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Abstract: This paper proposes a novel method for occupancy map building using a mixture of
Gaussian processes. Gaussian processes have proven to be highly flexible and accurate for a robotic
occupancy mapping problem, yet the high computational complexity has been a critical barrier for
large-scale applications. We consider clustering the data into small, manageable subsets and applying
a mixture of Gaussian processes. One of the problems in clustering is that the number of groups is
not known a priori, thus requiring inputs from experts. We propose two efficient clustering methods
utilizing (1) a Dirichlet process and (2) geometrical information in the context of occupancy mapping.
We will show that the Dirichlet process-based clustering can significantly speed up the training step
of the Gaussian process and if geometrical features, such as line features, are available, they can
further improve the clustering accuracy. We will provide simulation results, analyze the performance
and demonstrate the benefits of the proposed methods.

Keywords: continuous occupancy mapping; Gaussian process; Dirichlet process; line tracking

1. Introduction

Mapping is one of the fundamental problems of mobile robots which have to navigate
through unknown environments. However, generating accurate and reliable environmental
maps remains challenging, both theoretically and practically.

Occupancy grid maps [1] have been one of the most popular maps in robotics as its
map representation is mathematically simple and easy to implement. At the core of its
simplicity exists a strong assumption that the occupancy of a grid cell is independent
of those of neighboring cells, making it suitable for real-time processing as well as for
three-dimensional extension such as Octomap [2]. Many researchers have tried to relax this
strict independence assumption to enhance the accuracy further by capturing the spatial
correlation between the grid cells, for example, by utilizing a forward sensor model [3].
Occupancy grid maps also require a prefixed resolution on discretized input domains,
making them unable to predict continuous occupancies at arbitrary positions.

O’Callaghan et al. [4,5] have considered occupancy mapping as a classification problem
and applied Gaussian processes (GP) [6]. By doing that, they can exploit the dependence of
occupancy values between grid cells and expand the map into a continuous space. The
computational complexity related to the matrix inversion during training and inference of
Gaussian processes, however, is O(n3), with n being the number of data points; thus, it is
not scalable to large-scale datasets. Moreover, the hyper-parameters within a global GP
typically struggle to deal with local variations of occupancy in environments.
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In this paper, we adopt a divide-and-conquer approach in building occupancy maps
inspired by a mixture of Gaussian processes [7]. The benefits of this approach are two-fold:
first, thanks to the reduced size of clustered data, the computational complexity of building
occupancy maps dramatically decreases; second, the local structure of the map can be
captured by training the local data. A mixture of Gaussian processes has been extensively
studied. For example, Ross et al. [8] applied a Dirichlet process mixture of Gaussian
processes to learn and categorize lung disease utilizing experts input constraints. Görür
and Rasmussen [9] accelerated the performance of a Dirichlet process mixture of Gaussian
processes by exploiting the conjugacy of the base distribution of the prior. Following
this line of research, we apply a Dirichlet process mixture of Gaussian processes to solve
the robotic occupancy mapping problem and develop an efficient clustering utilizing the
geometrical information of the environment.

The contributions of this paper are:

• Dirichlet process-based clustering is investigated for occupancy mapping which does
not require a prior on the number of clusters;

• Geometric feature-based clustering utilizing line tracking is developed to enhance the
accuracy;

• Clustering and mapping performances of both methods are compared and analyzed.

To the best of our knowledge, there has been no prior work on utilizing clustering in
the context of Gaussian process-based occupancy mapping, and this work is the elaboration
of our previous work on occupancy mapping [10,11].

Figure 1 illustrates a robotic mapping scenario used in this work. A robot equipped
with a laser range finder explores the environment, while capturing laser scans. Since there
is a limit on the measuring distance of the laser scanner, laser beams are observed with
returns or with no returns. Our approach is not limited to a single-robot scenario. The
goal is to estimate the continuous occupancy of the input space, by clustering laser sensor
observations, training hyper-parameters of local Gaussian processes, and merging the local
maps into a global occupancy map. The observation data comprise occupied and empty
space—for example, the laser returns represent the occupied space, while the line segments
the empty location.

