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A B S T R A C T

Water pollution is a major concern for public health and a sustainable future. It is urgent to purify wastewater
with effective methods to ensure a clean water supply. Most wastewater remediation techniques rely heavily on
functional materials, and cost-effective materials are thus highly favorable. Of great environmental and economic
significance, developing waste-derived materials for wastewater remediation has undergone explosive growth
recently. Herein, the applications of waste (e.g., biowastes, electronic wastes, and industrial wastes)-derived
materials for wastewater purification are comprehensively reviewed. Sophisticated strategies for turning wastes
into functional materials are firstly summarized, including pyrolysis and combustion, hydrothermal synthesis,
sol–gel method, co-precipitation, and ball milling. Moreover, critical experimental parameters within different
design strategies are discussed. Afterward, recent applications of waste-derived functional materials in adsorption,
photocatalytic degradation, electrochemical treatment, and advanced oxidation processes (AOPs) are analyzed.
We mainly focus on the development of efficient functional materials via regulating the internal and external
characteristics of waste-derived materials, and the material’s property-performance correlation is also empha-
sized. Finally, the key future perspectives in the field of waste-derived materials-driven water remediation are
highlighted.
1. Introduction

Ensuring clean water is a high-priority issue in the sustainable
development of our society. Currently, rapid industrialization and ur-
banization have led to severe water pollution, which puts much pressure
on the ecosystem and human health [1,2]. In this context, eliminating
hazardous pollutants (e.g., heavy metals, microplastics, antibiotics, and
viruses) from water is of great urgency, which has attracted enormous
scientific attention. Thus, efficiently innovative methods have been
developed for wastewater remediation, including adsorption, photo-
catalysis degradation, electrochemical treatment, and AOPs [3–5].
Although these methods differ greatly in mechanisms and operation
processes, all of them require functional micro/nanomaterials to attain
good pollutant degradation/removal performance. Therefore, designing
advanced materials (e.g., carbon materials, metal oxides, and metal sul-
fides) for the aforementioned methods plays a central role in water
remediation [6,7].
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Creating functional materials from waste via effective strategies
gains increasing attention. The “waste-to-value” principle is of great
economic and environmental significance [8,9]. Recently, numerous
earth-abundant carbon- and transition metal-based materials designed
from wastes have exhibited satisfactory performance in water purifica-
tion. In this framework, problematic municipal solid wastes are trans-
formed into favorable materials for water remediation via feasible
strategies (e.g., pyrolysis, precipitation, and ball milling) [10–12]. To
date, diverse biomass wastes (e.g., soya waste [13], lotus seedpod [14],
tea waste [15], animal feces [16]), industrial wastes (e.g., coal mining
waste [17], red mud [18], sewage sludge [19], brick waste [20]), and
electronic wastes (e.g., waste printed circuit boards–WPCBs) [21], spent
batteries [22], waste liquid crystal displays [23], electronic packaging
waste [24]) with diverse sizes, densities, chemical compositions, shapes,
and moistures (Fig. 1a) have been converted into functional materials
(e.g., adsorbents, photocatalysts, electrocatalysts) for wastewater puri-
fication (Fig. 1b) [25–35]. For example, Liu et al. synthesized biochar
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Fig. 1. (a) Representative wastes that have been
converted into functional materials for wastewater
treatment (Soya waste [13], Copyright © 2021,
Elsevier; lotus seedpod [14], Copyright © 2020,
Elsevier; tea waste [15], Copyright © 2020,
Elsevier; animal feces [16], Copyright © 2020,
Elsevier; coal mining waste [17], Copyright ©
2021, Elsevier; red mud [18], Copyright © 2021,
Elsevier; sewage sludge [19], Copyright © 2022,
Elsevier; brick waste [20], Copyright © 2021,
MDPI; waste printed circuit boards (WPCBs) [21],
Copyright © 2013, American Chemical Society;
spent batteries [22], Copyright © 2021, American
Chemical Society; waste liquid crystal displays
[23], Copyright © 2019, Elsevier; electronic
packaging waste [24], Copyright © 2022, Elsev-
ier). (b) Milestone timeline of studies related to
the waste-derived materials for wastewater treat-
ment (AC, activated carbon; MB, methylene blue)
[25–35].
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from agricultural wastes via a pyrolysis process, which presented a high
adsorption capacity of 49.70 mg/g toward Pb2þ [36]. The “waste-
to-value” principle is of great environmental and economic significance
because it can significantly minimize the environmental impact of sol-
id/liquid wastes and cut the fabrication cost of functional materials (e.g.,
adsorbents, catalysts) [37–40]. Apart from adsorption, waste-derived
functional materials have also been widely employed in photocatalysis,
electrochemical treatment, and AOPs for water purification [41–44]. A
critical issue in enhancing the performance of waste-derived materials is
the rational design of their nanostructures/components, which can be
achieved by controlling the precursors and experimental parameters in
the synthesis process. Therefore, developing efficient strategies to turn
solid wastes into functional materials with desirable characteristics (e.g.,
large surface area and high stability) is highly needed. Encouragingly,
many sophisticated methods (e.g., pyrolysis, combustion, wet-chemical
process, and ball milling) can successfully convert various solid wastes
into functional materials, and the selection of synthesis methods highly
depends on the properties of waste precursors. For instance, biomass
wastes and sewage sludges are often pyrolyzed to obtain carbonmaterials
[45,46], and metal oxides are generally prepared by combustion and
sol–gel methods [42,47].

