022) 100136S. Ashtari et al.
coordinate their transmissions while reducing energy consump-
tion and traffic load. This study formulated the problem as
a noncooperative game between clusters, where clusters seek
to minimize the cost function to reduce energy consumption.
Based on the information regarding the location of SBSs and
the capability of handling users and data traffic, the cluster
determines their transmission power and on/off situation. The
simulation results show improved overall performance when
using the cluster-based coordination method in small-cell net-
works. The algorithm attempts to reduce the overhead on a
centralized controller by allowing the SBS to decide based on
their locally acquired information. Hence, this method can be
fitted to the distributed architecture of the KDN.
As the demand for ubiquitous access to wireless data increases,
Tabrizi et al. [167] proposed a clustering and spectrum assign-
ment and resource allocation (CaSRA) to cluster nodes in hotspot
densely populated areas. The K-mean clustering algorithm was
adapted to maximize spectrum utilization and increase network
performance. In their algorithm, a mobile device can act as a
hotspot or slave. Once the mobile user is connected to the cellu-
lar network, it serves as a hotspot and provides broadband access
to nearby devices known as slaves. The problem formulation is
first to identify mobile devices that act as hotspots and then
to obtain the users associated with each hotspot. To solve this
problem, a modified version of K-mean clustering is used to
cluster users based on their location and organize each cluster
based on their maximum and minimum number of users. Then,
the user with the minimum distance to both the BS and the
center of the cluster is selected as the hotspot in that cluster.
Further, using a graph coloring approach, power and spectrum
are allocated to each cluster and from the cluster to hotspot and
slaves. CaSRA increases the total number of supported users in a
network with lower complexity. The centralized CaSRA scheme
uses the BS to cluster the nodes into groups based on their
distance, making the algorithm suitable for a centralized KDN.
In [168], they proposed a new multicarrier waveform clas-
sification for 5G communication systems. This study utilizes
PCA and CNN on signal amplitude to mitigate noisy channels
and obtain a high classification accuracy. Their algorithm can
detect and cluster three multicarrier waveforms: universal fil-
tered multicarrier (UFMC), filterbank-based multicarrier-offset
quadrature amplitude modulation (FBMC-OQAM), and orthogo-
nal frequency-division multiplexing-quadrature amplitude mod-
ulation (OFDM-QAM). Their method works even in a dense chan-
nel environment, where the transmission and detection of these
three signals were not possible before. Moreover, compared to
other methods, such as CNN using in-phase and quadrature (I/Q)
modulation, it has better performance and less complexity. This
technique can be used in a distributed manner to classify signals
at 5G BSs. Hence, the scheme provides a distributed knowledge
of signals.

6.2.3. User association
Current wireless communication networks rely on the existence of a

cellular architecture. Cellular communication requires BSs for users to
request, receive, and upload information. Every BS in the network has
a coverage area that supports a specific geographic area with limited
users. To increase the capacity of BSs in the cellular network, small cells
were introduced to enable service providers to offload users from an
overloaded BS to sub-BSs, namely macro BSs, pico BSs, and femto BSs.
Therefore, more cellular networks are shifting toward heterogeneous
networks (HetNets), enabling flexibility and low-cost deployment of
new infrastructure. To associate users with an appropriate cell, the KDN
requires reliable methods. Hence, some practical ML-based techniques
have been investigated, including studies on SL and RL. Table 11
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summarizes the studies surveyed in this section.
(i) Knowledge derived from supervised learning : One of the most
promising technologies in 5G is the appearance of mmWaves
to improve cellular capacity and increase overall performance.
The mmWave systems bring different challenges to future net-
works, including the interconnectivity of several terminals with
multiple BSs, and estimation of the user’s CSI. Therefore, user as-
sociation in mmWave networks is crucial for network durability
and performance. The authors of [170] developed an ML-based
user association for mmWave networks. They formulated the
mmWave user association problem as a multi-label classification
problem, where they adapted feature extraction from topological
information and geographical location information. Specifically,
users and BSs are categorized into samples and classes, where
each sample in the network can be classified into multiple
classes. Initially, each user in the network can be associated with
multiple BSs, creating a multi-label classification problem. To
avoid high dimensionality, multi-label classification methods are
transferred into a series of single-label classification problems
with lower dimensionality. Finally, after the training procedure
and based on the information and features, the algorithm al-
locates samples to only one class. The research aims to make
the user association without utilizing CSI, and the simulation
results indicate high performance even with few training sam-
ples. Graphical model representation is utilized to solve the user
association problem, suggesting a centralized KDN structure,
although it can also be used as a distributed architecture.
Some of the applications of 5G are providing massive connec-
tivity to vehicular users, including self-driving cars and UAVs.
UAVs experience significant interference from different BSs on
the ground with the ambiguity of which BS the user must con-
nect to. To mitigate interference and maximize the performance
of wireless links, Galkin et al. proposed an SL-based association
scheme to associate UAVs with the most appropriate BS [171].
An NN is trained based on environmental information to identify
the most suitable BS. UAVs’ distances to BSs, received signal
strength (RSS) from the BSs, and the location from which the
interference comes from are fed to the NN. The role of the NN
is to intelligently identify which BS provides the best channel
quality. RF chains are utilized in their method with two sep-
arate antennas: a directional antenna and an omnidirectional
antenna. An omni-antenna is used to measure the RSS from the
nearby BSs, while a directional antenna is associated with the
appropriate BS. The objective of this study was to maximize
data transmission and channel capacity. The performance of the
proposed NN algorithm is compared with the strongest-signal
and closest-neighbor association schemes, where the simulation
results demonstrate the superiority of the proposed method.
Furthermore, the proposed NN can increase the probability of
UAV coverage compared to non-NN BS association schemes.
UAV users intelligently decide the BS they must associate with in
the proposed study, hence a distributed user association scheme.

(ii) Knowledge derived from reinforcement learning : Cell range expan-
sion is a technique to increase the coverage area of BSs to
either support other users or to cover the blind spots, which
increases the coverage area, network throughput, and cell-edge
throughput. Expanding the coverage area can be achieved by
adding a bias value to the user equipment (EU). Selecting an
optimal bias value depends on various factors, including the
radio resource ratio between the MBSs and pico-BSs. A dynamic
method is presented to determine the bias value of each UE by
using Q-learning algorithms [172]. Here, all the UEs learn the
bias value independently with the aid of Q-learning to decrease
the outage of UEs. The proposed Q-learning algorithm is a multi-
agent learning system that allows every user to determine the
bias value. The state of the system is the received signal power

from both the MBS and pico-BS. The agent’s action is to choose
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Table 10
Knowledge-based strategies for clustering.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[161] Intelligent clustering
based on trained
supervised learning
dataset

Centralized Logistic regression Traffic classification and
balancing load

Extensive comparison among
various classification methods

[162] Automatic detection
and drop of fraud
activities

Centralized Support vector
machine and fuzzy
clustering

Detecting the fraud
communication activities

The proposed algorithm
performs better compared to
normal SVM

[163] Efficient low power
clustering solution
for IoT devices

Distributed K-nearest neighbor Extending the battery life The proposed scheme can
reduce the transmission
payload and lowering the
transmission power

[164] Intelligent clustering
mechanism for
ultra-dense
heterogeneous
networks

Centralized Supervised deep
neural network

Minimizes network sum
energy consumption and
reduces the transmission
delay

The proposed algorithm is
time efficient and has a 90%
accuracy of user clustering

[169] Smart clustering for
random access
networks

Centralized K-mean clustering Low convergence time Machine type communication
device association with
conflict-free resource
allocation

[166] Dynamic switching
on/off SBSs

Distributed K-mean clustering Increases the energy
efficiency of SBSs

Clustering wireless small cell
networks based on location
and traffic load, but they did
not consider the frequent
mode transition

[167] Intelligent node
clustering in densely
populated wireless
areas

Centralized K-mean clustering Efficient offload traffic and
reuse spectrum

The proposed algorithms
jointly cluster the nodes and
assigns spectrum and physical
resources

[168] Automatic
multicarrier
waveforms
classification in
future cellular
networks

Distributed Principle component
analysis and CNN

Achieve low complexity
and high accuracy

Classifying three waveforms
including OFDM-QAM,
FBMC-OQAM, and UFMC, but
should be further tested in
real channel environments
with the existence of other
noises
a bias value, and the reward of the system is determined by
the BS when calculating the number of outages. The proposed
algorithm increases the throughput and decreases the number
of disconnected UEs. This algorithm is a greedy-based cell ex-
pansion by every UE, which can be used in a distributed KDN
architecture.
In vehicular networks, continuous connectivity is key to net-
work intelligence and automation. However, user association
also plays an essential role in vehicular networks by providing
load balancing between SBSs and MBSs. The authors of [173]
proposed an online RL approach (ORLA) for network load bal-
ancing in VANETs. Their learning algorithm is divided into
two main phases: initial RL procedure and history-based RL
procedure. In the initial phase, the user and BS association
problem is formulated as a multi-armed bandit problem. The
vehicle association decision for each BS is the agent’s action,
and the reward is the network load balance. In vehicular net-
works, there are regularities in the spatial–temporal dimension
due to urban traffic flows. In the history-based RL phase, by
considering the dynamic changes of the environment and the
spatial–temporal regularities, the association patterns obtained
in the initial phase enable simultaneous load balancing of BSs.
The history-based RL generates an association matrix for each
BS based on the similarities between historical patterns and
the current environment. The proposed algorithm is compared
with the distributed dual decomposition optimization and max-
SINR scheme, wherein ORLA outperformed load balancing in
multiple cells. The algorithm provides a centralized architecture
for future KDN-based networks.
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Although information, such as channel quality, backhaul capac-
ity, and SINR are important attributes of user association, the
user’s QoE has the same or higher priority. Pervez et al. [174] in-
troduced a distributed user-centric backhaul-aware user associ-
ation scheme via a fuzzy Q-learning algorithm to autonomously
enable each BS/cell to use QoE and backhaul constraints to max-
imize the throughput of the network. Fuzzy Q-learning attempts
to learn the optimal bias value (which is the action of the RL
algorithm) by the fuzzy rules in an iterative manner by interact-
ing with the environment. Specifically, users receive a bias value
from different cells, guiding them to associate with the most
suitable cell. At the same time, each bias value represents an
attribute that satisfies the network performance metrics, includ-
ing latency and throughput. The proposed algorithm achieves an
optimal performance faster than Q-learning-based methods and,
more importantly, improves the user’s performance. Because
users will have different requirements in the 5G system, each is
associated with different cells based on their needs. Therefore,
the above technique is best suited for distributed user association
schemes in the KDN architecture.
Owing to changes in network characteristics and the increase
in devices with different requirements, researchers have turned
to HetNets. Even though it provides several benefits, it presents
challenges, such as interference between SBSs, power control,
and user association problems. The authors of [175] used a
multi-agent deep Q-learning network (DQN) to solve some of
these problems. Their algorithm consists of convex optimization
and fractional programming, and uses DQN to jointly optimize
user association and power management in OFDMA systems.
In the Q-learning algorithm, the agent (or UE) must select the
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Table 11
Knowledge-based strategies for user association.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[170] Trained sample is
used for user
association of the
mmWave systems

