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Abstract. This paper presents a novel bio-inspired algorithm inspired by starlings’ behaviors 

during their stunning murmuration named starling murmuration optimizer (SMO) to solve 

complex optimization problems. The SMO introduces a dynamic multi-flock construction and 

three new search strategies, separating, diving, and whirling. The separating search strategy 

aims to enhance the population diversity and local optima avoidance using a new separating 

operator based on the quantum harmonic oscillator. The diving search strategy aims to explore 

the search space sufficiently by a new quantum random dive operator, whereas the whirling 

search strategy exploits the vicinity of promising regions using a new operator called cohesion 

force. The SMO strikes a balance between exploration and exploitation by selecting either a 

diving strategy or a whirling strategy based on the flocks' quality. The SMO was tested using 

various benchmark functions with dimensions 30, 50, 100. The experimental results prove that 

the SMO is more competitive than other state-of-the-art algorithms regarding solution quality 

and convergence rate. Since the most appropriate application of metaheuristic algorithms is in 

optimizing engineering problems, after proving the SMO's sufficiency for global optimization, 

it is also applied to solve several mechanical engineering problems in which results 

demonstrate that it can provide more accurate solutions. A statistical analysis shows that SMO 

is superior to the other contenders. 

 

Keywords: Optimization algorithm, Metaheuristic algorithm, Bio-inspired algorithm, Swarm 
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1. Introduction 

Over the last decade, many metaheuristic algorithms have been proposed to solve real-

world optimization especially for mechanical engineering problems [1-6] as the most 

application of these algorithms [7, 8]. The metaheuristic algorithms can be classified into 

different levels of classification based on the perspective and the source of inspiration [9]. 

When the focus and perspective are about the trajectory of the search path, they can be 
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classified into two classes: trajectory-based and population-based [9-11]. Trajectory-based 

algorithms are more exploitation-oriented and start with just a single solution. The population-

based algorithms benefit from the multiple agents' cooperation by sharing their experience to 

bypass the local optima and converge to the promising areas accurately. On the other 

perspective, the metaheuristic algorithms can be classified based on their sources of inspiration 

into four major classes [9]: swarm intelligence (SI) based, bio-inspired (but not SI-based), 

physics/chemistry-based, and others. SI-based algorithms are a subset of bio-inspired 

algorithms, and bio-inspired (but not SI-based) algorithms are a subset of nature-inspired 

algorithms (SI-based ⸦ bio-inspired ⸦ nature-inspired) [9].  

SI-based algorithms are fundamentally inspired by real-life behaviors of diverse species in 

nature as the most significant problem solver. These algorithms use multiple agents to share 

information flow through the population, so that self-organization, co-evolution, and 

parallelization lead the search process effectively. Based on the behaviors of diverse species 

used by SI-based algorithms, they can be divided into four groups: insects, terrestrial animals, 

birds, and aquatic animals. The algorithms of the first group mimic self-organization and 

collective foraging behaviors. The well-known algorithms of this group are ant colony 

optimization [12, 13], the artificial bee colony (ABC) algorithm [14], best-so-far ABC 

algorithm [15], moth-flame optimization (MFO) [16], grasshopper optimization algorithm 

(GOA) [17], pity beetle algorithm (PBA) [18], butterfly optimization algorithm (BOA) [19], 

and mayfly algorithm (MA) [20]. A significant stream of algorithms has emerged by inspiring 

terrestrial animals' behaviors such as searching for prey, information sharing, herd leadership, 

prey encircling, and attacking. These algorithms are utilized using the social communication 

mechanism, which transfers information about promising reigns in the search space between 

members of the population. The lion pride optimizer (LPO) [21], grey wolf optimizer (GWO) 

[22], elephant herding optimization (EHO) [23], spotted hyena optimizer (SHO) [24], squirrel 

search algorithm (SSA) [25], gorilla troops optimizer (GTO) [26] and fox optimization 

algorithm (RFO) [27] are some terrestrial animal-inspired algorithms.  

The third group of SI-based algorithms mimics birds' behaviors, such as nesting, feeding, 

mating, immigrating, protecting against predators, and interacting with others. The particle 

swarm optimization (PSO) [28] algorithm is the most well-known paradigm in this group, 

which has been developed for many applications [29]. Some of the algorithms developed using 

birds' behaviors are comprehensive learning particle swarm optimizer (CLPSO) [30], bird 

swarm algorithm (BSA) [31], harris hawks optimizer (HHO) [32], conscious neighborhood-

based crow search algorithm (CCSA) [33], golden eagle optimizer (GEO) [34], African 



vultures optimization algorithm (AVOA) [35], quantum-based avian navigation optimizer 

algorithm (QANA) [36], and artificial hummingbird algorithm (AHA) [37]. The search patterns 

of instinctive behaviors in an aquatic animal, such as collective movement without the leader, 

searching for food, immigrating, mating, prey encircling, dealing with dangers, and interacting, 

provide the most inspiration in the fourth group of SI-based. This group has introduced some 

well-known algorithms such as artificial fish swarm algorithm (AFSA) [38], krill herd (KH) 

[39], whale optimization algorithm (WOA) [40], salp swarm algorithm (SSA) [41], yellow 

saddle goatfish algorithm (YSGA) [42], sailfish optimizer (SFO) [43] and jellyfish search (JS) 

[44].  

Bio-inspired (but not SI-based) algorithms do not use directly the swarming behavior [14-

17]. The most well-known bio-inspired (but not SI-based) algorithms are genetic algorithms 

(GA) [18], differential evolution (DE) [19], evolutionary strategy (ES) [20], gene expression 

programming [21], and biogeography-based optimizer (BBO) [22]. Physics/chemistry-based 

algorithms are proposed based on the mathematical model inspired by physical and chemical 

laws. The most popular algorithms in this class include the big bang–big crunch [24], optics 

inspired optimization (OIO) [25], henry gas solubility optimization (HGSO) [26], quantum 

HGSO (QHGSO) [27], arithmetic optimization algorithm (AOA) [28], and atom search 

optimization (ASO) [29]. In the fourth class, metaheuristic algorithms are developed based on 

a wide range of diverse sources away from nature such as social, and emotional [9]. The 

imperialist competitive algorithm (ICA) [45], social emotional optimization algorithm (SEOA) 

[46], anarchic society optimization (ASO) [47], league championship algorithm (LCA) [48], 

mine blast algorithm (MBA) [49], volleyball premier league algorithm (VPL) [50], political 

optimizer (PO) [51], and heap-based optimizer (HBO) [52] are prominent and recent 

developments of the fourth class. Fig. 1 shows the classification of the metaheuristic algorithms 

concentrated on the SI-based class. 

The SI-based algorithms have been applied to solve a variant of continuous optimization 

problems [14, 32]. They can be adapted for discrete issues [4], feature selection problems [53-

58], and intelligent planning [6, 59]. However, many of them are not powerful enough to solve 

a wide range of complex optimization problems because they lack a meaningful search 

strategy, making several weak points. Significantly, these algorithms suffer from low 

exploitation and exploration, inadequate balancing, losing diversity, and lack of scalability and 

robustness [60, 61]. Exploration and exploitation are the most important features for attaining 

success in solving optimization problems [62]. The poor exploration can be enhanced by 

spreading the search agents within different regions to discover a diverse of promising areas. 



The balance between exploration and exploitation abilities is a trade-off problem for SI-based 

algorithms. Usually, the search philosophy of the algorithm is an efficient aspect that strikes 

this balance. Many search strategies have been proposed to achieve the balance between 

exploitation and exploration with the increasing complexity of optimization problems. More 

recently, the conscious neighborhood-based crow search algorithm (CCSA) [33] was 

established to consciously select the local and global search strategies to strike a balance for 

complex optimization problems. The canonical GWO algorithm suffers from a lack of effective 

search strategies and imbalance between exploration and exploitation abilities, which results 

in loss of the population diversity and tending to local optima. Hence, many GWO variants 

[63-65] were proposed to cope with the GWO's weaknesses.  

 

 

 

Fig. 1. A classification of metaheuristic algorithms. 

To develop the right optimizer algorithms, different complexities of problems [8] such as 

high dimensionality, non-linear constraints, discrete and mixed type search spaces, and non-

differentiability objective function should be considered [66]. Although many metaheuristic 

algorithms have been proposed, according to the no free lunch theorem the universally best 

optimizer does not exist that can cover every kind of problem and be superior to all optimizers 

[67]. Thus, different types of metaheuristic algorithms are needed to approximate the best 

solutions for different optimization problems, which is one of the underlying motivations for 

researchers to improve the current metaheuristic algorithms or introduce novel approaches. On 



the other hand, metaheuristic algorithms estimate the global optimum of a problem and they 

do not guarantee to find its exact solution. Therefore, new metaheuristic algorithms are 

introduced to make better estimations especially in solving complex problems. 

In this study, a new population-based swarm intelligence algorithm, namely starling 

murmuration optimizer (SMO) inspired by the murmuration phenomenon is proposed in which 

huge flocks of starlings turn, twist, dive, and swirl across the sky in beautiful shapes. Some 

flocks of starlings intermittently split and then recombine in a highly synchronized manner to 

protect themselves in this stunning phenomenon, as further explained in Section 2. The 

proposed SMO models the starling murmuration using a new dynamic multi-flock 

construction.  It introduces separating, diving, and whirling search strategies to enhance the 

search strategy for solving complex problems. First, a portion of the starlings is randomly 

selected and moved to another region using the separating search strategy. Then, the diving 

search strategy explores the search space by a new quantum random dive (QRD) operator, 

whereas the whirling search strategy uses a new cohesion operator to exploit the vicinity of 

promising regions. The diving and whirling search strategies are selected by computing each 

flock's quality, which causes it to strike a balance between exploration and exploitation during 

the optimization process.  

The SMO algorithm was comprehensively evaluated by a multifarious combination of 

benchmark test functions, including CEC 2013 [68], CEC 2014 [69], and CEC 2017 [70] with 

different dimensions 30, 50, and 100 as the complex problems. Since the most appropriate 

application of metaheuristic algorithms is in optimizing engineering problems [7], the SMO is 

applied to solve several mechanical engineering problems after proving its sufficiency for 

solving global optimization.  The most of engineering problems are taken from benchmark test-

suite CEC 2020 [71] including tension/compression spring design, pressure vessel design 

(PVD), three-bar truss design, welded beam design (WBD), gas transmission compressor 

design (GTCD), Himmelblau’s function, hydro-static thrust bearing design, optimal design of 

industrial refrigeration system, and multiple disk clutch brake design. The SMO and 

comparative algorithms also compete on the crashworthiness design to investigate the vehicle 

side-impact [72]. The SMO algorithm was also statistically analyzed by the Wilcoxon signed-

rank sum [73] and mean absolute error (MAE) tests. All experimental, real-world problems 

and statistical results were compared to some state-of-the-art algorithms, which further proved 

the superiority of SMO. 



2. Inspiration 

A murmuration of starlings is one of nature's most magnificent displays in which a mass of 

several flocks containing various starlings congregate and dive in the sky above their roost for 

about half an hour [74]. During this time, as Fig. 2 shows, the starlings continuously whirl and 

form intricately coordinated patterns of flight without colliding. Habitually, a murmuration 

behavior is sparked towards dusk by a predator's presence, like a peregrine falcon or hawk. The 

flocks of starlings are intermittently split and recombined in a highly synchronized manner in 

the murmuration. The starlings also regularly change their direction of motion to dodge 

predators, such as falcons and sparrow hawks. Nonetheless, the slightest uncertainty in this 

directional change may decrease cohesion between the flocks and push many starlings astray, 

where the predator is ready to prey [75]. 

To achieve such a synchronized murmuration, the certain whirling, direction changing, 

splitting, and recombining are propagated across the flocks from one starling to another by 

optimized decision making. Each starling tends to align its direction of motion with its 

neighbors without colliding and flying as close as possible. Accordingly, the neighbors of a 

starling in the flocks are frequently changed, which produces the dynamic neighborhood and 

different topologies in the murmuration. These optimized behaviors inspired us to propose the 

starling murmuration optimizer (SMO), a novel, bio-inspired algorithm. The following sections 

describe the model and algorithm in greater detail. 

 

 

3. Starling murmuration modeling 

Using the above-described behaviors and inspiration, the starling murmuration M is 

modeled using a dynamic multi-flock construction, in which each starling does not belong to 

 

Fig. 2. A synchronized murmuration behavior of starlings [76] 



the same flock during iterations. Moreover, three new search strategies – diving, whirling, and 

separating – are defined, whereby the starlings can explore the search space broadly and exploit 

promising zones more efficiently. By respecting the nature of murmuration, the separating 

search strategy uses a new operator named quantum harmonic oscillator (QHO) to enhance the 

diversity of the starlings’ population and to discourage the premature convergence problem. 

The starlings navigate in the broader space using the diving search strategy based on a new 

operator, named quantum random dive (QRD), while the whirling search strategy aims to 

exploit the vicinity of a promising area using a new operator called cohesion force (CF). Table 

1 shows the parameters' description used in the following sections.  

 

Table 1 The nomenclature used in the SMO algorithm. 

Parameter  Description 

S A finite set of N distinct starlings. 

Xi(t) The current position of starling si in iteration t. 

F(Xi(t)) Fitness of starling si in iteration t. 

XG (t)  The global position in iteration t. 

XN (t) A random neighbor of starling si in iteration t. 

R  Representative set of starlings. 

Sf (t)  Fitness-ascending-ordered representation of starlings in iteration t. 

fi The i-th flock. 

Qq(t) Quality of the flock fq in iteration t. 

μQ(t) The average quality of flocks in iteration t. 

|𝜓(𝑡 + 1,𝑋𝑖)⟩ The next position of the starling si. 

|𝜓(𝑅𝐷)⟩ A representative member in the diving search strategy. 

|𝜓𝑈𝑝(𝑋𝑖)⟩  Upward quantum dive of starling si. 

|𝜓𝐷𝑜𝑤𝑛(𝑋𝑖)⟩ Downward quantum dive of starling si. 

XRW (t) A representative member in whirling search strategy. 

Ci (t) Cohesion operator in the iteration t. 

𝜉(𝑡) Cohesion coefficient in the iteration t. 

Psep Separated population in the separating search strategy. 

𝒬1(𝑦) Separation operator. 

 

Suppose S= {s1, s2…sN} is a finite set of N distinct starlings distributed by a uniform 

random distribution in a D-dimensional search space. Each starling si in the current iteration t 

is denoted by a 2-tuple si (t) = (Xi (t), Fi (t)), where Xi (t) = [xi1, xi2 ... xiD] and Fi (t) are the 

position and fitness value of starling si respectively. Starlings form the murmuration M using 

dynamic multi-flock defined in Definition 2. In the murmuration M, a portion of the starling is 

separated by Eq. (1) to enhance the population diversity using a separating search strategy. 



Then, each constructed flock flies using diving or whirling search strategies based on 

Definition 3. 

3.1 Separating search strategy (Diversity) 

 In a murmuration, some starlings are usually separated from their flocks, which is our 

motivation to model a separation search strategy to provide diversity. A portion of the starlings 

is randomly selected from the starling population S to construct a separated population or Psep. 

For each iteration t, the number of Psep is computed by Eq. (1), and some dimensions of starlings 

are randomly selected and changed using the separating search strategy defined by Eq. (2). 

Where XG (t) is the global position obtained so far; and Xŕ (t) is selected from a proportion of 

the best starlings and separated population, and Xr (t) is randomly selected from a population. 

The separating search strategy also uses a new operator 𝒬1(𝑦) called separation defined by 

Definition 1.  

 

Definition 1 (Separation operator). The separation operator is applied to maintain the 

population diversity based on the quantum harmonic oscillator shown in Eq. (3) with n=1. In 

the quantum harmonic oscillator, 𝛼 = (
𝑚×𝑘

ℏ
)

1

4
, where m is the particle's mass, k is the strength, 

and the parameter h is Planck’s constant [77]. The function Hn is the Hermite polynomial, 

which shows the multiple possible eigenstates existing in the system with integer index n, and 

y is a random number from the standard normal distribution.  

𝒬1(𝑦) = (
𝛼
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Definition 2 (Dynamic multi-flock construction). Let Sf (t) = {sf1, sf2… sfi… sfŃ} be a fitness-

ascending-ordered representation of the set S in the iteration t based on Eq. (4), where sfi is the 

fitness value of starling si and Ń = N - Psep. The representative set R is built using Eq. (5), 

including k first elements of the set Sf, which are the k best starlings or solutions in the iteration 

t. A dynamic multi-flock is defined using a particular partitioning in which the set Sf is 

partitioned into k non-empty flocks f1…fk. By this partitioning, each element of representative 

set R= {R1… Rk} is assigned as the first element of flocks f1 … fk respectively. Then, as Fig. 

𝑃𝑠𝑒𝑝 =
𝑙𝑜𝑔(𝑡 + 𝐷)

𝑙𝑜𝑔(𝑀𝑎𝑥𝐼𝑡) × 2
 (1) 

𝑋𝑖(𝑡 + 1) =  𝑋𝐺(𝑡) + 𝒬1(𝑦) × (𝑋𝑟′(𝑡) − 𝑋𝑟(𝑡)) (2) 



3 shows, other elements of Sf are split using Eq. (6) into k equal portions P1…Pk, and starlings 

of portion Pi are considered as members of flock fi. 

𝑆𝑓 (𝑡) =  {𝑠𝑓𝑖  (𝑡) ∈ 𝑆 | 𝑠𝑓𝑖  (𝑡) ≤ 𝑠𝑓𝑖+1 (𝑡) 𝑓𝑜𝑟  𝑖 = 1,…Ń}  (4) 

𝑅 (𝑡) = {𝑠𝑓𝑖  (𝑡) ∈ 𝑆𝑓(𝑡) 𝑓𝑜𝑟  𝑖 = 1,… 𝑘} (5) 

𝑃 = 𝑆 − 𝑅 𝑎𝑛𝑑 𝑃 =⋃𝑃𝑖

𝑘

𝑖

 𝑎𝑛𝑑 |𝑃𝑖|= |𝑃𝑗| 𝑓𝑜𝑟 𝑖 ≠ 𝑗 ∈ (1,… 𝑘)  (6) 

Therefore, each flock fq consists of n starlings (n= Ń/k), including a representative (Rq) 

selected from the representative set R and a portion (Pq), including (Ń/k)-1 members. Since the 

fitness values of starlings are changed in the next iteration, the set Sf (t+1) is ordered differently 

from Sf (t). Then, the representative and members of each flock in the multi-flock f1… fk are 

dynamically changed, which provides information sharing between flocks during iterations. 

 
 

 

Fig. 3. Dynamic multi-flock construction. 
 

In this modeling, the search space is sensed by the quality of flock fq, which is denoted Qq 

and determined by Definition 3. 

Definition 3 (Flock quality). The flock quality fq includes n distinct starlings in iteration t 

denoted by Qq (t) and is determined by Eq. (7).  

𝑄𝑞(𝑡) =
∑

1
𝑛
∑ 𝑠𝑓𝑖𝑗(𝑡)
𝑛
𝑗=1

𝑘
𝑖=1

1
𝑛
∑ 𝑠𝑓𝑞𝑖(𝑡)
𝑛
𝑖=1

 (7) 

where sfij (t) is the fitness value of the i-th starling in the subpopulation of the flock fj; k is the 

number of flocks in a murmuration M, and n is the number of starlings in each flock. 

As shown in Eq. (8), if the quality of the flock fq (Qq (t)) is less than or equal to the average 

of the quality of all flocks (μQ (t)), it means that flock fq has a high chance for locating in an 



unpromising zone. Therefore, all n starlings of the flock fq are moved using the diving search 

strategy to explore the search space. Otherwise, it means that flock fq is located in a suitable 

zone, and its starlings explore around this zone using the whirling search strategy. The diving 

and whirling search strategies are subsequently described in detail. 

 

 𝑋𝑖(𝑡 + 1) = {

𝑈𝑠𝑖𝑛𝑔 𝑑𝑖𝑣𝑖𝑛𝑔 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦                𝑖𝑓  𝑄𝑞(𝑡) ≤ 𝜇𝑄(𝑡)

𝑈𝑠𝑖𝑛𝑔 𝑤ℎ𝑖𝑟𝑙𝑖𝑛𝑔 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦            𝑖𝑓  𝑄𝑞(𝑡) > 𝜇𝑄(𝑡)
 (8) 

3.2 Diving search strategy (Exploration) 

The diving search strategy is designed to explore the search space effectively. Given that 

flock fq, including starlings {s1 … sn} is located in an unpromising region. Then, this region is 

bypassed by the diving search strategy that is including the upward and downward quantum 

dives and a quantum random dive (QRD) operator for selecting the quantum dives. The QRD 

is defined by Definition 4. Before embarking on this definition, the next paragraph describes 

some essential principles of quantum computing. 

Quantum bit or qubit: A qubit is an essential information unit in quantum computing theory. 

It is a quantization of a two-state system, which is represented by a linear superposition of its 

two orthonormal basis states or basis vectors denoted by |0 >= [
0
1
] and |1 >= [

1
0
] . A qubit 

state |𝜓⟩ is a superposition of these orthonormal states and described by Eq. (9), where α and 

β are the probability amplitudes in the corresponding states. The probability of qubit outcome 

|0 >  with value ‘0’ is |α|2, and the probability of qubit outcome |1 > with value ‘1’ is |β|2.  

|𝜓 > = 𝑐𝑜𝑠
𝛼

2
 |0 >  + 𝑠𝑖𝑛

𝛼

2
 𝑒𝑖𝛽  |1 > (9) 

A quantum random walker: Suppose the particle i is a walker in the Hilbert space H built 

by the inner product of two quantum systems, Hc and Hp. In this space, Hc is the coin Hilbert 

space of two basis states {|0>, |1>}, and HP is the Hilbert space spanned by the positions of the 

particle i. These systems can be described by repeating a unitary evolution operator U=S.C, 

where S is a conditional shift operator, and C is a rotation matrix of qubit defined by Eq. (10) 

[78] that represents a rotation by angles θ and φ. 

𝐶 = [
𝑒𝑖𝜑𝑐𝑜𝑠 𝜃           𝑒𝑖𝜑𝑠𝑖𝑛 𝜃 

 −𝑒−𝑖𝜑𝑠𝑖𝑛 𝜃       𝑒−𝑖𝜑𝑐𝑜𝑠 𝜃
] (10) 

Therefore, the new state of the i-th walker denoted by |ψ(t + 1, Xi) > can be computed by 

Eq. (11). 



𝜓(𝑡 + 1, 𝑋𝑖) > = 𝑈 × |𝜓(𝑡, 𝑋𝑖) >=  𝑆 × 𝐶 × |𝜓(𝑡, 𝑋𝑖) >    (11) 

If the flock fq has been located in an unpromising region because of its quality, Qq (t) ≤ µQ 

(t). Then, |𝜓(𝑡 + 1, 𝑋𝑖)⟩ as the next position of each starling si in this flock is determined using 

the diving search strategy defined in either Eq. (12) or Eq. (13).  

In Eqs. (12 and 13), |𝜓(𝑅𝐷)⟩ is the representative member of the flock, |𝜓(𝑋𝑖) is the current 

position of starling si, and |𝜓𝑈𝑝(𝑋𝑖)⟩ and |𝜓𝐷𝑜𝑤𝑛(𝑋𝑖)⟩ are two quantum probabilities defined in 

Definition 4. In Eq. (12), |𝜓(𝑋𝑟)⟩ is the position of a random starling in the flock. In Eq. 

(13), |𝜓(𝑋𝑗)⟩ is randomly selected from the union set of the current population and the best 

starlings set, and |𝜓(𝛿1)⟩ is a random position selected from the current population and the 

best starlings set obtained so far. The dive search strategy selects either upward or downward 

quantum dive using a quantum random dive operator defined in Definition 4. 

