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Abstract: The mass production of lithium-ion batteries and lithium-rich e-products that are required
for electric vehicles, energy storage devices, and cloud-connected electronics is driving an unprece-
dented demand for lithium resources. Current lithium production technologies, in which extraction
and purification are typically achieved by hydrometallurgical routes, possess strong environmental
impact but are also energy-intensive and require extensive operational capabilities. The emergence
of selective membrane materials and associated electro-processes offers an avenue to reduce these
energy and cost penalties and create more sustainable lithium production approaches. In this review,
lithium recovery technologies are discussed considering the origin of the lithium, which can be
primary sources such as minerals and brines or e-waste sources generated from recycling of batteries
and other e-products. The relevance of electro-membrane processes for selective lithium recovery is
discussed as well as the potential and shortfalls of current electro-membrane methods.

Keywords: lithium compounds; electro-membrane processes; brines; minerals; e-waste

1. Introduction

Lithium (Li) metal is a unique element exhibiting the most negative redox potential,
equal to −3.014 V compared to a standard hydrogen electrode, making it extraordinarily
reactive and valuable across multiple electrochemical applications [1]. Li is also the lightest
non-iron metal, with a density of 0.53 g/cm3, and has the third-highest specific heat capacity
(Cp = 3.6 J g−1 K−1). These exceptional properties have supported the emergence of Li-
based devices in applications where higher power densities and the long-lasting life of
energy storage devices are required [2].

Lithium resources can be divided into either primary or secondary sources. Primary
sources include mineral rocks [3], saline lakes [4], brines [5], sea water [6], underground
water [7], and groundwater [8], while secondary sources are typically lithium obtained
from recycling lithium-containing devices and components, such as batteries, capacitors [9],
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or general e-wastes [10]. The world’s primary reserves of lithium are estimated at over
250 billion tons [1], of which 230 billion tons are present within oceans, while the remain-
ing amount exists as ores or continental brines. The demand for Li metal has increased
exponentially over the past 20 years and was 33,300 tons in 2015. The global production
of lithium in 2017 [3] primarily originated from Australia, China, Argentina, and Chile
(Figure 1).
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Driven by current demands for lithium and limited resources, spot lithium carbonate
prices in China have increased by 300% and, recently, briefly exceeded USD 20,000 per
ton due to an acute but temporary shortage of imported spodumene from Australia.
However, this is an indicator of future long-term market sensitivity and trends. Although
Li compounds are used in glass and ceramics manufacturing (30%), as a component
during lubricants synthesis (8%), and in air purification (3%) and polymer production
(5%), its largest application is in batteries and capacitors (39%) [5]. This use will increase
exponentially in future years due to sustainability-focused policies and the increasing
dominance of electric vehicles [12]. The consumption of lithium will also be stimulated
by emerging applications for Li such as rocket fuel, where high energy densities and
specific impulses are required for take-off, and in Li-based alloys and lithium hydride
production [13,14]. Based on the current price at USD 100,000 per ton, the market for
Li-metal would reach USD 500 billion by 2050 [15].

Current commercial lithium production strategies from primary sources are primarily
based on continental (59%) and geothermal brines (3%), as well as ores in the form of
hard rock (25%) and hectorite (7%) minerals. Over 130 minerals containing lithium have
been identified and exploited at industrial scales, including silicates and phosphate-based
ores [16,17]. Although spodumene, pegmatites, petalites, lepidolite, amblygonite, zin-
nwaldite, and eucryptite offer theoretical lithium contents between 3 and 5.53% [18], the
achieved concentrations rarely exceed 0.5 to 2% (Table 1) [5,18].
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Table 1. Chemical composition with the percentage of lithium in minerals [16,17].

Minerals Chemical Formula Percentage of Lithium
(wt%)

Spodumene LiAlS2O6 3.73

Petalite LiAlSi4O10 2.27

Lepidolite LiKAl2F2Si3O9 3.56

Amblygonite LiAlFPO4 4.74

Eucryptite LiAlSiO4 5.53

Abnormalite LiCO3 18.75

Lithium may also be extracted from surface and ocean waters (Table 2). Although
ocean waters contain between 0.1 and 0.2 ppm Li, there is no cost-effective technology
available now to extract Li at such low levels. On the order hand, the Li concentration
of 10 to 20 ppm within geothermal brines is much more attractive, but challenges related
to the presence of other highly concentrated metals ions, such as arsenic, mercury, or
boron, render selective extraction challenging [19,20]. Salt lake brines are amongst the
most concentrated naturally occurring sources of Li ions, ranging from a few hundred to
thousands of ppm. However, a critical challenge in extracting lithium from this source
also relates to the presence of interfering ions which contribute to water hardness, such as
calcium and magnesium. The ratio of Mg2+/Li+ is typically larger than 40 and can be as
high as 200 in some extreme cases.

Table 2. The most common lithium salt pools [17,18].

Country Reservoir Li Content (wt%)

Chile Atacama 0.15

China Zabuye 0.097

Chile Maricunga 0.092

Argentina Olaroz 0.07

Argentina Hombre Muerto 0.062

Bolivia Uyuni 0.045

USA Great Salt Lake 0.04

USA Smackover 0.037

China DXC 0.033

USA Silver Peak 0.03

Global Geothermal water * 0.015

Canada Fox Creek 0.01

Israel Dead sea 0.002

Global Sea * 0.00017
* The average concentration.

Secondary sources of lithium arise from the recycling of e-waste materials, including
batteries and capacitors. The amount of Li across such electronic parts dramatically varies
based on brands and fabrication technologies, but these materials still typically represent a
significant component. There is also an imperative to re-use spent Li-containing compo-
nents rather than sending environmentally damaging material to waste given the current
global focus on the Circular Economy. In 2015, at least 5600 million LIB cells were sold
worldwide, and the LIB market size is forecasted to increase by another 10.6% from 2016 to
2024, reaching a market value of USD 56 billion by 2024 [21]. LIBs contain 2 to 7 wt% of
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Li, a concentration significantly higher than that present in natural ores or within marine
sources, making extraction from spent batteries attractive as an essential secondary source
of Li (Table 3).

Conventional LIB materials include LiCoO2 [23], LiMn2O2 [24], LiNi0.33Mn0.33Co0.33O2,
or LiFePO4 [25]. One ton of spent LIBs cathode battery waste represents approximately
USD 8500 of Li and USD 7200 of Co [9]. The LIBs electrolyte, whose role is to support the
rapid transportation of carrier ions across the electrodes, is typically composed of LiPF6 [26]
with additives such as NaPF6 [27] or LiBF4 [28].

Table 3. The weight percentage of Li in each part of LIB material [22].