(a) (b)
Figure 1. (a) Simulation data (Robots—red circles; laser beams—black lines; laser hit points—blue
points). (b) Single laser scan (Laser hit points are grouped into clusters, with different colors per
cluster).

The structure of the paper is as follows. In Section 2, we briefly review related work
to our approach. We outline two clustering methods and three steps of our occupancy
mapping in Section 3. In Section 4, experimental results are shown and the clustering
and mapping performances are compared. We conclude the paper with future work in
Section 6.



Sensors 2022, 22, 6832 3 of 14

2. Related Work

A Gaussian process [6] is a Bayesian non-parametric approach to regression and classifi-
cation and is widely used in robotics [12,13] and machine learning [14,15]. Lang et al. [16] and
Hadsell et al. [17] have viewed building elevation maps as a regression problem and applied
Gaussian processes. They are, however, unable to discriminate vertically overlapping objects
such as tunnels and bridges as, basically, they estimate the height of the surface at each point
of the ground, which are thus called 2.5D maps. For the full understanding of the structure of
the environment, 3D occupancy or implicit surface representations are required [18,19].

Meanwhile, O’Callaghan et al. [4,5] applied Gaussian process classification to occupancy
map building. They used laser hit points and discretized laser beams as measurements and
stored laser hit points in a kd-tree. To reduce the size of data, they used the nearest points
on laser beams to the query point. However, those training data are unique for each query
point, and thus a new matrix must be generated and inverted each time a query point is
evaluated. Later, they have addressed this problem by introducing the integral kernel [20]
which integrated the point-wise kernel for laser beams. By doing that, they can reduce the size
of data and reuse the same covariance matrix for every query point. However, the size of the
training data acquired from large-scale environments is still too big to apply this approach.

In the machine learning community, the mixture of experts [21] scheme is commonly used
as a divide-and-conquer strategy. With this concept, a mixture of Gaussian processes [7] has
been proposed to reduce the size of the data and improve the performance. The number of
Gaussian process experts, however, should be determined in advance, making the training
process inflexible for other datasets.

We propose novel clustering methods to improve the accuracy and efficiency of
Gaussian processes-based occupancy mapping. Notably, we utilize a geometrical feature
extraction method, called line tracking, for efficient clustering and compare the performance
with the Dirichlet process-based clustering method [10,11].

3. Building Occupancy Maps

Our method for occupancy map building is composed of three steps which are speci-
fied in rounded rectangles in Figure 2. Since the size of the data is critical for kernel methods
including Gaussian processes, we divide data into several clusters in the first step. Each
Gaussian process is trained with its training subset and used to infer a local occupancy map at
every query position in the second step. Finally, each local occupancy map is merged into one
by using a mixture of Gaussian processes in the last step. Each step will be explained in detail
in the following sections.

Figure 2. Flow chart of our mapping method using a Mixture of Gaussian processes. The inputs and
outputs are conceptually visualized to show how data are clustered, how local maps are inferred
from the clustered data, and how local maps are merged into a global map.
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3.1. Data Clustering
3.1.1. Dirichlet Process: DP-Clustering

The Dirichlet process (DP) is the infinite-dimensional generalization of a Dirichlet
distribution. Similar to that, a Dirichlet distribution acts as a prior for a multinomial
distribution, and works like a prior for an infinite-multinomial distribution. The major
advantage of this method is that we do not need the number of clusters before clustering,
as in k-means clustering.

Given n input data {xi}n
i=1, we assume that xi belongs to a cluster indicator zi and its

distribution F is parameterized with θi. Each parameter θi is drawn independently and
identically from a discrete distribution G of a Dirichlet process,

G ∼ DP(α, G0) (1)

θ ∼ G (2)

xi | zi, θ ∼ F(θ), (3)

where α > 0 is the concentration parameter which determines the variance of the Dirichlet
process, and G0 is the prior distribution over the component parameters θ.

