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Abstract—Most current research has focused on nontonal lan-
guages such as English. However, more than 60% of the world’s
population speaks tonal languages. Mandarin is the most spoken
tonal languages in the world. Interestingly, the use of tone in tonal
languages may represent different meanings of words and reflect
feelings, which is very different from nontonal languages. The
objective of this study is to determine whether a spoken Mandarin
sentence with or without tone can be distinguished by analyz-
ing electroencephalographic (EEG) signals. We first constructed
a new Brain Research Center Speech (BRCSpeech) database
to recognize Mandarin. The EEG data of 14 participants were
recorded, while they articulated preselected sentences. To the
best of our knowledge, this is the first study to apply the method
of asymmetric feature extraction method for speech recognition
using EEG signals. This study shows that the feature extrac-
tion method of rational asymmetry (RASM) can achieve the best
accuracy in the classification of cross-subjects. In addition, our
proposed binomial variable algorithm methodology can achieve
98.82% accuracy in cross-subject classification. Furthermore, we
demonstrate that the use of eight channels [(F7, F8), (C5, C6),
(P5, P6), and (O1, O2)] can achieve an accurate of 94.44%. This
study explores the neurophysiological correlation of Mandarin
pronunciation, which can help develop a tonal language synthesis
system based on BCI in the future.

Index Terms—Brain–computer interface (BCI), electroen-
cephalography (EEG), feature extraction, lexical tone, machine
learning, Mandarin, speech recognition.
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I. INTRODUCTION

SPOKEN language is one of the most common forms
of communication between people. However, for patients

with locked-in syndrome (LIS), such as severe spastic
quadriplegic cerebral palsy, stroke, and advanced amyotrophic
lateral sclerosis, most of their voluntary muscles are paralyzed
except for vertical eye movement communication or blink.
Even if these patients are conscious, they cannot communi-
cate through language. This may lead to undesirable long-term
consequences, including reduced quality of life, reduced social
interaction, and increased burden of caregivers [1]. Although
patients with communication difficulties can benefit from long-
term support and speech therapy, the long-term care needs of
this population today. Despite motor abnormalities such as LIS
or quadriplegia, their brains still function well.

With advances in sensor technologies, it is now possible
to develop intelligent applications to manage, control, and
automate our living environments without human interven-
tion. The Internet of Things (IoT) is a good example of
automation science and information technology. Many studies
have combined the IoT and intelligent medical or rehabilita-
tion systems with brain–computer interfaces (BCIs) [2]–[6].
In recent decades, BCI technologies have made many
advances [7]–[14]. BCI is considered to be a new commu-
nication platform that utilizes the dynamics of the user’s
brain. Recognizing speech through neural signals has been
an emerging research area in the past few years. Previous
researches usually required the performance of hand motor
imagery or some other conversation-irrelevant task [15], [16].
However, those BCI methods are all nonintuitive. Various
methods of recording brain activity can be used as the basis
for direct speech synthesis in brain–computer communication.
Electroencephalography (EEG) is widely used in the field
of BCI due to its high temporal resolution and low cost.
Electrocorticography (ECoG) can provide more information
about brain signals but requires invasive implantation of
subdural electrodes [17].

Many speech perception studies focused on nontonal lan-
guage (e.g., English or German). In fact, the neural evidence
of lexical tone processing is scarce. More than 60% of the
languages in the world are tone languages, and the words in
them are distinguished by tonal features [18]. The “tones” of
a word can represent different meanings [19], [20]. Mandarin
is one of the most spoken languages in the world (about 1.1
billion people). Mandarin consists of many homophones, and
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Fig. 1. Pitch frequency of the four tones in Mandarin.

it uses five tones, which is very different from nontonal lan-
guage (see Fig. 1) [21]. In Mandarin, the meaning of words
cannot be determined without tonal information. For exam-
ple, the syllable /ma/ can be accented with four lexical tones
(i.e., Tone 1—flat-level tone; Tone 2—mid-rising tone; Tone
3—mid-falling-rising tone; and Tone 4—high-falling tone) to
represent four distinct meanings: mother “ ” hemp “ ” horse
“ ” and curse “ ”, respectively.

To the best of our knowledge, fewer BCI studies focused on
BCIs that can translate brain signals into Mandarin than those
BCIs for English [22]–[27]. The ultimate goal of this work is
to develop a direct BCI for Mandarin. To achieve this goal we
need to answer the following two questions first.

1) What is the difference in brain activity between speaking
Mandarin with and without tones? (to find out the tone
feature)?

2) What is the cognitive process in the brain when speaking
a tonal language like Mandarin?

Therefore, this study proposes to investigate the functional
difference in the brain while speaking in tonal and nontonal
Mandarin. Native Mandarin speakers were asked to participate
in two experiments: one is to speak normally, and the other is
to speak flat-tone Mandarin. Then, we analyze the difference
in EEG activities between the two. This experimental design is
mainly to avoid observing the phenomenon caused by the sec-
ond language [28]–[31]. Therefore, this study aims to use the
same language to understand that the observed phenomena are
caused by tones. One can use either a bottom-up or a top-down
approach to decide neural signals during speech production.
The bottom-up approach maps the basic language units [32],
[33] (e.g., phonemes or syllables) onto articulation areas (e.g.,
motor cortex and premotor cortex). This study uses the top-
down approach to decode Mandarin. We first map speech to
sentence level and then corresponds to brain signals.