Definition 4 (Quantum random dive operator):  A quantum random dive operator (QRD) is 

defined by Eq. (14). |𝜓𝑈𝑝(𝑋𝑖)⟩ and |𝜓
𝐷𝑜𝑤𝑛(𝑋𝑖)⟩ are two quantum probabilities that are 

determined based on the unitary evolution operator U= S.C for selecting either upward or 

downward quantum dive. 

In Eq. (14), |𝜓(𝛿2)⟩ is an inverse-Gaussian distribution (iGd) which is computed by Eq. (15) 

to generate the random numbers with values of λ and µ. Also, y is a random number from the 

standard normal distribution.  

|𝜓(𝛿2)⟩ = √
𝜆

2×𝜋×𝑦3
× 𝑒 [−

𝜆(𝑦−𝜇)2

2×𝜇2×𝑦
]    (15) 

 

Fig. 4 shows the flock fq consists of n starlings using the diving search strategy that selects 

either the upward or downward quantum dive using the QRD operator. 

|𝜓(𝑡 + 1,𝑋𝑖)⟩ = 𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒 = |𝜓(𝑅𝐷)⟩ − |𝜓
𝐷𝑜𝑤𝑛(𝑋𝑖)⟩ × (|𝜓(𝑋𝑖) − |𝜓(𝑋𝑟)⟩) (12) 

|𝜓(𝑡 + 1,𝑋𝑖)⟩ = 𝑈𝑝𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒 = |𝜓(𝑅𝐷) + |𝜓
𝑈𝑝(𝑋𝑖)⟩ × (|𝜓(𝑋𝑖)⟩ − |𝜓(𝑋𝑗)⟩ + |𝜓(𝛿1)⟩) (13) 

𝑄𝑅𝐷 ={
𝑈𝑝𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒                 𝑖𝑓  |𝜓𝑈𝑝(𝑋𝑖) > |𝜓

𝐷𝑜𝑤𝑛(𝑋𝑖)|

𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒           𝑖𝑓  |𝜓𝑈𝑝(𝑋𝑖)| ≤ |𝜓
𝐷𝑜𝑤𝑛(𝑋𝑖)|

  

(14) 

|𝜓𝑈𝑝(𝑋𝑖)⟩ = 𝑒𝑖𝜑 𝑐𝑜𝑠 𝜃 × |𝜓(𝛿2)⟩ − 𝑒−𝑖𝜑𝑠𝑖𝑛 𝜃 × |𝜓(𝛿2)⟩ 
 

|𝜓𝐷𝑜𝑤𝑛(𝑋𝑖)⟩ = 𝑒𝑖𝜑𝑠𝑖𝑛 𝜃 × |𝜓(𝛿2)⟩ + 𝑒−𝑖𝜑𝑐𝑜𝑠 𝜃 × |𝜓(𝛿2)⟩ 
 

 



 

Fig. 4. The diving search strategy for flock fq using upward and downward quantum dive.  

3.3 Whirling search strategy (Exploitation) 

When flock fq has a good quality (Qq (t) > µQ (t)) in iteration t, then based on Eq. (8), the 

next position of each starling si in flock fq is determined using the whirling search strategy. 

Inspired by the nature of murmuration [79], we define the whirling search strategy in Eq. (16) 

to locally exploit search zones. In Eq. (16), Xi (t) is the current position of starling si, and XRW 

(t) is randomly selected from the representative members of those flocks, which are considered 

for the whirling search strategy. Also, XN (t) is a random neighbor in the neighborhood of 

starling si with a radius equal to the average of the maximum and minimum Euclidean distances 

si with other starlings of its flock. Moreover, to prevent the exploitation from losing its 

diversity, the whirling search strategy applies a new cohesion operator, Ci (t) defined in Eq. 

(17), in which the cohesion coefficient ξ(t) is a random number in the range of (0, 1].  

4. SMO algorithm 

This section proposes a novel, bio-inspired algorithm named starling murmuration 

optimizer (SMO) based on the murmuration modeling introduced in the previous section. Fig. 

5 shows the flowchart of the proposed SMO algorithm in which first, N starlings are randomly 

distributed in the D-dimensional search space using Eq. (18) where xid,  xd
U, and xd

L are d-th 

dimension of starling si, upper and lower bounds of the search space, respectively. 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝐶𝑖(𝑡) × (𝑋𝑅𝑊(𝑡) − 𝑋𝑁(𝑡))     
(16) 

𝐶𝑖(𝑡) = 𝑐𝑜𝑠 (𝜉(𝑡)) (17) 



𝑥𝑖𝑑 = 𝑥𝑑
𝐿 + 𝑟𝑎𝑛𝑑(0,1)  × (𝑥𝑑

𝑈 − 𝑥𝑑
𝐿),       d = 1, 2, ..., D;             i = 1, 2, ..., N (18) 

Then, a portion of the starlings is separated using Eq. (1) to explore the problem space using 

the separating search strategy defined by Eq. (2). The rest of the starlings are considered to 

construct the multi-flock dynamically using Algorithm 2 shown in Fig. 7, where first, the 

representative set Sf is built including ascending-ordered fitness values of the set S. Then, as 

shown in Fig. 3, the multi-flock is constructed using Definition 2. Next, the quality of flocks is 

computed by Eq. (7) to either select the diving or the whirling search strategy. Finally, at the 

end of each iteration, the best solution of each starling and the global best solution are updated. 

The pseudocode of the proposed SMO algorithm is presented in Fig. 6. 

 

Fig. 5. The flowchart of the starling murmuration optimizer (SMO) 



  Algorithm 1.  Starling Murmuration Optimizer (SMO) 

  Input: N (Number of starlings), k (Number of flocks), and MaxIt (Maximum iterations). 

  Output: The global best solution. 

  1: Begin 

  2: Randomly distribution N starlings in the search space. 
  3: Set t =1. 

  4: While   t ≤ MaxIt 

  5:                                                           Select a portion of starlings by Eq. (1) and move them using the separating strategy. 

  6:      Multi-flock construction by Algorithm 2. 

  7:      Compute the quality of k flocks by Eq. (7). 

  8:      For  q = 1→ k   

  9:             If   Qq(t) ≤ µQ(t) */ Comparing the flock quality fq to select movement strategy      

10:                   Move the starlings of flock fq using the diving strategy. 

11:             Else 

12:                   Move the starlings of flock fq using the whirling strategy. 

13:             End if 
14:       End for 

15:       Update the position of starlings and global best solution. 

16:       t = t + 1. 

17: End while 

18: Return the position of the best starling as a global best solution. 

19: End 

 
Fig. 6. Pseudocode of starling murmuration optimizer (SMO) 

 

4.1 The computational complexity of the SMO algorithm  

Fig. 6 shows that the computational complexity of the proposed SMO algorithm is 

determined mainly by the following four phases: (1) initialization, (2) separating search 

strategy (3) multi-flock construction, and (4) diving or whirling search strategy. In the 

initialization phase, the SMO algorithm creates N solutions with D dimension using Eq. (19) 

with computational complexity O (ND). Then, in the worst case, for all starlings, the separating 

phase is used with the computational complexity O (ND). Next, in the third phase using 

Algorithm 1, k flocks are constructed by partitioning Ń starlings based on their ascending-

ordered fitness values with O (NlogN + k). Finally, in the fourth phase, the quality of each 

flock is computed by Eq. (7) with computational complexity O (nD), and each flock is moved 

Algorithm 2. Multi-flock construction 

Input: S (The set of N starlings), and k (Number of flocks).   

Output:  Multi-flocks f1 … fk. 

1: Procedure multi-flock construction  

2:        Sf = fitness-ascending-ordered representation of the set S. 

3:        R= the k first elements of Sf, including R1…Rk. 

4:        P= the k portions P1 …Pk built from Sf –R={Sfk+1, Sfk+2, …, SfŃ}. 

5:        For i = 1→ k   

6:                                                                    fi= {Ri, Pi}     */ Constructing flock fi using Definition 2. 

7:        End For 

8:        Return multi-flocks f1 … fk.  

9: End Procedure 

 Fig. 7. Pseudocode of multi-flock construction 



either by the diving or whirling search strategy by O (nD). The fourth phase is used for all k 

flocks; thus, the computational complexity of this phase is O (2knD). These phases are repeated 

by the maximum iterations T, then the overall computational complexity of SMO is O (ND + 

T ((NlogN+k) + 2knD + ND). Since kn = N, the computational complexity of SMO is equal to 

O (TNlogN+2TND), and when D is much larger than logN, it is equal to O (TND). 

5. Experimental evaluation of SMO algorithm 

The SMO algorithm was evaluated by numerical experiments using a multifarious 

combination of benchmark test functions. These experiments were set up differently to analyze 

the behaviors of SMO from both qualitative and quantitative aspects. All experiments were run 

on a personal computer with the following features: Intel(R) Core (TM) i7-3770 CPU, 3.4 GHz, 

and 8 GB RAM, Windows 7, 64-bit operating system. All algorithms were implemented by 

using version R2018b of MATLAB programming. 

In the following subsections, the properties of test functions are first described in detail. 

Then, a set of experiments was conducted to analyze the qualitative behavior of the SMO 

algorithm. Finally, its quantitative behavior was compared with other competitive algorithms 

via different tests.   

5.1 Multifarious combination of the benchmark test functions  

Since 2005 a series of different benchmark test functions with various properties have been 

introduced as a part of the IEEE congress on evolutionary computation (CEC Competitions). 

The CEC 2013 [68], CEC 2014 [69], CEC 2017 [70], and CEC 2018 benchmark test functions 

were designed for evaluating single objective optimization algorithms whereas other CEC 

benchmark functions such as CEC 2009, 2019, and 2020 were designed for assessing multi-

objective evolutionary algorithms, 100-digit challenges special session, and constrained 

engineering optimization. The CEC 2018 with 29 test functions is also the same as CEC 2017, 

excluding the second test function "shifted and rotated sum of different power". Thus, 

benchmark functions CEC 2013, 2014, and 2017 are the best nominate for evaluating the single 

objective optimization algorithms such as the proposed SMO. 

From the literature, algorithms have shown both outstanding and poor performances on 

different test functions, therefore to have a comprehensive evaluation, we selected a 

multifarious combination of complex test functions from CEC 2013, 2014, and 2017. As shown 

in Tables A.1-A.4 of Appendix A, we selected the most complex test functions with properties 

such as a non-separable, smooth but narrow ridge, complex landscapes, many basins of 

attraction, multi-modal, symmetric/asymmetrical. For all functions, the search space's bounds 



were scaled between [− 100, 100] D, where D is the dimension of the problems. This 

combination is classified into four groups: unimodal, multi-modal, hybrid, and composition as 

follows. 

Unimodal group functions: This combination consists of functions F1–F8, each including one 

global optimum that is usually smooth but narrow ridge, and the difficulty for solving these 

functions generally increases with the dimensionality. Therefore, they are suitable for testing 

the exploitation ability and convergence speed of the SMO algorithm.  

Multi-modal group functions: The second combination is a collection of the functions F9–F18 

designed by many local optima, and the global best solution is hidden in many hills and narrow 

valleys. These test functions, there are highly potential for evaluating the ability of exploration, 

skipping the local optima, and avoiding premature convergence on the valley floor.  

Hybrid group functions: As shown in Table A.3, this combination consists of the test 

functions F19–F28 to evaluate the performance of the algorithm for solving real-world problems 

with many subcomponents and different properties. Moreover, these functions are used to 

assess the abilities of the balance between exploration and exploitation. 

Composition group functions: The fourth combination includes functions F29-F38, which are 

very challenging because it is difficult to determine their global optimum. These functions are 

also suitable to evaluate the abilities of the balance between exploration and exploitation. 

5.2 Qualitative analysis  

This subsection describes the analysis of the convergence behavior of SMO and its ability 

to balance exploration and exploitation by some of the benchmark test functions. This 

experiment set was performed by 200 starlings distributed equally in 10 flocks on a 2-

dimensional search space.  

5.2.1 Convergence analysis 

In convergence analysis of SMO, four metrics are used including search history, trajectory, 

average fitness values of all starlings, and the convergence rate. The search history of all 

starlings for the sampled points for iterations shows the ability of SMO for exploring the search 

space and exploiting the vicinity of the global optimum. The trajectory of the representative 

starling s1 is tracked in the first dimension to show how SMO has abrupt movements in the 

initial iterations and gradually converges to a point in the final iterations. In the second column 

of Fig. 8, where the search history is covered along the contour lines, the sampled points are 

colored in black, and the global optimum solution is marked with a red star. The results reveal 

that the SMO algorithm exploits in the vicinity of the global optimum very accurately in the 



unimodal test functions, and it bypasses the local optima to reach the promising regions by 

exploring the multi-modal test functions. Therefore, in all of the test functions, the SMO 

algorithm can search globally and eventually converge to a point in the search space.  

  The trajectory curves illustrated in the third column indicate that the representative 

starling s1 starts its evolution with large fluctuations at the initial iterations. Its changes 

gradually decrease over the course of iterations, which guarantees the convergence to a point 

in the search space. The average fitness values and the best solutions over the course of 

iterations are gradually decreased by tracking the curves shown in the fourth and fifth columns, 

which means the movement strategy is evolving their candidate solutions. The decreasing of 

average fitness values indicates that the SMO algorithm can dynamically focus on more 

promising areas and converge to a point. Meanwhile, the decrease shown in the fifth column 

proves the SMO can improve the quality of the starlings' position over the course of the 

iterations. It initially explores the search space to bypass the local optima, and then a growing 

attraction contributes to exploiting the promising local regions. Thus, it can reveal an 

accelerated convergence trend toward the global optimum.  

5.2.2 Exploration and exploitation behavior analysis 

It is expected that using the dynamic multi-flock and diving search strategy in the SMO 

algorithm increases the diversity and opportunity of finding the global optimum position by 

exploring undiscovered regions, while the starlings of a flock, through the whirling search 

strategy, efficiently exploit around a promising area. This experiment analyzed the exploration 

and exploitation ability of the SMO algorithm to solve different problems. 

The impact of the exploration and exploitation is computed by the dimension-wise diversity 

measurement approach [80] and illustrated in Fig. 9. According to this approach, increasing 

the distance value within dimensions indicates that the flock of starlings is scattered and 

explores the search space. In contrast, the flock of starlings is placed close to each other for 

converging to a condensed area when the mean value is reduced. The dimension-wise diversity 

of SMO in the current iteration t (Diversity (t)) is computed by Eq. (20). Where the parameter 

Diversityd is the diversity of dimension d computed by Eq. (21); xid is the position of dimension 

d of starling si, and the median (xd) is the median value of dimension d for all N starlings. The 

percent of the exploration and exploitation abilities are computed by Eqs. (22) and (23), where 

Diversitymax is the maximum diversity found by Eq. (20) in all iterations. Fig. 9 shows the 

obtained results of exploration and exploitation abilities of SMO in each iteration for different 

functions. 



𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑡) =
1

𝐷
∑𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑑

𝐷

𝑑=1

 (20) 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑑 =
1

𝑁
∑𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑑) − 𝑥𝑖𝑑 

𝑁

𝑖=1

 (21) 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (%) =
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑡)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑚𝑎𝑥
× 100     (22) 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛(%) =
|𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑡)−𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑚𝑎𝑥|

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑚𝑎𝑥
× 100  (23) 

This experiment's results were conducted by some unimodal, multi-modal, hybrid, and 

composition functions with different dimensions of 30, 50, and 100 with the maximum number 

of iterations 500. The curves are plotted in Fig. 9 prove that the SMO algorithm has an 

outstanding exploitation ability to solve F6 from unimodal group functions with D 30, 50, and 

100. In the initial iterations, SMO mostly explores the search space by the diving search 

strategy because a few flocks can find a promising area. Then, it gradually exploits some flocks 

located in the promising area, and finally, many flocks are highly exploited by the whirling 

search strategy in the final iterations. This behavior proves the exploitation ability of the 

proposed algorithm. 

There are many local optima in multi-modal functions that exponentially increase when 

the dimension is increased, which is essential for evaluating the exploration behavior. For 

instance, the results on function F17 show that the percentage of exploration of the SMO 

algorithm is more than its exploitation, except in the final iterations; thus, it has superb 

exploration. This is due to the diving search strategy that moves the starlings from inferior 

regions, while the separating search strategy also increases the diversity and corrects the 

starlings trapped in the local optima. The results show a high exploration in the initial iterations 

for the candidate hybrid and composition functions F20, F22, F24, and F37 and then a balance 

between exploration and exploitation, and finally, more exploitation in the final iterations. This 

behavior proves that the SMO algorithm can strike a balance between exploration and 

exploitation. Such an ability is achieved since SMO can determine the quality of flocks to select 

either the whirling or diving search strategy consciously.  

5.3 Quantitative analysis  

In this subsection, the performance of the SMO algorithm is analyzed and compared with 

the state-of-the-art swarm intelligence algorithms: comprehensive learning particle swarm 

optimizer (CLPSO)  [30], artificial bee colony algorithm (ABC) [14], ant colony optimization 

for continuous domains (ACOR) [81], Best-so-far ABC [15], krill herd (KH) [39], whale 



optimization algorithm (WOA) [40], butterfly optimization algorithm (BOA) [19], harris 

hawks optimization (HHO) [32], henry gas solubility optimization (HGSO) [82]  and improved 

continuous ant colony optimization algorithms (LIACOR) [83]. We performed several 

experiments to evaluate the ability of SMO to perform exploitation, exploration, local optima 

avoidance, and convergence. The experimental setup for this quantitative analysis is described 

as follows.  

To ensure a fair comparison, the parameters of the competitive algorithms were set using 

their original setting shown in Table 2. All algorithms were run 30 times independently, and in 

each run, the number of population N was set to 200, and the maximum number of iterations 

(MaxIt) was 3000. Although the appropriate values of SMO's parameters are determined by 

some pretests reported in Appendix B.  Then, all experiments were performed on the 

multifarious combination of unimodal, multi-modal, hybrid, and composition functions 

introduced in Subsection 5.1 with different dimensions 30, 50, and 100.  

 

Table 2 Parameters values of competitive algorithms. 

Alg. Year Ref. Parameter’s settings 

CLPSO 2006 [30] 
c1 and c2 are 1.49445, 𝑃𝐶 ∈ (0.05, 0.5), and ω linearly decreases from 

0.8 to 0.2. 

ABC 2007 [14] Limit = N×D, food number = N/2. 

ACOR 2008 [81] q =10-4, archive size k =50, speed of convergence = 0.85. 

Best-so-far ABC  2011 [15] Limit = N×D, food number = N/2. 

KH 2012 [39] 
Maximum diffusion speed = 0.005, the velocity of foraging = 0.02 and 

maximum induced speed = 0.01. 

WOA 2016 [40] 
α variable decreases linearly from 2 to 0 

α2 linearly decreases from −1 to −2, b = 1. 

BOA 2019 [19] 
Sensory modality c is 0.01, power exponent a is increased from 0.1 to 

0.3, and p = 0.8. 

HHO 2019 [32] E0 is a value between [-1, 1], and q and r = [0, 1]. 

HGSO 2019 [82] 

Cluster number = 5, M1= 0.1, M2 = 0.2, β = 1, α = 1 and K = 1. Also, 

l1=5E−03, l2=100 and l3=1E−02 for benchmark test functions, and 

l1=1, l2=10 and l3=1 for engineering problems. 

LIACOR 2019 [83] Evaporation rate (𝜉) = 0.6, and q = 0.2. 

SMO   k = 10, λ = 20, µ = 0.5, θ,φ ∈ (0, 1.8]. 



 

Fig. 8. Qualitative analysis including search history, trajectory, average fitness, and convergence curves. 



 
Fig. 9. Exploration and exploitation behavior analysis in some test functions. 



In the following subsections, the experiments' results of quantitative analysis are provided 

in the tables. To facilitate a better understanding, the bold values indicate the best solutions of 

the winner algorithms, and W, T, and L stand for the number of the win, tie, and loss of each 

algorithm at the end of these tables, respectively.  

5.3.1 Exploitation and exploration evaluation 

To evaluate the exploitation ability of SMO, we used the unimodal group including 

different test functions that have only one global optimum. The overall performance shown in 

the unimodal section in Table 3 and the detailed results including average (Avg) and minimum 

(Min) of fitness value tabulated in Table B.3 indicate that our SMO algorithm can approximate 

the best optimal solution for most of the unimodal functions. These results prove that the SMO 

is very competitive in terms of exploitation ability. This is due to the whirling search strategy 

in Eq. (16) encourages the starlings to exploit around the global optimum. The multi-modal 

test functions are proper for evaluating the exploration capability of an optimization algorithm. 

The overall performance of the multi-modal section in Table 3 and the results shown in Table 

B.4 for multi-modal group functions F9–F18, prove that the SMO algorithm is superior to other 

comparative algorithms. This is attributed to the use of the quantum random dive operator 

introduced in Eq. (12) in the diving search strategy, which can guarantee the required 

exploration for moving toward the global optimum. Using the separating search strategy also 

provides a notable ability for effectively bypassing the local optima. 

5.3.2 The ability of local optima avoidance  

 The hybrid and composition functions have challenging search spaces with a large number 

of local optima, which is necessary for evaluating the strength of the proposed algorithm in 

terms of the local optima avoidance. According to the results shown in the hybrid and 

composition section of Table 3 and detailed results shown in Tables B.5 and B.6, the SMO 

algorithm can accurately approximate the global optima solutions and it is very competitive on 

hybrid and composition functions compared with the other contender algorithms. These results 

provide evidence that the SMO algorithm can properly avoid local optima. The main reason 

for this ability is that the separation operator used in the separating search strategy in Eq. (1) 

can maintain the population diversity via the quantum harmonic oscillator shown in Eq. (2). 

 



5.3.3 Convergence speed evaluation 

In this section, the convergence behavior of the SMO algorithm is compared with other 

competitive algorithms. For such comparisons, the convergence curves on each test function 

are plotted using the best fitness values obtained by the contender algorithms. Convergence 

curves of some of unimodal, multi-modal, hybrid, and composition test functions are shown in 

Figs. 10-13 and convergence curves of the rest of the functions are presented in Figs B.2-B.4 

of Appendix B. The curves indicate that the proposed SMO algorithm is faster than other 

algorithms in solving all functions.  

These figures reveal three different convergence behaviors of SMO during the optimizing 

process. There is a common step in all three behaviors in which SMO converges quickly toward 

a promising region with a very steep descent slope in the initial iterations. The first behavior 

of SMO is shown in the convergence curves of test functions D30 {F2, F7, F8, F20, F38}, D50 

{F7, F8, F20, F38} and D100 {F2, F8, F38}. In this behavior, after the common step, it searches in 

the vicinity of the global optimum and finds the solution before passing half of the iterations. 

In the second behavior shown on the test functions D50 {F2, F23, F28} and D100 {F7, F20, F23} 

after the common step, the SMO algorithm exploits the promising region and converges to the 

global optimum by a gentle descent slope. The last behavior registered for D30 and D50 {F6, 

F12, F13, F14, F17, F18, F21, F27, F28, F29, F31, F33, F37}, and D100 {F21, F27, F29, F31, F33, F37}, 

although the SMO algorithm engages to improve the solutions, the best value is seldom 

decreased.  

The results of this experiment show that the convergence behavior of the SMO algorithm 

is very competitive compared to the other algorithms. The results obtained for unimodal 

functions F1-F8 prove that it has an outstanding exploitation ability, which is due to the use of 

the whirling search strategy by the flocks located in the potential neighborhoods. Since the 

multi-modal functions can evaluate the exploration ability, the experimental results of SMO 

Table 3 Overall performance on different group functions. 