Centralized Supervised learning Accurate user association The proposed approach shows
good performance even with
few training samples and
without CSI, but it consumes
significant time in training
process

[171] Intelligent BSs
selection by UAV
users in 5G
networks

Distributed Supervised learning
with neural network

Maximizes channel quality
of the UAV-BS link

The proposed policy allows
UAVs to select the suitable BS
based on BS transmit power,
distance and the location of
the BS, can be extended with
varying mobility rates

[172] Efficient user
association in
heterogeneous
networks after UE
learning procedure

Distributed Q-learning Improving the system
throughput and reducing
the number of UEs’ outages

Optimizes user cell association
(PBSs or MBSs) through
learning the cell range
expansion

[173] Online training
approach and
near-optimal
association in
dynamic vehicular
environment

Centralized Reinforcement
learning

Efficient load balancing in
the network

Adapting the user association
policy via learning the
spatial–temporal dimension
regularities

[174] Autonomous cell
association in
ultra-dense small
cell networks by
enabling
user-devices to store
learned values

Distributed Fuzzy Q-learning Improving the convergence
time

The proposed scheme is
memory-based user-centric
backhaul-aware but may have
an impact on user’s memory
usage

[175] Intelligent adaptive
decision making to
maximize UEs’ QoS
in heterogeneous
networks

Distributed Multi-agent deep
Q-learning network

Maximizes energy
efficiency while jointly
associated users

Joint optimization of user
association and power
management

[176] Near-optimal
solution to improve
QoE in MEC-enabled
live video streaming
systems

Distributed Deep reinforcement
learning

Maximizing users’ QoE Efficient user association and
resource allocation

[177] Smart user
association in
symbiotic radio
networks (SRNs)

Hybrid Deep reinforcement
learning

Achieving optimal user
association policy without
full real-time channel
information

The proposed algorithm uses
both centralized and
distributed DRL approaches to
make a decision for IoT
devices, where centralized
converges with few dataset
and distributed is scalable
appropriate BS to create communication links and determine
the transmission power. The transmission power of the user
is the action of the agent throughout the learning procedure.
The reward function is the sum energy efficiency of all the
UEs. The objective of the learning algorithm is to maximize
the expected accumulated reward under QoS constraints. The
convergence of multi-agent DQN was analyzed in the simulation
results, and it proved to be superior to traditional RL-based
techniques. Moreover, the algorithm maximizes the long-term
overall network performance and demonstrates efficient energy
consumption. The distributed method above shows a solid con-
nection to the distributed KDN architecture. Chou et al. used
DRL to jointly solve user association and resource management
problems in mobile edge computing (MEC) to improve the QoE
for online video streaming in 5G networks [176]. The problem
is formulated based on the Markov decision process (MDP) and
analyzed by a deep deterministic policy gradient (DDPG) algo-
rithm based on the supply demand interpretation of the Lagrange
dual problems. First, they used the traditional optimization La-
grangian approach, where the source of the performance loss in
this algorithm was identified as the Lagrangian multiplier update
30
function. Then, they proposed a pricing function based on MDP
for the update function, which was solved by DDPG. Here, the
MDP is solved using a DRL, where the supply–demand inspires
the agent’s action as the output price of each video from the BS.
Then, based on the prices for each video from different BSs, the
UE is associated with a BS whose data rate is maximized. The
reward function is defined as the sum of each UE’s QoE, and the
goal is to maximize it. Simulation results show that the proposed
method achieves significant improvements in QoE, particularly
in congested networks with low resources. This method can be
used in a distributed knowledge plane for users to associate with
a BS autonomously.
Symbiotic radio networks (SRNs) have been introduced to enable
the coexistence of various networks and utilize resources glob-
ally and provide connectivity across multiple networks [178–
180]. The authors of [177] focused on the symbiosis between IoT
and cellular networks and the user association problems in SRN.
They used the TDMA for cellular communication between users
and BSs. Then, each IoT device is associated with one user to
exchange information. The dynamic changes in the environment
make the collection of real-time channel information difficult.
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To overcome this problem, two DRL algorithms were utilized
to guarantee optimal user association. One of the algorithms
is centralized, which makes decisions for IoT devices based
on globally available information. At the same time, the other
is distributed and makes decisions based on locally available
information. The DRL algorithm can have two states based on
the proposed DRL algorithm. The first state is the action space
in a centralized DRL-based user association, which is a matrix
of cellular users with the associated IoT device. The second
state is a distributed DRL-based user association scheme with
one IoT device. The immediate reward in both schemes is the
sum rate of all IoT devices. The proposed scheme shows optimal
user association with high scalability, even when IoT devices
increase in the network. This algorithm is suitable for hybrid
KDN architectures because it takes advantage of both centralized
and distributed algorithms.

6.2.4. Traffic and data aggregation
As networks are increasing in complexity and become more difficult

to manage, embedding intelligence into devices will ease optimization,
recommendation, organization, and management. Most studies in the
networking area are distributed in nature, which makes it difficult to
include ML-based algorithms for controlling the devices. KDN function-
ality provides an opportunity to bring intelligence and knowledge to the
network. The KDN can collect global information to improve network
performance. Traffic classification is a crucial activity in network man-
agement, and massive growth in Internet users has brought network
traffic classification into attention. Table 12 summarizes the studies
surveyed in this section.

(i) Knowledge derived from supervised learning : Raikar et al. inte-
grated SDN architecture with SL techniques, specifically SVM,
Naïve Bayas (NB), and the nearest centroid is used to classify
the network data traffic [181]. First, in the learning phase of
their algorithm, the training data are fed to the system to map
the network traffic into defined classes. Later, real-time data
were captured and mapped based on the trained SL for network
traffic classification. In their method, the SDN controller utilizes
three different SL algorithms to classify the data into HTTP,
mail, and streaming. Their proposed solution was able to obtain
high accuracy in all three learning algorithms with the highest
accuracy for NB, followed by SVM and the nearest centroid.
Their algorithm provides centralized data classification, which
offers an opportunity to add intelligence to network devices.

(ii) Knowledge derived from transfer learning : To avoid training data
from scratch, researchers in [182] method to address multi-
class traffic classification problems, and they utilized Maxent as
the base classifier in their approach. A new classification task
in TrAdaBoost was used to extract labeled data from several
network traffic sources. Next, the Maxent model is used to
classify and convey traffic knowledge from the source domain
to the target domain. The proposed scheme was trained and
transferred as prior knowledge for different environments to
reveal its performance. They tested their method with two tra-
ditional ML algorithms based on Maxnet, known as NoTL and
NoTL advance, where TrAdaBoost achieves better performance
compared to the other two methods. Their learning algorithm
can achieve high accuracy in classifying network data traffic and
provide a promising solution for centralized KDN architecture.

6.3. Mobility management

Another critical aspect of service delivery in wireless networks is
mobility management. Mobility management helps to develop user mo-
bility and handover predictions. In future wireless networks, mobility
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management is crucial for network automation. Knowing the location
of users and their activities can help generate intelligence to increase
network performance. Recently, there have been many advancements
in mobility prediction and handover management in the field of ML.
In the following sections, some ML techniques for the two essential
components of mobility management are presented.

6.3.1. Mobility prediction
Movement is an inherent nature of mobile devices, and predicting

the next location of these devices is called mobility prediction. Knowing
the next location of the user can improve the network performance, es-
pecially in resource management, D2D, and V2V communication [187].
In this section, some promising methods using ML algorithms are
presented. These methods provide a huge advantage in the KDN ar-
chitecture for predicting user mobility patterns in the next generation
of cellular networks. Table 13 summarizes the studies surveyed in this
section.

(i) Knowledge derived from supervised learning : Learning and knowing
the next location of mobile equipment enables mobile appli-
cations and a coherent handover process. Location prediction
techniques use the historical trajectory information of mobile
users to guess an individual’s next position. Many studies have
introduced location prediction methods with acceptable accu-
racies [188–190]. However, some of them perform erratically
when a user’s activities change in a new area, while others
encounter the ‘‘cold start’’ problem when the user’s trajectory
information is sparse. The authors of [183] involved the user’s
activity patterns and historical data and proposed an SL-based
location prediction method. Their technique evaluates the next
activity of the mobile user by modeling individual activity pat-
terns rather than directly predicting the next location of the
mobile user. Then, it predicts the next location of the user based
on the obtained next activity. Using real-life GPS trajectory data,
the simulation results show a smooth upgrade and robust per-
formance based on the proposed prediction procedure. Having
knowledge of the user’s activity and location in a centralized
KDN architecture improves the network performance, especially
when a controller needs to decide on resource allocation and
cluster head selection.

