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Abstract— Correct detection of peaks in electroen-
cephalogram (EEG) signals is of essence due to the
significant correlation of those potentials with cognitive
performance and disorders. This paper proposes a novel
and non-parametric approach to detect prediction error
negativity (PEN) in cognitive conflict processing. The PEN
candidates are first located from the input signal via an
adaptation of a recent effective method for local maxima
extraction, processed in a multi-scale manner. The found
candidates are then fused and ranked based on their shape
and location-based features. False positives caused by
candidates’ magnitude are eliminated by rotating the sorted
candidate list where the one with the second-best ranking
score will be identified as PEN. The EEG data collected
from a 3D object selection task have been used to verify
the efficacy of the proposed approach. Compared with the
state-of-the-art peak detection techniques, the proposed
method shows an improvement of at least 2.67% in accu-
racy and 6.27% in sensitivity while requires only about
4 ms to process an epoch. The accuracy and computa-
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tional efficiency of the proposed technique in the detec-
tion of PEN in cognitive conflict processing would lead
to promising applications in performance improvement of
brain-computer interfaces (BCIs).

Index Terms— Summit navigator, peak detection, spike
detection, electroencephalogram (EEG), cognitive conflict,
prediction error negativity (PEN), error-related positive
potential (Pe), clustering.

I. INTRODUCTION

COGNITIVE conflict is the reaction of the human brain
when observing a mismatch (error) between a prediction

of an on-going action and its actual results. This process can
be interpreted via analyzing the event-related potential (ERP)
in electroencephalogram (EEG) [1] and has shown great appli-
cation potentials, such as intuitiveness estimation in physical
human-robot collaboration [2] and impact evaluation of visual
styles in virtual reality [3].

Choice reaction tasks were first designed in [4]–[7] to study
error processing. Notably, the presence of two components,
namely the error-related negativity (ERN or Ne) [8] and the
error-related positive potential (Pe) [9], have been observed
when cognitive conflict occurs. Consequently, various studies
on error-related potentials have been conducted to demonstrate
the appearance of cognitive conflict in different scenarios,
such as during interactions with a simulated BCI [10], or via
computer tracking tasks [11].

Recent works [3], [12], [13] have evaluated that the predic-
tion error negativity (PEN) is elicited due to the recognition
of a discrepancy between the awareness and the prediction of
3D environment changes. This negativity can be categorized
as a family of ERN. An illustration of PEN and other event-
related potentials are demonstrated in Figure 1 where positive
potentials P1, P2, P3 peak respectively at around 100, 200, and
300 ms, and negative potentials N1, PEN, N4 peak respectively
at around 100, 200, and 400 ms. It is worth noting that
the amplitudes and locations of the ERP components are of
great importance to analyze the difference between erroneous
and correct responses in abnormal action monitoring, where
patients with anxiety, depression, or substance abuse are
reported with increased ERNs [14]. Hence, an effective and
robust automatic peak detection algorithm would lead to not
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Fig. 1. Illustration of PEN and other potentials in an epoch.

only an accurate detection of those ERP components but also
a correct diagnosis of those disorders.

Among the most popular approaches [15], [16] when
dealing with the EEG spike detection problem, the window
analysis techniques are widely used due to their easy imple-
mentation and simplicity. The ERP amplitude is calculated
as the mean of the local extrema of the time window of
interest and its nearest neighbors [3], [6], [12], [13], while
the latency is taken from that of the local extrema. Despite
the straightforwardness, this approach might miss the true
peak when multiple candidates appear in the interested time
window.

To tackle this challenge, particularly in cognitive con-
flict, and generally in EEG signal processing, various auto-
matic detection algorithms have been proposed, including
morphology [17]–[19], rule-based [20]–[22] approaches and
artificial intelligence systems [23]–[26]. A signal separation
technique was introduced in [17], where spike portions can
be extracted from the background EEG using morphological
filters. An improved version is then proposed in [18], where an
average weight has been added to the morphological operation
design for elimination of statistical deflection of amplitude,
and the construction of the structuring elements are optimized.
Although this type of method was verified in simulated data
and the intracranial EEG recordings [19], its effectiveness
is sensitive to the design of the structuring element. In the
rule-based systems [20]–[22], the characteristics of the spikes,
such as shape, slope, width are employed to generate patterns,
where the similarity between a concerned time window and the
generated pattern is calculated to determine if a spike exists.
Due to the intra-subject variability [27] and artifacts [28], these
approaches might be vulnerable to features that do not match
the pre-defined patterns.

