
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13036  | https://doi.org/10.1038/s41598-021-92246-4

www.nature.com/scientificreports

Human brain dynamics in active 
spatial navigation
Tien‑Thong Nguyen Do1*, Chin‑Teng Lin1 & Klaus Gramann1,2,3

Spatial navigation is a complex cognitive process based on multiple senses that are integrated and 
processed by a wide network of brain areas. Previous studies have revealed the retrosplenial complex 
(RSC) to be modulated in a task-related manner during navigation. However, these studies restricted 
participants’ movement to stationary setups, which might have impacted heading computations 
due to the absence of vestibular and proprioceptive inputs. Here, we present evidence of human RSC 
theta oscillation (4–8 Hz) in an active spatial navigation task where participants actively ambulated 
from one location to several other points while the position of a landmark and the starting location 
were updated. The results revealed theta power in the RSC to be pronounced during heading changes 
but not during translational movements, indicating that physical rotations induce human RSC theta 
activity. This finding provides a potential evidence of head-direction computation in RSC in healthy 
humans during active spatial navigation.

Spatial navigation is an essential human skill that helps individuals track their changes in position and orienta-
tion by integrating self-motion cues from linear and angular motion1. Spatial navigation involves several brain 
regions for spatial information processing2,3, including the retrosplenial complex (RSC)4, to translate spatial 
representations based on egocentric and allocentric reference frames5. Head direction (HD) cells that compute 
HD and orientation6 provide vital information for the translation of information based on distinctive spatial 
reference frames. HD cells have been found in several brain regions, including the parahippocampal7,8 and 
entorhinal regions9 as well as the thalamus10 and the RSC10–12. Theta oscillations have been described as an 
essential frequency underlying the computation of HD and spatial coding in grid cell models13–16 in actively 
orienting rodents. Due to its anatomical connections, the RSC is also a central hub in a human brain network 
underlying several cognitive functions, including spatial orientation. The RSC has a direct connection to V4 
(occipital), the parietal cortex, and the hippocampus and indirect connections to the middle prefrontal cortex5. 
HD cells in the RSC encode both local and global landmarks simultaneously5, supporting the central role of the 
RSC in encoding and translating different spatial representations.

Several brain imaging studies using electroencephalography (EEG) to investigate the fast-paced time course 
of the neural basis of spatial cognitive processes have shown that the RSC translates between egocentric and 
allocentric spatial information17,18. The RSC works with the occipital and parietal cortices to translate egocentric 
visual-spatial information embedded in an egocentric (retinotopic) reference frame into an allocentric reference 
frame5,19. Most previous studies, however, were conducted in a stationary setup, and they did not investigate the 
neural mechanisms contributing to navigation in real-world environments, including motor efference, visual, 
proprioception, vestibular, and kinesthetic system information input or subject-driven allocation of attention20,21. 
During active navigation, proprioceptive and motor-related signals significantly contribute to the estimation of 
self-motion, leading to higher accuracy in estimating travel distance and self-velocity22–25. Importantly, heading 
changes in naturalistic navigation are associated with vestibular input, which, together with the visual system and 
proprioception, is the driving input for HD cells1,20,26. Although a few studies examined active spatial navigation 
in humans, their experimental designs did not reflect the brain dynamics associated with unrestricted near-
real-life navigation experiences18,27, or they relied on specific patient populations28. In summary, there is little 
knowledge about the brain dynamics underlying spatial navigation in actively navigating human participants 
and how these dynamics subserve the computation and translation of spatial information embedded in distinct 
frames of reference for orientation.

In the present study, we investigated the brain dynamics of healthy human participants during active nav-
igation. In an effort to overcome the restrictions of established imaging modalities, we adapted the Mobile 
Brain/Body Imaging (MoBI) approach29–32, allowing physical movement of the participants. Thus, we recorded 
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high-density EEG synchronized to head-mounted virtual reality (VR) while participants physically performed 
a spatial navigation task. Participants tracked their location and orientation by using self-motion cues from 
the vestibular, proprioception, and kinesthetic systems as well as motor efferences. At the end of the trial, after 
traversing paths that included several turns and straight segments, participants pointed to previously encoded 
landmark locations (Fig. 1). Their brain dynamics were analysed using independent component analyses (ICA) 
on high-density EEG data and subsequent source reconstruction. This approach allowed us to assess the brain 
dynamics originating in or near the RSC during the active navigation, focusing on the effect of active locomotion 
on brain dynamics compared with established desktop setups. The results demonstrate that active movement 
through space significantly changes the preferred use of spatial reference frames. Furthermore, naturalistic 
navigation reveals strong theta synchronization in the RSC during navigation phases that require heading com-
putation and a substantial covariation of alpha desynchronization with the accuracy in a landmark pointing task.