The purpose of this study is to investigate whether Mandarin
spoken with and without tone can be distinguished based on
the subject’s EEG. The previous study [59] demonstrated that

the left hemisphere is relevant for generating grammatical
sentences and syntax rules, and the right hemisphere is key
to participate in adding the emotional intonation to speech.
However, the process of tone in the human brain is still
not clear. Because of the functional hemispheric asymmetries,
this study proposed an asymmetric feature extraction method
to obtain the important features for tone. Also, this study
proposed the binomial variable algorithm (BVA) to easily
extract the significant features cross-subjects.

The remaining parts of this article are organized as follows.
Section II introduces the related work. Section III discussed the
experiment design method. Section IV presents our research
method. Section V shows the evaluation results among the
single and cross-subjects. Section VI discussed our numerical
results. Section VII concludes this study.

II. RELATED STUDY

Recently, different neuroimaging modalities, such as func-
tional magnetic resonance (fMRI), ECoG, EEG, etc., have
been used to measure neural activities for decoding speech.

1) fMRI measures brain activities by detecting changes
related to blood flow. This technique relies on the cou-
pling of cerebral blood flow and neuron activation.
Several studies have used fMRI to decode the spatial
correction of speech [34]–[36]. However, the temporal
resolution of fMRI (including that of the latest high-field
fMRI) is limited to a few seconds, whereas the human
speech articulation process takes less than a quarter of
a second. However, human speech articulation involves
the cooperation of different functional cortices, which
originates from the mind and is manifested by the sen-
sorimotor areas. The temporal correlation of different
cortical locations and its relation to speech articulation
cannot be decoded by fMRI with the low time resolution.

2) ECoG directly measures the electrical activities on the
cortical surface. It has been used for accurate preopera-
tive localization of epileptic seizures and provides high-
density neural recordings. Recent studies have shown
that ECoG can decode speech, including the ability to
map speech evoked sensorimotor activations [37]; gen-
erate neural encoding mode of perceived phonemes [32],
words [38], and sentences [22]; reconstruct acoustic
properties of perceived [39]; generate natural-sounding
synthetic speech from brain activity [24]; and imme-
diately identify volunteers’ spoken responses to a set
of standard questions based solely on their brain activi-
ties [25]. Although recent studies have reported impres-
sive progress in using neural signals for speech decod-
ing, the complex dynamics, especially for Mandarin
speakers, have yet to be fully elucidated.

3) EEG uses electrodes placed on the scalp to measure the
electric potential of a large ensemble of simultaneously
firing neurons. It is the most commonly used method for
recording neural signals and has a huge advantage that
it is noninvasive. EEG is widely used in BCI research
because of its high temporal resolution and low cost [7].
It is easy to access, which helps the development of
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a BCI-based system for language generation. Various
studies have used EEG to convert vocal speech to imag-
inary speech of the English vowels [40], syllables [41],
[42], and “yes” and “no” [43]. Some EEG-based BCIs
have used deep-learning-based automatic recognition for
English words [44], vowels [44], and vocabulary [45].

III. EXPERIMENT DESIGN

A. Subjects

Fourteen healthy subjects aged 20–26 years (average age:
23.50 ± 1.99 years) were recruited to participate in this study.
All subjects were native Mandarin speakers, right-handed
and without neurological and mental illness, and no drug
or alcohol abuse. The experiment was performed in accor-
dance with the country’s laws and approved by the Institutional
Review Board (IRB) of the National Chiao Tung University
(NCTU). Each participant provided written informed con-
sent prior to participation. The participants were compensated
approximately U.S. $25 after the experiments. The experimen-
tal protocol was approved by the IRB and assigned the number
NCTU-REC-108-127E.

B. Experimental Paradigm

This study uses a “Focus Group Interview” [46] method
to create a new Brain Research Center Speech (BRCSpeech)
Database to analyze spoken Mandarin. Focus Group Interview
is a method of collective discussion of specific research issues.
During the interview, the interviewees are stimulated to con-
struct ideas [46]. The study aimed to determine the differences
in EEG activity when subjects spoke preselected sentences
with and without tone in the BRCSpeech Database.

The BRCSpeech Database is a Mandarin-sentence database
that included almost all Mandarin pronunciation characteris-
tics. According to the research by Sagey [47], Ladefoged and
Halle [48], and Longtin et al. [49], Mandarin involves six
articulators: 1) labial; 2) coronal; 3) dorsal; 4) soft palate;
5) tongue-root; and 6) vocal cords. There are five tones in
Mandarin, which are different from English: 1) Tone 1 (flat-
level tone, with “−” symbol); 2) Tone 2 (mid-rising tone,
with “/” symbol); 3) Tone 3 (mid-falling-rising tone, with “v”
symbol); and 4) Tone 4 (high-falling tone, with “\” symbol).
(Fig. 1) [21].

We adopt the contract method proposed by Duanmu’s lan-
guage experts [33]–[35]. The “Contract” refers to two words
that sound different, that is, two words with different pho-
netic forms. We use two contracts. One is the tone contract.
For example, tones 1 and 4 are the maximal pitch con-
tract of tones. The other is the contract of articulators. For
example, Labial and Dorsal are different articulators. In lin-
guistics, these are the differences in speech. We assume that
the differences will also be reflected in brain activities. The
BRCSpeech Database we created also referenced the Texas
Instruments/Massachusetts Institute of Technology (TIMIT)’s
database [24], [50]. Because people’s normal speakings mix
both long and short sentences, the design of the 460 sen-
tences in the TIMIT’s database includes 3–12 words for each

Fig. 2. Procedure and experimental design. The sentences, each consisting
of 3–12 words, were shown on a computer monitor. Each session of the
experiment includes 191 sentences.

sentence. And our BRCSpeech Database is also composed of
3–12 words of each sentence.