Component g %

Cathode material 130.9 41.4

Metallic shell 51 16.1

Plastic shell 50 15.8

Electrolyte 20.9 6.6

Cu electrode 17.2 5.4

Al electrode 7.5 2.4

Polymer 6.8 2.2

Total 316 100

The previous review published in 2021 dealt with lithium recovery through green
electrochemical-battery approaches [29]. The authors focused on challenges for lithium
extraction from battery wastes by the application of an electrochemical battery system
employed with a lithium-capturing electrode for Li recovery [30]. Another review, which
was also published in 2021, dealt with challenges for lithium supply, focusing on the life
cycle of lithium and its recovery following circular economy rules [29]. Moreover, Kader
et al. summarized the techniques of lithium recycling from lithium-ion batteries [31]

From these reviews, it is clear that challenges in efficient and cost-effective separation
are still limiting the cost-effectiveness of Li production, and advances in techniques for
the selective speciation of Li from complex brines and effluents are required. This review
discusses the potentials of electro-membrane processes to support mining and hydrometal-
lurgical operations, as well as the recycling and recovery of Li from used items and devices.
The application of electro-membrane processes supporting the speciation of Li will be
presented and critically discussed in terms of ion selectivity, Li recovery efficiency, the
theory of specific capturing Li, and techno-economical aspects. A circular Li economy will
only arise from the synergistic development of intensive and integrated technologies trains.
The prospects for electro-membrane processes to contribute to this technology paradigm
will be discussed.

2. Benchmark Lithium Compounds Production Technologies

The current methods of producing lithium compounds vary with the origin of the feed-
stock, whereby Li-ions, as well as other valuable metal ions, are extracted. In the following
sections, technologies are therefore divided into methods applicable to mineral rocks, brines,
and lixiviate from e-waste digestion. This section will briefly benchmark existing commer-
cial technologies to enable subsequent comparisons with electro-membrane processes.

2.1. Conventional Recovery of Li from Ores

In extractive metallurgy, Li is recovered chemically or through a combination of
chemical and pyro-metallurgical processes. Two different processes, namely, roasting and
calcination or chlorination and leaching, are reported to support Li recovery from ores.
These processes involve calcination or roasting followed by leaching to dissolve lithium
and transfer it into an aqueous phase. Following typical ore processing techniques, such
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as grinding, filtration of slurries, and water recovery processes, Li may be selectively
produced and extracted from mineral ores by leaching processes either in acidic or alkaline
aqueous solutions [5,11,17,18]. The first stage of the chemical processing on hard rock Li
mineral-bearing ores these days typically involves the sulfuric acid pug roasting of the
mineral ore at a temperature between 250 and 400 ◦C to support the decomposition of
the silica mesostructure and convert the Li contained in the minerals into a water-soluble
form [32]. Alkaline processes, whereby minerals are reacted with a mixture of calcium
sulfate and calcium oxide/hydroxide at ~250 ◦C to convert the silicate into water soluble Li
aluminate can also be performed to yield LiOH or Li2CO3 salts [33]. Ion exchange processes
are sometimes required to support the extraction of undesired components and increase
the purity of the Li product liquor [6,34,35].

During acid/sulfonation processes, alkali metal sulfates, sulfuric acid, or SO3 gas
mixed with water and oxygen are employed as reagents to produce highly water-soluble Li
sulfates that are less prone to precipitation compared to other Li compounds. However,
drawbacks include the large volumes of reagent chemicals required and challenges in
producing high-purity Li carbonates from such brines resulting from the capacity of sulfate
reagents to bind to Al, Na, Mg, Fe, and K [2,36]. The sulfate roasting of lepidolite followed
by water leaching has been studied widely using Na2SO4/K2SO4/CaO, Na2SO4, and FeSO4
and has yielded Li extraction extents up to 99.5% at 1000 ◦C [37–39]. The use of Na2SO4 and
H2SO4 with the zinnwaldite, petalite, and montmorillonite ores has yielded Li extraction
extents up to 90, 97.3, and 90%, respectively [5,37,40,41]. However, this approach normally
requires sodium carbonate dosing to precipitate Li carbonates [5].

The alkaline Li extraction process is a more economical and more environmentally
benign process that involves Li extraction from minerals with lime as an active leaching
reagent. The roasting of Li ores in the temperature ranges 100–205 ◦C and 825–1050 ◦C will
convert Li ores to LiO2, a precursor to LiOH. The lithium hydroxide produced can be further
converted to LiCl or LiCO3 by a reaction with hydrochloric acid or carbon dioxide [5]. The
lithium precipitates may be further upgraded while the mother liquor, such as the liquor
obtained after lithium crystallization, is looped to the first stage of the process.

The chlorination of lithium concentrates takes place between 800 and 1100 ◦C in
the presence of hydrochloric acid, sodium chloride, calcium chloride, or chlorine gas,
depending on the original ore chemistry. The process is used to convert the lithium
compounds into lithium chloride (LiCl), which can be solubilized in water and thus purified.
As an example, an acid baking process involving roasting of β-spodumene with Cl2 gas
at 1100 ◦C for 2.5 h resulted in almost complete extraction of Li as LiCl2 [42]. The systems
utilized for lithium recovery from minerals are summarized in Table 4.

Table 4. Comparison of leaching processes for lithium extraction from minerals [5,36,43].

Process Acid/Sulfonation Alkali Chlorination

Active reagents Alkali metal sulphates, sulfuric
acid, SO3 at water or oxygen Lime or limestone Hydrochloric acid, sodium chloride,

calcium chloride, or chlorine gas

Time 1–3 h 1–2 h Up to 2.5 h

pH 2–3 8–10 ~5

Temperature 200–1000 ◦C 100–200 ◦C
800–1000 ◦C 800–1100 ◦C

Disadvantages

Non-selective method;
A lot of leached solution is needed;
Impurities such as Al, Na, Mg, Fe,
and K

Need to decompose lime and
limestones to CaO

Toxic chloric reagents; aggressive
environment of leaching

Advantages High rate of Li extraction High rate of Li extraction
without corrosion agents

Selective for lithium chloride
production
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2.2. Conventional Recovery of Li from Brines

The comparison the different type of conventional method of lithium extraction from
brines are summarized in the Table 5.

Brines have become one of the most popular sources of Li ions since Li extraction
requires fewer pre-treatments than from ores and a large variety of Li salts are available, as
well as the relatively high concentration of Li in brines, as well as from the ratio of rare earths
and alkaline metals to lithium ions, supporting the co-regeneration of various valuable
compounds. Brines may be divided into three types, including brines generated during
the evaporation processes, directly extracted from geothermal and underground sources,
and aqueous liquors produced from oil/petroleum fields [6]. The traditional methods of
production of Li compounds from brines include evaporation, column adsorption, and
diffusion dialysis, which leads to Li-enriched solutions that are further augmented in Li by
ion exchange, sequential adsorption, or solvent extraction [34].

Ion exchange (IEX) resins are amongst the most used technologies to extract Li from
brines. Commercial IEX materials including MC50 (Chemie AG, Bitterfeld-Wolfen, Ger-
many), TP207 (Bayer AG), and Y80-N Chemie AG (Chemie AG, Bitterfeld-Wolfen, Ger-
many) have been used for the separation of Li from synthetic brines [44]. Li extraction
from the Dead Sea waters using ionic liquids such as triisobutyl phosphate [45] and liq-
uid chromatography using polyactylamide Bio-Gel P-2 and Blue Dextran 2000 were also
demonstrated [6], supporting selective extraction against Mg2+ and Ca2+ ions. Hybrid ion
exchangers based on inorganic adsorbents or aluminate salts were also tried to effectively
capture Li ions from brines. The inorganic ion exchanger H2TiO3 was used to separate
lithium from the Uyuani lake in Bolivia, where the Li-ion adsorption capacity was estimated
at 32.6 mg/g (4.8 mmol/g) at a pH of 6.5 [46]. It was possible to apply the cation exchanger
titanium (IV) antimonate to reduce the content of K+, Mg2+, and Ca2+.