Although a handful of review papers have summarized environmental
applications of waste-derived materials, they mainly focused on the uti-
lization of biomass waste-derived biochar in adsorption and AOPs [6,10,
12,44–46,48–53]. The systematic summary of the rapidly growing ap-
plications of various wastes (e.g., biomass, industrial wastes, and elec-
tronic wastes)-derived materials in adsorption, photocatalytic
degradation, electrochemical treatment, and AOPs have been seldom
reported. Thus, it is urgent to comprehensively review the advances in
waste-derived low-cost materials for wastewater remediation.

This review aims to provide an overview of recent advances in the
applications of waste-derived materials for wastewater remediation.
87
First, efficient strategies for converting wastes into advanced materials
are summarized, and critical experimental parameters within different
design strategies are also discussed. Then, recent applications of waste-
derived materials in adsorption, photocatalysis, electrochemical treat-
ment, and AOPs are analyzed, and the design of efficient functional
materials via regulating the internal and external characteristics of waste-
derived materials is emphasized. Finally, perspectives on the develop-
ment of next-generation waste-derived materials are proposed.

2. Strategies for converting wastes into functional materials

Wastes themselves are rarely used for wastewater purification
directly, requiring efficient methods to transform them into desirable
functional materials. Currently, diverse biomass, electronic wastes, and
industrial wastes with different sizes, densities, chemical compositions,
shapes, and moistures have been transformed into functional materials
for wastewater treatment. Pyrolysis and calcination, hydrothermal syn-
thesis, sol–gel method, coprecipitation, and ball milling are the main-
stream strategies detailed in this section. Moreover, critical experimental
parameters that influence the properties of waste-derived materials are
analyzed.

2.1. Pyrolysis and calcination

Pyrolysis and calcination are two widely employed thermal activa-
tion strategies to convert wastes into functional materials. Pyrolysis is a
thermochemical decomposition process generally performed in an inert
atmosphere that induces the generation of carbon-enriched biochar,
hydrocarbons (bio-oils), and volatile gasses [45,46]. With a different
atmosphere in the thermal process, calcination refers to heating solid
wastes (e.g., electronic wastes, eggshells) under a high temperature and
in an oxygen-involved condition, and it is usually employed to
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synthesize metal oxide-based functional materials (e.g., photocatalysts)
from wastes [54,55].