(ii) Knowledge derived from unsupervised learning : Owing to the dra-
matic increase in users across networks, configuration and op-
timization have become more complicated. More users push
the network to split into small cells and SBSs. More frequent
handovers occur once there are more SBS in the network, and
because of the complexity of the indoor environment, this task
is more delicate in an indoor scenario. Self-organizing networks
(SONs) are the key to the next generation of mobile networks
for self-healing, self-optimization, and self-organization. Sinclair
et al. proposed a modified self-organizing map (SOM) method
to make indoor location predictions of users while a handover
request occurs [184]. Their method determines whether the
indoor user should be connected to another BS or prohibit the
handover based on their location information. SON utilizes an
unsupervised NN that allows the learning algorithm to generate
a low-dimensional output space from high-dimensional input
data. The input data depend on the mobile terminal approach,
whereas in this scheme, the angle-of-arrival (AoA) of the user
and the reference signal received power (RSRP) are fed to the
NN. Based on this information, the SOM is capable of estimat-
ing the user’s actual physical location. Accordingly, based on
the pre-determined zones, which correspond to prohibited and
permitted areas, a handover decision is made. The simulation
results demonstrate that the proposed algorithm reduces the
total number of handovers by 70% while allowing the nec-
essary handovers to proceed. The proposed algorithm has an

automatic system that uses monitoring, analyzing, planning,
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Table 12
Knowledge-based strategies for traffic and data aggregation.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[181] Fully automated
management in
SDN-based networks

Centralized Supervised learning
methods

More than 90% accuracy
in data traffic classification

Provides security monitoring,
fault detection and traffic
engineering

[182] Real knowledge
transformation from
one domain to the
target domain for
efficient traffic
classification

Centralized Transfer learning Achieving high
classification accuracy

In contrast to other studies
training data and test data
have different distributions
Table 13
Knowledge-based strategies for mobility prediction.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[183] Collected user
activity can be used
to predict both
location and the
individual’s activity
simultaneously

Centralized Supervised learning Robust performance and
smooth prediction upgrade

Predicts the users’ next
location by modeling users’
activity patterns from GPS
real-life trajectory data

[184] Self-organizing
networks for
handover
management in LTE
femtocell BS
networks

Centralized Unsupervised
learning

70% reduction in
unnecessary handovers

Handover management based
on the user indoor location

[185] Allowing BSs in LTE
heterogeneous
networks to
automatically and
autonomously
discover the RF
conditions in their
cell edge

Centralized Unsupervised
shapelets

Clustering result with an
average accuracy of 95%

Classifies the users’
trajectories and optimizes
handover parameters

[186] Smart mobility
prediction for
efficient service
migration in the
mobile service
provision problems

Centralized Deep reinforcement
learning

Offloading traffic and
reducing latency in the
system

Optimizes the service
provision problems in mobile
edge computing
and execution phases to perform a centralized knowledge-based
concept. Moreover, to allow BSs to autonomously discover the
RF conditions at the cell edge and their impact on the handover
parameters, unsupervised-shapelets and data mining techniques
were proposed to recognize patterns in the RSRP measurement
reports from users [185]. Their method makes position estima-
tion once a handover is triggered. Based on the positioning,
the BS discovers new patterns while the network characteristics
change and calculates the number of clusters in the network. The
simulation results illustrate that even without prior knowledge,
the algorithm provides 95% accuracy in clustering the nodes
and predicting the user’s location. The proposed algorithm uses
cluster heads to identify user’s movements and trajectories. This
method is suitable for a centralized KDN for user-trajectory
prediction.

(iii) Knowledge derived from reinforcement learning : In [186], a mobil-
ity prediction model based on DRL at the edge of the network
was proposed for mobile users. They designed a DRL framework
to offload traffic by training a DQN for mobility prediction.
Their method comprises a glimpse mobility prediction model
that gathers users’ mobility patterns and trains them in the
DRL. The algorithm first assumes that the controller can select
the best edge server and apply the DRL. Then, the controller
predicts the users’ future locations based on historical data and
past user mobility using the DRL agent. The authors used the
actual human trajectory and user latency to obtain the perfor-
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mance of their algorithm. The experimental results show that
the glimpse mobility model outperforms the perfect mobility
model and chooses the lowest latency service request. Therefore,
it is essential to have a similar model at the edge network to
allow the controller to select the best strategy with the least la-
tency. Additionally, mobile service providers can determine the
expected latency experienced by users to receive data packets in
future cellular networks. The low-latency ML-based algorithm in
this work suggests a centralized knowledge plane to predict the
series of locations and timing of the users.

6.3.2. Handover management
Recently, the deployment of SBS has contributed to increasing

network performance to provide acceptable QoE. However, deploying
SBSs means that users will have more frequent handovers, which can
negatively impact users’ QoE [191]. In the upcoming section, some
of the studies on handover management based on ML techniques are
presented to assist future KDN networks. Table 14 summarizes the
studies surveyed in this section.

(i) Knowledge derived from supervised learning : Handover in the con-
text of wireless communication means passing the control of a
UE from its serving eNB to the next nearest eNB without any
interruption. With today’s continuous connectivity of users with
a high demand for data rate and low latency, handover man-
agement is becoming more complex. Additionally, to provide
seamless connectivity to users, a handover is required. How-
ever, challenges such as security and QoS are expected. Many
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Table 14
Knowledge-based strategies for handover management.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[192] Smart handover
management
solution for LTE
networks

Centralized Supervised learning
with neural network

Improves users’ QoE The handover algorithm
provides better QoE by
choosing the appropriate cell

[193] Intelligent
preparation decision
for better handover
in 5G mmWave
networks

Centralized Supervised learning
with deep neural
network

Reduces the signaling
overhead while improving
the success rate

The proposed prediction-based
conditional handover
demonstrates 98.8% and
above accuracy of prediction

[194] Constructs a
centralized
knowledge-based
server for future
wireless networks

Centralized Supervised learning
with recurrent
neural network

90% traffic forecasting
accuracy

The proposed model utilizes
an artificial intelligence into
the mobile network for
adaptive handover
optimization

[195] Efficient handover
management to
support intelligent
vehicular networks

Centralized Supervised learning
with recurrent
neural network

Accurate prediction of
handover trigger decision

The proposed algorithm
initiates early handover
registration to mitigate
communication disruption

[196] Dynamic mobility
management in
small cell 5G
networks

Centralized Fuzzy Q-learning Reduces the unnecessary
handovers while keeping
an acceptable call dropped
ratio

Optimization of handover
parameters for different UE
speeds to maximize network
efficiency

[197] Smart user-centered
handover decision
making for an
open-access
femtocell networks

Centralized Q-learning Increases network capacity
with less number of
overhead

The proposed scheme observes
the historical data and
predicts the future user
association, but the model
only deploys one MBS

[198] Adaptive user
selection and cell
association in
open-access
femtocell networks

Centralized Fuzzy Q-learning Fewer number of
handovers with
opportunistic channel
capacity

Adapting the learning
algorithm from the past and
future experiences

[199] Optimal handover
management in
large-scale wireless
mobile networks
including IoT

Centralized Deep reinforcement
learning and
supervised learning

Reduces the handover and
ensures the system
throughput

SL uses the traditional
handover parameters to
initialize RL, then RL is used
to obtain the optimal
controller for each UE

[200] Robust tuning of
handover
parameters and load
balancing in LTE
networks

Centralized Fuzzy Q-learning Traffic engineering Self-organizing mechanism for
joint optimization of load
balancing and handover
management

[201] Intelligent handover
management for
LTE-advance
networks

Centralized Q-learning Minimizes the handover
failure rate and handover
ping-pong effect

The proposed algorithm
selects the most efficient eNB
using reference signal received
power, reference signal
received quality, and other
criteria

[202] Simultaneous
monitoring of signal
strength and
optimal hand over
control in 5G
networks

Centralized Reinforcement
learning

Maximizes the network
throughput

A centralized RL agent uses
the radio measurement reports
from the UEs for handover
optimization

[203] Optimal
decision-making for
predicting handover
in mmWave
networks

Centralized Q-learning Maximizes the throughput The proposed scheme finds
the optimal policy based on
the pedestrian information
including the location and
velocity

[204] Intelligent handover
learning in
mmWave networks

Centralized Double deep
reinforcement
learning

Improves the QoS The proposed framework
provides the optimal BS
selection policy

[205] Self-tuning of
handover
parameters and
power allocation in
heterogeneous
networks

Centralized Deep reinforcement
learning

Maximizes the throughput
and reducing the handover
frequency

The multi-agent algorithm
train decentralized policies for
each UE to achieve better
performance
33
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studies have used ML techniques for self-organizing networks
to improve network performance. Ali et al. presented an SL-
based handover management scheme to improve the QoE for
LTE users [192]. They utilized historical data to learn how the
QoE of users changed when the handover decision was made. In
particular, eNB gathers measurement parameters from the users,
including the user’s radio link condition of the current eNB, the
user’s neighboring eNBs, and the user QoE resulting from past
experiences once handover was made. This information is fed
to the two-level NN model, where the first level determines the
QoE in terms of complete download or incomplete download,
and the second level is trained to approximate the file download
time. Based on the handover algorithm, the current serving
eNB triggers the handover to the next eNB with uninterrupted
service to the user. Their algorithm assigns data for users to
download and measures the amount of information lost due to
handover. The simulation results show that almost 96% of the
data were downloaded even when handover occurred. BSs can
use the proposed method to create a centralized KP and perform
handover management with a low data loss ratio.
Owing to the vulnerability of mmWaves in 5G, which can cause
sudden changes in the received signal strength, handover can
often be misleading and lead to bad decision making. One of the
contributions of 5G networks is the conditional handover (CHO).
To enhance the performance of CHO, Lee et al. proposed a novel
prediction-based CHO (PCHO) scheme based on a DNN [193].
Their method uses the former blockage information to predict
the best gNB. Here, the signaling patterns from the BSs are
collected and used in the algorithm. In this study, the authors
focused on the preparation phase of handover because they
claim that the preparation phase is the most vulnerable period in
handover. The preparation phase occurs when the signal quality
experienced by the UEs is low, and the interference from other
BSs is severe. In fact, it is most likely that the UE experiences
plenty of handover message delivery failures in the prepara-
tion phase. Therefore, to achieve accurate handovers, a DNN is
trained offline via a training dataset, allowing the current gNB
to make a real-time decision on the preparation period to predict
the next gNB. PCHO outperforms most of the CHO schemes in
terms of the preparation success rate and prediction accuracy of
the new BS for handover. The proposed algorithm also decreases
the signaling overhead compared to the current studies on CHO-
based mechanisms. The recommended scheme is suitable for
centralized BS to manage handovers. In [194], an RNN was used
to optimize the handover in 5G networks. In this work, mobile
users increase the transmission of useful information on wireless
channels and reduce service information. This is because each
device is equipped with an NN that helps to process sensitive
data locally. The result of the NN is always sent back to the
knowledge-based server for further processing or storage. Their
technique reduces the amount of service traffic transmitted by
users through the communication channel and self-organizes the
handovers in heterogeneous networks. The proposed method
is simple, reduces system complexity, and provides sufficient
knowledge for a centralized KP.
Intelligent vehicular networks (IVNs) have attracted many re-
searchers because of their real-time road safety services and
other essential applications for vehicles. However, the develop-
ment of efficient and robust wireless communication in vehicular
systems is still challenging for content delivery. This is mainly
because of the high mobility rate of vehicles that disrupt con-
nectivity. The authors of [195] proposed a two-tier ML-based
scheme for intelligent handover management in an IVN. In the
first tier, an RNN model is used to predict the receiving signal
strength of APs to make a handover trigger decision. A stochastic
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Markov model is utilized in the second tier to select the next
AP by considering the vehicle flow projection. The handover
trigger was divided into three parts: data processing, learning
phase, and prediction phase. They used an offline ML technique
to model a long short-term memory (LSTM) network (which
is an RNN used for time-series sequence prediction [206]) to
predict the RSSI of the AP. Based on the acquired RSSI values,
the system decides whether to trigger a handover. This decision
shows if the handover must occur before its actual execution,
which initiates an early handover registration process to avoid
any disconnection of the signal while switching between APs.
The proposed scheme outperformed the related models in terms
of prediction accuracy. The proposed method is suitable for
future self-driving vehicles to avoid collisions and can receive
information at any instance of time. As a result, a centralized
KP is needed to collect all the information and prepare to take
handover actions when necessary.