The BRCSpeech Database collected sentences composed
of all Mandarin pronunciation, covering all combinations
of Mandarin vowels and consonants. In this study, the
BRCSpeech Database will be selected as the source of the
sentences while speaking Mandarin in the tonal and nontonal
experiments and the BRCSpeech Database contains combina-
tions of various Mandarin characters’ sounds, which can rich
the data collection. In this study, the important features of
tones are identified. In our future study, we will analyze the
four types of Mandarin tones based on the results of this study.

In our EEG speech experiment, sentences were shown on
the computer monitor. Each sentence is composed of 3–12
words, which were randomly selected from the BRCSpeech
Database, and the duration of the sentence displayed on the
monitor was adjusted according to the length of the sen-
tence. The baseline between two consecutive trials is a white
screen that is 2 s long. Each session of the experiment lasts
25 min (about 185–191 sentences), as shown in Fig. 2. In order
to avoid the differences in degree of cognitive control with
and without tonal information in Mandarin, the experimental
design of this study is divided into two different sections. One
section required the subject to speak normally (involving tone),
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Fig. 3. Experimental system flowchart.

and the other required the subject to speak a flat tone like a
robot without changing the tone (only Tone 1 was permitted).
Each subject was asked to complete two different sections in
random order.

Before recording data, the subjects would practice at least
16 trials in order to reduce the unexpected phenomenon caused
by cognitive control with and without tone in Mandarin.

C. EEG Data Acquisition

This study used the SynAmps system (Australia
Compumedics Ltd.) to record the EEG data, which has
64 unipolar sintered Ag/AgCl EEG electrodes placed on
the scalp according to the international 10–20 system and
referred to the linked mastoids (average of channel A1 and
channel A2). Fig. 4 shows the layout of EEG electrodes on
the cap. The impedance of all electrodes was kept below
5 k�. The EEG data were sampled at 1000 Hz with a 32-bit
quantization. The spoken sentences were recorded with a
microphone. (Sampling rate: 44.1 kHz/16 bit; Dimensions:
325-mm circumference).

D. Speech Phone Labeling

To avoid unwanted noise (other than the main physiologi-
cal signals) [51] and simplify the experiment to obtain better
results, we designed an experiment to adapt to the random
speaking speed of the subjects. In addition, the subject did
not need to perform other activities (i.e., press buttons) other
than speaking [24]. Subjects were asked to speak the sen-
tence shown on the monitor at their regular pace immediately
after watching the display. This study used a high-quality
microphone to record the speech and synchronized the audio
recording with the subjects’ EEG. Speech was synchronized by
using Presentation ( c©2020 Neurobehavioral Systems, Inc.).

IV. RESEARCH METHODS

In this section, we detail the processes applied to the EEG
data speech recognition.

A. EEG Data Preprocessing

EEG signals were first filtered to 0.5–180 Hz,
and then downsampled to 500 Hz for data compres-
sion. We used MATLAB R2019b (The Mathworks,
Inc.), Python, and the open-source EEGLAB toolbox
(http://sccn.ucsd.edu/eeglab) [52]. As shown in Fig. 3, by
using the EEGLAB visualization tool, EEG signals containing
electrode noise and a large number of muscle artifacts can be
identified and simply removed to improve the signal-to-noise
ratio.

Fig. 4. Sixty-two channels layout of the EEG cap.

Fig. 5. Timing of a trial of the paradigm. EEG signals from baseline to end
of speaking. This study analyzed the brain activities in three periods: 1) BS:
1 s before the sentence is displayed (the 2nd second of the baseline), 2) Before
Speak: after the sentence is displayed and before the subject articulates the
sentence, and 3) Speak: when the subject is articulating the sentence.

B. Feature Extraction

This study analyzed the brain activities in three periods:
1) BS: 1 s before the sentence is displayed (the 2nd sec-
ond of the baseline); 2) Before Speak: after the sentence
was displayed, before the subject articulates the sentence; and
3) Speak: when the subject is articulating the sentence (see
Fig. 5). Many previous studies have shown that emotions cause
differences in brain activities during rest [53], [54]. To exclude
the influence of emotions, we removed the BS state data in the
Before Speak and Speak states to ensure that the classification
results were based on the tonal and nontonal language classi-
fication, while excluding the impact of the baseline emotion.
In Fig. 5, the power in the range of 0.5–170 Hz of each time
bin in BS was averaged at time bins as the average baseline
power of 0.5–170 Hz. In addition, the average baseline power
was subtracted from the power spectrum at each time bin of
Before Speak and Speak states.

Zheng et al. [55] found that the following different fea-
tures and electrode combinations are effective for EEG-based
emotion recognition: 1) power spectral density (PSD); 2) dif-
ferential entropy (DE); 3) differential asymmetry (DASM);
and 4) rational asymmetry (RASM) features from EEG. As a
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result, we used these features in this study. Further, this study
also uses additional asymmetric (AASM) for feature extrac-
tion. The length of the window size used in this study was
0.5 s, which was based on the average time of each word
(about 0.4–0.6 s in this study).

1) Power Spectral Density (PSD): The EEG signals of each
trial for all 62 channels were first transformed into time–
frequency domain to get EEG PSD using the short-time
FFT. The six different frequency band power, delta–theta
(0.5–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), gamma
(30–60 Hz), high gamma (60–170 Hz), and all bands
(0.5–170 Hz), was selected and averaged as the feature
of each time bins. This procedure resulted in 372 fea-
tures (six frequency bands by 62 channels) for each trial
(sentence).