An attractive set of technologies to generate Li cost-effectively from aqueous solutions
involve membrane processes, including pressure-driven processes. Reverse osmosis (RO)
and nanofiltration (NF) have been used to concentrate and separate lithium ions selec-
tively [47]. NF90 membranes yielded 85 wt% separation of Li+ from Mg2+ salts with a
relatively low desalination range of about 15 wt% of lithium. These membrane processes
may be intensified towards the speciation of mixed Li and boron from geothermal water
by combining membrane technologies with adsorbents [20]. Dowex XUS-43594 combined
with λ-MnO2 ion exchange resins supported the selective extraction of Li and boron at
100% and 83%, respectively [20]. Membrane distillation coupled to crystallization processes
has also been considered for Li recovery. Direct contact membrane distillation and osmotic
membrane distillation processes achieved a degree of saturation of LiCl in an aqueous
solution. Electro-membrane processes based on electrodialysis and capacitive deionization
have been developed and demonstrated and will be discussed in more detail in Section 3.
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Table 5. Comparison of processes for lithium extraction from brines [48–52].

Process Adsorption Membrane-Type Technologies Thermal Technologies

Active reagents
Ion exchange resins, sorbents
such as activated carbon or

spinel-type materials

Ion exchange membranes, porous and
nonporous membranes, asymmetrical

with active thin layer
Thermal energy from sun light

Time 12–24 h 12–24 h >45 days

Temperature 25 ◦C 25 ◦C Depends on the region of
evaporation (25–35 ◦C)

Disadvantages

Sorption and desorption
operation are required; batch
operation; column package

consumes a lot of resin (>0.5 kg);
pretreatment is required

Fouling of membranes; stack of
member to be effective; costs of

membranes; required the separation
and concentration nexus;

pretreatment is required; required
driven forces

Long-lasting process; small
amount of brine rich in Li+

salts; low selective method

Advantages
Flexibility of application depends
on the type of resin; high selective;

long-lasting time of using

High selectivity; continuous
operations; flexibility of application

High concentrations of Li salts
are obtained

2.3. Conventional Li Recovery from e-Waste Products and Process Liquors

Li-ion extraction from recycling of e-waste materials can be achieved through hy-
drometallurgical and pyro-metallurgical methods [21]. Mechanical pre-processing is re-
quired to generate individual streams of Li-rich waste.

Pyro-metallurgical methods involve high-temperature operations, where redox reactions
are activated to smelt and purify valuable metals. Pyro-metallurgical methods are typically
combined with hydrometallurgical methods, which involve the leaching of valuable elements
from a solid matrix and their subsequent precipitation by solvent-phase separation [21].

Pyro-metallurgical processes are performed at a temperature range between 800 and
1000 ◦C [53]. LiCoO2 with commercially required properties was generated by pyro-
metallurgical processing of crushed LIBs calcined in air at 850–950 ◦C for 12 h [54]. Oxygen-
free roasting combined with wet magnetic separation and the regeneration of cobalt and
lithium carbonates was also performed at 1000 ◦C, resulting in the recovery of 95.72% and
98.93%of Co and Li2CO3, respectively [55]. Vacuum metallurgy was also used for LIB
waste processing, and both Li2CO3 and Mn3O4 were obtained by heating at 800 ◦C under
vacuum conditions, yielding purities of 91.3% and 95.1%, respectively [56].

Hydrometallurgical processes involve the extraction by leaching valuable metals from
the LIBs and the subsequent recovery of the dissolved metal ions, including Li from the
generated liquors. This is a mature technology, and a number of optimization studies
of the leaching conditions such as reagent type and dosage, leaching rate and duration
time, pulp density, and temperature have been performed. Such leaching processes may
be performed in various alkali or acid leaching systems under different redox conditions.
Alkali leaching is typically more selective and reduces the number of purification steps
required. For example, ammonia-based systems are utilized since ammonia may form
stable and selective complexes with transition metal ions [57,58]. Different behavior is
exhibited by manganese, where the success of the complexation reaction is strongly related
to the concentration of the ammonia agent [58]. The acidic extraction systems from LIB
wastes remain prevalent compared to alkaline ones, as they often offer high recovery
efficiencies. However, the use of strong inorganic acids may lead to product contamination,
which is difficult to remediate. The most efficient inorganic acids leaching agents are
HCl [59], H2SO4 [60], and HNO3 [61], while organic acid leaching agents include citric [62],
ascorbic, oxalic [63], and formic acids [64]. The choice of leaching agent has a strong
influence on economic aspects of the process, as well as on environmental aspects and the
production and/or reduction of by-products [61]. However, typically, hydrometallurgical
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technology is characterized by high recovery efficacy, low energy requirements, and high
reaction rates.

Biometallurgy or bioleaching is a recently developed technology for the extraction
of valuable metals from spent LIBs, whereby microbial metabolism or microbial acid
production processes are used to extract the metals from effluents. Bacteria digestion will
generate inorganic acid, while fungi digestion may form organic acids. A key drawback
of bioleaching is the long culturing time and the susceptibility of the biological agents
to contamination and poisoning. An indirect, non-contact bio-hydrometallurgy process
for polymetallic waste processing was proposed, whereby biological reagents, produced
by Acidithiobacillus ferrooxidans DSM 14882T and Acidithiobacillus thiooxidans DSM 14887T,
were mixed with 100 mM H2SO4 into a biogenic ferric solution to achieve leaching yields
of 53.2% for Co, 60.0% for Li, 48.7% for Ni, 81.8% for Mn, and 74.4% for Cu [65]. The
traditional techniques of LIB leaching by sulfuric acid applied the 2 M of H2SO4 (T = 80 ◦C,
t = 60 min). The following recovery efficiencies could be attained: 98.7% for Ni, 97.1% for
Mn, 98.2% for Co, and 81.0% for Li under optimized experimental conditions [66]. The
biometallurgy method compared with the traditional method obtain a lower efficiency of
extraction metals from LIBs. Considering the 20 times lower concentration of extractant,
the results with biological reagents are promising.

The metal recoveries from the use of pyro-metallurgy, hydrometallurgy, and bio-
metallurgy for spent LIBs recycling are shown in Table 6.

Table 6. Comparison of different processes for recycling spent LIBs [67].