(ii) Knowledge derived from reinforcement learning : The authors of
[196] proposed a fuzzy Q-learning algorithm for two-tier net-
works that include macrocells and small cells. Their method uses
the call drop rate and signaling overhead caused by the handover
to formulate the system state in the Q-learning process. The Q-
learning action is based on the possible values of the trained
handover margins. The proposed algorithm aims to obtain a
trade-off between user experience disruption by call dropped ra-
tio and signaling overhead. Simulation results illustrate that the
framework reduces the number of handovers while maintaining
an acceptable call drop ratio. In [197] the authors adapted RL
techniques to find the best user association in a nonstationary
femtocell network. They proposed a framework in which specific
cells explore past cells’ behavior and use Q-learning to predict
the future state. The simulation results show growth in capacity
and decrease in unnecessary handovers. Moreover, the authors
of [198] presented a user association technique to avoid han-
dover for situations with high expectations of communication
disruption, such as dense environments. This algorithm is similar
to the work above, where the learning algorithm predicts the
state of the network based on past experiences. They used a
fuzzy inference system (FIS) to facilitate Q-learning parameters
during the training process. In this manner, their algorithm
achieves better performance when the environment changes
dynamically. All the proposed algorithms can provide knowl-
edge for a centralized KDN to overcome handover problems in
small-cell networks.
In [199], a two-layer framework for handover control in large-
scale wireless networks was introduced. In the proposed frame-
work, a centralized controller clusters UEs based on the mobility
patterns and utilizes an asynchronous multiuser DRL scheme to
control the handover. DRL uses the actor–critic learning method
to achieve an optimal policy for handover in each cluster. The
algorithm uses online and offline methods, wherein the online
method UEs keep processing and fetching the weight parame-
ters periodically, while in the offline method, UEs behave as
static controllers. Consequently, there are two different con-
trollers in the network: one managing the mobile devices and
the other managing the controller (main centralized controller).
Their work is promising for future wire-less networks as it acts
efficiently with the dynamic structure of the network and can
train fast even with newly arriving UEs. Therefore, adapting such
a system at the KP is essential to address scalability issues and
control handovers more robustly.
As a result of the growing complexity of the network, there
has been substantial research interest in SON. 3GPP has defined
some of the principles and concepts for automating the network
configuration and management for improving the network [207,
208]. In this context, industry and academia have defined load

balancing and handover optimization as the most important
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parameters for self-organizing mechanisms in RANs. The authors
of [200] proposed a fuzzy logic and RL technique to jointly im-
prove the handover and load balancing for LTE users. The fuzzy
logic tunes the handover parameters at the cell adjacency level.
The Q-learning algorithm was used to optimize the fuzzy system
to improve the network performance by forcing the scheme
to select the most appropriate handover action. The RL action
chooses the BS while handover occurs, and the reward function
is based on jointly maximizing the handover management policy
and load balancing function. The proposed algorithm proves that
the network performance increases as both entities (handover
and network load) run together to optimize the performance
compared to schemes where one entity is running on SON. 3GPP
introduced LTE-A/LTE-advanced to improve network coverage,
capacity, and data rate, which provided low latency and a high
data rate. The authors of [201] utilized the AHP-TOPSIS method
with Q-learning algorithms to make intelligent handover man-
agement. The proposed method selects the optimal eNB within
an appropriate trigger time. To choose the most suitable eNB for
handover, the algorithm uses RSRP, the reference signal received
quality (RSRQ), uplink signal-to-interference plus noise ratio,
location, moving direction of the UE, and current load on the
eNB. Based on the running application on the network, such
as speed-sensitive or delay-sensitive, AHP-TOPSIS is associated
with UEs. According to the obtained ranks, UEs are allocated to
a new eNB, where Q-learning evaluates the optimal triggering
point for handover. The proposed algorithm is evaluated by
numerical and simulation results, proving that their technique
minimizes the handover failure rate and handover Ping-Pong
effect compared to the fuzzy multiple-criteria cell selection (FM-
CCS) scheme and other prior methods. Both algorithms can be
deployed in a centralized KDN for future cellular networks.
Handover is more challenging in 5G and beyond networks owing
to the high attenuation rate of mmWave signals. Non-line-of-
sight (NLOS) signals caused by random obstacles, rain, etc.,
create a limited coverage range in mmWave networks. Overcom-
ing this challenge requires deploying several small cells, which
will cause frequent switching of user connections between the
BSs. The authors of [202]used a centralized RL-based algorithm
for handover optimization in 5G cellular networks. Their method
chooses an appropriate BS based on radio measurements ob-
tained from the user. Handover management is formulated as a
sub-class of RL contextual multi-arm bandit (CMAB) problems.
The BS collects the RSRP reports from the UE and forwards
them to a centralized CMAB where the handover decision takes
place, which is the action of the learning agent. The agent’s
reward is a function of the link beam of the RSRP, which
is proportional to the network throughput, and the aim is to
maximize the throughput. The proposed mechanism performs
optimally in many simulated environments, demonstrating su-
periority compared to the results obtained with state-of-the-art
algorithms. Similarly, the authors of [203] used RL techniques
to predict the optimal handover decision-making action based
on the information acquired by pedestrian movements. They
utilized the location and mobility rate of pedestrians to learn
the optimal handover policy to maximize the throughput of the
network. Their network consists of a single station, mmWave
APs, an access controller, and a human tracking module. The
human tracking module uses an RGB camera to collect the
position and velocity of the users. Based on the collected data,
the access controller performs a Q-learning algorithm and makes
a handover decision. The action of the learning algorithm in each
iteration involves choosing one of the deployed APs. The reward
function performs the data rate of the communication link once
a handover is made. The aim is to maximize the reward in
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every iteration based on the algorithm observation. The numer-
ical results demonstrate the superiority of the Q-learning-based
handover policy prediction compared to the existing heuristic
handover decision-making in terms of achieving higher through-
put. Consequently, the proposed algorithm for solving handover
problems in mmWave systems can be used in a centralized KDN
architecture.
For 5G technology, Mollel et al. proposed a novel offline scheme
based on the double-DRL or DDRL algorithm to minimize the
frequency of switching between BSs [204]. Their algorithm in-
telligently makes handover decisions by maximizing the user-BS
connection duration in a centralized architecture. To obtain the
optimal BS, a trajectory-aware handover optimization scheme is
introduced. This method uses the received SNR values from dif-
ferent BSs at any time, and then this information is used to map
the user’s exact location. In this way, they also considered obsta-
cles between users and BSs, including trees, building vehicles,
and people (using wireless insite software (WI)). Specifically,
the offline learning framework simulates the environment and
collects the data. Then, the DDRL agent trains and develops a
model accordingly. The action in this learning problem is the
selection of BSs. The reward is a function of minimizing the
number of handovers and maximizing the average throughput
of the network. The simulation results show robust performance
while outperforming existing ML-based conventional schemes.
Guo et al. studied handover management and power control
problems in a two-tier heterogeneous network consisting of
mmWave and SBSs [205]. Specifically, they modeled the han-
dover management and power controller problems as a fully
cooperative multi-agent RL (MARL) algorithm via the proximal
policy optimization (PPO) technique. They introduced a central-
ized training procedure, which collects global information from
UEs for training purposes, with a decentralized execution policy
sent to each UE after the training phase. In particular, the aim
is to utilize DRL for handovers optimization to maximize the
overall network throughput and reduce the handover frequency.
The action of the UE involves the BS selection and power tuning.
The reward of the training process is a function of throughput
and handover penalty. The proposed algorithm formulated a
decentralized policy based on multi-agent PPO (MAPPO), which
increases the throughput and reduces the handover frequency.

6.4. Localization

Many applications depend on high localization precision to pro-
vide the best service quality. Localization is divided into two main
categories: indoor and outdoor. A global positioning system (GPS) has
been widely used for outdoor localization. However, indoor positioning
with GPS is not applicable because of the complexity of the indoor
environment. Signal attenuation is very high in indoor environments
owing to condensed materials and obstacles. Therefore, indoor position-
ing methods, such as time of arrival (TOA), time difference of arrival
(TDOA), received signal strength (RSS), etc., are used for location
approximation in closed areas. However, more recently, researchers
have started adapting ML algorithms to increase the accuracy of indoor
localization in wireless networks. This section presents an overview
of ML techniques deployed in indoor localization. Most mobile device
activities occur indoors, which means it is essential for the 6G cellular
network to have a near-exact location of the user before providing any
services. KDN can learn from the historical data of a user and predict
the user’s location. Hence, more reliable services can be offered by
KDN-based networks. Table 15 summarizes the studies surveyed in this
section.
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Table 15
Knowledge-based strategies for indoor localization.