Figure 1.   Experimental design. (A) At the beginning of the trial, the participants were given 4 seconds to 
remember a landmark position that appeared approximately 200 meters in front of them. They then performed 
two physical navigation tasks, walk1x and walk2x, each of which contained 2 to 3 random turns. After walk 
1, they were also asked to remember a series of 3, 5, or 7 letters of the English alphabet (the number of letters 
chosen and the order in which the letters appeared were both random). Between the two walks and at the end 
of each trial, the participants were asked to point to the landmark location and their starting location and to 
confirm whether a randomly chosen letter appeared in the list of letters they had been asked to remember. 
Green squares indicate the landmark pointing task (R1, R2a, and R5a) and the starting point task (R2b and 
R5b). Red squares indicate the letter retrieval task. (B) Full participation in the experiment constituted 23 
sessions, where each session consisted of four trials, each trial consisted of two walks, and each walk contained 
2 to 3 turns in random directions. As such, each session involved a total of 20 turning points, shown as red dots. 
After 20 turns, the participant reset his or her location to dot number 0 before starting the next session to ensure 
that the total navigation segments stayed within the experimental space. The reference frame proclivity test 
(RFPT) was based on the participant’s response at dot number 12, where the answers for homing directions were 
clearly distinguishable between two the RFP strategies. Participants were considered egocentric or allocentric if 
their response was the left arrow or right arrow, respectively.
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Results
Behavior.  The participants were asked to follow were pre-defined navigation routes. First, they were shown 
a global landmark and asked to point to it. After the landmark disappeared, they followed a path with several 
turns and, after two or three changes in course, they were asked to point to the (now invisible) landmark. The 
navigation task resumed with two or three more turns, and the trial concluded by asking them to point to the 
invisible landmark a final time. The landmark pointing error (in degrees) response were first checked the nor-
mally distributed hypothesis. A Shapiro-Wilk test showed a significant departure from normality, W(102) = 
0.907, p< 10−5 . We, then further checked the normality distribution of each number of turns (NT) condition 
with the results of W(17) = 0.918, p = 0.139 for NT0, W(17) = 0.739, p = 0.0.0003 for NT2, W(17) = 0.833, p 
= 0.006 for NT3, W(17) = 0.834, p = 0.0061 for NT4, W(17) = 0.836, p = 0.0065 for NT5, W(17) = 0.906, p = 
2.26110−6 for NT6. The landmark pointing error (in degrees) was statistically significantly different at the differ-
ent NT using the Friedman test, ( χ2(5)=53.34, p<.0001) (Fig. 2A). The pairwise Wilcoxon signed rank test (with 
false discovery rate-FDR corrected) between groups revealed statistically significant differences in landmark 
pointing error between NT0 and NT2 (p =.000046); NT0 and NT3 (p =.000046); NT0 and NT4 (p =.000046); 
NT0 and NT5 (p =.000046); NT0 and NT6 (p =.000046); NT2 and NT4 (p =.007); NT3 and NT4 (p =.00011); 
NT3 and NT6 (p =.003). The median error was 5.79 (degrees) with 0 turns, 29.63 after 2 turns, 32.76 after 3 
turns, 45.57 after 4 turns, 44.94 after 5 turns, and 60.99 after 6 turns. The response data was then further trans-
formed into a logarithmic scale. The Shapiro-Wilk test showed a fairly normal distribution (W(85)=0.97049, 
p =0.0483) of newly transformed data. Then, a mixed-effects model was used to test the effect of the number 
of turns to response behavior (using R software33, version 1.2.5033 with the lme4 package34. The landmark-
pointing response (removed NT0) was used as the dependent variable, number of turns was used as fixed effect, 
and participant was used as a random effect. Significance was estimated using the lmerTest package35, which 
applies Satterthwaite’s method to estimate degrees of freedom and generate p-values for mixed models. The 
model formulated as follows: landmark pointing error   number of turns + (1|Participant). There was significant 
main effect of number of turns (beta = 0.1116, SE = 0.0253, df = 68, t = 4.413, p = .000037), reflecting the effect 
of number of turns into the behavioral response (Fig. 2B).