The probability of assigning an input xi to either an existing component z or a new
one znew given other part assignments z/i, becomes [7]

p(zi = z | z/i) =
n/i,z

n− 1 + α

p(zi = znew | z/i) =
α

n− 1 + α
, (4)

where n/i,z denotes the number of instances assigned to component z excluding xi. Note
that the number of clusters grows as the concentration parameter α increases.

Laser hit points are grouped via the Dirichlet process and then laser beam segments
with returns are added to the same cluster of corresponding laser hit points. Laser beam
segments with no returns are added to the clusters which have the most similar laser beam
segments with returns. The similarity between laser beam segments can be determined
using the line integral kernel of Equation (11). The main reason for this clustering process
instead of clustering all together is to ensure that any cluster has at least one laser hit point.
Notice that if a cluster has a laser hit point as a member, then the corresponding laser beam
segment with the return is also included in the same group. In other words, we avoid those
cases where a cluster is composed of only laser beam segments with no returns because we
cannot train classifiers with input data of same target values.

3.1.2. Line Tracking: LT-Clustering

Although the DP-clustering is highly flexible, it is prone to errors since the laser hit
points are clustered based on the positions and underlying Gaussian distribution models. If
the environment can be approximated by geometrical features such as lines or planes, they
can be utilized for the clustering purpose. This observation inspired us to use geometric
information when clustering data, and we propose to extract lines from laser hit points and
cluster those on the same line into the same group. For 3D laser scan data, plane extraction
methods can be applied correspondingly.

Among various line extraction methods, we choose line tracking (LT) [22], since it
is known to outperform other methods. Algorithm 1 describes the procedure of line
tracking [23] in which a line is fitted to laser hit points incrementally until it meets a point
separated far enough.

After laser hit points are clustered along with extracted lines, similar to the DP-
clustering, laser beams with returns are assigned to the same group of similar laser hit
points. Laser beams with no returns are then allocated to the clusters which have the most
similar laser beams with returns.
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Algorithm 1 Line tracking

Construct a line with first two points.
repeat

if the next point is close to the line then
add it to the set of points and fit the line to them.

else
create a new line with the next two points.

end if
until no points are remained

3.2. Local Occupancy Mapping

We assume that an occupancy map function f (x) of a position x follows a Gaussian
process with the zero mean function and a covariance function k(x, x′) as

f (x) ∼ GP
(
0, k(x, x′)

)
, (5)

where the squared exponential is adopted for the covariance function

k(x, x′) = σ2
f exp

(
−1

2

d

∑
j=1

(xj − x′j)
2

l2
j

)
. (6)

Here, σ2
f represents the signal variance and l = (l1, ..., ld)> denotes the length-scale in

a d-dimensional space.
We also assume that the observations are associated with white noises,

y = f (x) + ε, ε ∼ N (0, σ2
n), (7)

where σ2
n denotes the noise variance.

Then, given n noisy observations {(xi, yi)}n
i=1, the joint Gaussian distribution of the

observed target values y = (y1, ..., yn)ᵀ and a function value f∗ at a query point x∗ becomes[
y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI k(X, x∗)

k(X, x∗)> k(x∗, x∗)

])
, (8)

where X = {xi}n
i=1, K(X, X′)i,j = k(xi, x′j), and k(X, x∗)i = k(xi, x∗).

The conditional distribution of Equation (8) is also a Gaussian distribution as

p( f∗ | y) = N ( f∗; µ∗, σ2
∗). (9)

The mean µ∗ and covariance σ2
∗ are calculated in a closed form,

µ∗ = k>∗ (K + σ2
nI)−1y,

σ2
∗ = k∗∗ − k>∗ (K + σ2

nI)−1k∗, (10)

where K = K(X, X) ∈ Rn×n, k∗ = K(X, x∗) ∈ Rn×1 and k∗∗ = k(x∗, x∗) ∈ R.
In classification as in occupancy mapping, the posterior becomes a non-Gaussian dis-

tribution, and the exact analytical inference becomes intractable. Approximation methods
can be applied such as Laplace approximation [24] and Expectation Propagation [25]. In this
work, we use Probabilistic Least Square Classification [26] and utilize a sigmoid function to
squash the output values between 0 and 1 for binary classification.