With the recent development in artificial intelligence, many
machine and deep learning-based approaches have been pro-
posed, where peak features are extracted from sampled time
windows for training and testing a model. For machine
learning techniques, such as Ant K-Means Clustering [23]
and Support Vector Machines [24], feature engineering is an
essential yet tedious process that has a vital effect on the

capability of the system. This process is eased in DL meth-
ods [25], [26], [29], as features are automatically generated in
multilevel layers of a convolutional neural network. Although
the obtained results from those methods are promising, they
require a large amount of correctly labeled data samples.

It can be seen that existing peak detection algorithms are
either based on conventional methods with a priori knowl-
edge about the data and user-input parameters or DL algo-
rithms with a dataset of high quality and large training
samples. To deal with the parameter dependence in the former,
we propose an automatic peak detection approach and apply
it on PEN determination in cognitive conflict processing.
An adaptation of a recent effective technique for local extrema
extraction, the Summit Navigator (SN) [30], is developed
for the calculation of PEN candidates. A ranking scheme
based on clustering is proposed to select the most outlying
candidate from the determined ones, mimicking neurology
experts’ decision in PEN selection. The proposed approach
is then validated on the dataset obtained from a 3D object
selection task [3]. The major contributions of this work are
summarized as follows:
• The adaptation of a local maxima extraction algorithm for

image segmentation to EEG signal processing, the effec-
tiveness of which have been verified through extensive
experiments.

• An innovative ranking scheme based on clustering com-
bining with the adapted SN for PEN detection in cognitive
conflict processing.

• The leverage of the non-parametric feature to minimize
the dependence on user interference and increase the
adaptability of the proposed approach to the variability
in EEG signals.

The rest of the paper is as follows. The proposed method
using SN and Clustering-based Ranking (CR) is described in
Section II. Experimental results and discussion are respectively
presented in Sections III and IV. Finally, the conclusion is
drawn in Section V.

II. METHODOLOGY

A. Multi-Scale Peak Searching

Due to the difference in subjects’ behavior and experimental
paradigms, PENs have been observed and extracted in similar
but not identical time frames. For instance, it has been pointed
out in [31] that a PEN is detected from 100 to 200 ms when
variations in the motor output and visual input are noticed.
On the other hand, the PEN is discovered around 50-150 ms
in a virtual object selection task [12], or 100-300 ms in a haptic
immersion study [32]. While a correct detection of PENs
is of importance for further analysis, the selection process
is quite straightforward: the PEN can be extracted from the
concerned time window as its minimum [32], or as the mean
of the minimum and its nearest neighbor [12]. Despite its
simplicity and effectiveness, the following concerns have not
been addressed in this type of approach: (i) the requirement of
a pre-defined time window, and (ii) the appearance of multi-
minimums in the concerned range.
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Fig. 2. Pipeline of the SN-based peak determination.

Here, we propose to extract peaks in the signal in a
multi-scale manner, covering the time windows where the
appearance of PENs have been reported. Specifically, PENs
will be analyzed in multiple time windows [tsi , tei ], where
�ts = {50, 75, 100}, and �te = {250, 225, 200}. A novel peak
detection technique based on SN is also developed to deal
with the multi-minimums in each time window. SN is initially
proposed in [30] for image segmentation purposes by search-
ing for peaks and valleys from the histogram of the input
image. The technique consists of two stages: peak searching
and peak merging. While the focus of the first stage is to
detect dominant peaks from the signal, that of the second
stage is to remove the false positives from the searching phase
based on a uni-modal hypothesis. Although the first stage is
non-parametric, a fixed threshold is required in the second
stage for the removal of false positives. Since the goal of this
study is an automatic peak detection approach where no input
is required, only the first part of SN is inherited for PEN
candidate detection, and a ranking scheme is then proposed to
select the most appropriate PEN. The PEN candidate detection
process in each time window is described as follows.