Event‑related spectral perturbation (ERSP).  Repeated k-means clustering of independent compo-
nents (ICs) resulted in 25 clusters with centroids located in several structures of the brain including the frontal 
cortex, the left and right motor cortices, the parietal cortex, the RSC, and the occipital cortex. Focusing on power 
spectrum changes in the RSC cluster, we computed event-related spectral perturbation (ERSP) in the frequency 
range of 3 to 50 Hz (Fig. 3). Broadband alpha and beta desynchronization were prominent during the straight 
segments of navigation, replicating previous results from both passive and active navigation studies17,18,27. In 
addition, a prominent theta burst became apparent directly after each turn, i.e., at the time when people were 
computing heading changes before proceeding along the next straight path. Moreover, the theta burst was pre-
sent during all turns, while the alpha and low beta desynchronization became more desynchronized as the 
number of turns increased (Fig. 4).

Figure 2.   The results of participant behaviour. (A) Participant behavior in the landmark pointing task (using 
R software33). The X axis indicates the number of turn points in the trial, the Y axis indicates the absolute error 
of the participants when they performed the landmark pointing task (the error was measured by the angular 
difference between the pointing vector and the participant to landmark vector) (*, **, ***, **** indicated for 
p <.05, p <.01, p <.001, p <.0001 respectively, FDR-corrected). (B) The result of mixed-effects model analysis 
(using lme434, and lmerTest package35), the regression was visualized by the blue line. (C) The RFPT results 
were in both the passive condition (stationary test with the tunnel paradigm) and active condition (based on 
the participant’s response at position 12, path 3 in the Fig. 1B). Three groups of strategies egocentric, mixed and 
allocentric were color coded in green, blue and red, respectively.
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Figure 3.   Retrosplenial complex (RSC) event-related spectral perturbation (ERSP). (A) Dipole locations of 
independent component (in or near the retrosplenial complex (RSC) cluster at the sagittal, coronal, and top view 
respectively and the corresponding mean of the scalp map. (B) The RSC ERSP with respect to the segment of 
turns from 1 to 6 turns. (C) The permutation test (n=2000, FDR-correlated) of the RSC ERSP in 6 segments.

Figure 4.   The permutation test (n=2000, FDR-correlated) of the RSC ERSP for 6 segments in comparison to 
segment 1.
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Neural correlations with spatial updating.  Heading computations.  Next, we calculated the correla-
tions between power modulations in the RSC and the landmark pointing errors. For a comprehensive analysis, 
we divided the power modulations into different frequency bands and the pointing errors by allocentric or 
egocentric reference frames for the entire course of the navigation task. Further, to assess the impact of rota-
tional compared with translational movement on RSC spectral modulations, we extracted the first 10% of each 
segment, which included the turn, and the middle 10% of each segment (50-60% ), where participants were only 
moving in a straight line, and calculated the correlations between power in different bands and pointing errors 
with just these segments.

Participant‑level analysis.  The allocentric group showed a significant positive correlation between errors in the 
landmark pointing tasks and power changes in the following broadband frequency ranges: theta (r(34)=0.48, 
p =.00048), low alpha (r(34)=0.5, p =.00051), high alpha (r(34)=0.46, p =.00047) and beta band (r(34)=0.4, p 
=.0012) (FDR-corrected) (see Fig. 5A). Egocentric participants demonstrated a negative correlation between the 
performance pointing task (error) and power changes in the following frequency ranges: low alpha (r(22)=-0.34, 
p =.0.006), and high alpha (r(22)=-0.24, p =.011) (FDR-corrected)(Fig. 5A). The inverse pattern of correlation 
coefficients of power and individual performance error for allocentric and egocentric participants was consistent 
across the entire navigation phase (10x10% time bins), revealing that RSC activity depends on their stationary 
reference frames used to encode and integrate the spatial information.