Article Knowledge objective Architecture ML algorithm Deliverable Conclusion

[209] Adaptive tuning to
maximize indoor
localization

Distributed K-nearest neighbor Achieves location error as
low at 1.7 m

The proposed algorithm uses
RSS-level-based feature scaling
model to improve the
accuracy of indoor localization

[210] Efficient near
real-time
localization system
for navigation and
monitoring in
mobile devices

Distributed Support vector
machine

Significant improvement in
convergence time and
prediction accuracy

The trained offline scheme
can decrease the online
learning error by 0.8 m

[211] Robust and efficient
wireless localization
method

Hybrid Relevance vector
machine

Reduces the computational
complexity while achieving
acceptable localization
accuracy

The proposed algorithm uses a
classifier to identify NLOS
signals

[212] Optimal indoor
localization for
UWB networks

Distributed Support vector
machine

Significant performance
improvement in various
practical scenarios

The proposed algorithm
estimate the indoor
localization ranging error to
improve the ranging error
mitigation

[213] Optimal K-nearest
neighbor positioning
algorithm for WLAN

Distributed K-nearest neighbor Maximizes the accuracy
with optimal number of
reference points

Adaptive indoor positioning
system

[214] Introducing a novel
signal fingerprint
for geographical
localization in LTE
networks

Distributed Neural network Reduces the calculation
time

By only using one LTE eNB,
the algorithm measures the
location with a maximum
error margin of 6 meters

[215] The trained 3D
model is used for
accurate indoor
localization

Distributed Deep autoencoder
network

High-performance 3D
localization in large indoor
spaces

The proposed method extracts
RSS measurements to increase
the indoor positioning
accuracy

[216] Online real-time
positioning for
mobile devices
based on the offline
trained data

Distributed Kernel principal
component analysis
(KPCA)

achieving 2 m positioning
error while reducing the
size of the radio map

The algorithm uses spatial
division technique based on
Random Forest technique to
increase the accuracy of
localization

[217] Blind indoor
localization using
minimum
information about
the surrounding

Distributed Principal component
analysis

Accurate trajectory
estimation

Ability to distinguish floors in
a building and trajectory
learning

[218] High-performance
localization system
with smart
adaptation
mechanism

Distributed Autoencoder Achieves high accuracy
without utilizing radio
path loss model

The proposed scheme
outperforms maximum
likelihood estimation,
fingerprinting methods and
generalized regression NN

[219] Suboptimal solution
for indoor
location-based
services

Distributed Deep learning Achieves high positioning
accuracy

The algorithm utilizes CSI
phase information for
fingerprinting and outperforms
three benchmark schemes
based on RSS or CSI

[220] Optimal localization
algorithm for
mobile devices

Distributed Deep autoencoder
network

Maximizes the localization
accuracy

The algorithm ensures
acceptable error ranging by
using CSI and estimated AoAs
(i) Knowledge derived from supervised learning : In [209], the authors
presented a feature-scaling-based KNN (FS-KNN) to improve the
localization accuracy. The algorithm depends on the measured
RSS reported by the MS, which accounts for the actual relation-
ship between the signal differences and geometrical distances.
To obtain the parameters of the weight function, iterative train-
ing was established to tune the parameters. After training the
model, the algorithm finds the optimal values corresponding to
the actual distance between a newly received RSS vector and
each fingerprint. Then, the user location with an average error
as low as 1.70 m is determined by solving a weight mean of
locations based on K nearest reference points. This algorithm has
two phases, which train the system in the offline phase and use it
for online location estimation. The offline trained algorithm can
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be used as knowledge to estimate the user location in an indoor
environment with acceptable accuracy. The RSS information is
gathered by APs across the network, which is then processed by
MSs in a distributed manner for location estimation.
A real-time, precise, and reliable localization system can de-
termine the acceptable position of any portable device with
opportunities for tracking objects/people, navigation systems,
monitoring devices, and other location-based services. Interest
in ambient intelligence, which enables people or systems to be
aware of the user’s presence, is increasing [221–223]. The main
issue in ambient intelligence is determining the position of the
user with high accuracy. As a result, there are ongoing investi-
gations based on indoor localization to propose new algorithms
to improve the accuracy of indoor positioning systems. The
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authors of [210] proposed an online independent support vector
machine (OISVM) for indoor localization that avoids training
from scratch. Their model uses the RSS of WiFi signals to make
online predictions and facilitate mobile devices. The proposed
model includes two phases: offline and online. The algorithms
learn through pre-collected RSS with reference point (RP) labels
appended to the corresponding RSS during the offline phase. The
offline phase also incorporates kernel parameter selection and
data sampling to deal with the imbalanced dispersion of the data
samples. In the online phase, new RSS samples are collected by
a centralized local AP for online learning and to estimate the
location. Compared to traditional SVM methods, their method
can balance the accuracy of localization and model size. From
the simulation results, the location estimation error decreased
by 0.8 m, while the training phase time and period were re-
duced considerably compared to the traditional techniques. The
proposed technique can be used via a distributed architecture of
KDN.
Due to the complexity of the indoor environment and the exis-
tence of various obstacles, high-accuracy localization prediction
is rarely achievable. This is due to the NLOS radio blockage
and insufficient information from the nodes. To this end, it is
helpful to identify and categorize the NLOS signals. Nguyen et al.
developed a robust relevance vector machine (RVM) for ultra-
wideband (UWB) signals using time-of-arrival (TOA) [211].
They introduced a hybrid two-step iterative (TSI)-based lo-
calization algorithm. In particular, they utilized cooperative
localization, meaning that both centralized and distributed ap-
proaches for positioning contributed to estimating the location.
In centralized localization, a central processor gathers the node’s
information and builds a map. This map is later sent to nodes,
and the nodes perform location estimation in a distributed
manner. Additionally, they designed a classifier and regressor
to mitigate the limitations of SVM. The RVM classifier can
classify the line-of-sight (LOS) and NLOS signals received from
the unknown node positions. At the same time, an RVM regressor
was adapted to predict the ranging error of the input data.
First, the RVM regressor is trained using a feature vector as
input data, which consists of maximum amplitude, received
energy, mean excess delay, and so on. The benefits of the RVM
classifier include the use of a smaller number of relevance
vectors than the support vectors in the SVM and mitigating
the range estimation error. This method proved to reduce the
communication overhead and computational complexity while
providing high localization accuracy. In contrast to this work,
the authors of [212] presented a novel approach to mitigate the
ranging error by directly mitigating the bias occurring in both
LOS and NLOS. Therefore, explicit signal identification between
LOS and NLOS is not necessary. Specifically, an SVM-based two-
class non-parametric regressors method is used to learn and map
the features extracted from the received signal to the ranging
errors. The simulation results demonstrate that the proposed
regressors greatly improve the performance in various envi-
ronmental scenarios compared to conventional methods. Both
studies presented above use UWB anchor nodes to estimate the
location of objects, where UWB nodes collect the surrounding
information and process it in a distributed manner to compute
the location.
In addition to SVM and RVM, some researchers have used the
KNN to achieve acceptable indoor localization. For instance, Xu
et al. [213] proposed an optimal KNN positioning algorithm
based on theoretical accuracy criteria (TAC) in WLAN indoor
environments. In this method, the optimal number of nearest RPs
that can locate the user is theoretically analyzed. The KNN-based
localization algorithm demonstrated that even with k=1 and
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k=2, outperforms other settings for static localization. The pro-
posed algorithm was verified in various scenarios, such as office
rooms, static positioning, straight corridors, and dynamic track-
ing situations. Another promising method that helps localization
is the adaptation of the NN. The authors of [214] developed
a unique mapping between the characteristics of radio chan-
nels and geographic locations. A feature extraction algorithm
is used to select the channel parameters with non-redundant
information that is formulated as a fingerprint vector. The chan-
nel parameters were taken from the LTE downlink signals. A
feedforward NN is utilized to input the fingerprint data and
output the UE locations. The NN is trained and used by the UE to
estimate their location in the network. The proposed algorithm
was investigated for both indoor and outdoor environments, and
experimental results demonstrate that by using only one LTE
eNB, this technique reaches a median error distance of 6 m and
75 m in indoor and outdoor environments, respectively. Both
studies proposed above are suitable for a distributed architecture
of KDN [213,214], where UE uses the information coming from
the BS to calibrate their location. Both algorithms provide a fast
and accurate location-based technique, which is promising for
the future architecture of the KDN.

(ii) Knowledge derived from unsupervised learning : To increase the
positioning accuracy, the authors of [215] introduced a novel
denoising autoencoder via Bluetooth low energy (BLE)-based in-
door localization (DABIL) method. In this study, the autoencoder
extracts useful fingerprint patterns hidden in the RSS indicator
measurements and constructs a fingerprint database to show the
reference locations in 3-D space. The fingerprint patterns were
built offline using raw RSSI values from different beacon sta-
tions. RSSI measurements of all the nearby BLE beacon stations
were collected and used in the training phase and further de-
noising autoencoder for fingerprint construction. After training,
the autoencoder is used as a trained fingerprint to estimate the
probability of the target being located in a reference location. Fi-
nally, the KNN algorithm was used to estimate the location of the
target. Field experiments demonstrate that 3- D fingerprinting
can significantly increase the localization accuracy. Additionally,
their method performs better in terms of horizontal and vertical
accuracy than deep learning-based algorithms and conventional
fingerprinting methods. Their algorithm can be utilized in a
distributed KP to perform location-based estimation. To reduce
the computational complexity, another fingerprinting-based lo-
calization system was introduced in [216]. They proposed a
dimension reduction method that uses maximum likelihood esti-
mation and utilizes kernel principal component analysis (KPCA)
for feature extraction. To reduce the storage space, KPCA divides
the fingerprinting radio map into sub-regions. The proposed
indoor localization can reduce the size of the radio map by 74%
while achieving a 2 m positioning error. The algorithm is first
connected to WiFi to upload the RSS information using devices
for centralized processing. Then, the information is sent back
to the devices to make the location estimation in a distributed
manner. Furthermore, PCA is combined with linear discriminant
analysis (LDA) to extract lower-dimensional features from WiFi
RSS signals in [217]. The algorithm provides floor classification,
landmark detection, and trajectory of users. The experimental
results from different levels of office floors show that the posi-
tioning accuracy is improved. To deal with the unpredictability
of wireless channels, Dai et al. employed a multi-layer neural
network (MLNN) for RSS-based indoor localization problems
without considering path loss or comparing the radio map [218].
The MLNN includes three main layers/sections: transforming
data, denoising, and locating sections. In the transforming sec-
tion, the RSS of an unknown node is taken as an input and