Functions D Metrics 
CLPSO 

(2006) 

ABC 

(2007) 

ACOR 

(2008) 

 Best-so-far 

ABC(2011) 

KH 

(2012) 

WOA 

(2016) 

BOA 

 (2019) 

HHO 

(2019) 

HGSO 

(2019) 

LIACOR 

(2019) 

SMO 

(Proposed) 

Unimodal 
30     W|T|L 0|2|6  0|2|6  0|0|8 0|2|6  0|1|7  0|0|8  0|0|8  0|0|8  0|0|8  0|2|6 6|2|0  

50     W|T|L 0|2|6 0|2|6  0|0|8 0|2|6  0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

100   W|T|L 0|0|8  0|2|6  0|0|8 0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

Multi-modal 
30     W|T|L 0|2|6  0|2|6  0|0|8 0|2|6  0|1|7  0|0|8  0|0|8  0|0|8  0|0|8  0|2|6 6|2|0  

50     W|T|L 0|2|6 0|2|6  0|0|8 0|2|6  0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

100   W|T|L 0|0|8  0|2|6  0|0|8 0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

Hybrid 
30     W|T|L 0|2|6  0|2|6  0|0|8 0|2|6  0|1|7  0|0|8  0|0|8  0|0|8  0|0|8  0|2|6 6|2|0  

50     W|T|L 0|2|6 0|2|6  0|0|8 0|2|6  0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

100   W|T|L 0|0|8  0|2|6  0|0|8 0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

Composition 
30     W|T|L 0|2|6  0|2|6  0|0|8 0|2|6  0|1|7  0|0|8  0|0|8  0|0|8  0|0|8  0|2|6 6|2|0  

50     W|T|L 0|2|6 0|2|6  0|0|8 0|2|6  0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  

100   W|T|L 0|0|8  0|2|6  0|0|8 0|1|7 0|0|8  0|0|8  0|0|8  0|0|8  0|0|8  1|2|5 5|2|1  



for multi-modal functions F9 -F18 indicates that it provides a superb exploration ability. The 

main reason is that SMO uses the diving search strategy enriched by a quantum random dive 

operator defined in Eq. (12), by which the diversity of SMO can be increased to visit more 

unseen promising regions. 

The experimental results of the proposed SMO algorithm for hybrid and composition 

functions F19-F38 prove that SMO can balance between exploration and exploitation and avoid 

local optima trapping. This is because solving such hybrid and composition functions with a 

considerable number of local optima requires these abilities. SMO constructs dynamic multi-

flocks, whereby the starlings of different flocks use either the diving or whirling search strategy 

by evaluating the quality of each flock. Thus, it can balance the exploration and exploitation 

by switching efficiently from a flock trapped in the local optima to a suitable exploration by 

another flock using the diving search strategy. Meanwhile, the quantum harmonic oscillator 

defined in Eq. (2) in the separating search strategy can maintain the population diversity and 

provide the required local optima avoidance for solving these functions.  

5.3.4 The overall effectiveness of SMO 

Table 4 shows the overall effectiveness (OE) [84] of the SMO algorithm and competitor 

algorithms based on the results reported in Table 3. The OE of the i-th algorithm is computed 

by Eq. (24), where N is the total number of test functions, and Li is the number of functions in 

which the i-th algorithm has lost. As the OE's result shown, the SMO in 86.84 % of the test 

functions with D=30, 50, and 100 can find the best solutions; however, a few competitors such 

as the LIACOR algorithm in some functions are the winner or tie to the SMO. 

 

𝑂𝐸𝑖 = 
𝑁 − 𝐿𝑖
𝑁

× 100 
(24) 

 

 

 

 

 

 

  



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Convergence curves of SMO and competitive algorithms on the unimodal functions. 



 

Fig. 11. Convergence curves of SMO and competitive algorithms on the multi-modal functions. 



 

Fig. 12. Convergence curves of SMO and competitive algorithms on the hybrid functions. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Convergence curves of SMO and competitive algorithms on the composition functions. 



Table 4 Overall effectiveness of the SMO and competitor algorithms. 

Algorithms 30 
(W|T|L) 

50 
(W|T|L) 

100 
(W|T|L) 

Total 
(W|T|L) 

OE 

CLPSO 0|2|36 0|2|36 0|0|38 0|4|110 3.51% 
ABC 1|3|34 0|2|36 1|2|35 2|5|105 7.90% 
ACOR 0|0|38 0|0|38 0|0|38 0|0|114 0% 
Best-so-far ABC 0|3|35 1|2|35 0|1|37 1|6|107 6.14% 
KH 0|2|36 0|1|37 0|0|38 0|3|111 2.63% 
WOA 0|0|38 0|0|38 0|0|38 0|0|114 0% 
BOA 0|0|38 0|0|38 0|0|38 0|0|114 0% 

HHO 0|0|38 0|0|38 0|0|38 0|0|114 0% 
HGSO 0|0|38 0|0|38 0|0|38 0|0|114 0% 
LIACOR 2|3|33 5|3|30 5|3|30 12|9|93 18.42% 
SMO 32|3|3 29|3|6 29|3|6 90|9|15 86.84% 

 

5.3.5 Non-parametric statistical test analysis  

Besides the aforementioned experimental evaluation, SMO was statistically analyzed by 

the Wilcoxon signed-rank sum [73] and mean absolute error (MAE) statistical tests to prove 

its superiority. 

First, the Wilcoxon test highlighted the gap between the SMO algorithm results and each 

comparative algorithm for all benchmark functions with different dimensions. As presented in 

each row of Table 5, the symbol ‘>’  indicates that the SMO algorithm is significantly superior 

to the compared algorithm. The results of the Wilcoxon signed-rank sum distinguish the 

significant superiority of the proposed algorithm. Next, to determine how far the estimated 

solutions are from the optimal solution, we used mean absolute error (MAE) computed by Eq. 

(25), where NF is the number of functions, Oi is the global optimum of the function i, and yi is 

the best result of the i-th function obtained by the algorithms. 

 

 
 

Table 5 Wilcoxon’s signed-ranks test. 

Functions Unimodal group Multi-modal group Hybrid group Composition group 

Algorithms p-value Significance p-value Significance p-value Significance p-value Significance 

SMO vs. CLPSO 1.8916E-49 > 6.1019E-13 > 1.2530E-106 > 3.478E-02 > 

SMO vs. ABC 4.6532E-39 > 1.6755E-20 > 3.4420E-136 > 8.658E-07 > 

SMO vs. ACOR 6.1551E-88 > 6.5120E-75 > 4.2047E-117 > 7.911E-19 > 

SMO vs. Best-so-far ABC 3.8332E-47 > 6.9970E-28 > 2.4490E-154 > 1.230E-11 > 

SMO vs. KH 6.1551E-88 > 8.8832E-17 > 3.8500E-125 > 1.656E-05 > 

SMO vs. WOA 3.8332E-47 > 2.3151E-40 > 6.3540E-126 > 3.455E-06 > 

SMO vs. BOA 3.5607E-50 > 1.316E-202 > 1.5010E-245 > 5.481E-41 > 

SMO vs. HHO 2.0387E-52 > 1.2932E-39 > 8.7420E-109 > 3.665E-05 > 

SMO vs. HGSO 4.520E-141 > 3.711E-109 > 2.3150E-200 > 1.373E-11 > 

SMO vs. LIACOR 7.9825e-08 > 0.00924601 > 4.3616E-23 > 1.3639E-10 > 

 

𝑀𝐴𝐸 = 
1

𝑁𝐹
∑|𝑂𝑖 − 𝑦𝑖|

𝑁𝐹

𝑖=1

 (25) 



Table 6 MAE test of comparative algorithms on all test functions with different dimensions. 

Unimodal group functions 

Algorithms 
MAE                      
D=30 

Rank    
D=30 

MAE              
D=50 

Rank     
D=50 

MAE                      
D=100 

Rank            
D=100 

CLPSO 5.40E+13 6 1.19E+34 6 8.62E+108 6 

ABC 2.49E+07 4 2.67E+18 3 2.66E+61 2 

ACOR 1.06E+31  10 2.80E+67 10 2.81E+159 10 

Best-so-far ABC 2.67E+08 5 1.41E+28 5 1.05E+87 5 

KH 3.34E+15 7 1.08E+43 7 3.29E+132 7 

WOA 1.74E+16 8 4.66E+43 8 4.84E+116 9 

BOA 6.20E+40 11 5.65E+76 11 1.71E+179 11 
HHO 9.61E+06 2 1.43E+15 2 3.49E+65 3 

HGSO 1.39E+28 9 1.98E+54 9 6.30E+135 8 

LIACOR 1.65E+06 3 1.012E+19 4 7.77E+84 4 

SMO 1.15E+03 1 2.26E+04 1 2.56E+08 1 

Multi-modal group functions 

Algorithms 
MAE                      
D=30 

Rank    
D=30 

MAE              
D=50 

Rank     
D=50 

MAE                      
D=100 

Rank            
D=100 

CLPSO 6.42E+01 3 3.58E+02 3 3.11E+03 4 

ABC 1.03E+02 4 6.97E+02 5 3.89E+03 7 

ACOR 2.67E+02  7 4.88E+03 9 8.69E+05  10 

Best-so-far ABC 1.36E+02 5 5.43E+02 4 3.96E+03 8 

KH 1.47E+02  6 8.11E+02 6 2.23E+03 3 

WOA 5.13E+02 9 1.29E+03 7 3.47E+03 6 
BOA 1.84E+04 11 2.31E+05 11 1.73E+06 11 

HHO 4.90E+02 8 1.44E+03 8 3.44E+03 5 

HGSO 5.60E+02 10 6.35E+03 10 8.08E+04 9 

LIACOR 4.63E+01 2 2.22E+02 2 1.23E+03 2 

SMO 2.00E+01 1 4.84E+01 1 3.38E+02 1 

Hybrid group functions 

Algorithms 
MAE                      
D=30 

Rank    
D=30 

MAE              
D=50 

Rank     
D=50 

MAE                      
D=100 

Rank            
D=100 

CLPSO 1.63E+02 3 4.39E+02 3 3.08E+03 4 

ABC 2.02E+02 4 7.96E+02 5 3.98E+03 8 

ACOR 1.97E+06  10 1.36E+08  11 2.46E+09  11 

Best-so-far ABC 2.35E+02 5 6.29E+02 4 3.59E+03 7 

KH 2.47E+02 6 9.11E+02 6 2.31E+03 3 

WOA 5.13E+02 8 1.29E+03 7 3.47E+03 5 

BOA 1.83E+04 10 2.31E+05 10 1.73E+06 10 

HHO 5.89E+02 9 1.54E+03 8 3.51E+03 6 

HGSO 4.60E+02 7 6.25E+03 9 8.07E+04 9 

LIACOR 4.98E+03 2 3.77E+04 2 3.53E+05 2 
SMO 1.20E+02 1 1.14E+02 1 4.38E+02 1 

Composition group functions 

Algorithms 
MAE                      
D=30 

Rank    
D=30 

MAE              
D=50 

Rank     
D=50 

MAE                      
D=100 

Rank            
D=100 

CLPSO    1.38E+03 4 1.41E+05 5 4.49E+05 5 

ABC        1.45E+03 5 7.67E+04 3 5.11E+03 3 

ACOR 1.85E+03  6 2.43E+05  6 2.29E+06 8 

Best-so-far ABC 1.34E+03 3 9.09E+04 4 9.54E+04 4 

KH           1.75E+04 8 1.57E+06 8 9.50E+05 6 
WOA       5.41E+04 9 3.38E+06 9 9.74E+06 9 

BOA        5.62E+07 11 5.31E+08 11 3.28E+09 11 

HHO        1.20E+04 7 7.07E+05 7 1.03E+06 7 

HGSO      1.76E+06 10 4.31E+07 10 5.52E+08 10 

LIACOR 8.03E+02 2 7.54E+04 2 2.89E+03 2 

SMO 7.13E+02 1 5.89E+04 1 2.49E+03 1 



Table 6 tabulates the MAE test results for four groups of the combination benchmark 

functions with dimensions 30, 50, and 100. The results show that the solutions found by our 

proposed algorithm rank first for all functions, and thus, SMO is superior to the competitive 

algorithms. 

6. Applicability of SMO for solving mechanical engineering problems  

There is a significant interest to optimize the cost, performance, and product lifecycle in 

mechanical and engineering systems using optimization algorithms [85, 86]. Hence, there have 

been proposed many optimization algorithms [87, 88] to solve the different engineering 

problems through which the swarm intelligence algorithms have more simplicity and 

effectiveness [65, 83, 89, 90]. The applicability of the SMO algorithm for real-world 

applications was evaluated by a variety of mechanics and engineering design problems of 

benchmark test-suite CEC 2020 [71] including tension/compression spring design, pressure 

vessel design (PVD), three-bar truss design, welded beam design (WBD), gas transmission 

compressor design (GTCD), Himmelblau’s function, hydro-static thrust bearing design, 

optimal design of industrial refrigeration system, and multiple disk clutch brake design. 

Moreover, the SMO and contender algorithms also compete on the crashworthiness design 

problem to investigate the vehicle side-impact [72]. These problems have many constraints that 

should be equipped by a constraint-handling method; therefore, we used a death penalty 

function to handle constraints. To have a fair comparison, the SMO algorithm and the 

competitive algorithms were executed for 30 runs with 1500 maximum iteration. In the 

following, the engineering problems, their objective functions, and experiments results are 

described in detail. 

Problem 1: Tension/compression spring design problem [91, 92] 

In this problem, the objective function is to minimize the tension/compression spring 

weight shown in Fig. 14 [91, 92]. The three decision variables include wire diameter (d), mean 

coil diameter (D), and the number of active coils (N). This problem with four optimization 

constraints is formulated by Eq. (26) and the results in comparison with the contender 

algorithms are reported in Table 7.  

Consider 𝑥 = [𝑥1𝑥2𝑥3] = [𝑑 𝐷 𝑁],  (26) 

Min  𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1 
2 ,  



 

Fig. 14. Tension/compression string design problem [91]. 

 

Table 7 Results for tension/compression spring design problem. 

Algorithms 
Optimal values for variables 

Optimum weight 
d D N 

CLPSO 0.0528162 0.38365734 9.9234572 0.01276085 

ABC 0.0523635 0.37285212 10.499994 0.01272368 

ACOR 0.0544804 0.42765302 8.0861495 0.01280257 

Best-so-far ABC 0.0516703 0.35626720 11.315480 0.01266529 

KH 0.0594664 0.57340232 4.7633398 0.01371398 

WOA 0.0563246 0.47883022 6.5808214 0.01303485 

HHO 0.0547934 0.43609241 7.8019335 0.01283342 

BOA 0.0513430 0.33487183 12.922705 0.01196561 

HGSO 0.0603887 0.60355425 4.3437323 0.01396248 

LIACOR 0.051475 0.3515844 11.596387 0.01266607 

SMO 0.0516759 0.35640097 11.307562 0.01266523595 

The results presented in Table 7 show that the SMO algorithm outperformed the other 

algorithms for finding optimal values for several variables, including wire diameter (d), mean 

coil diameter (D), and the number of active coils (N), to minimize the weight of a 

tension/compression spring. 

Subject to     𝑔1(𝑥) =  1 −
𝑥2 
3 𝑥3

71785𝑥1 
4 ≤ 0,   

𝑔2(𝑥) =  
4𝑥2 

2−𝑥1𝑥2

12566(𝑥2𝑥1 
3−𝑥1 

4 )
+

1

5108𝑥1 
2 − 1 ≤ 0,  

𝑔3(𝑥) =  1 −
140.45𝑥1

𝑥2 
2𝑥3

≤ 0,  

𝑔4(𝑥) =  
𝑥1+𝑥2

1.5
− 1 ≤ 0  

Variable range 0.05 ≤ 𝑥1 ≤ 2.00, 0.25 ≤ 𝑥2 ≤ 1.30, 2.00 ≤ 𝑥3 ≤ 15.0. 

 

Fig. 14. Tension/compression string design problem [91]. 



Problem 2: Pressure vessel design (PVD) problem [93]    

In the PVD problem, the objective function is to minimize the total cost of the material, 

forming, and welding of the cylindrical pressure vessel shown in Fig. 15. In this problem, there 

are four decision variables: x1 is the thickness of the shell (Ts); x2 is the thickness of the head 

(Th); x3 is the inner radius (R), and x4 is the length of the cylindrical section of the vessel 

without considering the head (L). This problem with four optimization constraints is formulated 

by Eq. (27) [94], where R and L are continuous variables, and Ts and Th are integer variables. 

The obtained results are tabulated in Table 8. 

Consider 𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [𝑇𝑠  𝑇ℎ  𝑅   𝐿], (27) 

Min                    𝑓(𝑥) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3 
2 + 3.1661𝑥1 

2𝑥4 + 19.84 𝑥1 
2𝑥3,  

Subject to 𝑔1(𝑥) =  −𝑥1 + 0.0193𝑥3 ≤ 0,  
𝑔2(𝑥) =  −𝑥2 + 0.00954𝑥3 ≤ 0,   

𝑔3(𝑥) =  −𝜋𝑥3 
2𝑥4 −

4

3
𝜋𝑥3 

3 + 1,296,000 ≤ 0,  

𝑔4(𝑥) =  𝑥4 − 240 ≤ 0  

Variable range    0  ≤ 𝑥𝑖 ≤ 99,             𝑖 = 1,2 

10 ≤ 𝑥𝑖 ≤ 200           𝑖 = 3,4 

 

Fig. 15. Design of pressure vessel problem [93]. 

 

Table 8 Results for pressure vessel design problem. 

Algorithms 
Optimal values for variables 

Optimum cost 
Ts Th R L 

CLPSO 0.786479785 0.397687773 40.74157739 196.117575 5.96901674E+03 

ABC 0.806649355 0.402195006 41.70908176 181.771366 5.96255160E+03 

ACOR 0.825566300 0.408078882 42.77537419 168.425255 5.97140261E+03 

Best-so-far ABC 0.836091135 0.413836022 43.31506689 162.145261 5.99501764E+03 

KH 1.213849365 0.605704871 61.61464923 26.5525357 7.24975694E+03 

WOA 0.866280219 0.434669925 43.62727532 158.570240 6.22737053E+03 

HHO 1.055053881 0.525397724 54.65650724 65.2175661 6.56844058E+03 

BOA 3.230015743 0.998879971 22.84511791 48.5777107 2.86020955E+05 

HGSO 1.240713421 0.635357139 63.68097157 17.6374751 7.47953364E+03 

LIACOR 0.802442245 0.396647617 41.57731838 183.2029920 5.92813207E+03 

SMO 0.778168742 0.384649212 40.31962392 199.9999277 5.88533295E+03 

 



Table 8 reveals that the optimum cost of the cylindrical pressure vessel obtained by the 

SMO algorithm is less than other algorithms. Thus, SMO can find the best global solution for 

optimization variables, i.e., the thickness of the shell (Ts), the thickness of the head (Th), inner 

radius (R), and length of the cylindrical section without considering the head (L). 

Problem 3: Three-bar truss design problem 

This problem is the structural optimization problem in the civil engineering field, in which 

two parameters should be optimized to obtain the minimum weight. The schematic design of 

the three-bar truss problem is shown in Fig. 16. Also, the formulation of this optimization 

problem is computed by Eq. (28). The results shown in Table 9 indicate that the SMO algorithm 

can optimize two parameters x1 and x2 for the three-bar truss problem better than the other 

algorithms. 

 

Consider 𝑥 = [𝑥1𝑥2] = [𝐴1  𝐴2], (28) 

Min            𝑓(𝑥) = (2√2𝑥1 + 𝑥2) × 𝑙,   
Subject to 𝑔1(𝑥) =  

√2𝑥1+𝑥2

√2 𝑥1 
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0,  

𝑔2(𝑥) =  
 𝑥2

√2𝑥1 
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0,  

𝑔3(𝑥) =
 1

√2𝑥2+𝑥1
𝑃 − 𝜎 ≤ 0,  

Variable range     0 ≤ 𝑥𝑖 ≤ 1,              𝑖 = 1,2    

 𝑙 = 100𝑐𝑚,𝑃 = 2 𝑘𝑁/𝑐𝑚2, 𝑎𝑛𝑑  𝜎 = 2 𝑘𝑁/𝑐𝑚2   

 

 

Fig. 16. Three-bar truss problem.    

 

Table 9 Results for the three-bar truss problem. 

Algorithms 
Optimal values for variables 

Optimal weight 
x1 x2 

CLPSO 0.788649321036270 0.408321420128666 2.63895855166E+02 



ABC 0.791921803261280 0.399165678741402 2.63897235896E+02 

ACOR 0.788653773999128 0.408308723410851 2.63895844982E+02 

Best-so-far ABC 0.788806481834012 0.407890932774407 2.63897258217E+02 

KH 0.785125499417041 0.420705357829172 2.64137561671E+02 

WOA 0.807624796411589 0.357126765175809 2.64143464596E+02 

HHO 0.792284872646965 0.398132978987478 2.63905300331E+02 

BOA 0.823331535298134 0.313381441824923 2.66734135381E+02 

HGSO 0.784495397132808 0.420605145026335 2.63949320552E+02 

LIACOR 0.788670011025545 0.408262782880504 2.63895843454E+02 

SMO 0.788676944913215 0.408243170134184 2.63895843378E+02 

 

Problem 4: Welded beam design (WBD) problem [93]    

In this problem, the objective function is designed to minimize the fabrication cost of a 

welded beam based on Eq. (29). There are four decision variables: h (x1) is the thickness of 

weld; l (x2) is the length of the clamped bar; t (x3) is the height of the bar, and b (x4) is the 

thickness of the bar. The schematic design of the welded beam is shown in Fig. 17 and 

formulated by Eq. (B.4). This optimization problem contains four variables thickness of weld 

(h), length (l), height (t), and thickness of the bar (b) with seven constraints. Moreover, the 

obtained results are reported in Table 10. 

Consider                𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏], (29) 

Min 𝑓(𝑥) = 1.10471𝑥1 
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2),  

Subject to 𝑔1(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0, 
𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0, 
𝑔3(𝑥) = 𝑥1 − 𝑥4 ≤ 0, 
𝑔4(𝑥) =  1.10471𝑥1 

2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0, 
𝑔5(𝑥) =  0.125 − 𝑥1  ≤ 0, 

𝑔6(𝑥) =  𝛿(𝑥) − 𝛿𝑚𝑎𝑥  ≤ 0, 
𝑔7(𝑥) =  𝑃 − 𝑃𝑐 ≤ 0, 

 

Variable range     0.1 ≤ 𝑥𝑖 ≤ 2,   𝑖 = 1,4,             0.1 ≤ 𝑥𝑖 ≤ 10,   𝑖 = 2,3  

Where 
𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′

𝑥2

2𝑅
+ (𝜏′′)2,  𝜏′ =

𝑃

√2 𝑥1𝑥2
, 𝜏′′ =

𝑀𝑅

𝐽
, 𝑀 = 𝑃 (𝐿 +

𝑥2

2
), 𝑅 =

√𝑥2 
2

4
+ (

𝑥1+𝑥3

2
)2,        𝐽 = 2 {√2 𝑥1𝑥2 [

𝑥2 
2

12
+ (

𝑥1+𝑥3

2
)
2

]}, 𝜎(𝑥) =
6𝑃𝐿

 𝑥4𝑥3 
2 , 𝛿(𝑥) =

6𝑃𝐿3

 𝐸 𝑥3 
2  𝑥4

,   

𝑃𝑐(𝑥) =
4.013𝐸√

𝑥3 
2 𝑥4 

6

36

 𝐸 𝑥3 
2  𝑥4

(1 −
𝑥3 

2𝐿
√

𝐸

4𝐺
) , 𝑃 = 6000 𝑙𝑏, 𝐿 = 14 𝑖𝑛. , 𝐸 = 30 × 16𝑝𝑠𝑖, 𝐺 =

12 × 106𝑝𝑠𝑖, 𝜏𝑚𝑎𝑥 = 13,600 𝑝𝑠𝑖, 𝜎𝑚𝑎𝑥 = 30,000 𝑝𝑠𝑖, 𝛿𝑚𝑎𝑥 = 0.25 in. 
 