The physicochemical properties and yields of pyrolysis products
largely depend on the characteristics of starting biomass wastes and the
operational conditions of the pyrolysis process (e.g., pyrolysis tempera-
ture, heating rate, and residence time) [45,49]. For diverse applications,
different physicochemical properties are required; thus, the optimal py-
rolysis conditions of biochar are different. Take the pyrolysis temperature
as an example, which governs the chemical compositions and surface
properties of biochar. It has been well demonstrated that the functional
groups (e.g., –OH, –COOH, and –C––O) on the biochar surface are
important for the removal of pollutants from wastewater. At high py-
rolysis temperatures (e.g., �800 �C), the oxygen-containing functional
groups on biochar can be well obliterated to shape aromatic structures
with higher carbonization degrees. In this context, the
high-temperature-derived biochar owns high hydrophobicity and
aromaticity and often contributes to excellent adsorption performance
toward organic contaminants [56]. Nevertheless, a higher temperature
could also lead to the chemical rearrangement of biochar. The destruc-
tion of the biochar structure would obstruct the pores, thus degrading the
adsorption performance of biochar [57]. Differently, biochar prepared at
a relatively low pyrolysis temperature (e.g., �450 �C) contains richer
surface functional groups than that synthesized at high temperatures.
These functional groups can provide abundant active sites for the
adsorption of inorganic pollutants and the activation of persulfate (PS)
and H2O2 [58]. However, another study suggested that compared with
the rich oxygen function groups and persistent free radicals (PFRs) of
biochar pyrolyzed at low temperature (e.g., 300 �C), the graphite elec-
tron donor–transfer complex generated during pyrolysis of biochar at
higher temperature (e.g., 700 �C) played a more important role in the
activation of PS, which acted as electron donor, increased electron
transfer and formed graphite holes during the degradation of acid orange
7 [59]. In this context, the pyrolysis of biochar should be checked on a
one-by-one basis to optimize its surface chemistry (functional groups,
defects, hydrophility), conductivity, and nanostructure (porosity) for
target applications.

A critical issue involved in the pyrolysis of biochar with a relatively
low temperature is the formation of hazardous environmentally persis-
tent free radicals (EPFRs, e.g., oxygen-centered, carbon-centered, and
oxygenated carbon-centered radicals), which may have potentially
adverse effects on the ecosystems and host organisms [60]. Accordingly,
toxicological studies should be implemented in the production and
adoption stages of biochar to determine the specific risks to the sur-
rounding living organisms concerning generated EPFRs in biochar [61].
In addition, it is necessary to optimize the pyrolysis parameters and the
biomass properties to limit the generation of EPFRs [62]. Apart from
pyrolysis temperature, the heating rate is another widely studied
parameter. Depending on the heating rate and residence time, the py-
rolysis process can be divided into slow pyrolysis, fast pyrolysis, and flash
pyrolysis. The heating rate has a big influence on the contents of gaseous,
liquid, and solid products [12,49]. Generally, biochar synthesized
directly from biomass pyrolysis shows poor surface functionality, low
porosity, and small surface area, which profoundly confine its applica-
tions in wastewater treatment. The surface modification and function-
alization of biochar (e.g., alkaline/acid modification, chloride
modification, loading of functional nanomaterials, surface doping) have
been extensively studied to address this issue, and shape the nano-
structure, chemical composition, electronic structure, and stability of
biochar-based materials for typical applications [12].

In the calcination procedure, the calcination temperature influences
the nanostructure and crystallinity of waste-derived materials, and thus,
their performance. In general, a higher temperature leads to a higher
crystallinity and a more severe aggregation of particles [63,64]. The
former can influence the electronic structure of materials, and the latter
will result in a reduced surface area [65]. In this term, the optimal
calcination temperature should be checked on a case-by-case basis for
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different wastes. Controlling the chemical composition of waste pre-
cursors is another route to enhance the performance of waste-derived
materials [42]. This can be achieved by calcinating the mixture of
wastes and desirable chemicals or wastes [66,67]. For example, Xu and
coworkers developed a Fe2O3-TiO2/spent fluid catalytic cracking catalyst
composite (Fe-Ti/SF) via an impregnation-calcination process [68].
Benefiting from the favorable photoactivity of Fe2O3 and TiO2, the
interparticle electrons transfer between TiO2 and Fe2O3, and the fast
charge transfer rate, the Fe-Ti/SF displayed a higher methylene blue
(MB) photodegradation efficiency over its single Fe2O3 and TiO2 loaded
counterparts. With the one-pot calcination process, one can optimize the
chemical composition of waste-derived materials by adding suitable
precursors to wastes.