2) Differential Entropy (DE): Shi et al. [56] found that EEG
signals are subject to Gaussian distribution in a few sub-
bands after band-pass filtering from 2 to 44 Hz. As such,
the DE (denoted by h(X)) of the EEG signals (denoted
by X) in the frequency band i can be derived by sub-
stituting the probability density function of a Gaussian
random variable X into

h(X) = −
∫

fX(x) log(fX(x))dx. (1)

Then, we can obtain

h(X) = 1

2
log

(
2πeσ 2

)
(2)

where fX(x) = [1/(
√

2πσ 2)]e−[(x−μ)2/(2σ 2)] and σ 2 is
the signal variance of X.

3) Some studies have shown that the lateralization between
the left and right hemisphere is associated with emotions
and language dominance [57]–[60]. This study investi-
gates three asymmetric features: 1) AASM; 2) DASM;
and 3) RASM.

a) Additional Asymmetry (AASM): AASM =
DE(xleft)+ DE(xright).

b) Differential Asymmetry (DASM): DASM =
DE(xleft)− DE(xright).

c) Rational Asymmetry (RASM): RASM = DE((xleft)/

DE(xright).
There are 27 pairs of asymmetric electrodes
(xleft, xright): (Fp1, Fp2), (AF3, AF4), (F1, F2),
(F3, F4), (F5, F6), (F7, F8), (FC1, FC2), (FC3, FC4),
(FC5, FC6), (FT7, FT8), (T7, T8), (C1, C2), (C3, C4),
(C5, C6), (TP7, TP8), (CP1, CP2), (CP3, CP4), (CP5,
CP6), (P1, P2), (P3, P4), (P5, P6), (P7, P8), (PO3,
PO4), (PO5, PO6), (PO7, PO8), (CB1, CB2), and
(O1, O2). Note that (xleft, xright) denote the symmetric
pair of electrodes [55], [61]–[63]. The dimensions of
AASM, DASM, and RASM are 162 (6 frequency bands
∗ 27 pairs of asymmetric electrodes).

C. Dimensionality Reduction

The aim of this study is to implement a real-time BCI. Fewer
features of real-time BCI correspond to more time-related cal-
culation. This study used principal component analysis (PCA)

to reduce the dimensionality. Also, we customized the BVA
to extract the significant features cross-subjects, based on the
binomial hypothesis test and multifactor-dimensionality reduc-
tion (MDR) [64]. There are two hyperparameters to be set in
BVA as follows.

1) O: The proportion of the optimal feature.
2) X: The threshold of the number of interactions between

individuals.
In the BVA method, two steps dimensionality reduction are

as follows.
Step 1 [Selecting a Certain Amount (Hyperparameter O) of

Features for Each Subject]: Taking the RASM feature extrac-
tion method, for example, there are 162 features, and each
single subject was classified via a linear discriminant anal-
ysis (LDA) method based on the 162 features to obtain the
corresponding classification accuracy. The hyperparameter O
specifies the proportion of the optimal features to be selected
out of the 162 features. That is, the values, O = 10, O = 20,
and O = 30, are the highest 10% (16 features), 20% (32 fea-
tures), and 30% (48 features) accuracy features, respectively.
After setting the O value, the optimal features corresponding
to the highest accuracy of each subject were determined.

Step 2 (Selecting the Important Features for the Cross-
Subjects by Setting X Value):

f(s, n): The setting of optimal features for each subject.
Bf(n): To compute the important features for cross-subjects,

where s is the subject number ranged from 1 to 14, and n is
the feature number ranged from 1 to 162 (Note that there are
162 features by using the RASM method).

The value of function f (s, n) equaled 1 (f (s, n) = 1)
if f (s, n) was selected as the optimal feature; otherwise, it
equaled 0 (f (s, n) = 0), Then, Bf (n) is defined as Bf (n) =
�s

i=1f (i, n), if Bf (n) was greater or equal to X, the feature n
was regarded as the important feature for cross-subjects. For
the pseudocode, see Algorithm 1.

A small value of O meant that the number of optimal
features was small, that is, the feature achieving excellent
classification performance of each subject was taken as the
threshold; contrarily, a larger value of O indicated a larger
range of thresholds. A larger value of X meant that a feature
would be set as an important one if the feature was shared by
multisubjects, which imposed relatively strict restrictions.

Therefore, both the values of O and X would influence the
final number of selected important features. A larger number
of important features were less favorable to the real-time BCI
design, but were likely to enhance the classification effect,
suggesting that the optimization of operating parameters was
a crucial consideration.

We now describe how hyperparameters are selected in our
methodology. Set the value of O (try O = 5, 10, 15, 20, and
25, respectively), and then set the value of X (14 subjects
in total, and find X begins from 14, then 13, and substitute
one by one successively). We will find the value of important
features for each pair of hyperparameters O and X. Finally,
we will choose the appropriate number of important features
according to the results. In this study, it is expected that the
final number of channels will be between 10 and 20, which
will be favorable for future BCI development.
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Algorithm 1 Binomial Variable Algorithm
Binomial Variable Algorithm (s, n, O, X, Accuracy, Feature)

s: the count of subjects
n: the count of features.
O: the proportion of the optimal feature.
X: the threshold of the number of interactions between
individuals.
Oset(n): using O to select features from each subject.
Accuracy (s, n): each single-subject was classified via an
LDA method based on the features to obtain the correspond-
ing classification accuracy for every feature.
Feature: all features.
f (s, n): The setting of optimal features for each subject self.
Bf (n): To compute the important features for cross-subjects.