In training, a laser hit point at position x is labelled as y = 1 (occupied). The problem
is the laser beams. Since the laser beams are continuous line segments, we need to discretize
them into several points. However, this can cause a huge increase in the number of data
points. Thus, we apply the integral kernel [20] which integrates the point-wise kernel k(x, x′).
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With the integral kernel, a laser beam is considered as a data point and labelled as y = 0
(unoccupied). The integral kernels for line-to-point and line-to-line similarity are

kI
(
l(u), x

)
=
∫ 1

0
k
(
l(u), x

)
du,

kI I
(
l(u), l′(v)

)
=
∫ 1

0

∫ 1

0
k
(
l(u), l′(v)

)
dudv, (11)

where l(u) and l′(v) are line segments parameterized with u, v ∈ [0, 1]. In general,
Equation (11) does not have a closed form formula and we applied Simpson quadrature [27]
to numerically evaluate the integral. It should be mentioned that the concept of line kernel
can be extended to area/volume kernel to further reduce the size of training data. With
clustered data, the means and variances of the occupancy map functions in Equation (10) are
predicted for each cluster, which correspond to local occupancy maps and map uncertainties.

3.3. Merging Local Occupancy Maps

The local maps need to be merged to provide global estimates at the query points. A
mixture of experts model [21] merges local expert knowledge with corresponding weights,

µ∗ =
k

∑
i=1

p(zi|x∗, D)µ∗i, (12)

where all the training data D = {X, y} are split into k data sets D = {D1, ..., Dk}. Here, the
weight p(zi|x∗, D) determines which of experts should be associated with which query points.

In this work we propose to use an approximation method, called a Bayesian committee
machine [28], assuming each local map is independent given the query points and local
clustered data. Then, Equation (12) can be rewritten as

µ∗
σ2∗

=
k

∑
i=1

µ∗i
σ2
∗i

,
1
σ2∗

=
k

∑
i=1

1
σ2
∗i

. (13)

In this method, weighting factors are the normalized inverse variances. If a test
position is close to some of the training data in one cluster, the variance would be small,
and thus the effects of that group on the test area would be relatively higher than other
groups. Therefore, we can avoid the accuracy loss problem of the distance-based gating
network. Another benefit of this method is that the map uncertainty is also merged into one.

Please note that it is an approximation method assuming that each local map is
independent of each other, conditioned on the local training data (rather than all training
data), which is a reasonable assumption if each cluster contains a large enough training
data set [28]. Moreover, the mixture of Gaussian processes [7] differs with our approach
in that the former applies another Gaussian process to infer the probability that a query
point belongs to each cluster. Therefore, it requires a global model which utilizes all the
observations, which is thus not in agreement with our objective of divide-and-conquer.

3.4. Computational Complexity

Let us examine how much the computational complexity is reduced by introducing
the mixture of Gaussian process to occupancy mapping. Suppose that the n training data
is equally partitioned into k groups such that the number of data in each training subset
becomes the same as ni = n/k for i = 1, ..., k. Since the computational complexity of a
Gaussian process is O(n3 +mn2), each Gaussian process expert costs O((n/k)3 +m(n/k)2),
and this is repeated k times for each cluster. Therefore, the total computational complexity
of a mixture of Gaussian process experts is O((n3 + mn2k)/k2). Recognize that with the
global approximation, the large training data is partitioned into manageable subsets, and
thus the cubic computational complexity with respect to the number of training data is
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dramatically reduced. Table 1 compares the theoretical complexity of the original Gaussian
process and the mixture of Gaussian process experts.

Table 1. The comparison of computational complexities for a Gaussian process and its global approxi-
mation using a mixture of Gaussian process experts, where n and m denote the numbers of training and
test data, respectively, and the training data are assumed to be equally partitioned into k subsets.