 

 



 

Fig. 17. Welded beam design (WBD) problem [93, 95]. 

 

Table 10 further proves that the SMO and LIACOR can find the optimum cost better than 

the other algorithms by finding the optimum values for the design variables, including weld 

thickness (h), length (l), height (t), and thickness of the bar (b). 

Table 10 Results of the welded beam design problem. 

Algorithms 
Optimal values for variables 

Optimum cost 
h l t b 

CLPSO 0.20043684951 3.61781217135 9.12632634245 0.205392564 1.749360118249957 

ABC 0.21601066079 3.21817385411 9.19315650531 0.218132255 1.803929558372931 

ACOR 0.20572961534 3.47048910478 9.03662418450 0.205729640 1.724852376184159 

Best-so-far ABC 0.22781912459 3.22228585497 8.55433193633 0.229649894 1.812469010983658 

KH 0.22685002867 3.49887858194 8.60029213677 0.298971192 2.363561357410289 

WOA 0.18660545086 3.96352297459 9.02318604844 0.206342866 1.761542689738283 

HHO 0.20718794648 3.45481153594 8.99630131487 0.207712428 1.733028379140158 

BOA 0.16370033515 3.18982074389 6.53810915088 0.184186629 2.552269551814868 

HGSO 0.17500325946 4.67821274646 8.95647311732 0.211263389 1.858603007057090 

LIACOR 0.20572963979 3.47048866563 9.03662391036 0.205729640 1.724852308597364 

SMO 0.20572963979 3.47048866563 9.03662391036 0.205729640 1.724852308597364 

 

Problem 5: Gas transmission compressor design (GTCD) problem [96] 

The gas transmission compressor design is a well-known optimization problem that 

determines the minimum cost for a gas pipeline transmission system per day as shown in Fig. 

18. This problem consists of four decision variables: L (x1) length between compressor stations, 

r (x2) compression ratio denoting inlet pressure to the compressor, D (x3) is the pipe inside 

diameter (inches), and x4 (x2-1). The total annual cost of the transmission system and its 

operation is defined by Eq. (30). The results are tabulated in Table 11 indicate that the proposed 

can be effectively applied to solve mechanical engineering problems.  

 



 

Fig. 18. Gas transmission compressor design (GTCD) problem. 

 

Minimize 𝑓(�̅�) = 8.61 × 105𝑥1
1/2
𝑥2𝑥3

−2/3
𝑥4
−1/2

+ (3.69) × 104𝑥3
+ (7.72) × 108𝑥1

−1 𝑥2
0.219 − (765.43) ×  106𝑥1

−1 
 

 (30) 
Subject to 𝑥4𝑥2

−2 + 𝑥2
−2 − 1 ≤ 0  

Variable range 20 ≤ 𝑥1 ≤ 50, 1 ≤ 𝑥2 ≤ 10, 20 ≤ 𝑥3 ≤ 45, 0.1 ≤ 𝑥4 ≤ 60. 
 

 

 

Table 11 Results of the gas transmission compressor design (GTCD) problem. 

Algorithms 
Optimal values for variables 

 Optimum cost 
x1 x2 x3 x4 

CLPSO 45.8830 1.571778 27.18201 1.45592 3.7381430E+06 

ABC 50.0000 1.185882 24.89145 0.39507 2.9845610E+06 

ACOR 49.6067 1.174456 23.92940 0.37862 2.9671090E+06 

Best-so-far ABC 50.0000 1.207839 24.49319 0.45792 2.9755610E+06 
KH 35.6206 1.092393 31.99460 1.10937 3.4608480E+06   

WOA 49.7095 1.178115 24.72718 0.38796 2.9650350E+06   

HHO 49.9844 1.180801 24.20547 0.39429 2.9650910E+06   

BOA 20.0000 1.000000 20.00000 0.16475 3.1364520E+06  

HGSO 50.0000 1.164785 25.72731 0.35606 2.9689110E+06 

LIACOR 50.0000 1.178480 24.58628 0.38882 2.9648960E+06  

SMO 50.0000 1.178284 24.59259 0.38835 2.9648954E+06 

 

Problem 6: The crashworthiness design problem to investigate the vehicle side-impact [72] 

The crashworthiness design problem is formulated to optimize the vehicle side 

crashworthiness by minimizing the weight with eleven design variables and ten constraints. 

The design variables including, thicknesses of B-Pillar inner, B-Pillar reinforcement, floor side 

inner, cross members, door beam, door beltline reinforcement and roof rail (x1–x7), materials 

of B-Pillar inner and floor side inner (x8 and x9), and barrier height, and hitting position (x10 

and x11). This problem is defined by Eq. (31) [97, 98] and shown in Fig. 19. The results are 

reported in Table 12 and indicate that the SMO algorithm is superior for approximating the 

optimal solutions for the decision variables of the crashworthiness design problem.  



Minimize (31) 

𝐹(𝑥) = 1.98 +  4.90𝑥1  +  6.67𝑥2  +  6.98𝑥3  + 4.01𝑥4  + 1.78𝑥5  +  2.73𝑥7   

Subject to: 
 

𝑔1(𝑥) = 1.16 −  0.3717𝑥2𝑥4  −  0.00931𝑥2𝑥10− 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10 ≤  1,   

𝑔2(𝑥) = 0.261 −  0.0159𝑥1𝑥2 −  0.188𝑥1𝑥8  −  0.019𝑥2𝑥7  +  0.0144𝑥3𝑥5  +  0.0008757𝑥5𝑥10  
+  0.080405𝑥6𝑥9  +  0.00139𝑥8𝑥11  +  0.00001575𝑥10𝑥11  ≤  0.32, 

𝑔3(𝑥) = 0.214 +  0.00817𝑥5 −  0.131𝑥1𝑥8  −  0.0704𝑥1𝑥9 + 0.03099𝑥2𝑥6  −  0.018𝑥2𝑥7
+  0.0208𝑥3𝑥8  +  0.121𝑥3𝑥9 −  0.00364𝑥5𝑥6 +  0.0007715𝑥5𝑥10
−  0.0005354𝑥6𝑥10  +  0.00121𝑥8𝑥11  ≤  0.32, 

𝑔4(𝑥) = 0.074 −  0.061𝑥2  −  0.163𝑥3𝑥8 +  0.001232𝑥3𝑥10  −  0.166𝑥7𝑥9  +  0.227𝑥2
2  ≤  0.32, 

𝑔5(𝑥) = 28.98 +  3.818𝑥3  −  4.2𝑥1𝑥2  +  0.0207𝑥5𝑥10+  6.63𝑥6𝑥9 −  7.7𝑥7𝑥8  +  0.32𝑥9𝑥10  ≤  32, 
𝑔6(𝑥) = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11.0𝑥2𝑥8 − 0.0215𝑥5𝑥10− 9.98𝑥7𝑥8 + 22.0𝑥8𝑥9

≤ 32 

𝑔7(𝑥) = 46.36 −  9.9𝑥2  −  12.9𝑥1𝑥8  +  0.1107𝑥3𝑥10 ≤  32,  

𝑔8(𝑥) = 4.72 −  0.5𝑥4  −  0.19𝑥2𝑥3 −  0.0122𝑥4𝑥10  +  0.009325𝑥6𝑥10  +  0.000191𝑥11
2 ≤  4, 

𝑔9(𝑥) = 10.58 −  0.674𝑥1𝑥2  −  1.95𝑥2𝑥8  +  0.02054𝑥3𝑥10 −  0.0198𝑥4𝑥10  +  0.028𝑥6𝑥10  ≤  9.9, 
𝑔10(𝑥) = 16.45 −  0.489𝑥3𝑥7  −  0.843𝑥5𝑥6  +  0.0432𝑥9𝑥10 −  0.0556𝑥9𝑥11  −  0.000786𝑥11

2  
≤  15.7. 

Variable range  
 

 0.5 ≤ 𝑥1…𝑥7 ≤ 1.5, 𝑥8, 𝑥9 ∈ {0.192, 0.345}, 𝑎𝑛𝑑 − 30 ≤ 𝑥10…𝑥11 ≤ 30.  

 

 

Fig. 19. The crashworthiness design problem [99]. 

 

Table 12 Optimization results for the crashworthiness design problem to investigate the vehicle side impact. 

Algorithms 
Optimal values for variables  

Optimum cost 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

CLPSO 0.5061 1.17379 0.5013 1.24706 0.5037 1.4956 0.5000 0.3450 0.3450 -9.5985 3.3627 23.06244 

ABC 0.5000 1.13863 0.5000 1.29027 0.5000 1.5000 0.5403 0.3450 0.1920 -16.047 5.0767 22.94362 

ACOR 0.5000 1.12004 0.5000 1.29627 0.5000 1.5000 0.5000 0.3450 0.1920 -18.905 -0.0008 22.84371 

Best-so-far ABC 0.5000 1.30539 0.5000 1.10312 0.5000 0.5000 0.5000 0.3450 0.3450 14.213 20.3306 22.88605 

KH 0.5000 1.14747 0.5000 1.26118 0.5000 1.5000 0.5000 0.3450 0.3450 -13.998 -0.8984 22.88596 

WOA 0.5000 1.09276 0.5000 1.41233 0.5000 1.45497 0.5000 0.3450 0.1920 -24.038 -3.1789 23.12717 

HHO 0.5000 1.15627 0.5000 1.27133 0.5000 1.4777 0.5000 0.3450 0.1920 -14.592 -2.4898 22.98537 

BOA 0.8246 1.03224 0.54007 1.35639 0.6377 1.26889 0.5854 0.1920 0.3450 -5.7333 0.4352 25.06573 

HGSO 0.5000 1.22375 0.5000 1.27111 0.5000 1.31085 0.5000 0.3450 0.3450 -4.3235 2.93676 23.43457 



LIACOR 0.5000 1.11593 0.5000 1.30293 0.5000 1.50000 0.5000 0.1920 0.3450 -19.640 -0.000003 22.84299 

SMO 0.5000 1.11634 0.5000 1.30224 0.5000 1.50000 0.5000 0.3450 0.3450 -19.566 0.000001 22.84298        

Problem 7: Himmelblau’s function [100] 

This problem contains six nonlinear constraints and five decision variables to analyze the 

non-linear constrained optimization algorithms using Eq. (32). The results are tabulated in 

Table 13. 

 

Table 13 Results of the Himmelblau’s function. 

Algorithms 
Optimal values for variables  

Optimum cost 
x1 x2 x3 x4 x5 

CLPSO 86.35114  34.27649      31.27986       44.57583       32.75833   -2.996561E+04  

ABC 78 33.27290 30.65216       44.30402       36.49082 -3.051574E+04 

ACOR 78 33 30.04808 44.93806 36.70563 -3.065312E+04 

Best-so-far ABC 78 33 30.19617                 45 36.35274 -3.062832E+04 

KH 78.99892 33.00575 30.67021 43.63579 35.53123 -3.046036E+04  

WOA 79.36031 33 30.04906 42.54110       37.27498 -3.052259E+04 

HHO 78 33 30.00757 44.99297      36.74753 -3.066342E+04   

BOA 78 33 30.31139 39.59049       31.58397 -3.015535E+04     

HGSO 78 33 3.109831       4.002299       3.623523 -3.033971E+04  

LIACOR 78 33 29.99526 45.00000 36.77581 -3.066554E+04 

SMO 78 33 29.99526 45.00000 36.77581 -3.066554E+04 

 

Problem 8: Hydro-static thrust bearing design problem  

The Hydro-static thrust bearing design problem was defined by Siddall [101] to optimize 

the bearing power loss using four design variables and seven inequality constraints. This 

problem is defined using Eq. (33) where µ is the oil viscosity, R is the bearing radius, Q is the 

flow rate, and Ro is the recess radius. The schematic of this problem is shown in Fig. (20). 

Table 14 reports the results of the proposed algorithm and other optimization algorithms in 

which the SMO and LIACOR algorithms are superior to other comparative algorithms. 

Minimize (32) 

 𝑓(�̅�) = 5.3578547𝑥3
2 + 0.8356891𝑥1𝑥5 + 37.293239𝑥1 − 40792.141 

Subject to:  

 𝑔1(�̅�) = −𝐺1 ≤ 0,  

 𝑔2(�̅�) = 𝐺1 −  92 ≤ 0,  

 𝑔3(�̅�) = 90 − 𝐺2 ≤ 0,  

 𝑔4(�̅�) = 𝐺2 − 110 ≤ 0,  

 𝑔5(�̅�) = 20 − 𝐺3 ≤ 0,  

 𝑔6(�̅�) = 𝐺3 − 25 ≤ 0,  

Where  

 𝐺1 = 85.334407 + 0.0056858𝑥2𝑥5 + 0.0006262𝑥1𝑥4 − 0.0022053𝑥3𝑥5, 
 𝐺2 = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3

2, 
 𝐺3 = 9.300961 + 0.0047026𝑥3𝑥3 + 0.00125447𝑥1𝑥3 + 0.0019085𝑥3𝑥4. 

Variable range  

 78 ≤ 𝑥1 ≤ 102, 33 ≤ 𝑥2 ≤ 45, 27 ≤ 𝑥3 ≤ 45, 27 ≤ 𝑥4 ≤ 45, 27 ≤ 𝑥5 ≤ 45.  



 

 
Fig. 20. The schematic of the hydro-static thrust bearing design problem 

 

Minimize (33) 

 𝑓(�̅�) =
ϱ𝑃0

0.7
+ 𝐸𝑓   

Subject to:  

 𝑔1(�̅�) = 101000 −𝑊 ≤ 0,  

 𝑔2(�̅�) = 𝑃0 − 1000 ≤ 0,  

 𝑔3(�̅�) = ∆𝑇 −  50 ≤ 0,  

 𝑔4(�̅�) = 0.001 − ℎ ≤ 0,  

 𝑔5(�̅�) = 𝑅 − 𝑅0 ≤ 0,  

 
𝑔6(�̅�) = 0.0307(

386.4

𝑃0
) × (

𝜚

2𝜋𝑅ℎ
) − 0.001 ≤ 0, 

𝑔7(�̅�) = (
𝑊

𝜋 × (𝑅2 − 𝑅0
2)
) − 5000 ≤ 0 

 

Where  

 
𝑊 =

𝜋𝑃0
2
×
𝑅2 −𝑅0

2

𝑙𝑛 (
𝑅
𝑅0
)
, 

   

𝑃0 =
6𝜇𝜚

𝜋ℎ3
𝑙𝑛 (

𝑅

𝑅0
), 

 𝐸𝑓 = 9336𝜚 × 0.0307 × 0.5∆𝑇   ∆𝑇 = 2(10𝑃 − 559.7), 

 
𝑃 =

𝑙𝑜𝑔10𝑙𝑜𝑔10(8.122× 10
6𝜇 + 0.8) − 10.04

−3.55
, 

ℎ = (
2𝜋 × 750

60
)
2 2𝜋𝜇

𝐸𝑓
(
𝑅4

4
−
𝑅0
4

4
) 

Variable range  

 1 ≤ 𝑅 ≤ 16,  1 ≤ 𝑅0 ≤ 16 
1 × 10−6 ≤ 𝜇 ≤ 16 × 10−6,  1 ≤ 𝜚 ≤ 16 

 



 

Table 14 Results of solving the hydro-static thrust bearing design problem. 

Algorithms 
Optimal values for variables Optimum 

value R R0 μ Ǫ 

CLPSO 7.0766281 5.7799332 8.30E-06 13.976341 3.97E+03 

ABC 6.248404 5.690787 5.80E-06 2.899149 1.81E+03 

ACOR 6.893258 6.360649 6.89E-06 5.069318 2.23E+03 

Best-so-far ABC 6.734411 6.172581 5.58E-06 3.129316 2.03E+03 

KH 6.287436 5.750665 6.81E-06 4.070802 1.90E+03 

WOA 5.963189 5.391826 5.45E-06 2.339102 1.64E+03 

HHO 5.957047 5.387234 7.25E-06 4.378191 1.85E+03 
BOA 8.296644 6.665785 7.32E-06 14.97732 5.57E+03 

HGSO 6.272983 5.690010 5.64E-06 2.814452 1.84E+03 

LIACOR 5.955511 5.388716 5.36E-06 2.256638 1.62E+03 

SMO 5.955511 5.388716 5.36E-06 2.256638 1.62E+03 

 

Problem 9: Optimal design of industrial refrigeration system 

This is a non-linear inequality constrained optimization problem which is defined by Eq. 

(34) [102, 103]. Table 15 tabulates results for solving this problem in which the SMO is 

superior to other comparative algorithms. 

 

Table 15 Results for the optimal design of the industrial refrigeration system. 

Alg. 
CLPSO ABC ACOR 

Best-so-

far ABC 
KH WOA HHO LIACOR SMO 

X1 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 
X2 0.0014 0.0010 0.0010 0.0010 0.0010 0.0011 0.0010 0.0010 0.0010 
X3 0.0011 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 

Minimize (34) 

 𝑓(�̅�) = 63098.88x2 x4 x12 +  5441.5 x2
2 x12  +  115055.5 x2

1.664x6  +  6172.27x2
2 x6  +

63098.88 x1 x3 x11 +  5441.5 x1
2 x11  +  115055.5 x1

1.664x5  +  6172.27x1
2 x5 + 140.53 x1  x11  +

 281.29  x3  x111  +  70.26 x1
2  +  281.29 x1 x3  +  281.29 x3

2  +
14437 x8

1.8812 x12
0.3424 x10 x14

−1 x1
2x7 x9

−1 +  20470.2 x7
2.893x11

0.316x1
2   

Subject to:  

 𝑔1(�̅�) = 1.5240 x7
−1 ≤ 1,  

 𝑔2(�̅�) = 1.5240 x8
−1 ≤ 1,  

 𝑔3(�̅�) = 0.07789  x1 − 2 x7
−1 x9 − 1 ≤ 0,  

 𝑔4(�̅�) = 7.05305 x9
−1 x1

2 x10 x8
−1x2

−1x1
−1 − 1 ≤ 0,  

 𝑔5(�̅�) = 0.0833 x13
−1 x14 ≤ 0,  

 𝑔6(�̅�) = 47.136 x2
0.333x10

−1 x12 − 1.333 x8 x13
2.1195 + 62.08x13

2.1195 x12
−1 x8

0.2 x10
−1 − 1 ≤ 0, 

𝑔7(�̅�) =  0.04771 x10 x8
1.8812x12

0.3424 − 1 ≤ 0 
𝑔8(�̅�) =  0.0488 x9 x7

1.893x11
0.316− 1 ≤ 0 

𝑔9(�̅�) =  0.0099 x1 x3
−1 − 1 ≤ 0 

𝑔10(�̅�) =  0.0193 x2 x4
−1 − 1 ≤ 0 

𝑔11(�̅�) =  0.0298 x1 x5
−1 − 1 ≤ 0 

𝑔12(�̅�) =  0.056 x2 x6
−1 − 1 ≤ 0 

𝑔13(�̅�) =  2 x9
−1 − 1 ≤ 0 

𝑔14(�̅�) =  2 x10
−1 − 1 ≤ 0 

𝑔15(�̅�) =   x12 x11
−1 − 1 ≤ 0 

 

 

Variable range  

  0.001 ≤  x2 ≤ 5, i =  1 . . . 14.  



X4 0.0010 0.0010 0.0010 0.0010 1.9345 0.0028 0.0010 0.0010 0.0010 
X5 0.0011 0.0010 0.0010 0.0010 1.7837 0.0011 0.0010 0.0010 0.0010 
X6 0.0010 0.0010 0.0010 0.0010 2.0031 0.0010 0.0010 0.0010 0.0010 
X7 1.5546 1.5240 1.5249 1.5240 2.4043 1.5265 1.5963 1.5240 1.5240 
X8 1.5296 1.5240 1.5252 1.5240 2.3534 1.5263 1.5240 1.5240 1.5240 

X9 4.9841 5.0000 5.0000 5.0000 2.7000 5.0000 5.0000 5.0000 5.0000 
X10 2.3945 2.1033 2.0016 2.0230 4.0368 2.0000 2.1777 2.000034 2.0000 
X11 0.0021 0.0010 0.0010 0.0010 1.8600 0.0011 0.0010 0.0010 0.0010 
X12 0.0020 0.0010 0.0010 0.0010 0.0048 0.0010 0.0010 0.0010 0.0010 
X13 0.0095 0.0073 0.0073 0.0073 0.0201 0.0062 0.0076 0.0073 0.0073 
X14 0.1135 0.0792 0.0874 0.0880 0.2357 0.0740 0.0912 0.0876 0.0876 

F(X) 0.041400 0.034900 0.032400 0.032300 6.45100 0.03680 0.035300 0.032214235 0.032213001 

 

Problem 10: Multiple disk clutch brake design  

The multiple disk clutch brake design problem is defined using Eq. (35) to minimize the mass 

of the multiple disk clutch brake. This problem contains nine non-linear constraints and five 

discrete design variables include inner radius (x1), outer radius (x2), disk thickness (x3), a force 

of actuators (x4), and the number of frictional surfaces (x5). The schematic of this problem is 

shown in Fig. 21. Table 16 reports obtained results of optimization algorithms for this problem 

in which SMO, ACOR, Best-so-far ABC, HHO, and LIACOR algorithms outperform other 

comparative algorithms. 

  

Minimize (35) 

𝑓(�̅�) = π (𝑥2
2 − 𝑥1

2) 𝑥3(𝑥5 + 1)𝜌  

Subject to:  

𝑔1(�̅�) = −𝑥2 + 𝑥1 + ∆R ≤ 0,  

𝑔2(�̅�) = (𝑥5 + 1) × (𝑥5 + ∆) − 𝐿𝑚𝑎𝑥 ≤ 0,  

𝑔3(�̅�) =  prz − 𝑝𝑚𝑎𝑥 ≤ 0,  

𝑔4(�̅�) =  prz × 𝑉𝑠𝑟 − 𝑝𝑚𝑎𝑥 × 𝑉𝑠𝑟,𝑚𝑎𝑥 ≤ 0,  

𝑔5(�̅�) = 𝑉𝑠𝑟 − 𝑉𝑠𝑟,𝑚𝑎𝑥 ≤ 0,  

𝑔6(�̅�) = 𝑇 − 𝑇𝑚𝑎𝑥 ≤ 0,  

𝑔7(�̅�) = 𝑆 ×𝑀𝑆 −𝑀ℎ ≤ 0,  

𝑔8(�̅�) = −𝑇 ≤ 0,  

where  

𝑀ℎ =
2

3
µ 𝑥4𝑥5(𝑥2

3 − 𝑥1
3)/(𝑥2

2 − 𝑥1
2)mm   

𝑅𝑠𝑟 =
2

3
(𝑥2

3 − 𝑥1
3)/(𝑥2

2 − 𝑥1
2)mm   

𝑉𝑠𝑟 = 
π × 𝑅𝑠𝑟 × n

30
mm/s 

 

𝐴 =  π × (𝑥2
2 − 𝑥1

2) N/m𝑚2  

 prz =
𝑥4
𝐴
 N/m𝑚2  

ω =
π × n

30
rad/s, 

 

𝑇 =
 𝐼𝑍 ×ω

𝑀ℎ +𝑀𝑓
 

 

∆𝑅 =  20 𝑚𝑚, 𝐿𝑚𝑎𝑥 = 30, µ =  0.6, ∆= 50   

𝑉𝑠𝑟,𝑚𝑎𝑥 = 10 𝑚/𝑠, 𝛿 =  0.5 𝑚𝑚, 𝑠 =  1.5,   

𝑇𝑚𝑎𝑥 = 15 𝑠, 𝑛 = 250 𝑟𝑝𝑚,  𝐼𝑍 = 55𝐾𝑔.𝑚
2  

𝑀𝑆 = 40 𝑁𝑚,𝑀𝑓 = 3 𝑁𝑚,𝑝𝑚𝑎𝑥 = 1, 𝜌 = 0.0000078  

Variable range  

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9.  