maps to the corresponding hidden layer through a deterministic
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mapping function. In the denoising section, all the nodes’ RSS
errors are improved by using a multi-layer denoising archi-
tecture. Finally, from the location section, the corresponding
square grid labels were detected to estimate the location. They
have a two-stage training procedure, where the first stage uses
an UL algorithm for pre-training each layer and a fine-tuning
stage to minimize the error of the entire network. The proposed
algorithm shows higher location accuracy than the maximum
likelihood estimation (MLE), generalized regression neural net-
work (GRNN), and fingerprinting methods. The proposed works
in [217,218] suggest a distributed KDN architecture.
Indoor fingerprinting localization systems that use RSS-based
WiFi measurements are easy to implement and have low hard-
ware requirements. However, RSS-based methods have two main
problems. First, the RSS values are highly random and can
change according to path loss, shadowing, etc. Second, the RSS
formation is the average of all the obtained received signal am-
plitudes. To tackle this problem, the authors of [219] proposed a
novel deep-learning-based indoor fingerprinting system via CSI.
The CSI amplitude responses are fed to the input of the DNN with
a greedy behavior to reduce the complexity of the training phase.
The weights in the DNN are stored as fingerprints to aid the lo-
calization procedure in the online phase. The online process uses
probabilistic data fusion based on the radial basis function (RBF)
to estimate the user locations. Their algorithm was examined
in varying propagation environments and showed promising
results with high accuracy. The same group of authors of [220]
considered the calibrated CSI data of the 5-GHz OFDM channel
information for indoor fingerprinting. Similar to other methods,
their algorithm consists of two phases: online and offline. In the
offline phase, a deep autoencoder network is utilized for each
user position to rebuild the CSI phase information, where the
weights are stored as the fingerprint. In the online phase, once
a new user location needs to be obtained, the algorithm uses
a probabilistic method that uses a weighted average of all the
reference locations in the fingerprint to estimate the position.
The proposed algorithm was validated with experimental results,
which indicated that the proposed method was superior to the
traditional CSI and RSS-based methods. Proposed studies above
establish localization in mobile devices in a distributed manner.

7. Terms and conditions associated with machine learning algo-
rithms for generating knowledge

In this section, the terms and conditions associated with KDN prob-
lems are generalized for researchers to consider before using knowledge
in the network. These conditions are categorized to identify the type
of problem KDN is required to solve: implementation complexity, time
consumption, training data, and the differences between ML techniques
in the same KDN problem. After checking each condition and meeting
the requirements, a final decision can be made on whether to adapt the
KDN algorithm and which ML algorithm is more cost-efficient.

7.1. Identifying suitable ML algorithm

The first and most crucial step is to discover the type of ML algo-
rithm that is most suitable for any particular wireless communication
problem. The majority of wireless communication problems are solved
within a few different ML algorithms, categorized as regression prob-
lems, classification problems, clustering problems, and MDP problems.
In regression problems, the ML algorithm is required to predict a
continuous value output given an input. In classification problems, the
ML algorithm needs to predict a discrete value output, usually answered
by a yes or no, and zero or one to essentially identify the class to
which the input belongs. The clustering problems are ML techniques,
where the data are grouped based on their type or value. Finally,
38
MDP problems are ML techniques that require taking action in the
current system state based on the feedback reward resulting from the
previous action. Moreover, all the above ML problems may involve
feature extraction, which means that one or more inputs affect the
output value. Feature extraction for any problem is performed manu-
ally or algorithmically. Consequently, for any wireless communication
problem in the above categories, KDN can use an ML technique as a
possible solution and derive knowledge from them. For instance, to
solve caching problems in wireless networks, one solution is to acquire
the content request probabilities from users in the network. This prob-
lem can adopt historical data and associate the model with regression
problems. It takes the user profile as an input and then predicts the
user’s content request probabilities as the output. On the other hand,
the same problem can be solved by MDP, where, in every state, the
agent can predict the associated cache content request. Furthermore,
in user association problems, clustering algorithms are used, and for
interactive environmental problems, such as mobility management and
resource management, the MDP model is more suitable. Therefore, it
is important to consider the advantages and disadvantages of each
technique before applying them.

7.2. Implementation complexity of ML in KDN

In this subsection, we examine the implementation complexity of
ML algorithms in KDN problems. Generally, four factors need to be
considered while computing the complexity of an ML algorithm: (1)
mathematical operations, (2) dataset, (3) data storage, and (4) software
and hardware requirements. Mathematical operations vary from one
problem statement to another and are usually based on the features
of the ML algorithm that affect the complexity of the mathematical
operation. Dataset complexity lies within the collection and use of
appropriate data. Hence, collecting the necessary information from
different wireless communication tasks has its own difficulties. For
instance, in SL problems, data should be presented before finding a
solution. In contrast, the data will be collected in RL as the agent
interacts with the environment. Next, the complexity that occurs when
the collected data or processed data are too large to be stored as knowl-
edge in KP. Accordingly, software and hardware complexity arises
from simulating the right software and using the correct number of
processors or GPUs to process the knowledge, respectively.

7.3. Time consumption

One of the critical aspects of KDN is the response time. The ML
algorithm tends to spend some time on training to provide near-
optimal answers. Hence, it is essential to investigate the two-timing
mechanisms that most ML techniques have, including training time and
response time. The training time is the amount of time required for each
ML algorithm to be fully trained. The response time is when an ML
algorithm needs to make a prediction after being trained. Both timings
are important for different applications in KDN networks [224].

The training time is most important for supervised and unsuper-
vised learning, but it also has significance in RL for making accurate
decisions. There are two different ways of training: online and offline.
Depending on the application requirements, training may occur in one
of the above processes. For example, highly dependent applications
will perform online training, such as handover optimization, tuning,
and healing in SONs. Applications incorporating NNs require time for
adaptation to make accurate predictions, including mobility prediction
and clustering problems [225]. Specifically, for applications with NN
systems, the training time is usually longer [226]. Hence, the environ-
ment may change by the time the training algorithm learns a policy or
mapping rule. In addition, training an RL model in complex wireless
communication environments can be time-consuming and ineffective
because the set of agents and environmental dynamics are different
after the learning algorithm is completely trained. Therefore, such
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changes in the characteristics of the communication environment may
affect the performance of the ML algorithm. However, the training time
in NN-based approaches can be reduced using GPUs, and using TL helps
to decrease the training time and accelerate the learning procedure, as
illustrated in [227,228].

The response time of the trained learning algorithm is more im-
portant than the training time. Most applications in wireless networks
require a quick response, on a timescale of milliseconds, such as
decision making in resource management. Let us consider two differ-
ent approaches of ML applied to these wireless network applications,
namely NN-based approaches and alternative approaches. The time cost
can be discussed as follows:

(1) NN-based approaches: In some applications, we can achieve an
acceptable response time without GPU usage. For example, as
shown in Table 1 in [89], on average, it is possible to achieve
0.0149 ms for power control decision making in a network with
30 users. Therefore, making resource management decisions
within an acceptable time frame is feasible for power allocation
problems using a trained DNN [89,229,230]. However, as the
network size increased, both the response time and training
time exponentially increased. One solution proposed by [231]
is to use GPU-based parallel computing to enable NNs to predict
within a tolerable range (milliseconds). Furthermore, there is a
deep Q network in the DRL, and the deep Q network depends
on the output of Q-values from the NN. Hence, the response time
mostly depends on the NN process time. However, one promising
solution that KDN naturally provides is using the pre-trained
data as knowledge, so the response time can be near-optimal and
suitable for future wireless network applications.

(2) Alternative approaches: In resource allocation problems, in both
RL-based Q-learning and joint utility and strategy estimation-
based approaches, the aim is to find a policy or strategy that
suites the dynamic nature of the environment. In RL-based meth-
ods, after the learning algorithm converges, the policy or strat-
egy from the trained algorithm becomes fixed. In Q-learning, the
strategy is represented by a set of Q-values, where each set cor-
responds to a system state and an associated action. Therefore, a
well-trained RL algorithm can respond in milliseconds. Addition-
ally, the joint utility and strategy estimation-based learning goal
is to choose a probability value that indicates an action. Here,
the agent only needs to generate a random number between 0–1
to select the appropriate action. Consequently, a well-trained al-
gorithm can accelerate the decision-making process and achieve
a millisecond response.

7.4. Suitable dataset availability for training and generating knowledge

Different training data are collected or generated for supervised,
unsupervised, and reinforcement learning, depending on the character-
istics of the problem. For instance, in spectrum allocation problems, the
authors of [82,83] used non-cooperative game methods where the data
were trained based on the collected information from the primary and
secondary users. In [86] the same non-cooperative spectrum allocation
is modeled with the difference where the data is collected using an
RNN model at each BS; here, BSs continuously interact with each other
to collect training data. Other authors of [84] used joint utility and
strategy estimation-based learning to collect D2D information and gen-
erate training data. In power allocation, when the SL method is used,
such as in [89,229,230], the authors aim to adapt a neural network to
approximate power allocation in a complex environment, including the
genetic and WMMSE algorithms. Using these algorithms enables these
studies to generate training data under different network scenarios that
can later be used in KPs as knowledge. Obtaining appropriate raw data
is important for researchers on the same topics. For example, in cache
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problems, the authors used different datasets for cache management to
reduce the traffic caused by video streaming. In [110], the dataset used
for training was acquired using the YouTube Application Programming
Interface with 12500 YouTube videos. The dataset used to train the
RNN in [111,112] was obtained from Youku [232] (a video hosting ser-
vice based in Beijing, China) for content (video) request prediction and
traffic management. Moreover, in [113], the dataset is a combination
of two datasets, namely YUPENN [233] and UFC101 [233].

In networking scenarios, specifically in routing problems, the col-
lected dataset is usually obtained from a simulator. For instance,
in [137], the authors implemented a neural network using the Om-
net++ simulator for traffic engineering. In this study, the SDN con-
troller collects traffic flow reports from the nodes in the networks
and separates different features to feed the SL algorithm. In [142],
the authors investigated DNN-based routing to solve dynamic routing
problems. The training dataset collects traffic patterns and paths that a
packet will undertake to reach the destination in the proposed study.
The routing paths were obtained using the traditional OSPF strategy
from a software simulator. In other studies, such as in [141], the dataset
was generated in real-time through online fashion with routers in the
network for intelligent route selection.

In ML-based localization techniques, three main strategies are used
to collect the required dataset and obtain the position of the object in an
indoor environment: RSS, CSI, and ToA. Research studies in [209,210,
215,217,218] used RSS information as a dataset, and studies in [219,
220] used CSI data. The generated dataset was obtained using a cell
phone or UWB device from real practical measurements. For example,
the authors of [219] utilized the IWL 5300 NIC to mobile devices to
read CSI data, while in [209], a client program was used in mobile
devices to measure the RSS levels.