%The setting of optimal features for each subject
self.

1: for i = 1 to s do
2: for j = 1 to n do
3: if Accuracy(i, j) ∈ Oset(i) then
4: f (i, j) = 1
5: else
6: f (i, j) = 0
7: end if
8: end for
9: end for

10: Bf ← 0
11: for j = 1 to n do
12: for i = 1 to s do
13: Bf (j) = Bf (j)+ f (i, j)
14: end for
15: end for

%According to the X value to compute the important features
for cross-subjects.

1: for j = 1 to n do
2: if Bf (j) ≥ X then
3: Important features ← Feature(j)
4: end if
5: end for
6: return Important features

Let us consider RASM as an example.
When O = 5: X = 14, 13, 12, 11, 10, 9, 8, 7, and 6, there is

no important feature; X = 5, there are four important features;
and X = 4, there are four important features.

When O = 10: X = 14, 13, 12, 11, 10, 9, there is one
important feature; X = 8, there are six important features;
X = 7, there are nine important features; X = 6, there are
14 important features; X = 5, there are 19 important features;
and X = 4, there are 38 important features.

When O = 20: X = 14, 13, 12, 11, 10, 9, there are five
important features; X = 8, there are seven important features;
X = 7, there are 12 important features; X = 6, there are 23

TABLE I
MEAN ACCURACIES (%) AND STANDARD DEVIATIONS OF LDA-BASED

CLASSIFICATION RESULTS FOR PSD, DE, AASM, DASM, AND RASM
IN THE BS, Before Speak,

AND Speak

important features; X = 5, there are 31 important features; and
X = 4, there are 42 important features.

Therefore, if O is set to five, it will be too harsh, and if O is
set to 20, it will be too loose. In the study, we set O = 10. After
setting O, we set X again. Because more important features
represent that an additional number of channels are required,
it will be difficult to implement BCI. However, less important
features may cause poor classification effect. Therefore, we
selected the situation that is more likely to realize BCI for
analysis, in which X = 7 has nine important features, and
X = 6, there are 14 important features, therefore this setting
has a good chance of achieving BCI, hence this study selected
X = 7 and X = 6 for further analysis.

D. Classification

This study applied LDA, K-nearest neighbor (KNN) algo-
rithms and fivefold cross-validation to the EEG features to
classify the spoken Mandarin with versus without tones.
K-Fold evaluation is a popular and easy to understand tech-
nique. It ensures that every observation in the original data set
has a chance to appear in the training and test sets. This study
evaluated the associations between EEG power in different
frequency bands at different channels and Mandarin speech
tones.

V. EVALUATION

In this section, the classifier is combined with different
feature extraction methods to classify tonal Mandarin versus
nontonal Mandarin. First, we classify a single subject and
compare the impacts of the feature extraction methods and
classification on different frequency bands.

Tables I and II exhibit the results of single subjects, and
Tables III and IV show the results of the classification of
14 subjects by the leave-one-out cross-validation (LOOCV)
method (13 were trained, and another one was tested, with
each subject being a test subject once). Table III shows the
classification results of EEG activities measured in the base-
line (BS), Before Speak, and Speak, and Table IV compares
the classification results of the PCA dimensionality reduction
method and BVA dimensionality reduction method.

A. Evaluating Single-Subject Performance

For each EEG feature (data point) of each subject’s trial,
fivefold cross-validation was used to estimate the accuracy of
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TABLE II
MEAN ACCURACIES (%) OF LDA-BASED CLASSIFICATION RESULTS

FOR PSD, DE, AASM, DASM, AND RASM FROM DIFFERENT BAND

IN THE BS, Before Speak, AND Speak

LDA classification. We randomly used 370 trials for classifi-
cation from the total trials. Therefore, there are 370 trials in
each subject (185 “nontonal” and 185 “tonal” sentences). We
split the data into five subsets, and each subset has 74 tri-
als. We trained the model with 296 trials, and tested it on the
remaining 74 trials. We repeated this procedure five times and
averaged the accuracy obtained by each subject.

Table I shows the classification results of five differ-
ent feature extraction methods using all the features (PSD,
DE, AASM, DASM, and RASM), where 14 subjects were
evaluated based on the LDA model through fivefold cross
verification and each subject had 370 trials in the BS, Before
Speak, and Speak states. By averaging the classification results
of the 14 subjects based on the LDA model and calculating
the standard deviation, it can be found that the RASM method
performed best among the results based on a single subject.
Some important observations can be summarized as follows.

1) The accuracy by using RASM for the BS, Before Speak,
and Speak is 94.79%, 99.06%, and 99.45%, respectively.

2) The PSD feature extraction method has the worst
performance and its accuracy is 50.17%, 50.03%, and
50.09% in the BS, Before Speak, and Speak, respectively.

3) In the BS state, the DASM led to the best performed
and the PSD, DE, AASM, DASM, and RASM methods
can achieve an accuracy of 50.17%, 85.75%, 94.69%,
97.12%, and 94.79%, respectively.

4) In the Before Speak state, the RASM method performed
the best with the accuracy of 99.06%, while the accuracy
of the PSD, DE, AASM, and DASM methods is 50.03%,
56.70%, 62.72%, and 67.32%, respectively.

5) In the Speak state, the RASM method performed the best
with an accuracy of 99.40%, comparing to the accuracy
of the PSD, DE, AASM, and DASM methods at 50.09%,
59.46%, 69.86%, 69.63%, and 99.40%, respectively.