Trial‑level analysis.  In contrast to previous stationary navigation studies18,27, participants moved actively 
through the environment, receiving sensory feedback from not only the visual system but also converging 

Figure 5.   RSC ERSP correlated with participant performance in the first 10 percent (A) and mid 10 percent 
(B) of the segment length at both the participant and trial level respectively. The top figure shows the computed 
correlation coefficients (the number at the bottom right corner, red color indicated for statistical significance; 
*, **, ***, **** indicated for p <.05, p <.01, p <.001, p <.0001 respectively - FDR-corrected) between individual 
performance and RSC ERSP at participant level in different frequency band at theta (4-8 Hz), low Alpha (8-10 
Hz), high Alpha (10-12 Hz), and beta (12-30 Hz). The row indicates the RFP strategy in the passive RFPT 
response: red indicates an allocentric, and blue indicates an egocentric strategy. The bottom figure shows the 
correlation coefficients computed between individual performance and RSC ERSP at the trial level in same the 
range of frequency as in the top figure. The color-coding indicates the RFP strategy; the lighter color in the same 
RFP strategy group indicates an active allocentric response, while the darker color indicates an active egocentric 
trial response.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13036  | https://doi.org/10.1038/s41598-021-92246-4

www.nature.com/scientificreports/

sensory evidence about changes in position and orientation from their vestibular and proprioceptive systems. 
This phenomenon opens the possibility that the participants’ preferred use of spatial reference frames might 
change depending on the sensory input available to them21,36. Therefore, we further investigated the relationship 
between individual performance error and power changes in RSC on a single-trial level. The pointing response 
at the end of the path required a binary decision regarding whether the homing location was located to the left 
or right with respect to the current position and orientation of the navigators (at point 12, Fig. 1B). The results 
of the single-trial reference frame classification demonstrated that a large portion of participants preferentially 
used an egocentric reference frame in stationary setups but switched to an allocentric reference frame with active 
navigation (Fig. 2C). In contrast, participants with a preference for using an allocentric reference frame in sta-
tionary setups kept the same allocentric reference frame in the active navigation scenario (Fig. 2C). Importantly, 
whenever participants used an allocentric reference frame in the pointing task, irrespective of their habitual 
proclivity toward an egocentric or an allocentric reference frame in stationary settings, there was a positive cor-
relation between the pointing error and power changes in the lower alpha band (r(100)=0.37, p =.000037 for 
stationary allocentric; r(44)=0.17, p =.015 for stationary egocentric), higher alpha band (r(100)=0.13, p =.013 
for stationary allocentric; r(44)=0.13, p =.016 for stationary egocentric), and beta band (r(100)=0.34, p =.00009 
for stationary allocentric; r(44)=0.0012, p =.0.00015 for stationary egocentric). However, pointing based on an 
egocentric reference frame (in physical navigation) still revealed a negative covariation with power in the higher 
alpha band (r(12)=-0.10, p =.024) (dark-blue color, Fig. 5A) and the beta band (r(12)=-0.86, p =.000035 for 
stationary egocentric). Thus, the single-trial reference frame analyses clearly revealed a systematic and more 
pronounced desynchronization in the alpha band whenever an allocentric reference frame was used to respond 
to a homing challenge.

Discussion
Spatial navigation is vital to purposeful movement as it requires a representation of our position and orientation 
in space as well as our homing trajectories. In this study, we explored these processes through a typical stationary 
navigation task but also a physical navigation task where the participants actually moved through a large virtual 
space while we recorded and analyzed their brain dynamics using a MoBI approach29–31,37. By using this modi-
fied MoBI approach provided this first-ever opportunity to describe theta synchronization in the RSC during 
heading computation in actively rotating navigators. From our analyses, we find that alpha desynchronization in 
the RSC occurs when retrieving spatial information from an allocentric reference frame and translating it into 
an egocentric during active navigation.