In RL, the learning algorithm continuously updates itself through
interaction with the environment. In these problems, the learning agent
takes action in a particular state. Then, it receives a reward from the en-
vironment, where the environment is created as a virtual environment
by specific software, such as NS3, Matlab. For example, in spectrum
management, researchers in [84] optimized the spectrum usage from
reward feedback for each D2D pair. In power management, the authors
of [105] used the reward as the difference between the maximum
total power consumption and the current total power consumption to
perform BS switching on/off to minimize the overall network power
consumption.

7.5. Suggestions for choosing ML algorithms in KDN framework

As previously discussed, ML problems are generally categorized into
regression, classification, clustering, and decision-making problems. In
comparison, the differences between each lie within the solutions they
provide for KDN problems. However, for each problem, there could be
different ML solutions. Therefore, it is important to realize and compare
ML algorithms, specifically those that can solve the same problem. This
subsection provides a guideline for readers to first understand why
recent studies have used ML algorithms (in the context of wireless
networks) and provide guidance for selecting a suitable ML algorithm.

(1) Techniques for deploy regression or classification: For these two
techniques, SVM, KNN, and NN are mostly used [111,112,140,
193,194]. SVM is the most robust prediction method for binary
classification with low complexity [113]. At the same time,
KNN is a multiclass classifier, mostly known for its simplicity of
implementation. In problems where the dataset is not linearly
separable, KNN is a better classifier than SVM. In the KNN
approach, only the distance metric and K parameter must be
selected, whereas in SVM, the regularization and kernel param-
eters must be chosen carefully. Although these two algorithms
are simple compared to neural networks, NN is more robust in
feature extraction and improves overall network performance.
For instance, a DNN can handle large datasets and achieve
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high accuracy, although the learning procedure can be time-
consuming owing to the optimization of various parameters.
However, with sufficient training datasets and powerful GPUs,
DNNs are more recommended than other learning machines.
Furthermore, other neural networks, such as CNN and RNN, can
reduce the training time and system overhead. Both algorithms
have their own advantages for solving different problems. For
instance, CNN is suitable for learning spatial features, including
the channel gain matrix, while RNN is good at processing time
series problems for feature extraction.

(2) Techniques for deploy clustering: ML models applied to clustering
mainly include K-mean clustering. However, there are other
supervised and NN studies deployed to clustering problems. K-
mean clustering is one of the most popular and simplest methods
for clustering data. Generally, the K-mean is used to differentiate
between groups with similar data points and patterns. Neural
networks are also used to organize the input data. For instance,
given a set of images, the NN can organize and provide images
with similar content. This process does not provide clusters, but
it creates meaningful representations of the dataset, which can
be used for clustering. The main difference between these two
algorithms is the complexity of implementation. Moreover, in
K-mean clustering, the number of cluster centroids (K value) is
essential; however, in NN, the design of the hidden layers and
other factors must be considered.

(3) Techniques to deploy decision making: ML-based decision-making
algorithms are Q-learning, joint utility and strategy estima-
tion, actor–critic, and DRL. These algorithms are applied to
dynamic environments to learn patterns and decide accordingly.
Q-learning is an off-policy RL that seeks to take the best action in
any particular state. An actor–critic learning strategy is helpful
in non-Markov environments, where the algorithm can learn an
explicit stochastic policy. Compared with the Q-learning value-
based learning algorithm, policy knowledge transfer is easier in
actor–critic learning because policy and value functions are up-
dated independently. Joint utility and strategy estimation-based
learning are more suitable for multi-agent scenarios, providing a
stable system when one agent diverges from its mixed strategy.
The agent in DRL is capable of learning from a high-dimensional
input state, which is the advantage of DRL over Q-learning and
actor–critic learning [234–237]. Another advantage of DRL is
its ability to make good action decisions even in unfamiliar
situations [238]. Moreover, both Q-learning and actor–critic
learning require a storage repository for each state and action
procedure. Therefore, they are not suitable for multidimensional
datasets. Furthermore, training a DRL has a high computational
complexity.

8. Motivations for applying knowledge-defined networking

After summarizing the terms and conditions associated with ML
algorithms, we need to investigate the motivations for applying the
appropriate ML algorithm to KDN-based networks. It is essential to ex-
amine the reasons and motivations for adapting KDN-based approaches
to wireless networks. The subsections below provide the reasons for
applying ML and knowledge to the network based on the literature
surveyed throughout this study.

8.1. Lack of network knowledge and intelligence

Although there exist centralized algorithms and techniques for opti-
mization that can achieve the objectives of various performance crite-
ria, the lack of global network knowledge and intelligence has been
recognized by researchers [11,239]. For instance, the baseline tech-
nique to achieve load balancing and backhaul management in [120–
40
122] requires complete information about the traffic load and con-
tent popularity of users before execution of cache content, which is
challenging to acquire precise information in advance. Therefore, we
suggest prior knowledge for decision-making. Moreover, using a TL
algorithm, the past experience in cache content can be utilized by BSs
to guide cache management even without knowing any information
about the current traffic information. In data aggregation problems,
supervised learning approaches can differentiate between data com-
munication after a thorough training procedure. On the other hand,
having knowledge about the network and the information that is being
transmitted or received can help improve network performance and
add intelligence [182]. Furthermore, in BS sleep-mode control prob-
lems, complete information of the network environment is required
in advance, which is difficult to obtain. The authors of [228] used
TL to adapt past information about BS switching to guide the current
decision making for BS switching even without the knowledge of traffic
loads in the network. In handover management, one solution is to
use a fuzzy logic controller with a set of predefined rules, and each
state of the system determines a specific action. However, the setting
of each action mainly relies on the knowledge and information about
the network environment, which might be unknown for the new state
of the communication system. Overall, the main reason for adapting
ML algorithms is to acquire knowledge from any particular system
for optimization, self-organization, and self-healing. The majority of
the papers surveyed in this study can be used as a prior processing
technique to build a knowledge plane and provide intelligence for
networks.

8.2. Self-organizing networks

Self-organizing networks (SONs) provide self-optimization, coordi-
nation, self-organization, and correction for the next generation of
wireless networks [240]. In particular, most researchers now consider
ML techniques as an official approach to achieve self-organization in
the network, proving that KDN will be part of future wireless networks.
3GPP has already started developing protocols and technologies to
automate network configurations [241]. In this context, RL is the
most recognizable approach for correcting itself based on the envi-
ronment and experience. In particular, in load balancing, handover
management, routing, etc. In summary, SON can be applied using the
following studies [81,85,86,95,99,106,107,114,133–135,184,192,196,
200,205,242,243]. SON is an evolution of self-driving networks and
KDN, and most applications in wireless networks require intelligence
to tune, correct, and decide on behalf of human operators.

8.3. Achieving reliable and high performance compared to traditional opti-
mization algorithms

Traditional optimization algorithms can only work for deterministic
networks, which have certain characteristics. These algorithms are not
practical in current real-life network scenarios, as the network traffic
changes every day. In contrast, ML is the capability of machines to learn
how to respond to any specific situation. Hence, they are more reliable
than traditional algorithms owing to their flexibility and adaptation to
new environments. In [80], DRL was utilized for spectrum allocation
and was able to provide twice the channel throughput when compared
to slotted-aloha with optimal probability. In [89], an SL algorithm
was developed to train a DNN for power management, and it was
shown to be superior to a state-of-the-art interference management
algorithm. In cache management, the authors of [115] used the RL
algorithm for content caching at the BS and compared it with two
traditional cache update schemes, namely LRU and LFU, where it shows
a better long-term cache hit rate. Moreover, in [173], the RL-based
algorithm for user association performs much better than traditional
dual-decomposition-based approaches. Overall, ML techniques have the
potential to provide superior performance to traditional optimization
algorithms. Other surveyed works for this motivation are as follows [92,
109,115,121,169,173,219,230].
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8.4. Learning patterns and predicting the future

By utilizing neural networks, hidden patterns in a system can be
learned and used to estimate future values or predict the future, which
is an advantage in KDN-based networks. In this context, the authors
used this NN functionality to improve system performance. In [92],
a multi-agent DRL technique was used to observe the spatial features
based on the collected CSI and QoS to make a wiser power allocation
decision when the network experiences dynamic changes. Moreover, in
traditional indoor localization, the system’s performance can be easily
affected, resulting in inaccurate positioning owing to the complexity of
the environment. As a result, many researchers are now motivated to
use NNs to increase the positioning accuracy by learning and updating
user patterns [214,219]. Consequently, the motivation of surveyed
works utilizing NN can be observed in [12,86,89,92,97,111–113,116,
117,141,164,168,193–195].

8.5. Ability to handle complex problems and provide low-complexity solu-
tions

One of the important reasons and motivations for using ML al-
gorithms is their ability to handle complex problems and datasets.
The authors of [86] trained a multi-agent RL-based with ESN for
efficient spectrum allocation and load balancing in LTE-U networks.
Other researchers in [168] used CNN to achieve a low-complexity and
high-accuracy clustering algorithm to classify three different types of
waveforms in wireless communication systems. Moreover, the ability
to handle high-complexity problems is the main reason why authors
use RL. For example, for the on/off sleep mode control of small cells,
the authors of [103] used distributed Q-learning to decide on the sleep
mode of each BS, which led to a low-complexity sleep-mode control
algorithm. Overall, the motivation for providing a low-complexity so-
lution for the KDN paradigm can be seen in the literature [12,79,118,
152,167,194,211,216,219].