Let yi be the pre-processed signal in the i -th time window
Wi with ni initial negativities stored in �Tni . Here, a data point
is defined as an initial negativity if it is more negative or
equal to that of its nearest neighbors. A set �Pi of dominant
negativities is calculated based on two indicators, namely the
offset distance and observability index as described in [30].
For each initial negativity t( j ), 2 ≤ j ≤ ni , possible observing
locations are formulated as:

�L( j ) = t( j )�e j−1 − (y( j )�e j−1 ◦ ��t
( j )

)� ��y
( j )

, (1)

where �eni−1 is the ( j − 1)-element vector of all ones. The
differences between the initial negativity t( j ) and its previous
neighbors in terms of location and amplitude are stored
respectively in two vectors ��t

( j )
, ��y

( j )
, which are defined as

��t
( j ) = t( j )�e j−1 −

[
t(1) t(2) . . . t( j−1)

]
, (2)

��y
( j ) = y( j )�e j−1 −

[
y(1) y(2) . . . y( j−1)

]
, (3)

in which ◦ and � are respectively the element-wise multipli-
cation and division operators, with any zero element of ��y j
being substituted by some small number ε. The best observing
location, L∗, is then given by:

L∗ = min
ni
{min

j
�L( j )}. (4)

The observability indices of all negativities in Wi calculated
based on L∗ is then determined as:

�Bi = �Yi � ( �Tni − �L∗ni
), (5)

where �Yi is the vector of voltage values of all elements in �Tni ,
and �L∗ is the ni vector of all L∗s. Based on the indices cal-
culated in Eq. (5), the first dominant negativity is determined
at k if Bk is the maximum value among {B1, B2, . . . , Bk+1}.
Once the first dominant negativity is located, the search will
be re-implemented on the remaining part of the list, starting
from k + 1 to find the next dominant one. This process runs
recursively until k reaches ni − 1. The ni th negativity is also
identified as dominant if its index Bni is greater than that of the
neighbor ones. The found dominant negativities in Wi is then
saved in �Pi . The pipeline of the SN-based peak determination
is illustrated in Figure 2.

B. Clustering-Based Ranking (CR) for
PEN Determination

The dominant peaks found in each of the three selected
time windows are then fused to get a final list of PEN
candidates, i.e.

�C =
3⋃

i=1

�Pi . (6)

As mentioned in [12], the PEN is followed by an error
positivity (Pe) around [250, 350] ms. Hence, the distance from
the PEN to the center of the window containing the Pe is an
important factor to identify the most appropriate candidate.
Besides, other features such as the width and amplitude of the
candidates are reported as essential factor characterizing the
error related potentials [10], [33]. Here, a candidate should
be negative and broad enough while being located not too far
from the Pe interval to be considered as PEN by a neurologist.
To implement this idea, a clustering-based ranking approach
for PEN determination is proposed and illustrated in Figure 3.
The idea behind this approach is to rank the candidates based
on their dissimilarity to the remaining ones and determine
the most outlying observation as PEN, taking into account
essential features required for a manual selection process.



DINH et al.: EEG PEAK DETECTION IN COGNITIVE CONFLICT PROCESSING 1551

Fig. 3. Pipeline of the PEN selection approach.