   

 
Fig. 21. The schematic of the multiple disk clutch brake design  

 

Table 16 Results for the optimal design of the multiple disk clutch brake. 

Alg. 
Optimal values for variables 

Optimum value 
x1 x2 x3 x4 x5 

CLPSO 75.95932 97.06936 1.01058 909.47864 2.09723 0.280152637613733 

ABC 69.99974 90.00000 1.00000 697.47983 2.00000 0.235242474598156 

ACOR 70.00000 90.00000 1.00000 718.00397 2.00000 0.235242457900804 

Best-so-far ABC 70.00000 90.00000 1.00000 317.17055 2.00000 0.235242457900804 

KH 70.00000 90.00000 1.00000 481.07988 2.00000 0.235242458886112 

WOA 70.00000 90.00000 1.00000 182.35543 2.00000 0.235242457901052 

HHO 70.00000 90.00000 1.00000 304.20738 2.00000 0.235242457900804 

BOA 67.72699 90.00000 1.00000 673.06921 2.00000 0.248171278270212 

HGSO 69.99945 90.00000 1.00000 8.73600 2.00000 0.235248138956563 

LIACOR 70.00000 90.00000 1.00000 169.99845 2.00000 0.235242457900804 

SMO 70.00000 90.00000 1.00000 999.99899 2.00000 0.235242457900804 

7. Conclusion and future work 

This work modeled the starlings’ behaviors during their stunning murmuration to propose 

a novel, population-based swarm intelligence algorithm named SMO. In this model, the 

separating search strategy enriched using the separating operator defined in Definition 1 

guarantees the population diversity for complex problems. Next, the murmuration M is initially 

formed by constructing the dynamic multi-flock introduced in Definition 2, the quality of the 

flocks is computed by Definition 3. Finally, using the quality of each flock, if it is located in a 

promising region, its starlings exploit this region by the whirling search strategy. Otherwise, 

the starlings of this flock explore the search space using a quantum random dive operator 

defined by Definition 4 in the diving search strategy.  

A comprehensive evaluation was designed to analyze the SMO algorithm’s performance 

and behavior. In this evaluation, first, a multifarious combination of the benchmark test 

functions was provided. Then, the SMO algorithm was qualitatively and quantitatively 

analyzed by several experiments on this combination of benchmark functions. Finally, the 



applicability of the proposed algorithm for real-world applications was evaluated by 

mechanical engineering problems. Moreover, SMO was statistically analyzed by different 

statistical tests, including Wilcoxon signed-rank sum and mean absolute error (MAE).  

The comparison of the experimental and statistical results of SMO with the state-of-the-art 

algorithms and the associated discussions confirm the following conclusions: 

− Using the topology of the dynamic multi-flock provides the covering of different 

landscapes, which results in a meaningful search to converge the global optimum faster 

than the compared algorithms. 

− Generating the candidate solutions using the new quantum random dive operator in the 

diving search strategy enhances the exploration ability and diversity of the proposed 

algorithm. 

− The experimental results shown in unimodal section of Table 3, Table B.3, and Fig. 10 

prove that using the whirling search strategy provides high exploitation with less chance 

for the local optima trapping.  

− The results shown in hybrid and composition sections of Table 3, Tables B.5 and B.6, and 

Figs. 12 and 13 verify that combining the diving and whirling search strategies with the 

separating strategy enriches the movement strategy to bypass the local optima in the hybrid 

and composition problems. Moreover, these results and switching between the exploration 

and exploitation, as shown in Fig. 9, prove that these introduced strategies and the quality 

of flocks achieve an efficient balance between local and global search in the complex 

landscape. 

− The applicability tests on various mechanical engineering problems in Section 6 show that 

the proposed SMO algorithm can solve these real-world problems more precisely than the 

other contender algorithms. 

− The comprehensive evaluation's experimental and statistical results prove that the proposed 

SMO algorithm is superior to the state-of-the-art algorithms. 

We proposed a standard version of the SMO algorithm to solve single-objective continuous 

and engineering optimization problems. Thus, developing the SMO algorithm for solving 

different real-world and large-scale optimization problems is a promising further direction. 

Furthermore, different probability distributions, chaotic maps, different flock construction 

techniques, and other search strategies can be integrated to introduce improved versions of the 

SMO and cover more problems' complexity. Furthermore, the SMO can be developed for 

multi-objective and binary problems. 
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Appendix A 

Table A.1 The description of unimodal group functions. 

Function’s name Function Fmin(x) Source 

F1: Sphere   𝐹1(𝑧) = ∑ 𝑧𝑖
2𝐷

𝑖=1    -1400 CEC 2013, F1 

F2: Rotated High Conditioned 

Elliptic  

𝐹2(𝑧) = ∑ (106)
𝑖−1

𝐷−1𝑧𝑖
2 𝐷

𝑖=1   
-1300 CEC 2013, F2 

F3: Rotated Bent Cigar  𝐹3(𝑧) = 𝑧1
2 + 106∑𝑧𝑖

2 

𝐷

𝑖=1

 -1200 CEC 2013, F3 

F4: Rotated Discus  𝐹4(𝑥) = 10
6𝑧1

2 +∑ 𝑧𝑖
2𝐷

𝑖=1     
𝑧 = 𝑀2𝑇𝑎𝑠𝑦

0.5 (𝑀1(𝑥 − 𝑜))  
-1100 CEC 2013, F4 

F5: Different Powers   
𝐹5(𝑥) = √∑ |𝑧𝑖|

2+4
𝑖−1

𝐷−1𝐷
𝑖=1      

-1000 CEC 2013, F5 

F6: Shifted and Rotated Bent Cigar  𝐹6(𝑥) = 𝑥1
2 + 106∑ 𝑥𝑖

2𝐷
𝑖=1    100 CEC 2017, F1 

F7: Shifted and Rotated Sum of 

Different Power  
𝐹7(𝑥) = ∑ |𝑥𝑖|

𝑖+1𝐷
𝑖=1   200 CEC 2017, F2 

F8: Shifted and Rotated Zakharov  𝐹8(𝑥) = ∑ 𝑥𝑖
2 + (∑ 0.5𝑥𝑖

𝐷
𝑖=1 )2𝐷

𝑖=1 + (∑ 0.5𝑥𝑖
𝐷
𝑖=1 )4  300 CEC 2017, F3 



 

 

Table A.3 The description of hybrid group functions. 

Function’s name Function Fmin(x) Sources  

F19: Hybrid Function 1  n = 3, p = [0.2, 0.4, 0.4]  

g1: Zakharov Function F3,  

g2: Rosenbrock Function F4  

g3: Rastrigin’s Function F5 

1100 CEC 2017, F11 

Table A.2 The description of multi-modal group functions. 

Function’s name Function Fmin(x) Sources 

F9: Rotated 

Griewank’s Function  𝐹9(𝑥) = ∑
𝑧𝑖
2

4000
− ∏ cos (

𝑧𝑖

√𝑖
) + 1 + 𝑓10

∗

𝐷

𝑖=1

, 𝑧 = Λ100𝑀1

600(𝑥 − 𝑜)

100

𝐷

𝑖=1

 

-500 CEC 2013, F10 

F10: Rotated 

Rastrigin’s Function 

 

𝐹10 (𝑥) = ∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖 ) + 10) + 𝑓12

∗

𝐷

𝑖=1

,   𝑧 = 𝑀1Λ
10𝑀2𝑇𝑎𝑠𝑦

0.2(𝑇𝑜𝑠𝑧 (𝑀1

5.12(𝑥 − 𝑜)

100
)) 

-300 CEC 2013, F12 

F11: Non-Continuous 

Rotated Rastrigin’s 

Function 

 

𝐹11 (𝑥) = ∑ (𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) + 𝑓13

∗𝐷
𝑖=1   

𝑥 ̂ = 𝑀1
5.12(𝑥−𝑜)

100
,   𝑦𝑖 = {

𝑥�̂� 𝑖𝑓 |𝑥�̂� | ≤ 0.5

𝑟𝑜𝑢𝑛𝑑(2𝑥�̂�)/2 𝑖𝑓 |𝑥�̂� | > 0.5
  𝑓𝑜𝑟 𝑖 = 1.2. … . 𝐷   

𝑧 = 𝑀1𝛬
10𝑀2𝑇𝑎𝑠𝑦

0.2(𝑇𝑜𝑠𝑧 (𝑦)) 

-200 CEC 2013, F13 

F12: Rotated Lunacek 

bi-Rastrigin Function  

 

𝐹12 (𝑥) = 𝑚𝑖𝑛 (∑ (𝑥�̂� − 𝜇0)
2 , 𝑑𝐷 + 𝑠 ∑ (𝑥�̂� − 𝜇1)

2𝐷
𝑖=1

𝐷
𝑖=1 + 10(𝐷 − ∑ cos(2𝜋𝑧 ̂𝑖 )

𝐷
𝑖=1 ) + 𝐹18

∗    

𝜇0 = 2.5,  𝜇1 = −√
𝜇0

2−𝑑

𝑠
, 𝑠 = 1 −

1

2√𝐷+20−8.2
, d =1  

𝑦 =
10(𝑥−𝑜)

100
, 𝑥�̂� = 2𝑠𝑖𝑔𝑛(𝑦𝑖

∗)𝑦𝑖 + 𝜇0 , for i=1, 2, …, D,  𝑧 = 𝑀2Λ
100 (𝑀1(𝑥 ̂ − 𝜇0))   

400 CEC 2013, F18 

F13: Shifted and 

Rotated Rosenbrock’s 

Function   

F13 (X) = f11́ (M (
2.048(X−O)

100
) + 1),   F11 (x)́ = ∑ (100(xi

2 − xi+1)
2 + (xi − 1)2)D−1

i=1    400 CEC 2014, F4 

F14: Shifted and 

Rotated Weierstrass 

Function  

F14 (X) = ∑ (∑ [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]𝑘 𝑚𝑎𝑥
𝑘=0 ) − 𝐷𝐷

𝑖=1 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘 . 0.5)]𝑘𝑚𝑎𝑥
𝑘=0   

𝑎 = 0.5. 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20  

600 CEC 2014, F6 

F15: Shifted and 

Rotated Griewank’s 

Function 

 

F15 (X) = ∑
𝑥𝑖
2

4000
−∏ cos (

𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

 
700 CEC 2014, F7 

F16: Shifted and 

Rotated Rastrigin’s 
Function 
 

F16 (X) = 418.9829 × 𝐷 − ∑ 𝑔(𝑧𝑖 )
𝐷
𝑖=1 , 𝑧𝑖 = 𝑥𝑖 + 4.209687462275036𝑒 + 002  

𝑔(𝑧𝑖 ) =

{
 
 

 
 𝑧𝑖sin (|𝑧𝑖 |

1/2) 𝑖𝑓 |𝑧𝑖 | ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) sin(√|500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖−500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖 |, 500) − 500)sin (√|𝑚𝑜𝑑(|𝑧𝑖 |, 500) − 500|) −
(𝑧𝑖+500)

2

10000𝐷
𝑖𝑓 𝑧𝑖 < −500

  

900 CEC 2014, F9 

F17: Shifted and 

Rotated Levy 

Function  

  F17 (X) = 𝑠𝑖𝑛2(𝜋𝑤1 ) + ∑ (𝑤𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑤𝑖 + 1)] + (𝑤𝐷 − 1)2[1 +𝐷−1
𝑖=1

𝑠𝑖𝑛2(2𝜋𝑤𝐷 )]   𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 1 +
𝑥𝑖−1

4
. ∀ 𝑖 = 1. … . 𝐷 

900 CEC 2017, F9 

F18: Shifted and 

Rotated Expanded 

Griewank’s plus 

Rosenbrock’s 

Function  

 F18 (X) = 𝑓13 (𝑀 (
5(𝑥−𝑜15 )

100
) + 1) + 𝐹15

∗   1500 CEC 2014, F15 



F20: Hybrid Function 2     n = 3, p = [0.3, 0.3, 0.4]  

g1: High Conditioned Elliptic Function F11  

g2: Modified Schwefel’s Function F10  

g3: Bent Cigar Function F1   

1200 CEC 2017, F12 

F21: Hybrid Function 3  n = 3, p = [ 0.3, 0.3, 0.4]  
g1: Bent Cigar Function F1  

g2: Rosenbrock Function F4  

g3: Lunache Bi-Rastrigin Function F7   

1300 CEC 2017, F13 

F22: Hybrid Function 4  n = 4, p = [0.2, 0.2, 0.2, 0.4]  

g1: High Conditioned Elliptic Function F11  

g2: Ackley’s Function F13  

g3: Schaffer’s F7 Function F20  

g4: Rastrigin’s Function F5   

1400 CEC 2017, F14 

F23: Hybrid Function 1  

 

n = 3, p = [0.3,0.3,0.4] 

g1: Modified Schwefel's Function F9 

g2: Rastrigin’s Function F8 

g3: High Conditioned Elliptic Function F1 

1700 CEC 2014, F17 

F24: Hybrid Function 8  n = 5, p = [0.2, 0.2, 0.2, 0.2, 0.2]  

g1: High Conditioned Elliptic Function F1 

g2: Ackley’s Function F13 

g3: Rastrigin’s Function F5  

g4: HGBat Function F18 

g5: Discus Function F12 

1800 CEC 2017, F18 

F25: Hybrid Function 2  

 

n = 3, p = [0.3,0.3,0.4] 

g1: Bent Cigar Function F2 

g2: HGBat Function F12 

g3: Rastrigin’s Function F8 

1800 CEC 2014, F18 

F26: Hybrid Function 3  

 

n = 4, p = [ 0.2, 0.2, 0.3, 0.3] 
g1: Griewank’s Function F7  

g2: Weierstrass Function F6  

g3: Rosenbrock’s Function F4 

g4: Scaffer’s F6 Function F14 

1800 CEC 2014, F19        

F27: Hybrid Function 4  

 

n = 4, p = [0.2, 0.2, 0.3, 0.3] 

g1: HGBat Function F12 

g2: Discus Function F3 

g3: Expanded Griewank’s plus Rosenbrock’s Function F13 

g4: Rastrigin’s Function F8 

2000 CEC 2014, F20 

F28: Hybrid Function 5  

 

n = 5, p = [0.1, 0.2, 0.2, 0.2, 0.3] 

g1: Scaffer’s F6 Function F14 

g2: HGBat Function F12 
g3: Rosenbrock’s Function F4 

g4: Modified Schwefel’s Function F9 

g5: High Conditioned Elliptic Function F1 

2100 CEC 2014, F21 

 

Table A.4 The description of composition group functions. 

Function’s name Function Fmin(x) Sources 

F29: Composition Function 

3 (n=3, Rotated)  

n = 3, σ = [20, 20, 20] 

λ = [1, 1, 1] 

bias = [0, 100, 200] 

g1-3: Rotated Schwefel's Function F15’ 

900 CEC 2013, F23 

F30: Composition Function 

4 (n=3, Rotated)  

n = 3, σ = [20, 20, 20] 

λ = [ 0.25, 1, 2.5] 

bias = [0, 100, 200] 

g1: Rotated Schwefel's Function F15’  

g2: Rotated Rastrigin's Function F12’  
g3: Rotated Weierstrass Function F9’ 

1000 CEC 2013, F24 



F31: Composition Function 

5 (n=3, Rotated)  

n = 3, σ = [10, 30, 50] 

λ = [ 0.25, 1, 2.5] 

bias = [0, 100, 200] 

g1: Rotated Schwefel's Function F15’  

g2: Rotated Rastrigin's Function F12’  
g3: Rotated Weierstrass Function F9’ 

1100 CEC 2013, F25 

F32: Composition Function 

6 (n=5, Rotated)  

n = 5, σ = [10, 10, 10, 10, 10],  

λ = [0.25, 1, 1e-7, 2.5, 10] 

bias = [0, 100, 200, 300, 400],  

g1: Schwefel's Function F15’,  

g2: Rotated Rastrigin’s Function F12’,  

g3 High Conditioned Elliptic Function F2’ 

g4: Rotated Weierstrass Function F9’ 

g5: Rotated Griewank’s Function F10’ 

1200 CEC 2013, F26 

F33: Composition Function 

1 (n=3)  

n = 3, σ = [10, 20, 30],  

λ = [1, 1e-6, 1] 

bias = [0, 100, 200],  
g1: Rosenbrock’s Function F4’,  

g2: High Conditioned Elliptic Function F11’ 

g3: Rastrigin’s Function F4’ 

2100 CEC 2017, F21 

F34: Composition Function 

5 (n=5)  

n = 5, σ = [10, 20, 30, 40, 50], λ = [10, 1, 10, 1e-

6, 1],  

bias = [0, 100, 200,300, 400],  

g1: Rastrigin 's Function F5’ 

g2: Happycat Function F17’ 

g3: Ackley Function F13’ 

g4: Discus Function F12’ 

g5: Rosenbrock’s Function F4’ 

2500 CEC 2017, F25 

F35: Composition Function 

4 (n=5)   

n = 5, σ= [10, 10, 10, 10, 10] 

λ= [ 0.26, 1, 1e-7, 2.5, 10] 

bias = [0, 100, 200, 300, 400],  

g1: Rotated Schwefel's Function F11’  

g2: Rotated HappyCat Function F13’  

g3: Rotated High Conditioned Elliptic Function 

F1’,  

g4: Rotated Weierstrass Function F6’,  

g5: Rotated Griewank’s Function F7’ 

2600 CEC 2014, F26 

F36: Composition Function 

8 (n=6)  

n = 6, σ= [10, 20, 30, 40, 50, 60] 

λ= [10, 10, 1e-6, 1, 1, 5e-4] 

bias = [0, 100, 200, 300, 400, 500] 
g1: Ackley’s Function F13’ 

g2: Griewank’s Function F15’ 

g3: Discus Function F12’ 

g4: Rosenbrock’s Function F4’ 

g5: HappyCat Function F17’ 

g6: Expanded Scaffer’s F6 Function F6’ 

2800 CEC 2017, F28 

F37: Composition Function 

9 (n=3)  

n = 3, σ= [10, 30, 50], λ= [1, 1, 1] 

bias = [0, 100, 200] 

g1: Hybrid Function 5 F5’ 

g2: Hybrid Function 6 F6’ 

g3: Hybrid Function 7 F7’ 

2900 CEC 2017, F29 

F38: Composition Function 

10 (n=3)  

n = 3, σ= [10, 30, 50], λ= [1, 1, 1] 

bias = [0, 100, 200] 

g1: Hybrid Function 5 F5’ 

g2: Hybrid Function 8 F8’ 

g3: Hybrid Function 9 F9’ 

3000 CEC 2017, F30 

  

Appendix B 



This appendix is to show detailed results of some pretests and experiments. First, 

experimental results of tuning pretests of the SMO’s control parameters are presented in Fig 

B.1 and Tables B.1 and B.2. Then, the obtained results of experiments of Subsections 5.3.1 and 

5.3.2 are reported in Tables B.3-B.6. Finally, convergence curves of the rest of the functions 

used in experiments of Subsection 5.3.4 are illustrated in Figs B.2- B.4. 

Tuning of SMO’s control parameters: The performance of the metaheuristic algorithms 

strongly depends upon the suitable setting of user-dependent parameters. Therefore, parameters 

of the SMO algorithm are tuned and set using the offline parameter tuning method. Fig. B.1 

shows the impact of using different values for parameters λ and μ on the inverse Gaussian 

distribution used in the SMO. Then, to set these parameters by appropriate values, the 

performance of SMO was assessed using different combinations of values for λ and μ. The 

performance results gained by combinations were reported in Table. B.1 where the last row 

shows their rank using Friedman statistical test. The rank indicates the highest performance of 

SMO when λ=20 and μ=0.5. 

 

 

Fig. B.1. The inverse Gaussian distribution with different values of λ, and μ. 

 

Table B.1 Performance results of SMO using different combinations of values for λ, and μ. 

Func. λ = 1 λ = 5 



μ = 0.25 μ = 0.5 μ = 0.75 μ = 1 μ = 0.25 μ = 0.5 μ = 0.75 μ = 1 

F1 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 

F2 2.9241E+05 4.0129E+05 3.0934E+05 4.4356E+05 2.4748E+05 5.1872E+05 4.4179E+05 3.4293E+05 

F3 2.0495E+06 2.3532E+06 1.2511E+06 8.1996E+05 5.8133E+05 3.7890E+05 6.0191E+05 1.0064E+05 

F4 -1.0988E+03 -1.0980E+03 -1.0996E+03 -1.0987E+03 -1.0986E+03 -1.0987E+03 -1.0995E+03 -1.0995E+03 

F5 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 

F6 1.0679E+02 1.0006E+02 1.0026E+02 1.0089E+02 1.0039E+02 1.0006E+02 1.0044E+02 1.0044E+02 

F7 3.1700E+02 2.0000E+02 2.0400E+02 6.5800E+02 4.9100E+02 3.1800E+02 2.0000E+02 2.0000E+02 

F8 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 

F9 -4.9999E+02 -4.9997E+02 -4.9999E+02 -4.9998E+02 -4.9998E+02 -4.9999E+02 -4.9998E+02 -4.9999E+02 

F10 -1.8260E+02 -2.1344E+02 -2.1244E+02 -1.9851E+02 -1.8160E+02 -2.0349E+02 -2.2836E+02 -2.4428E+02 

F11 4.2964E+01 -2.3182E+01 4.6255E+00 -4.8627E+01 -1.5775E+01 -3.9542E+01 -3.7385E+01 -6.5015E+01 

F12 5.1342E+02 5.2764E+02 5.1895E+02 5.0929E+02 5.2188E+02 5.0132E+02 5.1102E+02 5.0588E+02 

F13 4.0966E+02 4.1123E+02 4.0012E+02 4.0121E+02 4.0049E+02 4.0467E+02 4.1034E+02 4.1001E+02 

F14 6.1126E+02 6.1009E+02 6.0869E+02 6.1187E+02 6.1266E+02 6.0770E+02 6.0619E+02 6.0407E+02 

F15 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 

F16 1.0075E+03 9.8756E+02 9.8159E+02 9.6666E+02 9.8258E+02 9.6169E+02 9.6467E+02 9.5174E+02 

F17 9.2926E+02 9.0854E+02 9.0317E+02 9.0399E+02 9.0790E+02 9.0372E+02 9.0190E+02 9.0190E+02 

F18 1.5065E+03 1.5054E+03 1.5051E+03 1.5050E+03 1.5065E+03 1.5051E+03 1.5050E+03 1.5049E+03 

F19 1.1550E+03 1.1839E+03 1.1909E+03 1.1716E+03 1.1869E+03 1.1550E+03 1.1790E+03 1.1790E+03 

F20 8.1393E+03 1.5122E+04 1.3811E+04 1.9666E+04 1.8678E+04 1.8470E+04 3.0082E+04 3.0082E+04 

F21 1.8787E+03 1.3781E+03 1.3720E+03 1.4168E+03 1.3936E+03 1.3847E+03 1.4254E+03 1.4254E+03 

F22 1.4879E+03 1.5009E+03 1.4756E+03 1.4844E+03 1.4746E+03 1.4949E+03 1.4822E+03 1.4822E+03 

F23 4.1041E+03 3.6501E+03 3.5095E+03 3.1258E+03 3.1711E+03 3.3009E+03 3.2435E+03 3.2763E+03 

F24 1.8851E+03 1.8897E+03 1.8923E+03 1.8835E+03 1.8772E+03 1.8668E+03 1.8955E+03 1.8955E+03 

F25 1.9191E+03 1.9443E+03 1.9784E+03 1.9937E+03 1.9928E+03 1.9545E+03 2.0354E+03 1.8906E+03 

F26 1.9079E+03 1.9074E+03 1.9072E+03 1.9079E+03 1.9077E+03 1.9065E+03 1.9056E+03 1.9062E+03 

F27 2.0993E+03 2.0448E+03 2.0704E+03 2.0567E+03 2.0647E+03 2.0638E+03 2.0871E+03 2.0611E+03 

F28 2.6233E+03 2.5765E+03 2.8290E+03 2.6585E+03 2.8128E+03 2.5008E+03 2.8628E+03 2.5437E+03 

F29 6.5415E+03 6.0848E+03 5.1514E+03 6.9927E+03 6.8742E+03 6.2775E+03 6.5835E+03 6.8842E+03 

F30 1.2727E+03 1.2637E+03 1.2780E+03 1.2677E+03 1.2740E+03 1.2658E+03 1.2549E+03 1.2574E+03 

F31 1.3910E+03 1.4104E+03 1.4018E+03 1.4115E+03 1.4128E+03 1.3976E+03 1.4002E+03 1.3948E+03 

F32 1.4001E+03 1.4000E+03 1.4000E+03 1.4000E+03 1.4000E+03 1.4001E+03 1.4000E+03 1.4000E+03 

F33 2.4087E+03 2.3724E+03 2.3701E+03 2.3668E+03 2.3759E+03 2.3594E+03 2.3456E+03 2.3456E+03 

F34 2.9617E+03 2.9604E+03 2.9612E+03 2.9603E+03 2.9703E+03 2.9605E+03 2.9608E+03 2.9608E+03 

F35 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 

F36 3.2588E+03 3.2588E+03 3.2539E+03 3.2588E+03 3.2588E+03 3.2588E+03 3.2588E+03 3.2588E+03 

F37 3.3551E+03 3.3588E+03 3.4167E+03 3.3479E+03 3.4497E+03 3.2835E+03 3.2706E+03 3.2706E+03 

F38 5.8244E+05 5.8249E+05 5.8243E+05 5.8243E+05 5.8256E+05 5.8251E+05 5.8243E+05 5.8243E+05 

Rank 10.455 7.993 8.016 9.361 10.001 6.669 4.977 4.621 

 

 

Table B.1 Continued. 