Remarkably, navigators switched from their preferred egocentric reference frame to an allocentric refer-
ence frame when they were allowed to actively move through space. Thus, the reference frame proclivity (RFP) 
observed in stationary navigation tasks is not consistent with that observed in active navigation tasks, including 
naturally occurring sensory feedback from the vestibular, proprioception, and kinesthetic systems. More specifi-
cally, the majority of egocentric navigators switched to an allocentric reference frame during physical navigation, 
while the allocentric group consistently used their preferred allocentric strategy. To anchor a cognitive map with 
the environment, navigators can use local and global landmarks (e.g., a mailbox, a building) and/or self-motion 
cues. In our navigation scenario, we gave the participants a single prominent landmark only at the very beginning 
of a trial that was invisible for the rest of the navigation task. Participants then moved through space, walking 
straight toward a point and then locating and changing directions several times while moving away from their 
starting location (Fig. 1). Consequently, the participants tended to derive their orientations and positions in 
space by converging multiple sensory inputs to represent the original global landmark position. Most partici-
pants, including the egocentric strategy group, responded as allocentric navigators in the homing direction test 
(Fig. 2C). This finding suggests that human spatial navigation strategies are quite flexible, exploit multisensory 
information, and depend on the particular type of response that is required at the given moment. In contrast to 
previous desktop experiments asking for a simple homing response that demonstrated a preference for distinct 
reference frames17,18,38 the current task showed that the majority of participants preferred an allocentric reference 
frame. Having to constantly update one’s own position as well as the position of other entities in space (landmark, 
home) likely fosters the use of an allocentric reference frame.

Moreover, the behavioral results in the landmark pointing task (Fig. 2) might follow the leaky integrator 
model39,40. This model assumes that the encoded orientation, as the variable state, is incremented with move-
ment by multiplying the actual orientation gain factor. This process tends to decay by an orientation-dependent 
leaky factor. In our trials, there were no visible landmarks within the navigation task. Therefore, participants 
could not use external landmarks to anchor their cognitive map. Instead, they had to derive their orientation 
with each turn based on idiothetic information only. Thus, errors accumulated at each turning point (Fig. 2) 
and increased somewhat proportionally to the number of turns in the scenario. In other words, the errors in 
the landmark pointing task (at R1, R2a, and R5a, Fig. 1) are correlated to the number of turning points (Fig. 2).

Using a spatial filter approach and subsequent clustering of independent components, we demonstrate the 
RSC to reflect specific aspects of the navigation task. EEG contains subcortical activity and allows to local-
ize deeper brain structures41. Previous desktop studies have already revealed navigation-related activity in or 
near the RSC17,18,42. However, even though theta oscillation is an important mechanism for computing head 
orientation and providing a grid cell network13,14,16, it has not been reported in human brain imaging studies 
using stationary setups. Notably, we found a strong theta synchronization in the RSC during periods of head-
ing changes, which indicates that physical rotations induce RSC activity (Fig. 3). This has not been reported in 
previous stationary studies. This theta oscillation was stably observed with each turn by navigators along the 
path. Through MoBI, our participants were able to make use of naturally occurring spatial information, such as 
motor efference and cues from the vestibular, proprioception, and kinesthetic systems. Therefore, participants 
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could extract their head direction from HD cells activity10,43, which is often eliminated in stationary setups. In 
addition, there is evidence that the firing rate of HD cells decreases with restraints during navigation. Compared 
with those in active locomotion, loosely restrained rats in passive movement showed a nearly 24% reduction in 
the peak firing rates of HD cells44,45, while tightly restrained rats46,47 showed near or complete suppression. The 
suppression of the HD cell firing rate is due to disruption of the vestibular system, which is the essential signal 
for estimating head direction20,26,48. In previous human spatial navigation studies, the population was limited to 
stationary participants. Thus, the vestibular information for HD signals may have been eliminated21. In this study, 
the participants received vestibular information in addition to all other naturally occurring sensory modalities 
while turning and walking. Accordingly, sufficient multi-modal sensory information was available for them to 
compute their head directions. Therefore, theta oscillation occurred after each turning onset (Fig. 3), indicating 
heading computation activity in the RSC, providing evidence of heading computation in healthy participants 
in a physical spatial locomotion study replicating similar theta activity in participants rotating on the spot49.