Process Operations Advantages Disadvantages Company

Pyrometallurgy

1. Mechanical crushing
2. Thermal processing

including calcination
process, roasting process,
reduction process, and
chlorine process

Easy to scale up; simple
pre-treatment;
acid/alkaline free

High energy
consumption; emission
toxic gases and dust;
hard to achieve lithium
recovery

Accure GmBH; Batrec
Industrie AG,
Umicore; Inmetco,
Akkuser Ltd.; SNAM

Hydrometallurgy

1. Discharge and
dismantling

2. Leaching processes
including chemical
precipitation. solvent
extraction, sol–gel
reactions,
electrochemical processes

Easy to recycle lithium;
less gas and dust
emissions; high purity
of products

Consumption of
acid/alkaline; low
efficiency; complex to
purifica-
tion/separation
metals

Retriev/Toxco;
Recupyl; AEA; Onto

Hybrid processes
(Direct processes)

1. Mechanical process
2. Mixed processes

including
pyrometallurgy,
hydrometallurgy, and
pyrometallurgy

Relatively low
efficiency of energy
consumption;
satisfactory recycling
efficacy

Emission of toxic
gasses and dust;
complex process
operations

Sony/Sumitomo

Bio-metallurgy

1. Pre-treatment processes
2. Bio-leaching including

chemical precipitation,
solvent extraction, and
electrochemical processes

Low cost;
environmentally
friendly

Time-consuming;
possibility of
contamination;
sensitivity of
microorganisms for pH
and temperature

Have potential for
commercialization
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3. Electro-Membrane Processes for Lithium Recovery

Electro-membrane processes, including electrodialysis (ED) and capacitive deioniza-
tion (CDI), are described and discussed in terms of Li recovery and extraction efficiencies
in this section. The relationships between the source materials’ intrinsic properties and
their response to electrical current and voltage applications are also presented.

3.1. Lithium Extraction from Brines by Electrodialysis

Electrodialysis (ED) is a mature membrane-based separation process, developed in
the 1950s, allowing for the specific ions’ speciation across ion-exchange membranes. ED
was primarily applied and scaled up for the purification of industrial wastewaters, fine
chemical broth deionization, as well as ultra-pure water production. The permeation of
cations and anions across the respective cation and anion exchange membranes is achieved
upon application of an electrical potential difference [68–70].

3.1.1. Principle of Electrodialysis and Materials Considerations

The ED membranes may be designed from a single type of ion exchange material
to create charge- or valence-selective membranes, or they can be assembled in layers of
alternating cation and anion exchange components, leading to bipolar membrane systems,
used extensively in fuel cells for selective proton transfers [71]. In a typical process, flat-
sheet membranes are assembled in stacks between two electrodes that are used to generate
a potential difference leading to ion diffusion within the diluate and membrane materials.
The general operation of electrodialysis is illustrated in Figure 2.
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The process relies on the effect that in high-saline aqueous systems, the mass transfer
is significantly affected by the complexity of ions, where the main role in the transfer is due
to the steric hindrance and charge effect. The hydration radius of monovalent cations is
smaller than divalent cations, which leads to the ability to attract free water molecules to
the ionic center [8]. Furthermore, considering the hydration potential, which indicates how
strongly an ion would its lose water shell, the influence sequence of coexisting cations was
explained legitimately. The decline in water shell envelope cations is strongly dependent
on the concentration and existing co-ions in aqueous solution.

Ion selectivity across ion exchange membranes is directly related to the chemistry
and morphology of the micropores within the material. An electric double layer (EDL)
will be formed across the surface of the pores within ion exchange membranes, which is
characterized by the Debye length, a variable depending on the ionic strength of the solution
and the distance between the surface and charge species. The EDL, the depth of which
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may vary from ~1 nm to a few tens of nano-meters, consists of the Stern and Helmholtz
layers, which correspond to either polarized or diffuse layers, respectively [72]. The
electrical attraction generated by the diffuse layer is weaker than that of the polarized layer,
which means that counter ions can diffuse with limited resistances. These interactions are
typically measured in terms of the streaming or zeta potential, which decay exponentially
concerning the inverse of the distance from the surface [72]. The ion selectivity within
the pores may therefore be explained by accounting for differences between the hydration
free energy of the ion and the energy of interaction between the ion and the charged
site within the micropores [73,74]. The anionic field strength of the binding sites is the
critical factor determining the selectivity sequence of the micropores for a series of cations.
A typical selectivity sequence ranges from Li+ > Na+ > K+ > Rb+ > Cs+, while at the
lowest anionic field strength, the micropores, corresponding to the free volume between
the macromolecular chains of the ion exchange resins, may reverse the selectivity sequence
as follows: Li+ < Na+ < K+ < Rb+ < Cs+ (Figure 3a).

The size of the free volume, the charge of the surface, and the external driving forces
applied across the membrane stack will influence the rate of diffusion and the perm-
selectivity of Li ions diffusion compared to other cations across membranes [72]. The
dimension of the micropores and the loss of the hydration shells of the ions upon entering
the channels are crucial to diffusion since these critical dimensions are typically smaller
than the hydrated radii of most alkali metal ions (Figure 3b). The charge distribution and
densities across the micro-channels will also dictate the rate of ion transfer and negatively
charged moieties, and polymer backbones should be used for cation diffusion and to repel
anions. The impact of the pendant cation exchange groups across ion exchange resins
was evaluated to optimize Li+ ion perm-selectivity. Sulphonate [76,77], carboxylic [78], as
well as hydroxide groups were found to offer weak interactions supporting ion hopping
(Figure 3c). Ion affinity to -SO3

− was found to follow the trend Mg2+ > K+ > Na+ > Li+,
thus promoting the facile release of Li ions.
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The application of the external electric field during ED promotes the migration and
depletion of ions from the feed side across the membrane stack. The enrichment of ions
across the membranes and on the permeate side results in a strong polarization. This
mechanism, which creates electro-convection at the membrane surface but also water
stripping, may lead to changes in ion selectivity. Such limiting considerations in designing
Li-ion-selective membranes are created due to the high diffusivity and response rate in Li
to variations in current densities (Figure 3d) [72].

3.1.2. Li extraction Case Studies with ED

Lithium extraction from brines by ED has been demonstrated from model solutions,
industrial wastewaters, and natural lake waters. The impact of the Mg2+/Li+ ratio, feed
temperature (15 to 30 ◦C), feed flow rate, solution residence time, and current densities
across the membrane stack (5.9–13.8 A/m2) were systematically investigated. The spe-
ciation between Li+ and Mg2+ was achieved at high Mg2+/Li+ ratios. The Mg/Li mass
ratio decreased as high as 21.8 times for the mixture with initial mass ratio of a Mg/Li of
400 [79]. In this research the commercial ion exchange membranes Asahi Glass Selemion
CSO and ASA were applied. The influence of cations other than lithium ones affected the
separation efficiency at different concentrations of Na+, Mg2+, and sulfates. The specific
transfer mechanism of lithium could be related to the presence of sulfate ions. The mass
transfer through the ion-exchange membrane of each ion species was determined by its
dominant existing form [80].

The influence of the presence of coexisting species on the speciation of Li ions across
cation exchange membranes was studied. Neosepta CIMS membranes were used for
selective extraction of Li ions in mixed liquors containing other ions. The results showed
sequences of coexisting cations, in the series K+ > Na+ > Ca2+ > Mg2+, directly affected
separation behaviors of lithium. Interestingly, the higher the concentration of the mixed
competing monovalent cations, the lower the selectivity for Li-ion was reported. The
presence of sulfate and carbonate anions promoted Li over Mg fractionation. Furthermore,
the presence of the coexisting anions affected the migration of Mg2+ [4].