Func. 
λ = 20 λ = 30 

μ = 0.25 μ = 0.5 μ = 0.75 μ = 1 μ = 0.25 μ = 0.5 μ = 0.75 μ = 1 

F1 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 

F2 3.4107E+05 1.6303E+04 3.9360E+05 3.0839E+05 3.0791E+05 4.5244E+05 2.3298E+05 2.9854E+05 

F3 3.9236E+06 1.6167E+05 9.2876E+05 4.2533E+05 1.7748E+06 1.3630E+06 1.6241E+05 1.0080E+05 

F4 -1.0972E+03 -1.1000E+03 -1.0996E+03 -1.0996E+03 -1.0981E+03 -1.0994E+03 -1.0991E+03 -1.0994E+03 

F5 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 

F6 1.0044E+02 1.0266E+02 1.0044E+02 1.0094E+02 1.0034E+02 1.0135E+02 1.0000E+02 1.0012E+02 

F7 2.0000E+02 2.0000E+02 2.0000E+02 2.2400E+02 2.6000E+02 2.0100E+02 2.1700E+02 2.1000E+02 

F8 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 

F9 -4.9997E+02 -4.9999E+02 -4.9999E+02 -4.9999E+02 -4.9999E+02 -4.9998E+02 -4.9999E+02 -4.9999E+02 

F10 -1.8359E+02 -2.2040E+02 -2.3234E+02 -2.4826E+02 -2.0548E+02 -2.4528E+02 -2.3632E+02 -2.3433E+02 

F11 -4.6401E+00 -3.4470E+01 -5.5719E+01 -4.9095E+01 -2.1750E+00 -3.4928E+01 -5.6127E+01 -8.5320E+01 

F12 5.1773E+02 5.1030E+02 5.1593E+02 5.0472E+02 5.3952E+02 5.0835E+02 5.0747E+02 4.9759E+02 

F13 4.0619E+02 4.0000E+02 4.0940E+02 4.0021E+02 4.0326E+02 4.0000E+02 4.0976E+02 4.0001E+02 

F14 6.1456E+02 6.2210E+02 6.0513E+02 6.0456E+02 6.1054E+02 6.0725E+02 6.0496E+02 6.0402E+02 

F15 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 

F16 9.8059E+02 9.7562E+02 9.6069E+02 9.5472E+02 9.9950E+02 9.6567E+02 9.5174E+02 9.5373E+02 

F17 9.0190E+02 9.2442E+02 9.0190E+02 9.0063E+02 9.0742E+02 9.0296E+02 9.0072E+02 9.0045E+02 

F18 1.5067E+03 1.5064E+03 1.5047E+03 1.5051E+03 1.5055E+03 1.5062E+03 1.5052E+03 1.5054E+03 

F19 1.1790E+03 1.1398E+03 1.1790E+03 1.1531E+03 1.1709E+03 1.1597E+03 1.1567E+03 1.1537E+03 

F20 3.0082E+04 6.1510E+03 3.0082E+04 1.7618E+04 1.2029E+04 2.4108E+04 1.5900E+04 1.3781E+04 

F21 1.4254E+03 1.4330E+03 1.4254E+03 1.4924E+03 1.3812E+03 1.3992E+03 1.3793E+03 1.5398E+03 

F22 1.4822E+03 1.6015E+03 1.4822E+03 1.4907E+03 1.4463E+03 1.5064E+03 1.4869E+03 1.4621E+03 

F23 3.2188E+03 4.0961E+03 3.8672E+03 3.2261E+03 3.6055E+03 3.3910E+03 3.2132E+03 3.6542E+03 

F24 1.8955E+03 2.0622E+03 1.8955E+03 1.8789E+03 1.8817E+03 1.8539E+03 1.8794E+03 1.8789E+03 

F25 2.0960E+03 1.9630E+03 1.8731E+03 1.9587E+03 1.9690E+03 1.9372E+03 2.0111E+03 1.9225E+03 

F26 1.9070E+03 1.9056E+03 1.9048E+03 1.9069E+03 1.9083E+03 1.9065E+03 1.9063E+03 1.9068E+03 



F27 2.0417E+03 2.2035E+03 2.0437E+03 2.0508E+03 2.0638E+03 2.0785E+03 2.0703E+03 2.0654E+03 

F28 3.0092E+03 3.3369E+03 2.5971E+03 2.6770E+03 2.6889E+03 2.7069E+03 2.8331E+03 2.5755E+03 

F29 6.6686E+03 7.8262E+03 6.2083E+03 7.2932E+03 6.3759E+03 6.4027E+03 6.5286E+03 6.2726E+03 

F30 1.2725E+03 1.3258E+03 1.2520E+03 1.2510E+03 1.2813E+03 1.2718E+03 1.2649E+03 1.2478E+03 

F31 1.4149E+03 1.4419E+03 1.3972E+03 1.3912E+03 1.4050E+03 1.3977E+03 1.3910E+03 1.3926E+03 

F32 1.4000E+03 1.4000E+03 1.4000E+03 1.4000E+03 1.4001E+03 1.4000E+03 1.4000E+03 1.4000E+03 

F33 2.3456E+03 2.3811E+03 2.3456E+03 2.3630E+03 2.3824E+03 2.3613E+03 2.3603E+03 2.3460E+03 

F34 2.9608E+03 2.9599E+03 2.9608E+03 2.9589E+03 2.9609E+03 2.9608E+03 2.9560E+03 2.9513E+03 

F35 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 2.7002E+03 

F36 3.2588E+03 3.2588E+03 3.2588E+03 3.2588E+03 3.2534E+03 3.2588E+03 3.2588E+03 3.2588E+03 

F37 3.2706E+03 3.5850E+03 3.2706E+03 3.3660E+03 3.3040E+03 3.2973E+03 3.2544E+03 3.2494E+03 

F38 5.8243E+05 5.8242E+05 5.8243E+05 5.8242E+05 5.8243E+05 5.8243E+05 5.8243E+05 5.8253E+05 

Rank 9.739 1.040 4.552 2.695 10.135 5.135 3.058 1.314 

 

Tuning of the number of flocks (k): In this experiment, the impact of k on SMO's 

performance was assessed using different values of 3, 5, 10, 15, and 20. The obtained results 

on all test functions for dimension 50 are reported in Table B.2 where the last row shows the 

Freidman rank. The rank recommends us to set k by 10 to gain the best SMO's performance. 

 

Table B.2 Impact of the number of flocks (k) on SMO's performance on all test functions for dimension 50. 

Func. 
k = 3 k = 5 k = 10 k = 15 k = 20 

Avg. Min Avg. Min Avg. Min Avg. Min Avg. Min 

F1 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 -1.4000E+03 

F2 7.9285E+05 2.9985E+05 1.0771E+06 4.9741E+05 2.3686E+05 1.6303E+04 6.3578E+05 1.1640E+05 5.3191E+05 2.3333E+05 

F3 2.1008E+07 9.2181E+05 1.1662E+07 4.1319E+05 9.2489E+06 1.6167E+05 1.3056E+07 1.1440E+06 9.6949E+06 1.1237E+05 

F4 -1.0895E+03 -1.0973E+03 -1.0960E+03 -1.0992E+03 -1.1000E+03 -1.1000E+03 -1.0988E+03 -1.0998E+03 -1.0985E+03 -1.0998E+03 

F5 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 -1.0000E+03 

F6 6.3667E+02 1.0737E+02 6.4416E+02 1.0000E+02 1.4052E+03 1.0266E+02 1.4528E+02 1.0053E+02 1.1668E+02 1.0002E+02 

F7 5.2330E+16 2.4134E+05 1.1332E+12 4.1040E+03 2.0513E+02 2.0000E+02 2.7490E+10 2.0000E+02 1.2823E+05 2.1200E+02 

F8 3.1516E+02 3.0250E+02 3.0019E+02 3.0003E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 

F9 -4.9996E+02 -4.9999E+02 -4.9995E+02 -4.9999E+02 -4.9996E+02 -4.9999E+02 -4.9993E+02 -4.9999E+02 -4.9995E+02 -4.9998E+02 

F10 -1.9523E+02 -2.2836E+02 -2.0762E+02 -2.4528E+02 -1.6203E+02 -2.2040E+02 -1.9200E+02 -2.2737E+02 -1.8031E+02 -2.4528E+02 

F11 -1.7403E+01 -9.2497E+01 -1.0925E+00 -8.2072E+01 6.6467E+01 -3.4470E+01 2.5526E+01 -4.1955E+01 5.3278E+01 -5.3951E+01 

F12 5.4102E+02 5.0404E+02 5.3415E+02 4.9731E+02 5.5805E+02 5.1030E+02 5.4102E+02 5.0796E+02 5.3788E+02 5.0898E+02 

F13 4.6876E+02 4.1570E+02 4.6158E+02 4.0321E+02 4.0395E+02 4.0000E+02 4.3798E+02 4.0057E+02 4.4073E+02 4.0011E+02 

F14 6.0685E+02 6.0206E+02 6.0751E+02 6.0359E+02 6.4040E+02 6.2210E+02 6.1061E+02 6.0656E+02 6.1186E+02 6.0651E+02 

F15 7.0001E+02 7.0000E+02 7.0001E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0000E+02 7.0001E+02 7.0000E+02 

F16 9.9666E+02 9.5174E+02 9.8900E+02 9.4975E+02 1.0459E+03 9.7562E+02 9.9681E+02 9.5273E+02 1.0034E+03 9.6169E+02 

F17 9.0318E+02 9.0009E+02 9.0325E+02 9.0018E+02 1.2489E+03 9.2442E+02 9.1828E+02 9.0190E+02 9.2668E+02 9.0560E+02 

F18 1.5071E+03 1.5045E+03 1.5076E+03 1.5041E+03 1.5099E+03 1.5064E+03 1.5089E+03 1.5051E+03 1.5099E+03 1.5072E+03 

F19 1.1641E+03 1.1289E+03 1.1804E+03 1.1481E+03 1.2078E+03 1.1398E+03 1.2382E+03 1.1800E+03 1.2361E+03 1.1879E+03 

F20 5.3394E+04 1.3122E+04 6.8961E+04 1.2782E+04 1.5422E+04 6.1510E+03 5.4707E+04 8.1472E+03 4.6298E+04 1.6801E+04 

F21 5.6589E+03 1.6201E+03 7.9351E+03 1.3928E+03 3.6486E+03 1.4330E+03 6.4385E+03 1.5198E+03 4.8414E+03 1.3546E+03 

F22 1.4701E+03 1.4344E+03 1.4851E+03 1.4542E+03 1.7595E+03 1.6015E+03 1.5606E+03 1.4829E+03 1.5964E+03 1.5368E+03 

F23 3.9032E+03 3.3079E+03 3.7598E+03 2.7837E+03 8.7564E+03 4.0961E+03 7.7064E+03 3.7110E+03 1.0044E+04 3.3267E+03 

F24 1.8992E+03 1.8630E+03 1.8983E+03 1.8515E+03 5.4535E+03 2.0622E+03 2.0852E+03 1.8930E+03 2.0329E+03 1.9307E+03 

F25 2.5185E+03 1.8348E+03 2.0907E+03 1.8363E+03 2.3451E+03 1.9630E+03 2.3064E+03 1.9168E+03 2.4836E+03 1.9355E+03 

F26 1.9109E+03 1.9067E+03 1.9106E+03 1.9071E+03 1.9078E+03 1.9056E+03 1.9104E+03 1.9061E+03 1.9098E+03 1.9068E+03 

F27 2.0684E+03 2.0425E+03 2.0680E+03 2.0299E+03 2.3685E+03 2.2035E+03 2.1671E+03 2.0824E+03 2.1807E+03 2.0917E+03 

F28 3.0595E+03 2.5989E+03 2.9836E+03 2.4036E+03 4.9980E+03 3.3369E+03 3.2941E+03 2.8011E+03 3.7045E+03 2.6914E+03 

F29 8.4638E+03 7.3251E+03 8.2444E+03 5.6879E+03 9.6003E+03 7.8262E+03 8.4981E+03 7.3580E+03 8.4300E+03 6.3719E+03 

F30 1.2724E+03 1.2533E+03 1.2724E+03 1.2406E+03 1.3544E+03 1.3258E+03 1.2857E+03 1.2661E+03 1.2813E+03 1.2629E+03 

F31 1.4080E+03 1.3813E+03 1.4091E+03 1.3736E+03 1.4800E+03 1.4419E+03 1.4187E+03 1.3977E+03 1.4236E+03 1.4047E+03 

F32 1.4322E+03 1.4000E+03 1.4703E+03 1.4000E+03 1.4913E+03 1.4000E+03 1.4466E+03 1.4000E+03 1.5024E+03 1.4000E+03 

F33 2.3925E+03 2.3354E+03 2.3981E+03 2.3593E+03 2.4558E+03 2.3811E+03 2.3876E+03 2.3397E+03 2.3991E+03 2.3578E+03 

F34 3.0345E+03 2.9802E+03 3.0292E+03 2.9619E+03 3.0346E+03 2.9599E+03 3.0226E+03 2.9602E+03 3.0283E+03 2.9603E+03 

F35 2.7004E+03 2.7003E+03 2.7003E+03 2.7003E+03 2.7003E+03 2.7002E+03 2.7103E+03 2.7002E+03 2.7153E+03 2.7002E+03 

F36 3.2751E+03 3.2569E+03 3.2760E+03 3.2588E+03 3.2842E+03 3.2588E+03 3.2952E+03 3.2588E+03 3.2742E+03 3.2588E+03 

F37 3.5625E+03 3.2328E+03 3.5176E+03 3.2364E+03 4.3394E+03 3.5850E+03 3.6197E+03 3.2576E+03 3.6708E+03 3.3392E+03 

F38 6.6355E+05 5.9133E+05 6.8806E+05 5.8490E+05 7.4394E+05 5.8242E+05 6.6958E+05 5.8241E+05 6.8692E+05 5.8322E+05 

Rank 2.8263     2.7875 2.1901     3.0362     3.1599 

     

 



 

 

 

 

 

 

 

 

 

 

 

Table B.3 Results comparison of unimodal group functions. 

F D Metrics 
CLPSO 

(2006) 

ABC 

(2007) 

ACOR 

(2008) 

 Best-so-far 

ABC (2011) 

KH 

(2012) 
WOA 

(2016) 
BOA 

 (2019) 

HHO 

(2019) 

HGSO 

(2019) 
LIACOR 

(2019) 
SMO 

 

F1 

30 
Avg -1.4000E+03 -1.4000E+03 -1.2988E+03 -1.4000E+03 -1.4000E+03 -1.39997E+03 5.3296E+04 -1.3961E+03 1.0356E+04 -1.4000E+03 -1.4000E+03 

Min -1.4000E+03 -1.4000E+03 -1.3237E+03 -1.4000E+03 -1.4000E+03 -1.39998E+03 4.2784E+04 -1.3980E+03 3.5655E+03 -1.4000E+03 -1.4000E+03 

50 
Avg -1.4000E+03 -1.4000E+03 1.0894E+04 -1.4000E+03 -1.4000E+03 -1.3989E+03 7.9398E+04 -1.3809E+03 2.3957E+04 -1.4000E+03 -1.4000E+03 

Min -1.4000E+03 -1.4000E+03 7.5004E+03 -1.4000E+03 -1.4000E+03 -1.3997E+03 7.1261E+04 -1.3888E+03 1.3238E+04 -1.4000E+03 -1.4000E+03 

100 
Avg -1.3965E+03 -1.4000E+03 1.0480E+05 -1.3999E+03 -1.1323E+03 -1.3452E+03 1.8288E+05 -1.2559E+03 9.8512E+04 -1.4000E+03 -1.4000E+03 

Min -1.3971E+03 -1.4000E+03 9.3768E+04 -1.4000E+03 -1.3697E+03 -1.3822E+03 1.6811E+05 -1.2879E+03 6.2606E+04 -1.4000E+03 -1.4000E+03 

F2 

30 
Avg 2.3166E+07 1.3524E+07 3.3763E+08 1.7193E+07 1.0116E+07 2.2161E+07 1.2291E+09 7.7974E+06 1.2330E+08 9.2712E+05 4.4149E+04 

Min 1.0949E+07 9.2948E+06 2.5168E+08 9.6225E+06 6.1665E+06 6.7446E+06 4.1552E+08 3.6281E+06 7.0771E+07 4.4127E+05 7.9314E+03 

50 
Avg 7.3572E+07 2.7766E+07 1.4601E+09 5.4587E+07 9.3850E+06 3.3738E+07 3.3834E+09 1.8823E+07 3.3458E+08 2.2109E+06 2.3686E+05 

Min 4.9368E+07 1.6751E+07 1.0382E+09 3.8133E+07 4.8612E+06 1.6622E+07 2.4945E+09 1.0264E+07 1.7970E+08 1.2754E+06 1.6303E+04 

100 
Avg 4.0803E+08 9.1472E+07 6.3594E+09 2.2758E+08 2.8549E+07 1.2891E+08 1.3867E+10 7.6232E+07 1.9726E+09 1.2812E+07 1.3339E+06 

Min 3.1230E+08 5.8621E+07 4.7729E+09 1.7341E+08 1.5519E+07 7.2462E+07 9.4139E+09 5.2181E+07 9.6251E+08 7.2854E+06 9.2768E+05 

F3 

30 
Avg 9.9975E+08 7.9705E+08 6.2137E+09 3.9086E+09 6.6065E+10 1.1376E+10 1.0591E+20 1.1024E+09 4.1887E+10 2.7544E+08 4.0660E+05 

Min 3.8110E+08 1.8111E+08 4.9440E+09 2.0058E+09 1.6548E+09 1.1814E+09 7.6014E+12 6.9535E+07 2.3153E+10 1.2652E+07 -1.2000E+03 

50 
Avg 1.4586E+10 5.3855E+09 1.0375E+11 3.5799E+10 1.9294E+11 1.9416E+10 1.8732E+18 2.6431E+09 7.3763E+10 6.7819E+08 9.2489E+06 

Min 8.6546E+09 1.2344E+09 8.4581E+10 1.9312E+10 3.4506E+10 4.0770E+09 2.5471E+13 6.5631E+08 5.2199E+10 4.8509E+07 1.6167E+05 

100 
Avg 2.0607E+11 6.3794E+10 5.6381E+11 2.3728E+11 1.8309E+18 1.2528E+11 1.2603E+26 3.7743E+10 4.9571E+16 2.2358E+10 2.3773E+08 

Min 1.4013E+11 3.5167E+10 4.6110E+11 1.9852E+11 9.2050E+15 4.8053E+10 3.0547E+23 1.4969E+10 1.7409E+15 9.2379E+09 1.1237E+07 

F4 

30 
Avg 4.2869E+04 6.4159E+04 1.0182E+05 9.1570E+04 3.6124E+04 3.1878E+04 7.2052E+04 3.5423E+02 3.4108E+04 1.8694E+04 -1.1000E+03 

Min 3.2845E+04 3.9050E+04 8.3427E+04 6.1939E+04 2.6005E+04 1.1328E+04 6.1428E+04 -4.3869E+02 2.1901E+04 5.3573E+03 -1.1000E+03 

50 
Avg 8.4619E+04 1.3154E+05 2.0149E+05 1.6318E+05 5.7232E+04 2.4767E+04 9.6693E+04 1.3805E+03 7.2309E+04 4.8942E+04 -1.1000E+03 

Min 6.3459E+04 1.1425E+05 1.7704E+05 1.3299E+05 3.8726E+04 1.4485E+04 8.2545E+04 2.0838E+02 6.4446E+04 3.0548E+04 -1.1000E+03 

100 
Avg 2.3255E+05 3.3778E+05 4.6242E+05 3.7501E+05 1.7538E+05 3.8301E+05 3.7513E+05 3.5259E+04 1.8533E+05 9.7821E+04 -1.0985E+03 

Min 1.9623E+05 2.9008E+05 3.8791E+05 3.1611E+05 1.4712E+05 1.5315E+05 2.2822E+05 2.1060E+04 1.6073E+05 6.6847E+04 -1.0999E+03 

F5 

30 
Avg -1.0000E+03 -1.0000E+03 -9.6482E+02 -1.0000E+03 -9.9981E+02 -9.7473E+02 2.8853E+04 -9.9845E+02 1.5986E+03 -1.0000E+03 -1.0000E+03 

Min -1.0000E+03 -1.0000E+03 -9.7199E+02 -1.0000E+03 -9.9997E+02 -9.9810E+02 8.0007E+03 -9.9910E+02 4.2974E+02 -1.0000E+03 -1.0000E+03 

50 
Avg -9.9999E+02 -1.0000E+03 -2.9438E+02 -1.0000E+03 -9.9366E+02 -9.0759E+02 2.6781E+04 -9.9458E+02 1.9401E+03 -1.0000E+03 -1.0000E+03 

Min -1.0000E+03 -1.0000E+03 -4.6256E+02 -1.0000E+03 -9.9970E+02 -9.6766E+02 1.5712E+04 -9.9628E+02 8.2139E+02 -1.0000E+03 -1.0000E+03 

100 
Avg -9.9277E+02 -1.0000E+03 7.9682E+03 -9.9991E+02 -7.5630E+02 -6.9059E+02 8.3446E+04 -9.5982E+02 1.6478E+04 -1.0000E+03 -1.0000E+03 