Furthermore, we replicated RSC alpha suppression, which has been previously observed in spatial learning 
for maintaining orientation in both passive17,18,42,50 and active navigation tasks27. This alpha desynchronization 
might indicate ongoing spatial transformations from egocentric to allocentric coordinates and vice versa17. We 
expected to estimate the robustness of the RSC feature in the navigational task. Therefore, the letter task was 
added in the middle of the trial (Fig. 1), which mimicked the typical situations in real-life navigation. Interest-
ingly, both theta synchronization and alpha desynchronization showed the similar pattern across six walking 
segments (Fig. 3), indicating a navigation-related activity in the RSC activity. Although Kim et. al51 demonstrated 
that RSC activity is correlated with behavioral performance in three-dimensional space, how the use of distinct 
reference frames during navigation impacts RSC activity was still unclear. Remarkably, in this study, we found 
that RSC activity systematically covaried with behavioral responses, and that this correlation depended on the 
reference frame used. The use of an allocentric strategy revealed a positive correlation of individual performance 
and alpha power, while an egocentric strategy was associated with a negative correlation (Fig. 5). This general 
pattern was confirmed using a single-trial analysis approach that identified the reference frame underlying the 
single-trial pointing response of participants irrespective of their general reference frame proclivity. The results 
clearly indicate that only the use of an allocentric response and not the use of an egocentric response was associ-
ated with desynchronization in alpha band activity.

Overall, we exposed some of the behaviors and neural dynamics associated with physical navigation. We 
found that theta oscillations originating from the RSC are present during human navigation, more prominent 
while computing direction changes, and consistently synchronized irrespective of the length of the total path 
walked. Further, the results suggested that alpha desynchronization is essential for translating between spatial 
reference in active and passive navigation. As the first evidence of how our sense of direction works in healthy 
moving humans, these findings demonstrate that, for some, our brain dynamics are not the same when simulat-
ing navigating through space as opposed to actually moving through space.

Materials and methods
Participants.  Eighteen healthy adults (age 27.8±4.2, 2 females) participated in this experiment. All partici-
pants reported normal or corrected-to-normal vision. Each received 60 for their participation. The protocol was 
approved by the University of Technology Sydney (UTS) (grant number: UTS HREC REF NO. ETH17-2095). 
All the experiments were performed in accordance with relevant guidelines and regulations. Participants were 
given an informed consent form and signed before the main experiment.

Experiment design and tasks.  Reference frame proclivity test (RFPT).  Prior to the main experiment, the 
participants completed an online RFPT36,38 to classify them as allocentric, egocentric, or mixed-strategy naviga-
tors. In the test, participants had to navigate through a tunnel on the flat screen monitor that included direction 
changes of various angles in the horizontal plane. When they reached the end, they were asked to select which 
of two homing vectors pointed back to the start of the tunnel. This choice, made over 40 trials, determined their 
navigation style: egocentric or allocentric if they consistently used that reference frame in at least 70% of the tri-
als, or mixed-strategy navigators if they switched between frames. Of the 18 participants, five were egocentric 
navigators, seven were allocentric, and six were mixed.