6) The best accuracy of the LDA classifier is 99.40%
using the RASM in the Speak state.

Brain activities in different frequency bands usually
reflect their distinct cognitive activities [53], [54], [65]–[67].
Therefore, this study divided brain activities into six frequency

TABLE III
USING ALL FEATURES TO RUN LOOCV TO TRAIN THE LDA-BASED

CROSS-SUBJECT MODEL; THIS TABLE SHOWS

THE CROSS-SUBJECT MEAN ACCURACY

TABLE IV
COMPARISON OF THE CLASSIFICATION RESULTS USING THE RASM

FEATURE EXTRACTION METHOD IN CONJUNCTION WITH THE

DIMENSIONALITY REDUCTION ALGORITHM (PCA\BVA)

bands and classified them with different feature extraction
methods to see if there is a difference in classification across
frequency bands. This study used the PSD, DE, AASM,
DASM, and RASM methods to extract EEG features in the
BS, Before Speak, and Speak states. Table II shows the average
classification results obtained by the LDA model. In the case of
using High Gamma (60–170 Hz), the RASM method achieved
the highest accuracy (99.00%) in the Speak state. Even in the
Speak state of using only a specific frequency band, the RASM
method still outperformed the other feature-extraction meth-
ods. Using the RASM method, the best classification band
in the Speak state is High Gamma (99.00%), followed by
All band (98.88%), and Gamma (98.20%). For the RASM
feature in the BS state, the all-band-based classification accu-
racy was 98.80%, followed by Gamma (98.38%) and High
Gamma (97.97%). The best classification band in the Before
Speak state using RASM features is High Gamma (98.84%),
followed by All-band (98.03%) and Gamma (97.68%).

B. Evaluating Cross-Subjects Performance

The LOOCV method was used to perform an LDA-based
cross-subject classification on the 14 subjects, of which data
from 13 subjects were used for training and data from the one
remaining subject were used for testing. Table III shows the
results obtained from using different feature-extraction meth-
ods. The RASM feature-extraction method performed best in
the cross-subjects classification result. It achieved a classifica-
tion accuracy of 98.82% in the Speak state, with a standard
deviation of 0.66, which is the minimum standard deviation
among the five feature-extraction methods in the Speak state.
The RASM feature-extraction method achieved the best accu-
racy of 97.93%, 97.72%, and 98.82% in the BS, Before Speak,
and Speak, respectively. The accuracy (%) of the PSD, DE,
AASM, DASM, and RASM-based classification in the three
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states can be averaged to 52.06, 70.91, 68.26, 67.73, and
98.16, respectively. It suggests that RASM features achieved
the highest classification accuracy (98.16%), followed by DE
(70.91%).

Table III indicates that RASM achieved the highest classi-
fication accuracy under the LDA-based cross-subject classifi-
cation. Table IV compares the classification results using the
RASM method in conjunction with the dimensionality reduc-
tion algorithm (PCA versus BVA). 10% of the features (as
RASM has 162 features; 10% x162 = 16) are taken in the
PCA algorithm, that is, the first 16 principal components were
used as the important features.

Under the LDA-based classifier, the PCA-based
dimensionality-reduction method reached the accuracy
of 84.51%, 73.91%, and 72.90% in the BS, Before Speak,
and Speak state, respectively. With (X ≥ 7), 9 important fea-
tures were taken in the BVA-based dimensionality-reduction
method, which achieved the accuracy of 77.71%, 71.22%,
and 72.62% in the BS, Before Speak, and Speak state,
respectively; with (X ≥ 6) 14 important features were taken
in the BVA-based method, which achieved the accuracy of
85.09 %, 77.52%, and 76.90% in the BS, Before Speak, and
Speak state, respectively. For the LDA model-based classifier,
we find that the numbers of features/components both PCA
and BAV methods affect the performance significantly. For
the PCA algorithm, when the dimension is reduced to 16, the
accuracy (%) dropped from 97.93% to 84.51%, from 97.72%
to 73.91%, and from 98.82% to 72.90% in the BS, Before
Speak, and Speak phase, respectively. For the BVA (X ≥ 6)
algorithm, when the dimension is reduced to 14, the accuracy
dropped from 97.93% to 85.09%, from 97.72% to 77.52%,
and from 98.82% to 76.90% in the BS, Before Speak, and
Speak state, respectively.

When we used BVA (X ≥ 6), there are 14 important fea-
tures. The results of the LDA-based classification with these
14 important features can be compared with the results of
the PCA-based using 16 important features. The accuracy
of using PCA during the BS, Before, and Speak states is
84.51%, 73.91%, and 72.90%, respectively. The accuracy of
using BVA (X ≥ 6) during BS, Before Speak, and Speak
states is 85.09%, 77.52%, and 76.90%, respectively. We
also performed t-test analysis to test the statistical signifi-
cance between BVA and PCA methods. The BVA (X ≥ 6)
using 14 features outperformed the PCA using 16 components
significantly (ρ < 0.01).

Using the PCA/BVA methods to reduce the dimen-
sionality, the KNN classifier can obtain a higher
accuracy because the important features are identified
to improve the disadvantages of the traditional KNN
algorithm. The traditional KNN classification has three
limitations.

1) High Calculation Complexity: To find the k near-
est neighboring samples by KNN, all the similarities
between the training samples must be calculated. When
there are few training samples, the calculation time is
not overwhelming, but if the training set contains a large
number of samples, the KNN classifier needs more time
to calculate the similarity [68].