The extraction of Li+ ions from lithium bromide solutions contaminated with Na+ ions
was demonstrated for industrial liquors where lithium bromide is used as a working liquid
within absorption chillers [81]. Although the feed solution contained ~13 g/L of Li ions and
1.35 g/L of Na ions, concentration factors of 88 were achieved for Li/Na. The ratio for fresh
and unpolluted lithium bromide solution was 58 [81]. The separation of Mg2+ from Li+ ions
was evaluated in terms of separation efficiency and economic benefit, with monovalent
ion-exchange membranes. At an optimal applied ED cell voltage of 5 V and a pH range of
4–5, the Li-ions recovery reached 75.44% [82]. The modification of commercial membranes
to improve lithium transport with ionic liquids (N,N,N-trimethyl-N-propylammonium–
bis(trifluoromethanesulfonyl) imide (TMPA–TFSI) the Selemion CMV) was evaluated [83].
The application of selective cation exchange membranes was also evaluated. The electro-
dialysis voltage was 2–3 V, and the process was run for up to 15 h. After this time, 63% of
the lithium was separated from the Li, Na, Mg, and K ions mixture [84].

Spent battery effluents were treated by ED to support Li-ions extraction [85]. The
solution was first purified and lithium precipitated with phosphate to obtain Li3PO4. The
selective separation of lithium over phosphor was achieved [85]. Li-ion recovery from spent
battery effluents containing Co ions was performed with multi-stage metal-ion chelation
and the ED process. Ethylenediaminetetraacetic acid (EDTA) was added to cause the
selective chelation of Co ions and to increase the concentration of Li ions in the permeate
stream [86]. Lithium and cobalt separations with monovalent selective ion exchange
membranes such as PC-MVK were demonstrated. The value of the applied potential did
not influence significantly the separation efficiency: the rise in voltage from 5 V to 15 V
turned the separation factor from 98.6 to 99.4% [87]. The cobalt ion concentration in the
feed solution affected the selectivity of the monovalent ion exchange membrane. Some
reports on the use of electrodialysis for lithium recovery are summarized in Table 7.
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3.2. Capacitive Deionization (CDI)

Capacitive Deionization is an electro-adsorption technique developed in the late 1970s
for the removal of ions from aqueous solutions by electrosorption on porous material [90,91].
CDI has been primarily applied to seawater and brackish water desalination, sewage
remediation, as well as in the softening of drinking water [92,93].

3.2.1. Operation of CDI Systems

Electro-active adsorbent materials, such as those used in CDI, mostly involve ph-
ysisorption at the solid–liquid interface to support ultra-selective extraction of
resources [90,92,94–96]. Typical CDI configurations are shown in Figure 4.

The most popular material for CDI electrodes is activated carbon (AC) due to its low
cost, high electrical conductivity, and large specific surface area. However, AC does not
exhibit any selectivity toward ions due to the absence of selective sites (Figure 5a). To
generate Li+ ion selectivity, the surface of activated carbon could be modified by selective
moieties such as α-MnO2 [96].
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Table 7. Electrodialysis process for lithium separation from aqueous solutions.

Method Electrical
Mode Lithium Resources Membrane Type Perm-Selectivity Li Ions Extraction

Efficiency Energy Efficiency Advantage Limitation Ref.

Electrodialysis
for brines

CC = 5.9 A/m2
CLi

+ = 0.15 g/L
CMg

2+ = 22.5 g/L
Mg2+/Li+

Selemion CSO
Selemion ASA SLi/Mg = 20.2–33.0 >90% 1.9 Wh/gLi

+
High selectivity
for lithium ions,

eco-friendly
[79]

CV = 6.0 V
CLi

+ = 0.15 g/L
CMg

2+ = 22.5 g/L
Mg2+/Li+ = 150

Selemion CSO
Selemion ASA SLi/Mg = 17.9 96.1 0.78 Wh/gLi

+ [80]

CV = 12–28 V
CLi

+ = 4.5 g/L
CMg

2+ = 85 g/L
Mg2+/Li+ = 18.9

Selemion CSO
Selemion ASA SLi/Mg = 9.89 90.5 4.5 Wh/gLi

+
Application model

real brines from
East-Taijiner

Non-equal mass
balance [80]

CV = 5 V

CLi
+ = 1 g/L

CNa
+ = 1–30 g/L

CCa
2+ = 1–30 g/L

CMg
2+ = 1–30 g/L

Neosepta CIMS
Neosepta ACS SLi/Mg = 20 80 4.7 Wh/gLi

+
Microcosmic

theory of
separation lithium

Different
perm-selectivity

depends on the initial
ratio lithium to other

cations

[8]

CV = 3–8 V Mg2+/Li+ = 20 n.s. SLi/Mg = 3.5–4.2 60 62 Wh/gLi
+

Effect of coexisting
cations on lithium

separation

High energy
consumption [4]

CV =7 V CLi
+ = 12–15 g/L AR204SXR412 and CR67,

MK111 (Ionics, MA, USA) n.s. 20 n.s.
Separation lithium

toward sodium
ions

Low efficiency of
lithium recovery [81]

CV =5 V

CLi
+ = 0.14 g/L

CNa
+ = 8.4 g/L

CMg
2+ = 3.04 g/L

CCl- = 30.25 g/L

Neosepta CIMS Neosepta
ACS SLi/Mg = 13 75.44 28.16 Wh/gLi

+ Separation lithium
and Magnesium

High ratio of
Magnesium in product [82]

CV = 2–3 V

CLi
+ = 0.17 µg/L

CNa
+ = 105 µg/L

CMg
2+ = 13.5 µg/L

CK
+ = 3.8 µg/L

Selemion CSO
Selemion CMV n.s. 63 n.s. Separation lithium

from seawater Low ratio of recovery [83]

CV = 2 V n.s.

Li ionic
superconductor-type

crystals such as Li1+x+yAlx
(Ti, Ge)2−xSiyP3−yO12,

(Lix, Lay) TiOz and (Lix,
Lay) ZrOz can be used as

LISMs

n.s. 7 n.s.

Separation lithium
from model

mixture of Na, ka,
Mg, and Ca

Low ratio of recovery [84]
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Table 7. Cont.

Method Electrical
Mode Lithium Resources Membrane Type Perm-Selectivity Li Ions Extraction

Efficiency Energy Efficiency Advantage Limitation Ref.

Electrodialysis
with bipolar
membrane

CV = 15 V CLi
+ = 250 mg/L

Cboron = 800 mg/L

Standard CEM PC SK,
bipolar membrane PCCell

bipolar type PC bp and
AEM PC Acid 60

n.s. 99.6 n.s.

Separation of
boron and lithium

from aqueous
solution

Not specified energy
consumption [19]

CV = 30 V CLi
+ = 340 mg/L

Cboron = 1000 mg/L

Neosepta BP-1E
Neosepra CMB
Neosepta AHA

n.s. 94.7 7.9 kWh/m3

Separation of
boron and lithium

from aqueous
solution

Higher energy
consumption than in

classic ED
[88]

CV = 6 V Neospeta CMX
Neosepta BP-1 n.s. 60 n.s.

Recovery lithium
from lithium

manganese oxide
by BMED

Multistage processes
with pre-treatment

and desorption
[69]

CC = 20–60
mA/cm2 n.s.