Here, each candidate ck ∈ �C is characterized by its ampli-
tude ak , width wk , and distance sk to the [250, 350] ms and
represented in the parameter space as

ck = (ak, wk, sk). (7)

Let m be the number of PEN candidates determined in
Eq. (6). For each candidate ck , a cluster �Ck formed by
the remaining (m − 1) peaks in �C while disregarding ck is
defined as

�Ck = �C\{ck}, (8)

The coordinates (aμk , wμk , sμk ) of the cluster center, μk , in the
parameter space is calculated as

μk = 1

m − 1

∑

j∈ �Ck

(a j , w j , s j ). (9)

The Euclidean distance from the candidate ck to the cluster
center μk is then determined as

dk =
√

(ak − aμk )
2 + (wk − wμk )

2 + (sk − sμk )
2. (10)

Candidates in �C are then ranked based on their distance dk

to the corresponding cluster center μk , and the one with the
highest value among the set of cluster distances �D is selected
as PEN. Figure 4 demonstrates the processing steps of the
proposed clustering-based ranking approach where 4 candi-
dates are identified respectively at 72, 112, 148, and 232 ms
(Figure 4(a)). For convenience, those candidates are denoted
from 1 to 4 in Figure 4(b) according to the increasing order of

Algorithm 1 Clustering-Based Ranking
Input: m � number of PEN candidates
Output: P E N
1: P E N ← None
2: max Dist ← 0
3: for k = 1→ m do
4: Form cluster �Ck as in Eq. (8)
5: Calculate distance dk as in Eq. (10)
6: if dk > max Dist then
7: max Dist ← dk

8: P E N ← ck

9: end if
10: end for

their locations. Figure 4(b) also presents corresponding cluster
distances, and highlights the determined PEN in red.

This approach is, however, impacted by trials where a peak
is much less negative than the remaining ones. In that case,
the most insignificant peak is featured by the highest cluster
distance and hence could be determined as PEN. However,
candidates with the least negative amplitude are less likely
to be selected by the neurology expert. To automatically
disregard this most insignificant peak, the candidate with the
highest cluster distance but the least amplitude is classified
as a false positive. The least value of the calculated cluster
distances is also assigned to this false positive so it is no
longer identified as PEN. This False Positive Removal (FPR)
mechanism is illustrated in Figure 5 where candidates 1, 2,
3 are respectively found at 60, 100, and 124 ms. According to
the initial ranking in Figure 5(b), candidate 3 has the highest
distance to the remaining one as per Eq. (10) but should
not be selected as PEN due to its close to zero amplitude
(represented as black in Figure 5(a)). This FP (represented as
black in Figure 5 (b)) is then removed by replacing its distance
by the least value among the found candidates (i.e. that
of candidate 1) as illustrated in Figure 5(c). After updating
the candidates’ distance values, the correct PEN is detected
and represented in red in Figure 5(a) and (c). The pseudo-
code of the clustering-based ranking algorithm is presented
Algorithm 1.

C. Dataset and Evaluation Metrics

The dataset used in this paper was obtained in [3] based
on a virtual 3D object selection task. After applying a 0.5 Hz
high-pass and a 50Hz low-pass finite impulse response (FIR)
filters on the obtained EEG signals, a down-sampling to
500Hz is implemented for data reduction. Independent com-
ponent analysis [34] is then employed for the removal of eye
movement and muscle activity artifacts where the remain-
ing independent components are projected back to selected
channels for further analysis. The time window for epochs
extracted from the processed signals is 200 ms prior to the
event onset to 800 ms after the response. The dimension
of the obtained data where cognitive conflict occurred is
12 subjects × 62 channels × 375 data points × 2375 epochs.



1552 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 4. Demonstration of the proposed clustering-based ranking approach on an epoch with: (a) peak candidates, and (b) peak ranking.

Fig. 5. Demonstration of the proposed FPR: (a) peak candidates, peak ranking (b) before and (c) after the removal of the false positive.

As suggested in [3], the signal at the electrode location
FCz is employed to evaluate the performance of comparative
algorithms in this study. The PEN location in each epoch was
labeled by a neurology expert. For quantitative comparison,
the sensitivity (Sen), specificity (Spe), Accuracy (Acc), and
Kappa score (K ) are employed and given as follows:

Sen = TP

TP+ FN
, (11)

Spe = TN

TN+ FP
, (12)

Acc = TP+ TN

N
, (13)

K = Acc− Pe

1− Pe
. (14)

Here, TP and TN are respectively the number of correct
detection of PEN and non-PEN while the number of incorrect
detection of that are respectively represented by FP and FN,
and N is the total number of classifications. The Kappa score is
measured as a function of the actual and the expected accuracy,
Acc, and Pe, where