Fig. 6. Distribution of the 14 important features for the tone and nontonal
sentence in the EEG classification using BVA (x ≥ 6) were plotted in the cap.
The blue circles represent All-band, the purple circles represent High Gamma,
the gray circles represent Gamma band, the pink circles represent both Alpha
and All-band, and green circles represent both Alpha and Gamma band.

2) Dependence on the Training Set: The classifier is only
generated with the training samples and does not use any
additional data. This makes the algorithm dependent on
the training set excessively. It needs to be recalculated
even if the training set has a small change.

3) No Weight Difference Between Samples: Because train-
ing samples are treated equally in the KNN, there is
no difference between the samples with small and large
amounts of data.

With the help of the BVA (X ≥ 6) method using only 14
features, the KNN classifier can achieve an accuracy of 99.2%,
94.3%, and 96.7% in the BS, Before Speak, and Speak states,
respectively. We also find that the BVA outperforms the PCA
when ρ < 0.01 under a KNN model-based classifier. Table IV
reveals that using all features, the LDA classifier could achieve
higher accuracy. Presumably, the LDA can only learn simple
linear boundaries among the data clusters. The high classifi-
cation performance obtained by the LDA indicates that there
were obvious differences in the data distributions of EEG sig-
nals under different conditions, which may reflect different
cognitive activities of the brains.

As shown in Table IV, we speculate that the 14 features with
BVA (interaction threshold is larger than 6, x ≥ 6) are impor-
tant for distinguishing tonal and nontonal sentences in the EEG
classification. Fig. 6 displays the distribution of the represent-
ing channels of 14 feature pairs in the EEG cap. The blue
circles mark All-band feature pairs, (C5, C6), (P3, P4), (P5,
P6), and (O1, O2). The purple circles mark High Gamma band
feature pair, (F7, F8). The gray circles mark Gamma band fea-
ture pair, (FC3, FC4). The pink circles mark both Alpha and
All-band feature pairs, (AF3, AF4) and (CB1, CB2). The green
circles mark both Alpha and Gamma feature pairs, (F1, F2)
and (FC5, FC6)

In order to identify the critical features among the 14
important features obtained by the BVA (X ≥ 6) method in
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TABLE V
ANALYSIS OF 14 BVA-BASED IMPORTANT FEATURES; WITH EACH

FEATURE REMOVED IN TURN; THE OTHER 13 FEATURES ARE USED

EACH TIME. THE REMOVAL OF (C5, C6) CAUSES THE

ACCURACY TO DROP SIGNIFICANTLY

TABLE VI
DISTRIBUTION OF THE IMPORTANT FEATURES FOR THE MANDARIN

TONE IN THE EEG CLASSIFICATION USING BVA (x ≥ 6)
PROJECT FOR THE BRAIN AREA

the KNN-based classification, we performed the leave-one-
feature-out test, that is, using 13 of 14 features each time in
the Speak state. The results are given in Table V. When the
(C5, C6) All-band feature were removed, the accuracy dropped
significantly; however, the removal of other features did not
have a significant influence, indicating that (C5, C6) were the
critical features in this study, which was consistent with prior
literature results that C5 and C6 were most relevant to the
brain areas in the Speak state [69]. Table V divided the 14
important features obtained through the BVA into the frontal
lobe, temporal lobe, parietal lobe, and occipital lobe of a brain.

Aiming to reduce the dimensionality based on regions, we
took a channel pair as feature values in each region, with a
total of 20 combinations (Frontal: 5 x Temporal: 1 x Parietal:
2 x Occipital: 2 = 20). The KNN method was used to classify
the tones based on the brain dynamics in the Speak state. The
results given in Table VII indicates that the combination of
(F7, F8), (C5, C6), (P5, P6), and (O1, O2) achieved the highest
accuracy (94.44%), and the frontal lobe-based data channel of
the pair achieved the highest accuracy in conjunction with the
combination of (C5, C6), (P5, P6), and (O1, O2) in each block
in Table VII. Thus, it is implied that using eight channels can
achieve an accuracy of 94.44%.

VI. DISCUSSION

Communications in the real life are achieved through sen-
tences. The use of a sentence-level design to study speech can
be applied to natural languages than word-level design. This
study aims to understand the neural processing before and dur-
ing speaking. We investigated the brain activities during the
BS (baseline), Before Speaking, and Speaking a sentence in

TABLE VII
DATA CHANNEL PAIR CORRESPONDING TO EACH BRAIN AREA IN

TABLE VI, WITH THE FEATURES EXTRACTED USING THE RASM
METHOD. THE KNN CLASSIFIER IS USED TO CLASSIFY THE

TONE AND NONTONAL SENTENCES ACCORDING TO THE

BRAIN SIGNALS IN THE Speak STATE

Mandarin. In Table VII, using KNN with BVA (X ≥ 6) yielded
accuracies that all exceeded 90% (highest is 94.44%) dur-
ing the Speak state. Also, using the proposed real-time onset
detection techniques for BCI, such as Matthews et al. [70],
Chamanzar et al. [71], Chamanzar et al. [72], and with the
aid of dimensionality reduction, our proposed BCI method can
be used for accurate and real-time classification of the tonal
versus nontonal language. This study will have the following
potential impacts.