Gaussian Process A Mixture of Gaussian Process Experts

O(n3 + mn2) O
(

n3 + mn2k
k2

)

4. Experimental Results
4.1. Simulation Data

Figure 1a shows the simulated data in which two robots are equipped with laser
range-finders which sweep 180◦ with 17 beams and whose maximum range is 8 m. The
robots stop and acquire laser scans roughly at every half meter. Total 696 observations are
obtained at 26 different poses in the environment of about 22 m × 18 m; 254 laser hit points,
254 laser beams with returns, and 188 laser beams with no returns.

4.2. Clustering Performance

Total 254 hit points are clustered into (1) 8 groups for the case of DP-clustering as
shown in Figure 3a, and (2) 18 groups for LT-clustering as shown in Figure 3b, where hit
points are color-coded for each cluster. The same number (254) of laser beams with returns
are assigned to the groups where their end points (hit points) are located, while the other
188 laser beams with no returns are allocated to those clusters to which the most similar
laser beams with return belonged based on the line-to-line integral kernel.

(a) (b)
Figure 3. (a) Dirichlet process (DP)-based clustering with 8 groups. (b) Line tracking (LT)-based
clustering with 18 groups.

Figure 4 compares the clustering and related local mapping performance of two clustering
methods; training data subsets (left column), continuous local occupancy maps (middle), and
map uncertainties (right). Please note that each local Gaussian process predicted a local map
covering the whole input space. Continuous occupancy maps correctly classified occupied and
empty areas based on the clustered data. On the other hand, the map uncertainties are low
where observations are made, and high where no observations are taken.

Figure 4a shows the mapping results of DP-clustering for Cluster-4, which correctly
clustered data around the box at the bottom right corner. On the other hand, Figure 4b
shows the mapping results of DP-clustering for Cluster-5, which incorrectly clustered data;
the hit points from the two horizontal walls at the top of the environment are grouped in the
same cluster. Consequently, the L-shaped wall between them is missing in the corresponding
occupancy map with relatively high uncertainties. This prediction error is due to the clustering
error. The Dirichlet process partitions data that explain the best of the base distribution, here
a Gaussian distribution. Therefore, the hit points from the two horizontal walls at the top of
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the environment are clustered together with a horizontally thin Gaussian distribution. Mis-
clustering leads to misprediction in local maps, thus causing errors in the final merged map.

Training Subset Occupancy Map Map Uncertainty

(a)

(b)

(c)

(d)

Figure 4. Occupancy maps and map uncertainties built with individual Gaussian process experts for
training data partitioned with a Dirichlet process mixture model or the line tracking. (left) Training
data subsets, (middle) Occupancy maps color-coded by occupancy (red/blue for occupied/empty),
and (right) Map Uncertainties color-coded by uncertainty (red/blue for high/low uncertainty).
(a) Cluster 4 using DP-clustering; (b) Cluster 5 using DP-clustering; (c) Cluster 3 using LT-clustering;
(d) Cluster 13 using LT-clustering.
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In contrast, the LT-clustering successfully splits Cluster-5 into two separate groups.
That is, Cluster-3 and Cluster-13, as shown in Figure 4c,d, respectively. Therefore, each
wall is predicted separately, and the prediction errors in the previous method are rectified
resulting in an improved performance.

Figure 5 compares occupancy maps and their uncertainties using various methods.
Compared to the ground truth in Figure 5a, the occupancy grid map in Figure 5b gives a
very accurate output. However, it is very sparse and no information is given regarding how
much the output can be trusted. On the other hand, a single Gaussian process produces a
continuous and accurate map with its uncertainty as shown in Figure 5c,d. However, due to
its cubic complexity, the input data is clustered by a Dirichlet process in Figure 5e and by a line
tracking in Figure 5g. Please note that the L-shaped wall from the final map of DP-clustering
is less clear than that of LT-clustering showing the effect of the clustering errors.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Cont.