JAM-II-05
JCM-II-05

Neosepta CMX
Neosepta BP-1

n.s. n.s. n.s.

Application
Electro-

electrodialysis
bipolar membrane

for production
lithium carbonate

[89]

Electrodialysis
for LIBs

CLi = 3.27 g/L
CAl = 0.23 g/L
CCo = 0.46 g/L
CCu = 0.68 g/L
CMn = 0.28 g/L
CNi = 0.25 g/L
CZn = 0.78 g/L
CCl = 17.5 g/L

DuPont Nafion-117 n.s. 90 27 Wh/gLi
+

Application ED
for lithium battery
spent utilization

Mulistage process
with purification,

precipitation,
dissolution,

electrodialysis and ion
exchange reaction

[85]

CLi = 1.3 g/L
CCo = 1.2 g/L
CEDTA = 9 g/L

Selemion CMV
Selemion AMV
Neosepta BP-1E

n.s. 99 n.s.
High ratio of

separation Li and
Co

Application a
chelating agent [86]

CV = 5 V CLi = 0.1 g/L
CCo = 0.3 g/L

PC-MVK
PC-MVA n.s. 99.4 n.s. Scaling of IEMs [87]
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The ion insertion reaction across AC is due to the diffusion into interstitial sites of
the electrode material through a Faradaic charge-transfer process (Figure 5b). The MnO2
materials can store lithium ions via two types of electrochemical processes, namely, surface-
dependent Faradaic reaction, or pseudo-capacitance, and insertion into the bulk material.
Highly crystallized MnO2 materials have 1D-, 2D-, or 3D-type tunnels built from MnO6
octa-hedric assemblies that support the intercalation. Their spacing may be controlled by
doping such metal as Ti or Fe [97,98]. Electrochemical lithium recovery was introduced to
extract lithium from Li+ ions from geothermal or industrial brines. The method requires
lithium-selective materials to recover lithium, such as LiFePO4/FePO4, MnO2, and lithium
manganese oxides [99].

The use of nickel hexacyanoferrate (KNiFe(CN)6) as a Li+ exclusion electrode mate-
rial [100] was considered since nickel hexacyanoferrate has a higher affinity toward such
ions as Na+ or K+ rather than for Li+. With this strategy, seawater can be used as a recovery
solution and reduces the consumption of freshwater. By optimizing the CDI process vari-
ables, lithium enriched streams were obtained, and a lithium recovery of 73% was obtained.
The process was characterized by an extremely high salt adsorption capacity of 800 mg/g
and total energy consumption of 0.183 W h/g of adsorbed salt [7]. The development of
lithium iron manganese oxide electrodes as selective materials to facilitate Li+ release [101]
was evaluated, and it obtained an over 70% Li recovery. The ratio Na:K:Li changed from
227:1.1:1 in feed to 2.9:0:1 after one cycle of separation [101].

3.2.2. Performance/Materials Relationships for Li Recovery in CDI Systems

In a classic CDI system, the cell is composed of a pair of porous membrane electrodes
sandwiched between a separator that facilitates the flow of liquids and prevents electrode
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physical contact of electrodes [102,103]. A typical CDI system is composed of a porous
carbon electrode and a current collector. The surface of the CDI electrode may be further
functionalized with specific chemical moieties or polymers to enhance ion selectivity [83,84].
The addition of ion-exchange species on porous electrodes enables selective ion capturing
and prevents re-adsorption during the discharge of the electrode [80]. The nature of the
functional groups located on the CDI scaffold affects the electrostatic interactions with
ions [85,86], reduces energy requirements [87], and improves the process stability [85].

Coating of carbon electrodes with LiMn2O4 was performed to support Li recovery
from lithium hydroxide solutions. The desorbed lithium ions from the modified MCDI
system were found to be 8.7 mg/g at a constant voltage of 3.5 V, and this was lower
(by approximately 45%) than the desorption for the conventional process with acidic
solution [104]. A cathode composed only of LiMn2O4 was also developed [105]. The
maximum salt adsorption capacity (SAC) was estimated at 24 mg of lithium per 1 g of
electrode material. Moreover, this process did not require the use of the acidic solution in
the desorption process [105].

Selective lithium recovery from multi-component aqueous solutions (Li+, Na+, K+,
Ca2+, and Mg2+) reached 0.22 µg/g (with applied 1 V constant voltage electric mode) and
was 7 times higher than that from a control physio-sorption process running (without
application external electrical field) in similar experimental conditions during the CDI
process. During application 1 V, the recovery amount of Li+ reached 350 µmol/gadsorbent.
When the electrical field was not applied, the recovery reached only 50 µmol/gadsorbent.
The energy required for the recovery was estimated to be 23.3 W h/g of lithium. Moreover,
manganese dissolution was not observed during five consecutive recovery cycles support-
ing the scalability and reproducibility of the process [106]. Monovalent selective cation
exchange membranes (Neosepta CIMS, Astom Corporation, Japan) were tested for various
rates of lithium over magnesium ions in feed solutions. The maximum performance was
found to be 38.4% of recovered Li with an energy consumption 0.36 W h/g of lithium [107].

A hybrid capacitive deionization (HCDI) process has been performed with lithium
titanium manganese oxide as the cathode material. The anode material was modified by
adding polypyrrole (PPy) to increase the conductivity of the material. An electro-sorption
capacity for LiCl of 36.9 mg/g was achieved while the corresponding capacities for NaCl
and KCl were 18.09 mg/g and 9.07 mg/g, respectively [108]. Modified anion exchange
membrane (AEM) was produced by chemical grafting of poly(vinyl chloride) (PVC) with
aliphatic amines. The extraction of 40 mg/g of LiCl was obtained in comparison to 10 mg/g
for NaCl. A recovery of about 50% of lithium was noted [94,109]. Poly(vinylidene fluoride)
materials were evaluated as a supporting polymer for the AEM preparation. The salt
adsorption capacity of the optimized materials was estimated at 30 mg/g with 0.9 current
efficiencies and 96% of desorption efficiency [110].

The active cathode material is the next important element of the CDI system. Lithium–
manganese–titanium oxide (LMTO) with varying concentrations of titanium dioxide (TiO2)
has been tested as a cathode [98]. The best-performing material, which contained 5% of
TiO2, had a sorption capacity of 36 mg/g, and the uptakes of KCl and NaCl were 16 and
11 mg/g, respectively. Additionally, this adsorbent needed two times less energy for the
recovery of lithium chloride than other monovalent salts [98]. That adsorbent was used
for selective recovery of Li from geothermal waters of the Western Carpathian Mountains
region [7]. Lithium recovery of 73% was achieved with an extremely high salt adsorption
capacity of 800 mg/g and total energy consumption of 0.183 W h/g [7]. Lithium–iron–
manganese adsorbents, with varied ratios of Li/Mn and Li/Fe, were tested for a similar
feed [101]. The adsorbents with the molar ratios of Li/Mn and Li/Fe of 1.5:1 showed the
best salt adsorption capacity for LiCl. Moreover, 32 mg/g of lithium, 16 mg/g of sodium,
and 0 mg/g of potassium was found. The use of a modified electrical protocol, with double
stage of desorption, as found to be a good method for lithium recovery from solution. The
recovery reached the efficiency of 76% and reduced the Na:K:Li-ions ratio from 227:1.1:1 at
the feed to 2.9:0:1.
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The CDI process with flowing electrodes (FCDI) was investigated with adsorbing
materials developed from reduced graphene oxide and mixed metal oxides and activated
carbon. The suspension of fine particles of reduced graphene oxide formed the cathode,
and the suspension of the activated carbon formed the anode [106]. A lithium extraction
efficiency of 13.684 mg/g was obtained, and the energy consumption per lithium was as
small as 0.22 W h/g of Li. The overall process led to 93% of lithium-ion recovery from the
model brines, which indicated that the investigated materials could be promising in the
recovery of lithium from natural and battery leachate solutions.