A. New Findings in Tone-Speaking Brain Dynamics

By analyzing the EEG recordings, the study demonstrates
that it is possible to differentiate whether a native Mandarin
speaker is using tone or not. Specifically, the cognitive
processes of speaking tonal or nontonal Mandarin are differ-
ent. Many Feature extraction methods for analyzing the EEG,
have been repeated in the literature, such as the asymmetric
feature extraction method [55], [61]–[63] and the single-
channel-based method [40]–[45], [73]. Most of the previous
EEG speech recognition research works were based on single-
channel-based methods for feature extraction. To the best of
our knowledge, this is the first study to apply the asymmet-
ric feature extraction method for speech recognition through
EEG signals. Additionally, this study finds that the RASM fea-
ture extraction method can achieve the best accuracy among
these feature extraction methods (PSD, DE, AASM, DASM,
and RASM) in the classification of cross-subjects. RASM is
one of the asymmetric feature extraction methods and is just
like a normalized process that changes the values of numeric
columns in the data set to a common scale. It is obtained by
dividing the left channel’s value by the right channel’s value.
After RASM, the accomplishment of the best classification
result by the classifier also proves the asymmetric cognitive
process of the left and right hemispheres when the speech is
delivered with tone or not [74] (important result 1).
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To exclude the influence of emotions, we removed the
BS state data in the Before Speak and Speak state counter-
part to ensure that the classification results were based on
the tonal and nontonal language classification. According to
previous studies, emotion might affect brain activities at the
rest state [53], [54], [75]. From Table IV, we observe that there
are great classification results between Baseline and Before
Speak states. Therefore, the results support that speaking with
or without tone is related to speaking motivation and artic-
ulation(important result 2). Therefore, this study can help
design the direct speech BCI and facilitate human–machine
interaction (HMI). In the design of BCI or HMI, a prejudgment
involving emotion before speaking is a very important design
link for many patients with aphasia. It also truly implements
the spirit of automation science and engineering [76].

When we communicate with others, no matter whether we
speak a tonal or nontonal language, there may come with
emotions when we speak. For example, when we are saying
that I am very happy, we may have happy emotions, and the
prosody of speech may also be changed. From the conclusions
of (important result 1) and (important result 2), we also spec-
ulate that the asymmetric feature extraction method may be
not only helpful for the tonal language but also for the non-
tonal language when we are speaking in a natural situation.
The hypothesis is worthwhile being verified in the future.

Previous research results indicated that the brain elicits high-
Gamma (70–160 Hz) oscillations during linguistic phonetic
processing [77], [78]. Although the cognitive process of speech
in the brain is still unclear, we can speculate that high-Gamma
will be an important feature for analyzing brain dynamics
when speaking. Single-subject results in this study showed that
when using the RASM method, the best classification band in
the Speak state is High Gamma (99.00%) (important result 3).

The results of this study have seen not only the language-
related brain areas, such as parietal [79] and temporal [69]
but also the frontal and occipital area, which may be triggered
by the stimulus-driven executive control. We also found that
channels (C5, C6) are the critical feature in this study, which
is consistent with the prior research results mentioning that
C5 and C6 are most relevant to the brain area when speaking
(articulation) [69] (important result 4).

From those results, this study obtained a satisfactory clas-
sification accuracy, indicating that different brain mechanisms
may be used by the tonal and nontonal Mandarin in terms of
cognitive behaviors. While the majority of previous studies
have focused on the brain studies for the nontonal lan-
guages, this is the first study to analyze the presence or
absence of tones in sentences based on the EEG signals for
tonal languages. By using the machine learning classification
approach, we confirmed brain activities (cognitive-behavioral
differences) are different when people speak with or without
tone.

B. Key Step to Direct-Speech BCI

This study found that the cognitive process of the brain
while speaking with or without tone is different. Previous stud-
ies of speech synthesis have already indicated the articulation
space of the brain when speaking English [24–27]. English is

a nontonal language, according to this study, a nontonal lan-
guage synthesis’s model cannot be directly applied to a tonal
language. However, over 60% of the world population use
tonal languages [18], and Mandarin is one of the most widely
spoken tonal languages. To ascertain the tonal feature is not
only the key step to the direct-speech BCI of tonal languages
but also the cross-language direct-speech BCI.

The largest difference between the tonal and the nontonal
languages lies in their tones. If the tonal feature can be inter-
preted by physiological signal analysis, there is an opportunity
to add tonal features based on the articulation space of English
shown in past studies. Then, not only can the tonal languages
be synthesized but the cross-language direct-speech BCI can
also be achieved. BCIs can serve all ethnic groups and lan-
guages, which is the ultimate goal of Automation Science and
Engineering [76]. We are looking forward to the invention of
such a BCI.

VII. CONCLUSION

This study investigated the brain dynamics of human speech
in tonal and nontonal Mandarin based on EEG recognition. In
contrast to ECoG and fMRI, EEG signals have the advantages
of low cost, mobility, fieldability, high-temporal resolution,
and noninvasiveness. The brain activities corresponding to the
tonal and nontonal Mandarin sentences exhibit different behav-
iors that can be distinguished by classifying EEG. To the best
of our knowledge, this is the first study to apply the asymmet-
ric feature extraction method for speech recognition through
EEG signals. This study finds that the RASM feature extrac-
tion method can achieve the best accuracy in the classification
of cross-subjects. Also, our proposed methodology, BVA, can
achieve an accuracy of 98.82% in cross-subject classification.
Furthermore, we show that using eight channels [(F7, F8),
(C5, C6), (P5, P6), and (O1, O2)] can achieve an accuracy
of 94.44%. The methods to discover different brain activities
developed in this study will benefit and shed the light on the
design of future BCI of speech synthesis for 60% of people
in the world who use tonal languages.
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