Sensors 2022, 22, 6832 10 of 14

(g) (h)
Figure 5. Comparison of occupancy maps between different approaches. (a) Simulation environment,
where red and blue colors denote occupied and empty areas, respectively. (b) An occupancy grid map
is discrete and sparse due to its independent cell assumption, while a Gaussian process generates
(c) a continuous occupancy map with (d) its uncertainty from the same dataset, but suffers the high
computational complexity. By utilizing a clustering method such as (e,f) a Dirichlet process (DP) and
(g,h) line tracking (LT), we can reduce the computational complexity. However, a Dirichlet process
only considers the distribution of points and may mis-cluster them, while the line tracking follows
the connectivity of points and generates a better occupancy map with its uncertainty. (a) Ground
Truth; (b) Occupancy Grid Map; (c) Occupancy Map (Single GP); (d) Map Uncertainty (Single
GP); (e) Occupancy Map (DP-clustering); (f) Map Uncertainty (DP-clustering); (g) Occupancy Map
(LT-clustering); (h) Map Uncertainty (LT-clustering).

To analyze how well the observations (hit points, laser beams with returns and with
no returns) are clustered, we further compare the covariance matrices constructed with the
integral kernels before and after the clustering. The covariance matrix without clustering in
Figure 6a depicts the pair-wise similarity between sequentially acquired observations which
are ordered from left to right columns (also from top to bottom rows because it is symmetric).
Nearby observations have relatively high similarity, but some departed observations also
show some level of resemblance. Please note that the similarity increases and decreases
periodically as the row and column indices increase, which is since the laser range finder
keeps sweeping 180◦, thus re-observing the structures previously seen. Additionally, note
that in the last few rows, a new similar pattern begins which is due to the observations
acquired from the second robot starting at the bottom right of the environment.

(a) (b) (c)
Figure 6. Covariance matrices between range observations (hit points, laser beams with returns
and with no returns) constructed with integral kernels. Each element of the covariance matrix can
be considered as pair-wise similarity between two observations where darker color shows higher
similarity. (a) Covariance matrix of sequential observations before clustering. Nearby observations
have high similarity, but some far observations also do. Repeated patterns are due to the laser beams
spanning horizontally. The observations for the last several rows and columns are acquired from
the second robot. After clustering using (b) a Dirichlet process (DP) and (c) line tracking (LT), the
observations are grouped into diagonal blocks, which verifies that the clustering results are acceptable.
(a) Before Clustering; (b) After DP-clustering; (c) After LT-clustering.
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After the clustering, the observations are successfully grouped, showing a block-
diagonal pattern in the covariance matrices as shown in Figure 6b for DP-clustering and
Figure 6c for LT-clustering, with a darker color representing higher similarity. In Figure 6b,
dark rectangles are found along the diagonal, but there still exist off-diagonal correlations
between clusters. These correlations occur because each region of groups is partially
overlapped. Overall LT-clustering shows better clustering performance than DP-clustering,
but with the cost of generating more clusters.

4.3. Map Accuracy

Now, the local Gaussian processes are merged for a global map, and we compare their
results for two clustering methods as shown in Figure 5 with the ground truth data in
Figure 5a. The normal occupancy grid map (OGM) in Figure 5b is sparse and fragmented.
Particularly, the occupied areas on the walls are hardly estimated, which is mainly due
to the static independence cell assumption of occupancy grid maps. Thus, only those
grid cells which the laser beams pass through or return at are updated, and the others
remain unknown.

On the other hand, the occupancy map built with a single Gaussian process shown in
Figure 5c is more accurate and even dense due to the dependency assumption between
Gaussian process outputs. Please note that even the occupancy values of unexplored areas
are also estimated. However, as previously mentioned, the computational cost of this
approach becomes too high, hence limiting its scalability.