A summary of CDI processes for lithium recovery is presented in Table 8.

3.3. Hybrid Membrane Systems Involving Electro-Membrane Processes

Greater lithium-ion recoveries from any feed source may be achieved through a
combination of processes into the treatment trains. Such approaches may not only support
a more cost-effective Li extraction but also support higher product purity, lower energy
consumption, and safer operation resulting in the more sustainable technologies. The
comparison of described methods is presented in Table 9.

3.3.1. Electrodialysis (ED)–Reverse Osmosis (RO)

Integration of reverse osmosis and electrodialysis was used for lithium recovery from
wastewater [113]. The RO concentrate was used as feed for the ED process. It was noted
energy reduction from 26.67 to 7.81 kW h/m3 was achieved. An obtained enrichment
concentration factor of 12.32 showed the feasibility for the use of this approach to produce
high-volume concentrate.

3.3.2. Ion Exchange Adsorption–Ultrafiltration (UF)

A process coupling ion-exchange adsorption and UF was developed to support Li
recovery from geothermal waters. λ-MnO2 was produced from spinel-type lithium man-
ganese dioxide, grounded to fine particles, and used in a concentration of 1.5 g adsorbent/L.
The authors identified advantages of the use of ion exchange–UF hybrid for the separation
process of lithium from geothermal water [20,114].

3.3.3. Adsorptive Ion Exchange Membranes

Another approach for selective Li-ion extraction is to combine mass transfer through
ion exchange membranes and adsorption within an adsorptive lithium-selective mem-
brane [115]. This type of material enables the separation of Li ions from brines at enrich-
ments concentration factors up to 62,000 compared to less than 100 for other metal ions.
This type of membrane adsorbent may concentrate Li-ions efficiently from seawater even
though the native Li-ions concentration in such effluents is very small in comparison to Na+,
K+, Mg2+, or Ca2+ ions. Most of the metal ions adsorbed on the membrane were desorbed to
the solution by the treatment with a 0.75 M HCl solution. The desorbed fractions contained
95%, 95%, 93%, and 93% of Na+, K+, Mg2+, and Ca2+ ions, respectively [115].

3.3.4. Membrane Distillation Crystallization

The process employed a membrane distillation (MD) and crystallization process is
called membrane distillation crystallization (MDC). Compared with the traditional crys-
tallization process, the MDC displays rapid crystallization and well-controlled nucleation
kinetics. The MDC was investigated to recover salt crystals from a single-salt LiCl solu-
tion. The required concentration of precipitate the LiCl should be over 14 M. The MDC
reached only 10 M. The required concentration level is possible by applying the vacuum
membrane distillation [116].
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Table 8. Comparison of CDI techniques for lithium removal from brines.

CDI Configuration Sources of Li+ Selective Element of
CDI Cell Electrical Mode Concentration of Feed

Composition [mg/L] SAC [mg/g] Energy Consumption
[Wh/gLi

+] Ref.

MCDI Brine model solution
without acid

Membrane with lithium
adsorbent incorporation CV = 3.5 V CLiOH = 60 8.7 n.s. [104]

MCDI Brine model solution
without acid

Modified cathode with
LiMn2O4

CV = 1.0 V CLiOH = 50 24 n.s. [105]

MCDI Simulated Atacama
brine

Modified cathode with
LiMn2O4

CV=1.0 V

CLi
+ = 1.35

CNa
+ = 7590

CK
+ = 17.9

CMg
2+ = 9.6

CCa
2+ = 1.6

0.0022 23.3 [106]

MCDI Brine model solution
without acid

Monovalent selective
membrane, CIMS

Neosepta
CV = 0.6–1.4 V CLi

+ = 37 n.s. 0.36 [107]

HCDI Brine model solution
without acid

Modified cathode by
lithium titanium
manganese oxide

CV = 0.7 V CLi
+ = 63.9 33.4 n.s. [108]

HCDI Brine model solution
without acid

Modified cathode by
lithium titanium
manganese oxide

CV = 2.5 V CLi
+ = 63.9 40 n.s. [94,109]

HCDI Brine model solution
without acid

Modified cathode by
lithium titanium
manganese oxide

CC = 10 A/m2 CLi
+ = 63.9 30–40 n.s. [110]

HCDI Brine model solution
without acid

Modified cathode by
lithium titanium

manganese oxide with
different ratio of
titanium oxide

CV = 1 V CLi
+ = 63.9 36 120 Wh/m3 [98,111]
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Table 8. Cont.

CDI Configuration Sources of Li+ Selective Element of
CDI Cell Electrical Mode Concentration of Feed

Composition [mg/L] SAC [mg/g] Energy Consumption
[Wh/gLi

+] Ref.

HCDI
Real geothermal
multicomponent

solution

Modified cathode by
lithium titanium

manganese oxide with
5% of titanium dioxide

CV = 2 V

CLi
+ = 15.7

CNa
+ = 10,298

CK
+ = 102.1

CMg
2+ = 50.3

CCa
2+ = 63.7

CSr
2+ = 33.5

800 (total) 0.183 Wh/g [7]

HCDI
Model geothermal
multicomponent

solution

Modified cathode by
lithium iron manganese
oxide with different ratio

of Li/Mn, and Li/Fe

CC = 0.7 A/m2

CLi
+ = 25.9

CNa
+ = 5895

CK
+ = 29.6

CMg
2+ = 24

CCa
2+ = 16

318 (total) n.s. [101]

FCDI rGO/LiNi0.6Co0.2Mn0.2O2 CV = 3.3–4.5 V

CLi
+ = 3.67

CNa
+ = 11

CK
+ = 1.2

CMg
2+ = 5

CCa
2+ = 0.015

13.84 0.22 Wh/gLI
+ [112]
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Table 9. Comparison of the hybrid process of lithium extraction.