Main experiment design.  The experiment comprised a series of straightforward physical navigation exercises 
interspersed with spatial encoding/retrieval tasks but complicated by letter encoding/retrieval tasks to impose 
an additional cognitive workload on the participants. Each participant first performed four learning trials to 
familiarize themselves with the tasks and instructions and subsequently completed 23 sessions, with each session 
consisting of four trials, over the course of the full experiment. Each trial proceeded as follows. First, participants 
were shown a global landmark and given 4 seconds to remember its position before it disappeared. Participants 
were then given the following instruction: “Point to the landmark location” . They responded by pointing a con-
troller at their reckoned location and clicking the hair-trigger (R1, Fig. 1A). A beep sounded to indicate their 
response had been registered and that they that should now start the first navigation task—straight walking with 
two to three direction changes over the walk while keeping track of their location in the space. More specifically, 
participants walked forward toward a floating red sphere at eye height, which disappeared once they reached it. 
A new red sphere then appeared, showing the next direction and distance and disappearing once they reached 
that, and so on. In Fig. 1A, this task is denoted as “walk 1x” , where 1 indicates the first walk and x indicates the 
number of red spheres. Once participants reached the last red sphere, they stopped walking and the text “Atten-
tion” appeared in front of them for 3 seconds, signaling the first spatial retrieval task was about to begin. First, 
participants were instructed to “Point to the landmark location” by pointing their controller to the landmark 
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location as they remembered it and clicking the hair-trigger (R2a, Fig. 1A). Next, two homing arrows appeared 
in front of them—one pointing left, the other right—and they were asked: “Where is the starting location?” . 
Responses were given by pointing their controller at one of the arrows and clicking the trigger (R2b, Fig. 1A). 
The letter encoding task to impose additional cognitive burden followed. The participants were shown a series of 
3, 5, or 7 letters of the English alphabet at one-second intervals between letters and asked to remember them. The 
number of letters chosen and the order in which the letters appeared were both random. Three levels of difficulty 
were included to avoid familiarity with the task, ensuring the cognitive load remained high. Then, three sec-
onds after the last letter appeared, participants were shown a random letter and asked whether or not that letter 
belonged to their letter list. Clicking the trigger indicated yes; pressing the touchpad indicated no (R3, Fig. 1A). 
Participants then had 2 seconds of rest before starting the second walk. A beep sound signaled the beginning of 
the second navigation task (walk 2x, Fig. 1A), which followed the same straight walk to the red sphere format 
as the first. However, this time, the participants had to remember their letter list as well as keep track of their 
orientation toward the landmark location and starting position. When the second walk was finished, the par-
ticipants were asked to do three things: first, to confirm whether or not a random letter belonged to their letter 
list (R4, Fig. 1A); second, to point to the landmark location; and, third, to point to the starting location (R5a 
and R5b, Fig. 1A). The next trial started when the participant indicated their readiness by clicking both bottom 
grips on the controller. The maths of four trials with 2 to 3 random turns in each of two walks meant that each 
session consisted of a total of 20 turns, as shown in Fig. 1B. After 20 turns, the participant reset his or her loca-
tion to dot number 0 before starting the next session to ensure that the total navigation segments were within 
the experimental space.

Data recordings.  The scenario was developed in Unity (version 2017.3) with the VRTK plug-in and performed 
in a VR environment using a head-mounted display (HTC Vive Pro; 2x 1440 x 1600 resolution, 90 Hz refresh 
rate, 110 field of view). All data streams from the EEG cap, and head-mounted display were synchronized by the 
Lab Streaming Layer52. The EEG data were recorded from 64 active electrodes placed equidistantly on an elas-
tic cap (EASYCAP, Herrsching, Germany) with a sampling rate of 500 Hz (LiveAmps System, Brain Products, 
Gilching, Germany). The data were referenced to the electrode located closest to the standard position, FCz. The 
impedance of all sensors was kept below 5 kOhm.

EEG analysis.  Pre‑processing.  All pre-processing steps were performed using MABLAB version 2018a 
(Mathworks Inc., Natick, Massachusetts, USA) and custom scripts based on EEGLAB version 14.1.253 (Fig. 6). 
The raw EEG data were downsampled to 250 Hz before applying a bandpass filter (1-100 Hz). Line noise (50 Hz) 
and associated harmonics were removed using the cleanline function in EEGLAB. Dead channels were then re-
moved based on flatline periods (threshold=3 seconds), correlations with other channels (threshold=0.85), and 
abnormal data distributions (standard deviation=4). Missing channels were interpolated by spherical splines 
before re-referencing to the average of all channels. Noisy portions of continuous data were removed through 
automatic continuous data cleaning based on the spectrum value (threshold=10 dB) and power with a criteria of 
maximum bad channels (maximum fraction of bad channels=0.15) and relative to a robust estimate of the clean 
EEG power distribution in the channel ([minimum, maximum]=[-3.5 5]). Then, adaptive mixed independence 
component analysis (AMICA)54,55 was used to decompose the data into a series of statistically maximally inde-
pendent components (ICs) with the time source as the unit. The approximate source location of each IC was 

Figure 6.   EEG pre-processing pipeline.
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computed using the equivalent dipole models in EEGLAB’s DIFIT2 routines56. Last, the spatial filter matrix and 
dipole models were copied back to the pre-processed but uncleaned EEG data (no cleaning in the time domain) 
for further analysis (Fig. 6).