2.2. Hydrothermal synthesis

Hydrothermal synthesis involves chemical reactions in water solution
at both high temperature and pressure in sealed, high-pressure vessels.
There are mainly two routes to construct functional materials from
wastes via the hydrothermal method. First, the hydrothermal carbon-
ization of biomass can produce hydrochar, which also holds great po-
tential in wastewater remediation [69,70]. Of particular interest, this
method is suitable for the conversion of biomass wastes with high
moisture content (e.g., sewage sludge and animal excreta) because it
avoids the separate drying process [71]. Second, hydrothermal synthesis
can be applied to the preparation of metal-based functional materi-
als/composites from solid/liquid wastes, such as metal oxides and sul-
fides [72–76], metal oxide/sulfide composites [77], metal (hydr)
oxide/carbon composites [78], metal sulfide/biochar composites [79],
and red mud/biomass waste composites [80]. The reaction temperature,
solid/liquid ratio, pH value, and reaction time of the hydrothermal
process are important factors that influence the properties (e.g., nano-
structure, phase, and surface property) of waste-derived materials.

Aside from the single hydrothermal process, many studies have
attempted integrated techniques to design efficient functional materials
from waste. As reported, a hydrothermal synthesis (210 �C, 12 h) fol-
lowed by one-step calcination (750 �C, 1 h) was used to construct hier-
archical activated porous carbon microspheres from fallen Platanus
orientalis leaves [81]. Similarly, an integrated hydrothermal
process-thermal conversion method was applied to convert red mud into
porous γ-Al2O3 microspheres [82]. For the hazard-free treatment and
resource utilization of wastewater sludge, Cai et al. developed a
coagulation-hydrothermal reaction-pyrolysis technique to turn waste
sludge into mesoporous biochar composed of goethite, quartz, biochar,
and polymer [83]. Of note, the combination of these methods can effi-
ciently convert diverse wastes (e.g., plant leaves, sludge, red mud) into
value-added materials.

2.3. Sol–gel method

The sol–gel method proposes the chemical transformation of a liquid
“sol” (generally a colloidal suspension of inorganic particles) into a
gelatinous network “gel” phase with a subsequent high-temperature
calcination process and further conversion into oxide materials [84].
The obtained materials keep high crystallinity, purity, homogeneity, as
well as high modifiability [85]. The main operational conditions of the
sol–gel process contain solution concentration, reaction time, tempera-
ture, and pH value. Currently, a series of wastes have been exploited to
fabricate functional materials via the sol–gel process [86–90]. The
mainstream method converts solid wastes (e.g., electronic wastes and
biomass) into liquid wastes, which act as the sol’s precursor [87,88]. For
example, the spent Ni–Cd batteries’ positive-electrode leaching solution
was transformed into mixed oxide containing iron, nickel, cobalt, and
cadmium via the sol–gel method, and the metal oxide exhibited high
photocatalytic degradation performance toward the textile-reactive
black V–2B dye [91]. Another method refers to the preparation of
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waste-bearing composite materials via the sol–gel process. In this
framework, small-sized solid wastes (e.g., fly ash) can be directly added
to the reaction solution and act as a support for functional components,
and the resulting composites can be applied in wastewater purification
[86]. As reported, the TiO2/calcined eggshell composite was prepared by
a sol–gel technique followed by a self-assembly coprecipitation method,
which acted as a hybrid nano-biosorbent for the removal of acid dye from
aqueous media [92]. Differently, Zhang et al. developed a sol–gel/pyr-
olyzing route to construct the magnetic biochar-MnFe2O4 nano-
composite. Within the composite, biochar could support and disperse
MnFe2O4 effectively, which contributed to the superior adsorption per-
formance [93].

2.4. Coprecipitation

Coprecipitation is a convenient way to prepare oxide-based nano-
materials, which can be defined as the occurrence of simultaneous nucle-
ation, growth, coarsening, and/or agglomeration processes in solution
[94]. The properties of the obtained precipitates, such as composition, size,
and morphology, highly depend on the reaction parameters (e.g., precur-
sor ratio, temperature, pH value, surface ligand, etc.). Similar to the sol–gel
process, there are mainly two strategies for constructing functional mate-
rials from wastes with the coprecipitation process: (1) extracting metal
components from solid wastes (e.g., electronic wastes) to liquid phases,
which work as the precursor of metal oxides in the coprecipitation process
[95,96]; (2) focusing on applying waste-derived carbon materials as the
support of metal (hydr)oxides, and producing metal (hydr)oxides/carbon
composites with the coprecipitation method [97–100]. For instance, a
chemical coprecipitation and subsequent pyrolysis process were imple-
mented to preparemagnetic reed biochar inwhich iron oxideswere loaded
on the surface of biochar [101]. A similar impregnation-pyrolysis tech-
nique was used to develop iron-modified biochar for phosphate adsorption
starting from waste-activated sludge. Noticeably, the iron in FeCl3-im-
pregnated sludge-based biochar mainly existed in the amorphous phase,
which improved the adsorption performance [102].