Hybrid Processes Advantages Disadvantages

Electrodialysis–Reverse osmosis (ED-RO)

# High ratio of removal
# Selective
# Continuous operation

# High energy consumption
# High pressure is required (RO)

Ion exchange adsorption–ultrafiltration # Selective
# Deterioration of sorbent (MnO2)
# Limited sorption
# Expensive

Adsorptive ion exchange membrane
# High selective
# Continuous operation

# Required desorption step
# Deterioration of active material

Membrane distillation crystallization

# Cost-effective
# A market valuable form of Li salts

is produced

# A high concentration (14 M) is
required for precipitation

Leaching–flotation–precipitation process # High separation and selectivity # The number of disposals is high
# Required aggressive environment

Membrane electrolysis
# Continuous operation
# High purity and separation

# Complicated roces
# Additional reagents are needed

MOF-based membrane
# High selectivity
# Continous operation # Difficulties in preparation

Pervaporation

# With a ratio of lithium
concentration

# Cost-effective process
# Easy to scale-up

# Risk of fouling and scaling

3.3.5. Leaching–Flotation–Precipitation Process

The stepwise leaching–flotation–precipitation process was adopted to separate the
Li/Fe/Mn from batteries [117]. First, the cathode material was leached according to the
acid leaching procedure. Then, the Fe3+ cations are selectively floated and recovered as a
FeCl3 in the flotation step. Finally, the Mn2+/Mn3+ and Li+ cations are precipitated and
separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and Na3PO4,
respectively. As a result, the total recovery of Li, Fe, and Mn is ~81%, ~85%, and ~81%,
respectively. Hence, that stepwise process could be considered an alternative way to
separate and recover metals from spent Li-ion batteries effectively.

3.3.6. Membrane Electrolysis

The membrane electrolysis was investigated to crystallize lithium carbonate from
lithium-rich brines. The three-compartment reactor was applied. The brines were intro-
duced in the middle compartment, separated from the anolyte and catholyte compartment
outside. When a current is applied, anions and cations selectively migrate into the anionic
and cathodic compartments, respectively. Water reduction increases the pH of the catholyte,
which is recirculated in a crystallizer where CO2 is bubbled and converted to carbonate,
precipitating Li2CO3 with a purity of at least 93.8 wt%. The method allows recovering
as much as 90% of the lithium-containing solution volume as low salinity water, with
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up to 99.7% less total dissolved solids than the processed brine, in marked contrast with
current practice [118].

3.3.7. Membrane with Incorporated Metal–Organic Frameworks (MOF-on-MOF)

The distinguished research was conducted on adapting the biological ion channels
features to the alkali metal ions recovery (Na+, K+, and Li+). The main concept was the fab-
rication of monovalent ion-selective membranes with asymmetrical sub-nanometer pores
dedicated to transportation lithium cations. The ionic current measurements exhibit an un-
precedented ionic current rectification ratio of above 100 with exceptionally high selectivity
ratios of 84 and 80 for K+/Li+ and Na+/ Li+, respectively (1.14 Li+ mol m−2 h−1) [119].

3.3.8. Pervaporation

The modified by incorporating graphene oxide (GO) into polypropylene hollow fiber
membranes (Accurel PP S6/2, from Membrana GmbH, Germany). With a high initial feed
concentration (>200 g/L of salt) the GO composite pervaporation membrane increased
lithium concentration from 0.3 to 1.27 g/L (73% feed volume reduction) [120].

4. Economical Aspects of Lithium Recovery with Electro-Driven Membrane Processes

Techno-economic analysis of lithium production based on three main sources of
lithium: Namely, minerals, brines, and e-waste, is also discussed in the following sec-
tions. Relationships between the operating conditions and the required performance are
developed to shed light on the energy requirements for each source of lithium ions and
the results for traditional hydrometallurgical technologies and electro-driven membrane
processes or hybrid solutions are compared.

4.1. Lithium Recovery from Minerals

Traditionally, for the extraction of lithium salt to produce lithium carbonate from
minerals the leaching acid, alkaline, chlorination, and a combination of these techniques
are applied. The cost factors include mine and concentrator development and construction.
The distribution of cost among the individual components is shown in Figure 6a.
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Figure 6. The distribution of shares of the individual components for lithium recovery from minerals
(a) and brines (b) [121].

The pie chart shows that 45% of lithium recovery costs are related to the lithium
carbonate plate cost. The second most expensive component is the mine and concentra-
tor. The dominating costs within the lithium carbonate plant are reagents, labor, and
energy costs [121].

4.2. Lithium Recovery from Brines

For lithium recovery from brines, the evaporation methods were chosen as the main
technology at the industrial scale. Within this technique, the evaporation ponds costs play
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an important role. The second place takes lithium carbonate plate with its utilities and
infrastructure (Figure 6b) [121].

From the operational cost, the reagents’ costs seem to be the most important part.
Among them, sodium carbonate (28%), calcium oxide (12%), sodium hydroxide (7%),
carbon dioxide (4%), and hydrochloric acid (1%) should be mentioned [121].

4.3. Lithium Recovery from e-Waste Brines

The lower cost of process utilization battery spent solutions is expected to be the main
driver for recycling end-of-life LIBs. From a typical economic analysis of LIB recycling
delivery, the total cost of recycling 3974 tons of LIBs was USD 22,824,666. The operation cost
was USD 8,941,500 (2250 USD/ton), transportation was USD12,078,970 (USD 3039.5/ton),
and material handling was USD 1,804,196 (454 USD/ton) [34]. Environmental and social
aspects could also contribute to the need for more recycling of end-of-life batteries. The key
areas for the reduction in cost are related to energy and greenhouse gas emissions. Figure 7
summarizes some values from several studies comparing processes involving leaching
acid, pyrometallurgy, hydrometallurgy, and electro-membrane processes [122–124].
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Based on the data from these studies, the most efficient method, with the lowest
carbon footprint, is offered by the electro-membrane processes. On the other hand, the
most expensive technologies for lithium recovery are pyrometallurgy and hydrometallurgy.
This is due to the high energy requirements for heating and extraction.

The comparison of all of the above-mentioned methods is difficult due to the usability
of various operations, materials, and energy requirements.

5. Summary and Prospects

Lithium’s unique properties make it a critical metal for a wide range of applications.
The demand for Li compounds in the commodity market over the next decade and beyond
is expected to increase dramatically according to the rising use of portable energy storage
devices. At this stage, there are already some industrial-scale or laboratory-established
technologies for recovering lithium from minerals, brines, and lithium-ion batteries. The
process of lithium recovery from minerals and clays is expensive at the both mining costs
and energy consumption. The main source of Li from minerals is spodumene. Spodumene
has a high energy requirement to convert α-spodumene into β-spodumene, which is
more readily leachable. The extraction of lithium from brines and seawater reveals that
a very long duration is necessary for evaporation and concentration. That process has a
serious drawback and is seriously affected by climate. The recycling process of the LIBs
mainly consists of dismantling for the removal of plastic and iron scraps, the separation of
cathode and anode materials, the leaching of the electrode, the removal of unwanted metal
impurities in the leachate, separation, and the recovery of metals from the solutions by
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solvent extraction, ion-exchange, and precipitation. Electro-membrane processes could be
applied for lithium removal from brines and spent batteries. For brines and groundwater,
capacitive deionization can be efficiently applied. By using CDI and HCDI, it is possible to
reduce energy consumption, as well as intensify removal operations with high selectivity.
For releasing lithium from e-wastes, the ED process can be used. By applying ED, it is
possible to reduce recycling costs and energy consumption. The additional benefit of ED
over other technologies is the extraction of is the extraction of lithium in higher-grades.
However, despite the promise of electro-membrane processes for lithium recovery, there
is a need to continue research on the development of sustainable technologies that can
effectively recover all valuable metals from both primary and secondary resources, simplify
the recycling process, and make the recycling costs lower.
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