Min -9.9427E+02 -1.0000E+03 6.0123E+03 -9.9996E+02 -8.9593E+02 -7.8906E+02 6.0191E+04 -9.6938E+02 1.1763E+04 -1.0000E+03 -1.0000E+03 

F6 

30 
Avg 9.6742E+02 2.6751E+02 3.8911E+08 9.6133E+02 7.6704E+03 3.7518E+05 5.6197E+10 5.8696E+06 1.3430E+10 1.9950E+03 1.0000E+02 

Min 6.0333E+02 1.0421E+02 1.8125E+08 2.4350E+02 2.0993E+03 2.6656E+04 4.7482E+10 3.5972E+06 8.9550E+09 1.0117E+02 1.0000E+02 

50 
Avg 4.8111E+05 5.6494E+03 2.0239E+10 1.3694E+05 1.0457E+05 5.2129E+06 1.0805E+11 3.2430E+07 4.3670E+10 1.2565E+03 1.4052E+03 

Min 2.5206E+05 1.6877E+03 1.5251E+10 5.1301E+04 3.0587E+04 1.0128E+06 9.4326E+10 1.9959E+07 1.9217E+10 1.0008E+02 1.0266E+02 

100 
Avg 5.9227E+07 3.7811E+04 1.5654E+11 2.0350E+07 8.7027E+08 2.1930E+08 2.6373E+11 2.4988E+08 1.5831E+11 4.5279E+03 4.0077E+03 

Min 4.7148E+07 8.6697E+03 1.3997E+11 1.0721E+07 4.9840E+07 1.0979E+08 2.4310E+11 2.0473E+08 1.1802E+11 1.0385E+02 1.9904E+02 

F7 

30 
Avg 1.5430E+16 1.7237E+10 1.2649E+36 4.2608E+12 1.4805E+27 1.4639E+23 4.0705E+50 5.1272E+08 4.2712E+33 7.2826E+13 2.0000E+02 

Min 4.3216E+14 8.7019E+06 8.4496E+31 1.2058E+08 2.6745E+16 1.3933E+17 4.9626E+41 8.7447E+04 1.1146E+29 6.5765E+04 2.0000E+02 

50 
Avg 2.6990E+40 1.4691E+26 6.6869E+72 8.5645E+32 4.2816E+62 9.3586E+56 6.4743E+88 3.5111E+22 3.5189E+60 8.9313E+45 2.0513E+02 

Min 9.5120E+34 2.1340E+19 2.2421E+68 1.1313E+29 8.6786E+43 3.7261E+44 4.5162E+77 1.1400E+16 1.5816E+55 8.0978E+19 2.0000E+02 

100 
Avg 3.9871E+116 1.0208E+81 3.5032E+168 5.0695E+100 1.9460E+166 2.7377E+156 1.4446E+192 1.2013E+85 2.5603E+147 1.6019E+116 9.9560E+21 

Min 6.8982E+109 2.1279E+62 2.2476E+160 8.3748E+87 2.6317E+133 3.8723E+117 1.3668E+180 2.7910E+66 5.0404E+136 6.2166E+85 2.0374E+09 

F8 

30 
Avg 4.3324E+04 1.0567E+05 1.5808E+05 1.2647E+05 2.9994E+04 1.0251E+05 8.3747E+04 3.8019E+02 3.4548E+04 7.1246E+02 3.0000E+02 

Min 3.1619E+04 8.5433E+04 1.2173E+05 9.7263E+04 1.6214E+04 3.6822E+04 6.4722E+04 3.2157E+02 2.1310E+04 3.0039E+02 3.0000E+02 

50 
Avg 1.6311E+05 2.1241E+05 3.6731E+05 2.5448E+05 1.0683E+05 5.8009E+04 2.2499E+05 1.8795E+03 1.3368E+05 4.7124E+04 3.0000E+02 

Min 1.3340E+05 1.4255E+05 2.8195E+05 2.0009E+05 7.5633E+04 2.3182E+04 1.7175E+05 1.0223E+03 1.0521E+05 1.5731E+04 3.0000E+02 

100 
Avg 5.3614E+05 5.5762E+05 9.0173E+05 6.4287E+05 3.3609E+05 6.6315E+05 3.6587E+05 7.1018E+04 3.0499E+05 2.2690E+05 3.0074E+02 

Min 4.6934E+05 4.9190E+05 6.8732E+05 5.4783E+05 2.6021E+05 2.5691E+05 3.1606E+05 4.9445E+04 2.5828E+05 1.6291E+05 3.0013E+02 



 

 

 

 

 

 

 

Table B.4 Results comparison of multi-modal group functions. 

F D Metrics CLPSO 

(2006) 
ABC 

(2007) 

    ACOR 

    (2008) 

 Best-so-far 

ABC (2011) 

KH 

(2012) 

WOA 

(2016) 

BOA 

(2019) 

HHO 

(2019) 

HGSO 

(2019) 
LIACOR 

(2019) 
SMO 

 

F9 

30 
Avg -4.8977E+02 -4.9823E+02 2.0102E+02 -4.8541E+02 -4.9882E+02 -4.7687E+02 9.0086E+03 -4.9465E+02 1.2541E+03 -4.9955E+02 -4.9996E+02 

Min -4.9360E+02 -4.9863E+02 -1.9946E+01 -4.9428E+02 -4.9978E+02 -4.9270E+02 6.6582E+03 -4.9652E+02 5.1400E+02 -4.9991E+02 -4.9999E+02 

50 
Avg -3.8579E+02 -4.9248E+02 5.8329E+03 -3.8576E+02 -4.9311E+02 -3.8734E+02 1.4419E+04 -4.7846E+02 2.7754E+03 -4.9969E+02 -4.9996E+02 

Min -4.0523E+02 -4.9518E+02 4.4275E+03 -4.2764E+02 -4.9767E+02 -4.4628E+02 1.2123E+04 -4.8681E+02 1.7529E+03 -4.9994E+02 -4.9999E+02 

100 
Avg 2.7851E+02 -4.7183E+02 2.7671E+04 6.6748E+02 -2.8998E+02 8.3396E+00 4.2186E+04 -3.2191E+02 1.3254E+04 -4.9420E+02 -4.9995E+02 

Min 1.5415E+02 -4.8562E+02 2.4762E+04 3.6084E+02 -4.2362E+02 -1.9301E+02 3.7298E+04 -3.6856E+02 9.7179E+03 -4.9594E+02 -5.0000E+02 

F10 

30 
Avg -1.5328E+02 -5.5114E+01 -4.2533E+01 -3.2544E+01 -1.3977E+02 1.3688E+02 7.8355E+02 2.1613E+02 7.8349E+01 -1.8289E+02 -2.3032E+02 

Min -1.7595E+02 -1.4628E+02 -7.0321E+01 -1.0299E+02 -1.9146E+02 -4.7928E+01 4.6274E+02 4.4951E+01 -4.5351E+00 -2.1841E+02 -2.6816E+02 

50 
Avg 9.9495E+01 4.2477E+02 4.3317E+02 4.3608E+02 7.4462E+01 5.4745E+02 1.3412E+03 6.2227E+02 4.3261E+02 -4.3551E+01 -1.6203E+02 

Min 6.7818E+01 1.9223E+02 3.7790E+02 1.9948E+02 2.6450E+00 3.1807E+02 1.0669E+03 3.8690E+02 3.0621E+02 -1.5175E+02 -2.2040E+02 

100 
Avg 7.6450E+02 2.1378E+03 2.0916E+03 2.0451E+03 9.6151E+02 1.9360E+03 3.3051E+03 2.2176E+03 1.7535E+03 7.3131E+02 9.8977E+01 

Min 7.1949E+02 1.8357E+03 1.8821E+03 1.6155E+03 7.7958E+02 1.3343E+03 3.0233E+03 1.9454E+03 1.4414E+03 5.2979E+02 -6.4880E+00 

F11 

 
30 

Avg -3.0806E+01 9.7693E+01 5.6039E+01 1.0659E+02 7.5834E+01 2.7512E+02 9.9595E+02 3.6600E+02 1.9854E+02 1.1797E+01 -8.4187E+01 

Min -5.7123E+01 4.2007E+01 3.2317E+01 3.7580E+01 -1.1900E+01 1.2098E+02 7.0044E+02 2.0804E+02 1.3212E+02 -6.3567E+01 -1.2823E+02 

50 
Avg 2.1844E+02 5.8081E+02 5.3615E+02 6.5344E+02 3.8164E+02 7.7149E+02 1.6983E+03 8.6993E+02 5.1666E+02 2.2506E+02 6.6467E+01 

Min 1.7424E+02 4.2297E+02 4.3005E+02 5.5633E+02 2.8042E+02 5.9882E+02 1.3685E+03 6.8992E+02 4.2618E+02 1.1003E+02 -3.4470E+01 

100 
Avg 8.6887E+02 2.4452E+03 2.2229E+03 2.3381E+03 1.6105E+03 2.2716E+03 3.8363E+03 2.5607E+03 1.8961E+03 1.1059E+03 4.9338E+02 

Min 7.9708E+02 2.0912E+03 2.0823E+03 2.0409E+03 1.3912E+03 1.6486E+03 3.0966E+03 2.1817E+03 1.4968E+03 8.6338E+02 3.0610E+02 

F12 

30 
Avg 6.1505E+02 7.0993E+02 7.1607E+02 6.8185E+02 5.2682E+02 9.2432E+02 1.7272E+03 1.0674E+03 8.1875E+02 5.1979E+02 4.7825E+02 

Min 5.9445E+02 6.6232E+02 6.8568E+02 6.3254E+02 4.8624E+02 7.0102E+02 1.4578E+03 7.7827E+02 7.4356E+02 4.7873E+02 4.5138E+02 

50 
Avg 8.5272E+02 1.2199E+03 1.8299E+03 1.1611E+03 7.4354E+02 1.4745E+03 2.3640E+03 1.5391E+03 1.2457E+03 7.0597E+02 5.5805E+02 

Min 8.2566E+02 1.0693E+03 1.6863E+03 1.0708E+03 6.8212E+02 1.2114E+03 2.1111E+03 1.4052E+03 1.0914E+03 5.9442E+02 5.1030E+02 

100 
Avg 1.4950E+03 3.2439E+03 7.5203E+03 3.3058E+03 1.9058E+03 3.2411E+03 4.7296E+03 3.2844E+03 2.8590E+03 1.6211E+03 8.8135E+02 

Min 1.4281E+03 2.8748E+03 6.5879E+03 2.6072E+03 1.7362E+03 2.7895E+03 4.2665E+03 2.8787E+03 2.3677E+03 1.3414E+03 7.6468E+02 

F13 

30 
Avg 4.8804E+02 4.1246E+02 6.0438E+02 4.5619E+02 5.0480E+02 5.6468E+02 1.7236E+04 5.2661E+02 1.3986E+03 4.5678E+02 4.0000E+02 

Min 4.4595E+02 4.0120E+02 5.8353E+02 4.0644E+02 4.6827E+02 4.8413E+02 9.6320E+03 4.7337E+02 9.6843E+02 4.0001E+02 4.0000E+02 

50 
Avg 5.7647E+02 4.6305E+02 1.6161E+03 5.0185E+02 5.5036E+02 6.4086E+02 5.1879E+04 6.0145E+02 8.6841E+03 5.1176E+02 4.0395E+02 

Min 5.4066E+02 4.2515E+02 1.4045E+03 4.8642E+02 4.6152E+02 5.1929E+02 3.7461E+04 5.0178E+02 5.5239E+03 4.1159E+02 4.0000E+02 

100 
Avg 9.9397E+02 6.7023E+02 1.8966E+04 7.8239E+02 8.8293E+02 1.0761E+03 1.1261E+05 8.9821E+02 2.6917E+04 7.3339E+02 5.2312E+02 

Min 9.4943E+02 6.2599E+02 1.6322E+04 7.3408E+02 7.7303E+02 9.6373E+02 9.2681E+04 7.5588E+02 1.9802E+04 5.8661E+02 4.7319E+02 

F14 

30 
Avg 6.1493E+02 6.1467E+02 6.3716E+02 6.1446E+02 6.2006E+02 6.3500E+02 6.4628E+02 6.2889E+02 6.3054E+02 6.1530E+02 6.1989E+02 

Min 6.1307E+02 6.1029E+02 6.3380E+02 6.1314E+02 6.1519E+02 6.2918E+02 6.4081E+02 6.2143E+02 6.2594E+02 6.1111E+02 6.0758E+02 

50 
Avg 6.3723E+02 6.3302E+02 6.7263E+02 6.3174E+02 6.4299E+02 6.6443E+02 6.8200E+02 6.5358E+02 6.6105E+02 6.3510E+02 6.4040E+02 

Min 6.3427E+02 6.2870E+02 6.6692E+02 6.2642E+02 6.3290E+02 6.5419E+02 6.7620E+02 6.4503E+02 6.5519E+02 6.2651E+02 6.2210E+02 

100 
Avg 7.0555E+02 6.9075E+02 7.6302E+02 6.8521E+02 7.1363E+02 7.5058E+02 7.7364E+02 7.3151E+02 7.3773E+02 7.0341E+02 7.0194E+02 

Min 6.9698E+02 6.8183E+02 7.5975E+02 6.8176E+02 7.0458E+02 7.3628E+02 7.6607E+02 7.1579E+02 7.2884E+02 6.9071E+02 6.6162E+02 

F15 

30 
Avg 7.0000E+02 7.0000E+02 7.0302E+02 7.0000E+02 7.0002E+02 7.0059E+02 1.4927E+03 7.0106E+02 8.8403E+02 7.0002E+02 7.0001E+02 

Min 7.00001E+02 7.0000E+02 7.0264E+02 7.0000E+02 7.0000E+02 7.0025E+02 1.3334E+03 7.0103E+02 8.0876E+02 7.0000E+02 7.0000E+02 

50 
Avg 7.0020E+02 7.0001E+02 8.5014E+02 7.0006E+02 7.0005E+02 7.0113E+02 2.3434E+03 7.0133E+02 1.2766E+03 7.0001E+02 7.0000E+02 

Min 7.0014E+02 7.00002E+02 8.2876E+02 7.0002E+02 7.0003E+02 7.0103E+02 2.0216E+03 7.0123E+02 1.1247E+03 7.0000E+02 7.0000E+02 

100 
Avg 7.0165E+02 7.0005E+02 1.9254E+03 7.0109E+02 7.2735E+02 7.0400E+02 3.9984E+03 7.0342E+02 2.4088E+03 7.0003E+02 7.0000E+02 

Min 7.0150E+02 7.0002E+02 1.8212E+03 7.0102E+02 7.0441E+02 7.0241E+02 3.6203E+03 7.0305E+02 1.9683E+03 7.0000E+02 7.0000E+02 

F16 

30 
Avg 9.6688E+02 9.7761E+02 1.1455E+03 9.7857E+02 1.0136E+03 1.1313E+03 1.4259E+03 1.0685E+03 1.1430E+03 9.8054E+02 9.7296E+02 

Min 9.4697E+02 9.6160E+02 1.1214E+03 9.5503E+02 9.5274E+02 1.0504E+03 1.3529E+03 1.0360E+03 1.1177E+03 9.4875E+02 9.3582E+02 

50 
Avg 1.0981E+03 1.0945E+03 1.4389E+03 1.0998E+03 1.1340E+03 1.3061E+03 1.8784E+03 1.2527E+03 1.4480E+03 1.0644E+03 1.0459E+03 

Min 1.0749E+03 1.0156E+03 1.4071E+03 1.0718E+03 1.0582E+03 1.2047E+03 1.7501E+03 1.2006E+03 1.3760E+03 1.0075E+03 9.7562E+02 

100 
Avg 1.6677E+03 1.6472E+03 2.2708E+03 1.6224E+03 1.5358E+03 1.6605E+03 2.8010E+03 1.6620E+03 2.1198E+03 1.3653E+03 1.2808E+03 

Min 1.4836E+03 1.5533E+03 2.2063E+03 1.5219E+03 1.4271E+03 1.5295E+03 2.6730E+03 1.5671E+03 2.0139E+03 1.2831E+03 1.1179E+03 

F17 

30 
Avg 1.0096E+03 1.7344E+03 2.4565E+03 2.0245E+03 2.6638E+03 6.8239E+03 2.6770E+04 5.4017E+03 5.2103E+03 1.2903E+03 9.0589E+02 

Min 9.5959E+02 1.1848E+03 1.8569E+03 1.5058E+03 1.8367E+03 3.8784E+03 1.7365E+04 4.4054E+03 3.4773E+03 9.9940E+02 9.0000E+02 

50 
Avg 3.8064E+03 9.3125E+03 1.1981E+04 6.5379E+03 9.4788E+03 1.8580E+04 7.8144E+04 1.5228E+04 2.6111E+04 3.6058E+03 1.2489E+03 

Min 2.8419E+03 5.8941E+03 9.5083E+03 4.0319E+03 7.6570E+03 1.0015E+04 6.0048E+04 1.2187E+04 1.6461E+04 2.2867E+03 9.2442E+02 

100 
Avg 3.2268E+04 4.9805E+04 6.0371E+04 3.8734E+04 2.2380E+04 4.0131E+04 1.7597E+05 3.3290E+04 6.6600E+04 1.3164E+04 7.6435E+03 

Min 2.6946E+04 3.1820E+04 5.0318E+04 3.2137E+04 1.7845E+04 2.7272E+04 1.4999E+05 2.6747E+04 5.9545E+04 9.5503E+03 2.7226E+03 

F18 

30 
Avg 1.5099E+03 1.5104E+03 1.5978E+03 1.5083E+03 1.5175E+03 1.5664E+03 3.7872E+05 1.5404E+03 2.7523E+03 1.5125E+03 1.5042E+03 

Min 1.5082E+03 1.5072E+03 1.5428E+03 1.5051E+03 1.5103E+03 1.5253E+03 1.4867E+05 1.5260E+03 1.6200E+03 1.5072E+03 1.5019E+03 

50 
Avg 1.5278E+03 1.5270E+03 7.1948E+04 1.5245E+03 1.5606E+03 1.7382E+03 5.0287E+06 1.5928E+03 1.1488E+05 1.5531E+03 1.5099E+03 

Min 1.5240E+03 1.5203E+03 3.2506E+04 1.5181E+03 1.5343E+03 1.6355E+03 2.1994E+06 1.5616E+03 3.9139E+04 1.5348E+03 1.5064E+03 

100 
Avg 1.6050E+03 1.5930E+03 1.4029E+07 1.6356E+03 1.7871E+03 2.4939E+03 2.6680E+07 1.7247E+03 1.6218E+06 1.7305E+03 1.5597E+03 

Min 1.5927E+03 1.5807E+03 8.5862E+06 1.6110E+03 1.7275E+03 1.9647E+03 1.6974E+07 1.6644E+03 7.1375E+05 1.6566E+03 1.5396E+03 



 

 

 

 

 

 

 

 

 

Table B.5 Results comparison of hybrid group functions. 

F D Metrics CLPSO 

(2006) 

ABC 

(2007) 

     ACOR 

    (2008) 

Best-so-far 

 ABC(2011) 

KH 

(2012) 

WOA 

(2016) 
BOA 

(2019) 

HHO 

(2019) 

HGSO 

(2019) 
LIACOR 

(2019) 
SMO 

 

F19 

30 
Avg 1.2187E+03 1.6103E+03 1.6827E+03 1.7860E+03 1.4980E+03 1.3243E+03 8.1182E+03 1.2305E+03 2.4061E+03 1.1705E+03 1.1710E+03 

Min 1.1832E+03 1.2954E+03 1.4971E+03 1.1937E+03 1.2914E+03 1.1907E+03 5.0473E+03 1.1577E+03 1.5984E+03 1.1286E+03 1.1100E+03 

50 
Avg 1.5153E+03 3.6224E+03 6.8535E+03 6.2173E+03 5.8668E+03 1.5532E+03 2.5818E+04 1.4166E+03 5.5159E+03 1.2228E+03 1.2078E+03 

Min 1.3954E+03 1.5952E+03 3.8906E+03 1.9296E+03 2.9429E+03 1.4002E+03 1.8140E+04 1.2888E+03 3.0612E+03 1.1650E+03 1.1398E+03 

100 
Avg 5.2800E+04 7.0774E+04 2.8817E+05 8.6604E+04 8.4583E+04 1.4099E+04 2.9979E+05 3.0470E+03 1.2832E+05 2.9424E+03 1.7255E+03 

Min 3.6864E+04 4.7979E+04 2.0521E+05 4.9218E+04 6.0365E+04 8.4785E+03 1.7482E+05 2.5443E+03 1.1173E+05 2.0508E+03 1.3432E+03 

F20 

30 
Avg 8.0864E+05 8.0564E+05 3.1462E+07 1.1702E+06 2.5485E+06 2.1209E+07 1.4392E+10 6.0554E+06 1.1670E+09 3.5477E+04 8.8850E+03 

Min 3.2525E+05 1.3006E+05 1.1687E+07 4.5159E+05 2.0746E+05 1.8229E+06 7.6859E+09 1.0989E+06 5.4588E+08 9.3174E+03 2.3433E+03 

50 
Avg 1.9750E+07 5.6216E+06 1.8594E+09 1.2051E+07 1.4003E+07 1.7274E+08 8.3672E+10 5.5412E+07 1.4324E+10 6.9979E+05 1.5422E+04 

Min 1.1004E+07 1.4818E+06 1.2699E+09 6.7299E+06 4.2194E+06 5.3985E+07 6.9303E+10 1.5630E+07 7.1716E+09 1.7231E+05 6.1510E+03 

100 
Avg 3.4698E+08 4.1403E+07 3.1000E+10 2.0155E+08 1.2238E+08 8.6739E+08 1.9782E+11 3.6522E+08 6.5678E+10 3.1603E+06 1.8856E+05 

Min 2.6421E+08 1.8983E+07 2.3410E+10 1.1398E+08 1.6249E+07 4.0657E+08 1.7866E+11 2.0602E+08 3.3626E+10 1.4030E+06 7.1275E+04 

F21 

30 
Avg 6.4426E+03 2.4187E+04 8.9060E+03 4.5916E+04 4.0696E+04 1.5096E+05 1.3101E+10 1.2402E+05 3.2206E+08 7.8307E+03 2.0240E+03 

Min 2.6495E+03 9.3709E+03 1.5357E+03 8.1508E+03 1.8288E+04 4.0779E+04 4.9367E+09 3.1744E+04 9.5281E+07 1.4011E+03 1.3887E+03 

50 
Avg 2.0888E+05 3.3745E+04 1.3819E+04 6.1497E+05 4.7935E+04 2.1564E+05 5.0134E+10 9.9279E+05 2.6051E+09 4.1751E+03 3.6486E+03 

Min 5.2100E+04 9.2254E+03 8.2106E+03 1.9472E+05 1.8734E+04 4.0642E+04 3.1648E+10 2.2447E+05 9.1502E+08 1.4091E+03 1.4330E+03 

100 
Avg 5.8069E+05 4.1924E+04 1.4556E+08 2.6546E+06 3.6406E+04 1.5226E+05 4.5797E+10 3.8434E+06 1.1465E+10 5.1325E+03 4.8931E+03 

Min 1.6650E+05 1.0177E+04 6.5965E+07 1.0939E+06 2.3723E+04 5.7507E+04 3.5926E+10 2.0669E+06 5.5684E+09 2.0858E+03 2.6468E+03 

F22 

30 
Avg 1.7698E+04 1.0576E+05 1.8968E+05 1.5869E+05 1.8672E+05 3.7197E+05 5.6332E+06 2.5001E+04 3.0283E+05 1.1410E+04 1.5918E+03 

Min 3.3812E+03 2.1312E+04 4.8333E+04 1.2547E+04 3.9929E+03 2.1848E+04 1.5552E+06 3.3104E+03 4.2204E+04 2.0287E+03 1.5216E+03 