Event‑related spectral perturbation (ERSP).  Epoched data sets for each walking condition (walk1x or walk2x) 
were extracted at the onset of navigation for a length of 14.5 seconds, including a baseline period of 2.5 seconds 
prior. Bad epochs were identified and removed in the sensor space (for strongly affected head and body motion 
artifacts) and subsequently in the component space (for artifact noise in the ICs). (i) In the sensor space, the 
bad epochs were labeled based on the epoch mean, standard deviation (std=5), absolute raw value (threshold 
value=1000 V), and kurtosis activity (refer to the pop_autorej.m function in EEGLAB). From 2714 epochs, 
12.5% were deemed bad and removed. (ii) In the component space, the time-warped ERSP patterns for each 
epoch were calculated by computing single spectrograms for each IC and single trial based on the newtimef() 
function using the standard parameters. The timewarp option was used to linearly warp each epoch to a stand-
ard length based on the median time point of sphere collision events. The time period before the onset of the 
active navigation at the beginning of the trial was used as the baseline to estimate the ERSP for each epoch with 
divisive baseline correction57 to minimize single-trial noise. Epochs were then identified as bad if the z-score of 
the ERSP epoch was larger than 3 standard deviations from the median of all ERSP epochs (see the power of this 
method in Figs. 7, 8 and 9). Approximately 6 % of the epochs were bad and removed based on their ERSP in the 
component space.

Clustering.  We first clustered the ICs based on the conventional EEGLAB k−means method. Then, we repeated 
the clustering process 10000 times before performing an evaluation to identify the best cluster of interest (COI) 
based on the region of interest (ROI) cluster centroid49. All ICs with an RV of less than 30% for all participants 
were grouped based on their dipole locations (weight=6), ERSPs (weight=3), mean log spectra (weight=1), and 
scalp topography (weight=1). Then, the weighted IC measures were summed and compressed with principal 
component analysis (PCA), resulting in a 10-dimensional vector, followed by the k−mean method (with 25 
clusters). The target cluster centroid in Talairach space (RSC, x=0, y=-45, z=10) was evaluated from 10000 clus-
tering results based on the score of each cluster solution, including: (i) the number of participants (weight=2); 
(ii) ratio of the number of ICs per participant (weight=-3); (iii) cluster spreading (mean squared distance of each 
IC to the cluster centroid) (weight=-1); (iv) mean RV of the fitted dipoles (weight=-1); (v) distance of the cluster 
centroid to the ROI (weight=-3); and (vi) Mahalanobis distance to the median distribution of the 10000 solu-
tions (weight=-1). The final COI score of -1.7 was derived from 15 participants, 29 ICs, a spread of 677, a mean 
residual variance (RV) of 11.76% , and a distance of 7.3 units in Talairach space. In the ERSP group-level analysis, 
the ERSP at COI was calculated first at the IC level, then at the participant level, and finally at the group level. 
The time-frequency data of all ICs of the same participant were averaged. Then, the ERSPs of all participants 
were averaged for the final ERSP at the group level. The statistical test for ERSPs was performed by a permutation 
test with 2000 permutations and a multiple comparison correction using the false discovery rate (FDR, α=0.05).

Effective brain connectivity.  We further evaluated the effect of the muscle cluster activity on the brain cluster 
activity. First, the ERSP of some brain clusters was plotted (Fig. 8). We then used the Source of Information Flow 
Toolbox (SIFT) from the EEGLAB-compatible toolbox to estimate the effective connectivity between clusters58. 
The multi-channel EEG data was modeled by vector autoregressive (VAR) with the model order p. Then, the 
Akaike information criterion (AIC) was used to evaluate the model fitting parameter p. Next, the model fitting 

Figure 7.   The RSC ERSP before and after noise removal. The RSC ERSP before and after noise removal at the 
participant level. The left figure shows the average ERSP for participants before noise removal. The right figure 
shows the average ERSP for participants after noise removal at: (A) one egocentric participant; and (B) one 
allocentric participant.
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Figure 8.   The ERSP in different brain regions in or near the RSC (red), parietal cortex (blue), occipital cortex 
(pink), and neck (white).

Figure 9.   Effective connectivity. The estimated effective connectivity of the four clusters (the RSC, neck, near 
the ear on the left side, and near the ear on the right side) in two participants. The results indicate that theta 
activity in the neck cluster has no effect on the RSC.
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was validated by three tests (i) whiteness test, (ii) percentage of consistency, and (iii) stationary59. And finally, the 
granger causality was calculated to estimate the information flow between clusters (Fig. 9).
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