Pe = Ppos + Pneg , (15)

Ppos = (TP+ FN)× (TP+ FP)

N2 , (16)

Pneg = (TN+ FP)× (TN+ FN)

N2 . (17)

III. RESULTS

A. Comparative Algorithms

In this section, experiments on the dataset obtained from the
study on cognitive conflict using a 3D object selection task [3]
was carried out to evaluate the effectiveness of the proposed
approach in cognitive conflict processing, where the following
peak detection approaches are selected for comparison:
• Morphology-based Approach (MA) [19]: the peaks are

extracted from the EEG signal by using a combination of
two morphological filters: opening-closing and closing-
opening, where a triangle structure element is selected to
optimize the performance of the transform.

• Derivative-based Approach (DA) [21]: potential peaks are
compared with their neighbors in a trimmed time series,
where a magnitude constraint is required to select the
most appropriate ones.

• Pattern Matching-based Approach (PMA) [22]: EEG
peaks are defined by matching the characteristics of a
trimmed time series with a pre-defined pattern where the
similarity index and amplitude thresholds are adjustable
thresholds for peak selection.

• Normalized Cumulative Energy Difference (NCED) [35]:
EEG peaks are extracted from noisy signal based on the
energy difference between a spike and a noise of the
same length. The normalized cumulative energy is first
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TABLE I
ACCURACY EVALUATION

calculated then a cut-off threshold is applied for peak
selection.

• Averaging-based Approach (AA) [13]: in this study, PEN
peaks are selected as the minimum amplitude in the
search window and characterized as the mean of the local
minimum and its nearest neighbors.

• Commercialized Approach (CA): peaks are extracted
from the signal background using the built-in function
findpeaks in MATLAB R2020a.

For each epoch, data points within the interested range that
are more negative than their nearest neighbors are identified
as peak candidates as illustrated in Figures 4 and 5. Since
the number of peaks returned by each comparative approach
is different due to their specific searching mechanism, the
following setting was applied for a fair comparison. For a
correct detection of each participated algorithm, its number of
TN was n − 1 and FP = FN = 0, where n was the number
of found candidates in the concerned epoch. For an incorrect
detection, TP, TN was assigned respectively as 0 and n − 2,
where FP = FN = 1. For comparative approaches that return
more than one candidates (DA, AA, SN), the most negative
one was identified as PEN. The experiments were executed by
using MATLAB R2020a on an Intel(R) Core(TM) i5-6200U
CPU @2.30 GHz with 64 bit Windows 10. The performance
of comparative algorithms are reported and discussed in the
next sections.

B. Results

1) Accuracy Evaluation: Performance of comparative algo-
rithms is reported in Table III. Notably, SNCR outperforms
other algorithms in terms of sensitivity, specificity, and
accuracy, and Kappa score, indicating a high agreement
between the expert’s selection and the calculated PEN. Out of
2375 epochs, SNCR only misdetects 95 PENs from 11186 can-
didates. The importance of the FPR mechanism is also
highlighted since a significant drop in sensitivity (−0.1385),
specificity (−0.0373), and accuracy (−0.0588) occurs when
FPR is removed from the proposed approach (SNCR w/o
FPR). The performance of SN is also evaluated in this
experiment where the threshold for the peak merging phase is
selected at 0.45 as suggested in [30]. As reported in Table I,

results returned by SN when the merging phase is involved
is close to that of CA when searching for the most isolated
candidates. Notably, when assessing the efficiency of SN
with only the searching phase where the observability index
(Eq. (5)) is employed as a selection criterion, performance
metrics {Sen, Spe, Acc, K } of SN have significantly dropped
to {0.8261, 0.9531, 0.9262, 0.7792}. This has confirmed the
advance of SNCR against the original algorithm in not only
the accuracy in PEN selection but also in the automation of
the process since no parameter is required.