50 
Avg 4.9540E+05 1.0402E+06 2.8296E+06 9.2776E+05 9.8895E+05 5.8129E+05 1.4333E+08 2.3246E+05 3.6036E+06 5.0999E+04 1.7595E+03 

Min 1.4324E+05 4.2880E+05 6.4965E+05 3.1824E+05 7.4663E+04 7.2261E+04 2.8323E+07 4.2240E+04 1.3914E+06 1.1268E+04 1.6015E+03 

100 
Avg 9.1433E+06 1.1348E+07 1.1703E+08 1.4991E+07 5.3970E+06 2.4992E+06 1.8885E+08 1.1601E+06 1.6977E+07 2.7945E+05 6.2997E+03 

Min 3.4494E+06 6.1625E+06 7.1888E+07 4.8436E+06 2.8338E+06 4.5559E+05 7.3749E+07 3.8063E+05 1.1079E+07 8.0640E+04 2.3670E+03 

F23 

30 
Avg 1.2140E+06 2.0055E+06 1.0761E+07 2.2182E+06 1.3974E+06 2.3435E+06 1.3370E+08 8.7723E+05 4.6944E+06 1.5056E+05 3.1596E+03 

Min 2.1001E+05 4.7621E+05 5.3006E+06 7.6430E+05 4.9611E+05 2.0163E+05 2.1575E+07 1.3711E+05 2.0178E+06 2.1698E+04 2.5462E+03 

50 
Avg 7.0953E+06 7.2860E+06 7.8390E+07 1.0279E+07 2.0800E+06 1.5179E+07 7.2129E+08 2.3720E+06 4.9294E+07 2.4607E+05 8.7564E+03 

Min 2.1440E+06 3.2293E+06 4.5554E+07 4.9982E+06 9.3876E+05 2.9272E+06 9.9228E+07 7.0373E+05 2.9478E+07 6.7203E+04 4.0961E+03 

100 
Avg 6.3265E+07 3.5276E+07 7.6918E+08 5.4918E+07 7.2221E+06 1.8648E+07 1.8570E+09 1.0355E+07 2.3343E+08 1.8577E+06 1.2845E+05 

Min 3.7997E+07 1.9880E+07 5.3811E+08 3.5453E+07 3.9546E+06 8.5318E+06 1.1162E+09 4.1626E+06 1.3497E+08 9.5926E+05 4.2002E+04 

F24 

30 
Avg 1.5691E+05 2.1877E+05 9.9808E+06 2.8270E+05 2.9230E+05 1.7275E+06 9.0759E+07 3.1811E+05 1.5665E+06 1.1359E+05 1.9943E+03 

Min 6.9132E+04 7.2571E+04 2.3077E+06 5.7395E+04 4.4749E+04 1.0782E+05 1.5397E+07 6.8016E+04 2.7827E+05 7.8661E+03 1.8843E+03 

50 
Avg 1.4246E+06 1.5739E+06 4.2753E+07 2.3801E+06 2.4575E+06 4.6428E+06 2.5718E+08 1.6917E+06 9.3091E+06 1.7033E+05 5.4535E+03 

Min 3.8534E+05 5.6894E+05 1.8584E+07 9.7073E+05 8.4147E+05 8.1591E+05 4.3178E+07 5.9130E+05 3.6983E+06 5.6562E+04 2.0622E+03 

100 
Avg 1.0284E+07 8.2595E+06 2.1750E+08 1.1484E+07 3.0265E+06 2.5706E+06 3.4129E+08 2.5818E+06 2.1688E+07 6.7153E+05 7.9758E+04 

Min 6.0713E+06 2.2553E+06 1.3708E+08 6.6678E+06 1.4776E+06 9.0446E+05 2.1034E+08 6.6547E+05 1.1542E+07 2.2716E+05 1.8971E+04 

F25 

30 
Avg 2.0139E+03 9.6783E+03 3.2158E+03 1.1723E+04 2.6434E+03 6.3484E+03 4.5119E+09 2.1461E+04 6.6600E+07 2.3369E+03 2.0846E+03 

Min 1.9350E+03 3.2407E+03 1.8960E+03 5.3548E+03 2.0295E+03 2.1265E+03 1.5282E+09 2.9327E+03 1.9012E+07 1.8580E+03 1.8277E+03 

50 
Avg 6.9109E+03 2.0077E+04 2.5769E+03 2.5434E+04 3.7191E+03 7.9588E+03 1.9453E+10 3.2642E+05 1.7360E+09 3.1388E+03 2.3451E+03 

Min 3.0983E+03 9.8480E+03 2.0892E+03 1.1169E+04 2.2521E+03 2.5224E+03 1.3455E+10 1.9309E+04 9.0091E+08 1.8766E+03 1.9630E+03 

100 
Avg 6.5321E+05 2.6999E+05 1.5013E+08 2.3936E+06 5.9528E+03 4.9790E+04 4.1534E+10 6.9801E+06 7.7426E+09 3.0810E+03 2.6607E+03 

Min 3.2235E+05 1.8023E+04 8.5165E+07 9.4564E+05 3.2408E+03 1.4966E+04 3.3683E+10 2.3541E+06 3.0755E+09 2.1130E+03 2.2636E+03 

F26 

30 
Avg 1.9093E+03 1.9072E+03 1.9140E+03 1.9077E+03 1.9148E+03 1.9534E+03 2.5153E+03 1.9207E+03 2.0134E+03 1.9059E+03 1.9047E+03 

Min 1.9070E+03 1.9060E+03 1.9128E+03 1.9055E+03 1.9110E+03 1.9178E+03 2.3262E+03 1.9089E+03 1.9914E+03 1.9041E+03 1.9024E+03 

50 
Avg 1.9262E+03 1.9171E+03 1.9633E+03 1.9236E+03 1.9429E+03 1.9730E+03 4.8139E+03 1.9570E+03 2.2954E+03 1.9143E+03 1.9078E+03 

Min 1.9189E+03 1.9133E+03 1.9579E+03 1.9189E+03 1.9212E+03 1.9334E+03 3.1911E+03 1.9198E+03 2.2184E+03 1.9101E+03 1.9056E+03 

100 
Avg 2.0572E+03 1.9869E+03 2.2447E+03 2.0198E+03 2.0273E+03 2.1164E+03 1.3047E+04 2.0580E+03 3.7521E+03 2.0107E+03 1.9640E+03 

Min 2.0273E+03 1.9514E+03 2.1982E+03 2.0023E+03 1.9834E+03 2.0533E+03 9.2759E+03 2.0061E+03 3.1356E+03 1.9642E+03 1.9151E+03 

F27 

30 
Avg 4.9213E+03 6.0462E+03 3.3801E+04 8.5554E+03 1.5899E+04 1.2503E+04 3.0514E+05 2.6646E+03 2.6653E+04 3.2501E+03 2.2029E+03 

Min 2.8399E+03 3.6278E+03 1.6219E+04 3.5530E+03 7.8477E+03 3.7455E+03 7.9522E+04 2.1590E+03 1.0479E+04 2.2354E+03 2.0915E+03 

50 
Avg 1.7853E+04 1.9084E+04 1.7007E+05 2.9521E+04 2.1896E+04 6.8685E+04 3.4816E+05 3.5366E+03 4.4081E+04 9.0650E+03 2.3685E+03 

Min 9.1190E+03 8.3840E+03 7.5871E+04 1.2886E+04 1.1642E+04 1.4770E+04 1.0817E+05 2.7388E+03 2.1201E+04 3.0647E+03 2.2035E+03 

100 
Avg 8.6338E+04 8.3430E+04 8.2079E+05 9.5219E+04 1.4698E+05 9.6836E+04 1.2748E+06 8.4662E+03 2.5390E+05 5.1663E+04 2.6686E+03 

Min 4.1069E+04 6.4805E+04 4.5177E+05 6.4952E+04 1.0395E+05 4.3618E+04 5.2615E+05 5.5657E+03 1.5108E+05 1.2323E+04 2.4716E+03 

F28 

30 
Avg 9.8177E+04 3.4713E+05 1.8688E+06 4.5506E+05 3.3996E+05 7.9226E+05 4.9786E+07 2.1829E+05 1.7587E+06 1.0014E+05 2.8642E+03 

Min 3.2851E+04 6.5721E+04 3.2863E+05 1.1582E+05 6.7443E+04 7.4562E+04 6.6586E+06 3.1153E+04 7.1529E+05 1.6583E+04 2.3816E+03 

50 
Avg 2.6338E+06 3.2932E+06 3.7495E+07 5.2542E+06 2.6514E+06 4.8109E+06 1.2402E+08 9.8087E+05 8.3083E+06 2.6005E+05 4.9980E+03 

Min 7.3566E+05 1.1527E+06 2.2192E+07 2.3073E+06 1.1187E+06 9.0970E+05 6.2662E+07 3.5016E+05 4.8510E+06 7.5936E+04 3.3369E+03 

100 
Avg 3.4335E+07 2.2133E+07 3.7010E+08 3.7125E+07 6.4243E+06 1.2315E+07 6.1569E+08 7.0743E+06 9.3411E+07 1.5607E+06 4.1374E+04 

Min 2.3469E+07 1.3252E+07 2.8732E+08 2.0304E+07 3.0734E+06 5.7919E+06 3.8861E+08 3.5894E+06 4.5194E+07 9.1146E+05 1.6690E+04 



 

Table B.6 Results comparison of composition group functions. 

F D Metrics CLPSO 

(2006) 
ABC 

(2007) 

ACOR 

(2008) 
Best-so-far  

ABC (2011) 

KH 

(2012) 
WOA 

(2016) 
BOA 

 (2019) 

HHO 

(2019) 

HGSO 

(2019) 
LIACOR 

(2019) 
SMO 

 

F29 

30 
Avg 6.8984E+03 5.7917E+03 8.5282E+03 5.4233E+03 6.5591E+03 7.2418E+03 1.0533E+04 6.9560E+03 8.5355E+03 5.5119E+03 5.3167E+03 

Min 6.0388E+03 4.7945E+03 8.0074E+03 4.3554E+03 4.2930E+03 5.2242E+03 9.2235E+03 5.0784E+03 8.0627E+03 3.8986E+03 3.8304E+03 

50 
Avg 1.3820E+04 1.1208E+04 1.5371E+04 1.0576E+04 1.2004E+04 1.3125E+04 1.8336E+04 1.2649E+04 1.6622E+04 1.0065E+04 9.6003E+03 

Min 1.2440E+04 9.8642E+03 1.4398E+04 9.9334E+03 9.8760E+03 9.3627E+03 1.7433E+04 1.0468E+04 1.5577E+04 7.7321E+03 7.8262E+03 

100 
Avg 3.0872E+04 2.4726E+04 3.3460E+04 2.4259E+04 2.3951E+04 2.9045E+04 3.7295E+04 2.9059E+04 3.4424E+04 2.2598E+04 2.0338E+04 

Min 2.8829E+04 2.2835E+04 3.2103E+04 2.2125E+04 1.8912E+04 2.2364E+04 3.6155E+04 2.5419E+04 3.3351E+04 1.9065E+04 1.6928E+04 

F30 

30 
Avg 1.2736E+03 1.2865E+03 1.3045E+03 1.2830E+03 1.2736E+03 1.3101E+03 1.4934E+03 1.3186E+03 1.3044E+03 1.2562E+03 1.2756E+03 

Min 1.2645E+03 1.2778E+03 1.2971E+03 1.2713E+03 1.2383E+03 1.2884E+03 1.4023E+03 1.2925E+03 1.2955E+03 1.2302E+03 1.2265E+03 

50 
Avg 1.3561E+03 1.3708E+03 1.3922E+03 1.3628E+03 1.3691E+03 1.4010E+03 1.8621E+03 1.4216E+03 1.3878E+03 1.3289E+03 1.3544E+03 

Min 1.3443E+03 1.3562E+03 1.3880E+03 1.3497E+03 1.3269E+03 1.3718E+03 1.5350E+03 1.3831E+03 1.3806E+03 1.3032E+03 1.3258E+03 

100 
Avg 1.5536E+03 1.6255E+03 1.6225E+03 1.5842E+03 1.8687E+03 1.6613E+03 4.4433E+03 1.7028E+03 1.6122E+03 1.5536E+03 1.5749E+03 

Min 1.5321E+03 1.5985E+03 1.6023E+03 1.5559E+03 1.7020E+03 1.6180E+03 3.5209E+03 1.6441E+03 1.5992E+03 1.5042E+03 1.5148E+03 

F31 

30 
Avg 1.3961E+03 1.4015E+03 1.4092E+03 1.3923E+03 1.4204E+03 1.4153E+03 1.5389E+03 1.4272E+03 1.4195E+03 1.3954E+03 1.3903E+03 

Min 1.3878E+03 1.3929E+03 1.4040E+03 1.3832E+03 1.3801E+03 1.3924E+03 1.4835E+03 1.3943E+03 1.3968E+03 1.3734E+03 1.3711E+03 

50 
Avg 1.4988E+03 1.5130E+03 1.5027E+03 1.4858E+03 1.5673E+03 1.5164E+03 1.7472E+03 1.5371E+03 1.5591E+03 1.5062E+03 1.4800E+03 

Min 1.4863E+03 1.5000E+03 1.4960E+03 1.4691E+03 1.5347E+03 1.4914E+03 1.6847E+03 1.5052E+03 1.4761E+03 1.4800E+03 1.4419E+03 

100 
Avg 1.7744E+03 1.8248E+03 1.7522E+03 1.7495E+03 2.0949E+03 1.8055E+03 2.4789E+03 1.8599E+03 1.7058E+03 1.8129E+03 1.7379E+03 

Min 1.7476E+03 1.7928E+03 1.7437E+03 1.7249E+03 1.9679E+03 1.7459E+03 2.3062E+03 1.7703E+03 1.6943E+03 1.7600E+03 1.6706E+03 

F32 

30 
Avg 1.4018E+03 1.4008E+03 1.5347E+03 1.4015E+03 1.4003E+03 1.5015E+03 1.6202E+03 1.5363E+03 1.4112E+03 1.4147E+03 1.4000E+03 

Min 1.4011E+03 1.4005E+03 1.4709E+03 1.4009E+03 1.4002E+03 1.4003E+03 1.5266E+03 1.4001E+03 1.4060E+03 1.40002E+03 1.4000E+03 

50 
Avg 1.4091E+03 1.4026E+03 1.6891E+03 1.4055E+03 1.4928E+03 1.6778E+03 1.7533E+03 1.6682E+03 1.5800E+03 1.5770E+03 1.4913E+03 

Min 1.4058E+03 1.4019E+03 1.6838E+03 1.4036E+03 1.4006E+03 1.6538E+03 1.5825E+03 1.4024E+03 1.4233E+03 1.4003E+03 1.4000E+03 

100 
Avg 1.4642E+03 1.4069E+03 1.9125E+03 1.4255E+03 1.8506E+03 1.8967E+03 2.3260E+03 1.8950E+03 1.9071E+03 1.8267E+03 1.8396E+03 

Min 1.4443E+03 1.4049E+03 1.9046E+03 1.4197E+03 1.8126E+03 1.8564E+03 2.0274E+03 1.8468E+03 1.8752E+03 1.7817E+03 1.7672E+03 

F33 

30 
Avg 2.3182E+03 2.2511E+03 2.5241E+03 2.3236E+03 2.3968E+03 2.5330E+03 2.8182E+03 2.5187E+03 2.5518E+03 2.3727E+03 2.3809E+03 

Min 2.2377E+03 2.2162E+03 2.4792E+03 2.2276E+03 2.3539E+03 2.4462E+03 2.6910E+03 2.4415E+03 2.5060E+03 2.3407E+03 2.3404E+03 

50 
Avg 2.5046E+03 2.5145E+03 2.8117E+03 2.5150E+03 2.5180E+03 2.8562E+03 3.3709E+03 2.7845E+03 2.9101E+03 2.4594E+03 2.4558E+03 

Min 2.4330E+03 2.4788E+03 2.7799E+03 2.4673E+03 2.4693E+03 2.6782E+03 3.2176E+03 2.6130E+03 2.8251E+03 2.4126E+03 2.3811E+03 

100 
Avg 3.1111E+03 3.0406E+03 3.7076E+03 3.0701E+03 3.3584E+03 3.9016E+03 5.1972E+03 3.7968E+03 4.1448E+03 2.8323E+03 2.7205E+03 

Min 3.0427E+03 2.9074E+03 3.6553E+03 2.9699E+03 3.1982E+03 3.6148E+03 4.8364E+03 3.3773E+03 3.8136E+03 2.7496E+03 2.5782E+03 

F34 

30 
Avg 2.8882E+03 2.8840E+03 2.9460E+03 2.8861E+03 2.9158E+03 2.9306E+03 6.1738E+03 2.9030E+03 3.2733E+03 2.8933E+03 2.8870E+03 

Min 2.8875E+03 2.8836E+03 2.9337E+03 2.8841E+03 2.8879E+03 2.8901E+03 5.1218E+03 2.8842E+03 3.1835E+03 2.8837E+03 2.8835E+03 

50 
Avg 3.1136E+03 3.0145E+03 4.2175E+03 3.0385E+03 3.0935E+03 3.1395E+03 1.7227E+04 3.1232E+03 6.4299E+03 3.0691E+03 3.0346E+03 

Min 3.0801E+03 2.9896E+03 3.8363E+03 3.0076E+03 3.0363E+03 3.0579E+03 1.4365E+04 3.0310E+03 5.3679E+03 3.0170E+03 2.9599E+03 

100 
Avg 3.7325E+03 3.3568E+03 3.1798E+04 3.5736E+03 3.5315E+03 3.7619E+03 3.1234E+04 3.5671E+03 1.3653E+04 3.3307E+03 3.3008E+03 

Min 3.6908E+03 3.2565E+03 2.6957E+04 3.5144E+03 3.4216E+03 3.5919E+03 2.8734E+04 3.4255E+03 1.0661E+04 3.2023E+03 3.1565E+03 

F35 

30 
Avg 2.7004E+03 2.7004E+03 2.7007E+03 2.7003E+03 2.7119E+03 2.7005E+03 2.7892E+03 2.7369E+03 2.7528E+03 2.7003E+03 2.7003E+03 

Min 2.7003E+03 2.7003E+03 2.7006E+03 2.7002E+03 2.7004E+03 2.7003E+03 2.7141E+03 2.7002E+03 2.7024E+03 2.7002E+03 2.7001E+03 

50 
Avg 2.7005E+03 2.7005E+03 2.7289E+03 2.7005E+03 2.7912E+03 2.7004E+03 2.8260E+03 2.7801E+03 2.7971E+03 2.7154E+03 2.7003E+03 

Min 2.7004E+03 2.7003E+03 2.7009E+03 2.7004E+03 2.7078E+03 2.7003E+03 2.7511E+03 2.7003E+03 2.7119E+03 2.7003E+03 2.7002E+03 

100 
Avg 2.7531E+03 2.7364E+03 3.0902E+03 2.7006E+03 2.8003E+03 2.8000E+03 2.9028E+03 2.8000E+03 2.8000E+03 2.8004E+03 2.7968E+03 

Min 2.7040E+03 2.7005E+03 2.7061E+03 2.7006E+03 2.8002E+03 2.8000E+03 2.8059E+03 2.8000E+03 2.8000E+03 2.8002E+03 2.7004E+03 

F36 

30 
Avg 3.2491E+03 3.1988E+03 3.3139E+03 3.2331E+03 3.2357E+03 3.2817E+03 8.1988E+03 3.2371E+03 3.5540E+03 3.1345E+03 3.1145E+03 

Min 3.2307E+03 3.1939E+03 3.3032E+03 3.2232E+03 3.1963E+03 3.2558E+03 6.0494E+03 3.1970E+03 3.3000E+03 3.1000E+03 3.1000E+03 

50 
Avg 3.4581E+03 3.2921E+03 6.6946E+03 3.3892E+03 3.3492E+03 3.4216E+03 1.4548E+04 3.3497E+03 6.1091E+03 3.3194E+03 3.2842E+03 

Min 3.4312E+03 3.2667E+03 6.0887E+03 3.3284E+03 3.2716E+03 3.3122E+03 9.9414E+03 3.2763E+03 3.3000E+03 3.2589E+03 3.2588E+03 

100 
Avg 5.3626E+03 3.5110E+03 1.7256E+04 5.0916E+03 3.9678E+03 3.9378E+03 3.8504E+04 3.6043E+03 1.8826E+04 3.4254E+03 3.3469E+03 

Min 4.9962E+03 3.4547E+03 1.6755E+04 4.0281E+03 3.6358E+03 3.7646E+03 3.5692E+04 3.5129E+03 1.5189E+04 3.3565E+03 3.2915E+03 

F37 

30 
Avg 3.4507E+03 3.4865E+03 4.2620E+03 3.4933E+03 4.0600E+03 4.7490E+03 9.5342E+03 4.1340E+03 4.0308E+03 3.6223E+03 3.6766E+03 

Min 3.3507E+03 3.3603E+03 4.0665E+03 3.3471E+03 3.6497E+03 3.9913E+03 5.5893E+03 3.6194E+03 3.7995E+03 3.3293E+03 3.3813E+03 

50 
Avg 3.8129E+03 4.0254E+03 5.5941E+03 3.8106E+03 5.1198E+03 6.7858E+03 1.5422E+05 5.1736E+03 6.3958E+03 4.2941E+03 4.3394E+03 

Min 3.5891E+03 3.6254E+03 4.9625E+03 3.5250E+03 4.4950E+03 5.5855E+03 1.9047E+04 4.4310E+03 5.0897E+03 3.6823E+03 3.5850E+03 

100 
Avg 7.8152E+03 7.1188E+03 1.1528E+04 7.1287E+03 9.1351E+03 1.3768E+04 8.8665E+05 8.9024E+03 1.7213E+04 6.7734E+03 6.7111E+03 

Min 7.3744E+03 6.1294E+03 1.0070E+04 6.6061E+03 7.1268E+03 1.0695E+04 4.1818E+05 7.5602E+03 1.0706E+04 5.6439E+03 5.8741E+03 

F38 

30 
Avg 1.4228E+04 1.9007E+04 1.6545E+04 2.1863E+04 1.5764E+06 5.6602E+06 1.7143E+09 5.9704E+05 5.2100E+07 6.8620E+03 5.3492E+03 

Min 9.3983E+03 1.1404E+04 1.0977E+04 1.0703E+04 1.7176E+05 5.3611E+05 5.6230E+08 1.1615E+05 1.7576E+07 5.8715E+03 4.9942E+03 

50 
Avg 1.9673E+06 9.2928E+05 7.6425E+06 1.1397E+06 5.1112E+07 7.1930E+07 8.8020E+09 1.0903E+07 5.8641E+08 8.8240E+05 7.4394E+05 

Min 1.4006E+06 7.5808E+05 2.4078E+06 9.0003E+05 1.5649E+07 3.3773E+07 5.3096E+09 7.0569E+06 4.3085E+08 7.4712E+05 5.8242E+05 

100 
Avg 8.1518E+06 4.4526E+04 4.0001E+07 2.1813E+06 3.0882E+07 2.9972E+08 4.0643E+10 2.5103E+07 9.0539E+09 1.2301E+04 7.7060E+03 

Min 4.4550E+06 2.4317E+04 2.2770E+07 9.2702E+05 9.4799E+06 9.7378E+07 3.2811E+10 1.0272E+07 5.5172E+09 7.0904E+03 5.4974E+03 

 

 

 

 

 



 

Fig. B.2. Convergence curves of SMO and competitive algorithms on the rest of test functions. 

 



 
Fig. B.3. Convergence curves of SMO and competitive algorithms on the rest of test functions. 

 



 
Fig. B.4. Convergence curves of SMO and competitive algorithms on the rest of test functions. 
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