2.5. Ball milling

Ball milling, also known as mechanochemical milling, is a
mechanical-chemical process that consumes mechanical energy to cause
structural and chemical changes in materials [5,103]. Compared with
traditional material synthesis methods (e.g., hydrothermal process,
calcination, and pyrolysis), the mechanochemical process owns many
advantages: (1) avoiding the energy-consuming high-temperature oper-
ation, (2) reducing the time and chemicals required in the milling pro-
cess, (3) facilitating large-scale fabrication of materials with high yield
from wastes [104,105]. In addition, depending on the requirement of
products, one can select suitable milling parameters such as milling time,
temperature, speed, atmosphere, and ball/material ratio.

Ball milling has been widely employed in preparing functional ma-
terials from solid wastes, with biochar-based materials as the represen-
tative [10]. A main function of milling is to decrease the size of materials,
resulting in enlarged surface area and thus benefits the reaction between
materials and pollutants [106]. By using ball milling to reduce the size of
waste cassava slag, the following hydrothermal carbonization could turn
the milled slag into cassava slag biochar for dye adsorption [107].
Incorporating nano-sized functional materials in highly porous and
structurally stable biochar via ball milling produces nanocomposites that
consolidate the advantages of both raw materials for wastewater reme-
diation [10,108]. For example, a pyrolysis-ball milling technique was
capable of synthesizing magnetic biochar based on biomass and iron or
iron oxides [109]. Apart from reducing the size of wastes, the introduced
intensive mechanical energy can also activate wastes by increasing the
number of surface functional groups and defects [110]. Therefore, ball
milling is suitable for converting solid wastes into targeted functional
materials (e.g., nanostructure and surface chemistry).
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3. Waste-derived adsorbents for pollutant removal

Adsorption is a cost-effective method to remove pollutants from
wastewater [36,111,112]. The adsorption efficiency highly depends on
the properties of adsorbents, especially the surface area and surface
functional group. Waste-derived low-cost materials with flexible physical
and chemical properties have gained great interest in the adsorption of
metal/anion ions, dye, and antibiotics, as summarized in Table 1.

3.1. Inorganic pollutants

Inorganic ions in wastewater are of growing environmental concern
due to their high toxicity and cumulative biological effects [112,115,
131]. Rich in hydroxyl, carboxyl, and other functional groups,
waste-derived materials can react with inorganic ions via ion exchange,
surface complexation, hydrogen bonding, π-π interaction, electrostatic
attraction, etc [45]. Therefore, they can be employed as competent ad-
sorbents to remove inorganic ions.

Biowaste-derived carbon materials (e.g., AC) are widely used absor-
bents for heavy metal ions mainly due to their rich oxygen-based func-
tional groups (e.g. –OH, –COOH, and –C––O), high surface area, and low
price [132]. For enhancing the adsorption performance of
biowaste-based adsorbents, nanostructure regulation and surface modi-
fication via acid, base, oxidizing agent, organic compound, and salt
activation have been widely explored. Typically, base (KOH, NaOH) and
chloride (ZnCl2) activation in the pyrolysis process can optimize the
porosity of the activated biochar, which benefits the adsorption of
inorganic ions via increasing the surface area and facilitating mas-
s/charge transfer. Differently, acid (e.g., H2SO4) treatment mainly fo-
cuses on introducing functional groups (e.g., –SO3H), which can attract
metal ions efficiently and improve the adsorption capacity [133]. Simi-
larly, the application of oxidizing agent (e.g., NaClO) will increase the
number of active binding sites by oxidizing some of the functional groups
of biochar to carboxylic groups; hence, more metal ions can be adsorbed
and removed [134].