As a commercialized approach, CA provides researchers
with various options related to the magnitude or isolation level
of a peak to specify the candidates to be detected. In the former
group, the threshold of the absolute magnitude or the relative
difference of that between a peak and its adjacent neighbors
are taken into account. These mechanisms are similar to that
of DA and AA and hence not reported in this section. The
latter measures the isolation level of a peak by only taking
into account significant candidates that are separated by at
least a minimum distance and ignoring the smaller ones.
When identifying the most isolated candidate as PEN, the best
performance of CA, i.e. ranked second among comparative
algorithms, is achieved when the minimum distance threshold
is set at 0.95 × (max(t)−min(t)) where t is the timestamps
of the input signal.

On the other hand, PMA and MA returns promising results
in all evaluation metrics. The performance of MA is dependent
on the length L of the structuring element and achieves the
best in this dataset when L is set to 49. Due to the dependence
of PMA on the similarity between the interested peak and
the pre-defined pattern as well as the threshold required for
the peak magnitude, different parameter settings have been
conducted for a fair comparison. Here, a candidate k is
only identified as PEN if the similarity index Ck , magnitude
difference Ak , or the product Ck × Ak of those indices is
the highest among the existing ones. In this experiment, the
best performance of PMA is achieved and reported when the
highest similarity condition is applied. The lower performance
of MA and PMA compared to SNCR can be explained by
the focus of the approaches on candidates with high degree of
symmetry that does not really match with the variety of signals
obtained.

NCED, DA and AA return acceptable results, where that
of DA is adjustable by changing the threshold difference �
between a candidate and its surrounding. The higher value
� is assigned, the more selective the approach is, i.e. less
results can be returned from the test epochs. For instance,
when � is set to 5 or 10 μV, DA can only find peaks on
2198 or 1550 epochs, respectively. By the default setting
� = (max(y) − min(y))/4, where y is the input signal,
DA performs well on all 2375 epochs, the results of which
are reported in Table III. Since the PEN selection mechanism
of DA is set to be identical to that of AA, which treats the
most negative candidate more favorably, the results returned by
these techniques are similar. On the other hand, a threshold is
required on the first differential of the normalized cumulative
energy in NCED to determine the most significant peaks.
In this experiment, NCED returns its best average performance
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TABLE II
COMPUTATIONAL EFFICIENCY EVALUATION

if the threshold is set equal to the double of the mean value
of the smoothed signal.

2) Computational Efficiency Evaluation: The proposed
algorithm consists of two stages, Multi-scale Peak Search-
ing (MPS) and Clustering-based Ranking for PEN Determina-
tion (CRPD), the average processing time per epoch (PTPE)
of which is 3.8193 ms and 0.2383 ms, respectively. The
computational efficiency in terms of PTPE and number of
epoch per second (EPS) of the proposed and other comparative
algorithms is reported in Table II. FPR, although plays an
essential part in boosting the accuracy of SCR, takes only
0.0056 ms in average in processing an epoch. In a comparison
with the original algorithm SN [30], SNCR is faster in terms
of PTPE and has a higher EPS. Among the comparative
algorithms, AA is the most computationally effective due to
its simple searching mechanism while the morphology-based
approach, MA, returns the least EPS. Although not being
ranked as the fastest algorithm, an unoptimized version of
SNCR has shown the capability of processing more than
245 epochs per second. This trait is important when imple-
menting the algorithm on a real-time BCI system, where other
stages such as pre-processing and classification are involved
and data are fed from multiple channels.

C. Further Analysis

1) Number of Time Window: As discussed in Section II-A,
the multi-scale searching mechanism is employed in this paper
to cover the time windows where the occurrence of PENs
have been reported. Besides, results of the SN-based peak
determination are relied on the density and amplitude of the
local data points. Hence, the width of and distance between
the designed time windows should be sufficient to contain
multiple peak candidates and increase the chance to detect
the correct PEN. Applying a dense time window distribution
on the interested range would increase the computational cost
while too few time windows could lead to a mis-detection of
a candidate. In practice, we have found that three windows of
size 100, 150, and 200 ms work well on the analyzed data.