The final map using DP-clustering is shown in Figure 5e, and is a little bit blurred
compared to that of the single GP (Figure 5c). This blurring effect stems from the clustering
errors, particularly around the L-shaped central area. Figure 5g,h show the occupancy map
and its uncertainty using LT-clustering, respectively. Note that the occupancy map is also
blurred, but the L-shaped wall is more clearly identified. Additionally, notice that the map
uncertainty where the robot did not explore is high, while the map uncertainty along the
robot trajectory is low.

For a more exact comparison of accuracy, Receiver Operating Characteristic (ROC)
curves for each method are drawn in Figure 7 showing that the performances of both clus-
tering methods are similar each other and comparable to the single Gaussian process result.

Figure 7. Receiver Operating Characteristic (ROC) of occupancy maps built by three different methods.

4.4. Computational Time

To compare the computational complexity, we measure the computational time of
learning and inference as shown in Table 2. Each method is implemented with Matlab and
executed on a computer with an Intel Core 2 Duo 3.0 GHz CPU and 3.25 GB RAM.

OGM is the fastest since it does not require the training process. Note that the learning
time of DP-clustering and LT-clustering method is dramatically reduced compared to the
non-clustered approach. The method using LT-clustering shows a slightly faster result
than that using DP-clustering. This result is because the line tracking creates more clusters
than the Dirichlet process does, making the average group size smaller. However, their
difference in inference time is negligible.



Sensors 2022, 22, 6832 12 of 14

Table 2. Computational time for learning and inference.

Learning Inference Total

OGM – 0.087 s 0.087 s

Single GP 11.9 h 103.0 s 11.9 h

Mixture of GPs with DP-clustering 1.5 h 17.2 s 1.5 h

Mixture of GPs with LT-clustering 1.4 h 11.6 s 1.4 h

5. Discussion

We compare two clustering methods and analyze the experimental results more in
depth. Since the map estimator is the same as a Gaussian process, and the local maps are
merged by the mixture of experts as shown in Figure 2, the only thing that makes the final
map different in Figure 5 is how the clustering is performed.

The DP-clustering only considers data points and their distributions. The number
of clusters and cluster assignment is determined by how well the data points in each
cluster explain the base distribution, i.e., a Gaussian distribution. Therefore, the points
around the box at the bottom right corner are clustered in the same cluster with an almost
isotropic Gaussian distribution as shown in Figure 4a, which produces a reasonable results.
However, the points on the north wall are clustered in the same cluster with a almost
flat Gaussian distribution as shown in Figure 4b, which generates a connected north wall
without considering the L-shape wall in the middle. This mis-clustering caused errors
when local maps are merged with a mixture of Gaussians.

On the other hand, the LT-clustering considers data points and their physical relations,
i.e., the same wall of a line segment. Therefore, the points on the north wall are split into
two different clusters as shown in Figure 4c,d. It is not shown, but the points around the box
at the bottom right corner are split into four different clusters by line tracking. Therefore,
we can say that physical relation-based or geometry-based clustering is a better choice for
LiDAR data clustering than distribution-based clustering. Another benefit of line tracking
is that the clusters can be determined incrementally along the data acquisition, which is
crucial for online mapping strategy. However, a Dirichlet process assumes that all the data
points are obtained before the clustering process begins. One drawback of LT-clustering is
that, in general, a greater number of clusters are formed than DP-clustering, but that is a
reasonable overhead to generate more accurate maps.

6. Conclusions

We have proposed two clustering methods for continuous occupancy mapping using
Gaussian processes to improve the scalability and capturing local variations. We first
presented Dirichlet process-based clustering which does not require prior knowledge
on the number of groups. Although the computational complexity could be reduced
significantly, it was prone to having clustering errors because it depends on the distribution
of data points and resulted in a degraded mapping performance. On the other hand, if the
environment contains some geometrical features, we showed that the line tracking-based
clustering could be used more efficiently, improving the clustering performance while
maintaining the mapping accuracy. One of the limitations of our approach is that the line
tracking method can only be applied to 2D laser scan datasets. Therefore, applying plane
extraction and tracking methods for 3D laser scan datasets will be our future work as well
as a demonstration for large real datasets.
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