8.6. Avoiding wrong decisions

Some traditional and heuristic approaches for optimization and
estimation based on a fixed set of rules are often unable to avoid
faulty and unsatisfactory results that have occurred previously. This
means that these approaches are unable to learn from their mistakes
and correct their decisions. Such problems can be seen in OSPF-based
routing strategies, as stated in [141], where OSPF routing will result
in some congestion in certain situations at some routers even though it
may know the congested router. Hence, in these situations, the OSPF
repeats the same action (wrong decision), leading to congestion again.
In handover strategies based on RSSI values, a similar problem can
accrue, as shown in [244]. Moreover, other similar problems can be
observed in the literature for user association based on max-SINR [173]
and in the BS on/off sleep mode control strategy [106]. To prevent
wrong decision-making in traditional algorithms, RL and deep learning
are adapted to learn through historical and new data to prevent any
previously incorrect decisions. For instance, deep learning in routing
strategies enables the algorithm to avoid mistakes, such as congestion
in the network under different traffic patterns. RL can also be utilized
in other approaches to overcome the same type of problem [245,246].
In summary, decision making with poor performance outcomes can
be avoided using ML strategies in the KDN framework, which can be
further observed in the surveyed literature of [63,89,95,98,114,115,
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118,133,134,141,150,247–251]
9. Challenges and open issues

There have been several studies on the applications of ML and its
potential advantages for improving the overall network performance in
wireless networks. However, few studies have focused on facilitating
the ML-generated output data as knowledge, which can be used in
similar applications and scenarios to create intelligence. Therefore,
there remain many challenges and open issues that require attention
from various sources across academia and industry to develop the
concept of KDN standard criteria in future wireless networks. In this
section, we identify the challenges and discuss future opportunities.

9.1. How the knowledge layer will be architecturally created

Several studies have introduced the KDN architecture, for instance,
the authors of [28] restated the concept of KP in the context of SDN
architecture in addition to the three planes of the SDN paradigm.
Fig. 1 in this paper shows that the KP is located on top of the control
and management planes. The integration of KP generates a behavioral
model and reasoning process for decision-making. This architecture
enables the KP to fully view and control the network via the control
and management planes. Other research studies in [12–14,29] have a
similar architecture of KDN. In [14], the same KP is utilized on top of all
the layers, but it uses a cross-layer management and monitoring plane
with ML algorithms to manage the rest of the planes. This paper [14]
utilizes ML-based algorithms in both separate orchestration layers and
embedded in the management plane. Therefore, there are different
orchestrations of the KDN concept, and a thorough investigation is
required to identify the most suitable one in terms of flexibility and
performance.

9.2. Centralized, distributed, or hybrid KP

There are three available options for locating the knowledge plane
in wireless networks: centralized, distributed, and hybrid. Identifying
which KDN architecture is suitable for a problem is critical in imple-
menting KDN in a real wireless network. In a centralized approach,
devices only report the information to a centralized controller via
protocols such as OF, P4, and network management. The controller
processes this information using an ML technique to generate the
knowledge. The controller uses two approaches to convey knowledge:
direct and indirect approaches. In the direct approach, it uses the
previously processed information (stored knowledge, not the typical
network information) and immediately sends back the new strategies,
while in the indirect approach, the ML algorithm obtains the new rules
and then sends it to the devices. In the distributed approach, devices
act by themselves based on the previously processed information or by
communicating with each other to acquire the information required
to create the knowledge. To obtain knowledge, specific ML-based al-
gorithms are used for particular applications to optimize or predict.
The obtained knowledge can be shared with other devices for better
network decision-making. This knowledge can be exchanged between
devices using D2D routing protocols. For instance, one particular ML
can predict the best next-hop by utilizing cross-layer information be-
tween application and data layers. This prediction can be shared via
multi-hop D2D communication with neighboring nodes to the rest of
the network. Therefore, in multi-hop D2D networks, nodes will have
prior knowledge about the best candidate nodes to relay their traffic
to maximize overall network performance. The distributed KP might
cause QoS and latency problems for packet delivery at the initial stage
of the network. However, once nodes gather enough information about
the other nodes, they can make near real-time decision-making that
maximizes the QoS. In the hybrid approach, both the controller and
devices act intelligently together based on the information collected.
This information is used to acquire knowledge and inject a new rule

based on the ML output.
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9.3. Knowledge validation, uncertainty and compromises

ML and intelligence have been envisioned by many researchers
as the most important feature in 6G, as ML algorithms have been
extensively used in complex scenarios. Therefore, it is evident that the
KDN architecture can be used to address the challenges of 6G. One
of the main challenges faced by all technologies is the validation of
knowledge. If 6G targets an automatically configured cellular network,
there must be a mechanism to verify the confidence and certainty of
knowledge. As a result, a certainty mechanism must be deployed to
acknowledge the level of certainty, whether knowledge is practical or
compromised. The output of the ML algorithm must be checked by
the expected results to evaluate the degree of uncertainty. A threshold
barrier can be used to validate the usefulness of knowledge. If the
knowledge is authorized to deploy in the network, the ML output has
been successful, but if the compared strategy has revealed unauthorized
knowledge, then the ML’s output cannot pass the threshold value. In
this case, a new ML technique must compute the new knowledge and
go through the same procedure, which causes a delay that affects the
system performance. In the worst-case scenario, if the knowledge is re-
jected again, then an extreme case must be considered. To mitigate the
worst-case scenario, any proposed algorithm must undergo various ex-
perimental analyses in a real testbed to find the possible ML substitutes
in any given scenario. Therefore, ML algorithms must be tested in the
same environment with similar characteristics to provide insights into
different ML techniques. Consequently, those with similar performance
will be selected to be each other’s replacement to mitigate the worst-
case scenario. Moreover, related regulations and standardization must
be established to guarantee the 6G service requirements.

9.4. Lapse, or loss, or priority of knowledge

There are two approaches to ML: reactive and proactive. In the
reactive approach, the learning agent must address an issue that has
already been defined. However, in a proactive manner, the learning
agent must simultaneously adapt to possible future problems. Cur-
rent network functions are mainly designed using reactive network
protocols with human intervention for maintenance and upgrading.
To enable intelligence and deploy KDN in future wireless networks,
proactive learning ability is necessary [252]. In proactive learning,
knowledge must be prioritized such that important metrics of the
network, including channel allocation, traffic clustering, traffic pre-
diction, computing offloading, radio resource scheduling, and network
configuration, have a ranking of knowledge prioritization. Thus, once
the network is fully congested with heterogeneous nodes, the KP must
prioritize which tasks have the most pressing matter and which ones are
crucial for the network functionality. Another reason for prioritization
could be the lack of storage for knowledge, where it can cause lapse
or, in a worst-case scenario, loss of knowledge. A lapse of knowledge
is referred to as incomplete knowledge throughout prioritization, ML
training, or technical issues. Moreover, loss of knowledge can accrue
due to memory shortages and technical issues. In both cases, knowledge
is useless and has a negative impact on the network performance.
Therefore, a systematic monitoring management module must observe
the KP plane. Specifically, to ensure that each network application is
prioritized for knowledge extraction, the storage capacity is sufficient,
and the knowledge is stable and informative.

9.5. Effectiveness of an ML algorithm in KDN

Although ML studies have been a point of discussion over the
last few years [253], current research in the wireless communication
area is still unripe. This is the main reason why ML has not been
practically applied to existing wireless networks. To evolve ML-based
algorithms to meet the requirements of future 6G systems, it is essen-
tial to standardize AI-embedded communication. The performance of
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the current ML-based algorithms is evaluated based on the level of
improvement in communication performance. However, to adapt KDN
and intelligence across 6G networks, it is far from sufficient to only
consider the degree of improvement without considering computation
and storage costs. Therefore, in addition to evaluating the performance
of ML technologies, the required storage and computation overhead
must be considered while designing the standards. Moreover, to realize
full intelligence in KDN networks, the compatibility of developed ML
algorithms with other network functions is another emerging topic.
Further, the intelligence and ML algorithms must be adaptive to any
changes in the topology to enable automatic adjustment in 6G networks
[254].

9.6. Standard baseline dataset for experiments

In wireless communication problems, one of the fundamental as-
pects of an effective ML-based algorithm is the representation of a
dataset. The training procedure is the step in which the effectiveness of
the ML algorithm is determined. In this step, the dataset provided to the
ML algorithm has a direct impact on the usefulness of ML. In wireless
networks, terabytes of information can be collected; however, if the
machine cannot make sense of the recorded data, the ML approach is
useless. Therefore, data-related issues are one of the main problems
that some ML-based projects cannot be accomplished [255]. In the
context of ML research projects, some concluded that no relevant
dataset was available. Therefore, the process is either highly time-
consuming or challenging to analyze. In self-driving vehicles, SL has
shown promising results in the future of the vehicle industry [256].
However, the performance of these algorithms relies on the size of
the dataset to provide a reliable answer. Moreover, in this type of
problem, the response time of the algorithm is very important, which
makes the algorithm more complicated. This type of issue occurs across
different wireless communication problems. Hence, creating a standard
dataset and platform for researchers is very important for generating
a reliable and effective solution for 6G and beyond. This will enable
researchers interested in one topic area to work on the same dataset
with the same platforms. Moreover, ML is used to extract features and
learn the rules from large datasets automatically, introducing another
challenge that needs to be addressed by how much manual intervention
and repeated work need to be reduced to have a fully functional ML
algorithm. Therefore, it is crucial for future wireless communication
systems to have a reliable dataset and platform for researchers to work
on ML-based wireless network problems with certainty.

10. Conclusion

One of the crucial aspects in 6G wireless networks is intelligence,
and many research studies are now focusing on exploring how knowl-
edge and intelligence can be integrated into wireless networks. This
survey paper investigated the concept of knowledge-defined network-
ing, which aims to combine SDN and ML/AI to create a programmable
and knowledge-aware networking architecture. We first introduced
emerging technologies to facilitate KDN, specifically the SDN paradigm,
network telemetry, and ML algorithms. We then investigated most of
the widespread applications of wireless networks. The reviewed studies
in network applications were based on the most recent ML-based
approached to create automated applications in KDN-based wireless
networks. The applications were categorized into the MAC layer, Net-
work layer, and Application layer. Resource management problems
were distributed within the MAC layer and classified as spectrum
allocation, power management, QoS, BS switching, cache, and back-
haul management. Networking and mobility management problems
were investigated in the network layer. Networking problems were
described as routing strategies, clustering, user/BS association, traffic
classification, and data aggregation. Mobility prediction and handover
management were considered in mobility management. Then, from
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the Application layer perspective, various indoor localization tech-
niques are presented. Moreover, appropriate ML-based studies were
thoroughly explored for each surveyed application, and the most suit-
able KDN architecture was suggested. We achieved a comprehensive
review of different parts of wireless networks and provided insights into
how different algorithms perform, enabling future researchers to adapt
the most appropriate ML-based study with the suitable architecture of
KDN. Further, the conditions associated with ML-based strategies in the
context of KDN were provided, followed by the motivation to apply
KDN. Finally, we outlined several unsolved problems and challenges
within the KDN paradigm.
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