2) Choice of Clustering Algorithm: Since the ranking of
the candidates is based on the grouping nature of the input
data, the selection of the clustering algorithm is important.
The desired algorithm should be effective in finding the

TABLE III
PERFORMANCE OF SNCR USING DIFFERENT DISTANCE METRICS

dissimilarity in the observations and straightforward in imple-
mentation. Equally important is the number of adjustable
parameters required for the selected algorithm. More tunable
parameters could increase the detection accuracy but also
the bias towards the training data. While such algorithms as
BIRCH [36], DBSCAN [37], or CFSFDP [38] are well-known
for their effectiveness, at least two parameters are required
to estimate the number of cluster and the cluster density.
On the other hand, only the former is needed in k-means
clustering [39]. Hence, k-means clustering is selected for our
approach. As described in section II.B., the candidates are
ranked based on their distance to the cluster formed by the
remaining ones, i.e. the number of cluster required for the
k-means algorithm in each iteration is fixed at one.

3) Distance Metric: To evaluate the performance of the
proposed SNCR using different distance metrics, Euclidean,
Manhattan, Chebychev, Cosine, and Correlation distances are
employed, the results of which are reported in Table III. It is
significant to see that Euclidean, Manhattan, and Chebychev
distances are more favorable in the proposed clustering-based
ranking stage, taking into account the magnitude differences
in the feature space coordinates. On the other hand, SNCR
performs poorly with distances that consider the angle differ-
ence or the correlation between the feature vectors. Among the
comparative measures, the Euclidean distance is selected due
to the best results returned in all accuracy evaluation metrics.

IV. DISCUSSION

In the previous section, the performance of the proposed
approach has been evaluated and compared with related peak
detection algorithms. The out-performance of SNCR over
participated algorithms stemmed from the following: (i) The
clustering algorithm is designed based on neurology expert
knowledge in PEN selection where the dissimilarity of a
candidate to the remaining ones is highlighted by a cluster
distance; (ii) the employment of SN in the peak detection
and FPR in the false-positive removal process is essential
to remove insignificant peaks and false PEN, respectively.
With the aim of developing an automatic peak detection
for cognitive conflict processing, the non-parametric feature
has been emphasized in the approach. Should the FPR be
processed more than once in each epoch, the performance
of SNCR can be improved in some cases. However, a pre-
defined threshold is required to specify the number of FP. The
automation of the approach, in this case, can no longer be
maintained.
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Fig. 6. Examples of false positives returned by MA, DA, PMA, NCED
AA, and CA.

Regarding the performance of the comparative approaches,
as the selection mechanism of those is all based on a thresh-
olding manner (DA, AA, MA, PMA, NCED, CA), combining

with the similarity to a pre-defined pattern (PMA), or the
isolation level (CA), these approaches return false positives
when PEN is not the most negative signal in the concerned
range as illustrated in Figure 6. Due to the high intra- [27]
and inter-subject variability [33], it is challenging to reach
an acceptable result with a set of pre-defined parameters.
Besides, it has been reported in [12] that the PEN amplitude
varied according to the task completion time, which is not
well handled by the fixed thresholding mechanism in those
approaches. Here, the combination of multiple peak features,
in a non-parametric manner has verified the effectiveness of
SNCR over the comparative techniques.

V. CONCLUSION

This paper has introduced a novel EEG peak detection
approach in cognitive conflict processing consisting of two
stages: multi-scale peak searching and clustering-based rank-
ing. The formal is inherited from an image segmentation
technique [30] for candidate calculation, followed by a ranking
scheme for PEN determination. Experimental results on a
cognitive conflict dataset have verified the advance of SNCR
over other EEG and time-series signal processing techniques
in terms of accuracy and level of agreement with a neurology
expert’s selection. The proposed algorithm is developed with a
minimized dependence on the parameter used where only the
number of time window for the first stage is required. This trait
is also essential for the development of promising applications
in EEG signal processing, where the intra- and inter-subject
variability is not avoidable. As error-related potentials can
be exploited to improve the performance of BCIs [10], [40],
the dissimilarity between conflict and non-conflict peaks will
be investigated in our future work for the enhancement of a
communication assistance system.
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