Anions (e.g., F�, Cl�, NO3
�, SO4

2�, and PO4
3�) can also be removed

by waste-derived carbon materials via adsorption. Positively charged
segments should be introduced onto the carbon surface to ensure a high
removal efficiency. Thus, chemical modifications are required to obtain
desirable functional groups (e.g., amidine and amino groups) and
multivalent metal ions [135]. For N-containing group modification, Pan
and coworkers developed a recoverable amine-functionalized bio-
sorbent (BR-N) from biogas residue for NO3

� and PO4
3� removal from

wastewater [136]. The BR-N showed a cross-staggered structure with
rich quaternary-amine groups. These characteristics led to enhanced
pollutant diffusion and strong electrostatic attraction of BR-N with
NO3

�/PO4
3�. In terms of metal ion regulation, Yang et al. found that

the adsorption performance of PO4
3� on Fe-modified biochar derived

from waste-activated sludge was better than the untreated counterparts
[102]. The Fe species in the biochar existed mainly as amorphous he-
matite and hydroxides, which enhanced the PO4

3� adsorption. In
addition, ligand exchange played a critical role in the adsorption of
PO4

3� by the Fe-modified biochar.
Beyond biowaste-based materials, industrial wastes (e.g., slag, mine

waste, spent limestone, fly ash, and electronic waste)-derived adsorbents
also exhibit good performance for inorganic ion removal [22,137–140].
Adsorbents derived from industrial wastes are generally in the form of
(mixed) metal (hydr)oxides, which possess abundant active sites for the
adsorption of metal ions and anions. Apart from the advantages in
chemical composition, the nanostructure of some industrial
waste-derived adsorbents also enhances the adsorption performance. Zou
et al. developed a zeolite from the spent LiFePO4 battery via hydro-
thermal treatment, which held three-dimensional 12-member-ring
channels [22]. Benefiting from its high structural porosity, high chemi-
cal adsorption capacity, and fast cation exchange, the waste-derived
zeolite showed a high Pb2þ removal capacity of up to 723.8 mg/g. It



Table 1
Summary of representative waste-derived adsorbents for pollutant removal.

Adsorbent Pollutant Adsorption conditions Adsorption amount
(mg/g)

A.D.a (g/L) C0
b (mg/L) Time (h) pH Tc (�C)

WPCB-derived adsorbent Cd(II) 1 562 4 days 4 20 236.12 [113]
Corn stalk-derived biochar Pb(II) 2 100 12 5.5 25 49.7 [114]
Leaching residues of biotite minerals Hg(II) – 200 2 2 25 355.23 [115]
Sorghum root-derived ACd Pb(II) 0.2 40 1 – – 197.6 [116]
Cow dung waste-derived composite (PEI-Fe3O4@CDB) Cu(II) 5 1200 3 7 25 183.82 [117]

Cd(II) 5 1200 3 7 25 231.48 [117]
Blast furnace slag-derived Al2O3-SiO2-BFS U(VI) 0.5 300 5 6 25 88.5 [118]
Pinewood-derived biochar NO3

� 2.5 60 6 2 22 � 1 4.2 [119]
PO4

3� 2.5 60 6 2 22 � 1 20.5 [119]
Red mud/base treated rice husk composite SO4

2� 7.5 100 1.5 4 65 12.41 [80]
Paper waste-derived AC F� 0.3 12 18 5 25 39.76 [120]
Acidosasa edulis shoot shell-derived biochar ReO4

� 3 20 8 1 ~22 4.42 [121]
Pine sawdust-derived AC (CZn5) Basic Green 4 5 50–2000 2 6–10 26 370.37 [122]
Rice husk-derived AC (PK-AC) RhBe 10 300 3 1.3–10.2 19.8 235 [123]
Blast furnace sludge-derived carbonaceous adsorbent Basic Orange 2 1 124.36 2 6.5–7.5 25 10.1 [124]
Sugarcane bagasse derived biochar/ZnO Reactive Red 24 1 250 1 3 RTf 105.24 [125]
Sewage sludge-derived AC Amoxicillin 2.5 100 – 6 – 27 [126]
Polyethylene terephthalate waste-derived α-Fe/Fe3C Tetracycline hydrochloride 0.25 200 1.5 6 25 652.08 [127]
Modified waste expanded polystyrene Fluoroquinolone 0.2 25 0.5 6 – 554.3 [128]
Walnut shell-derived AC SMXg 0.01 40 48 5.5 30 93.5 [129]

Metronidazole 0.01 40 48 8 30 107.4 [129]
Methanol-modified biochar Tetracycline 1 100 12 5 30 95.63 [130]

a Adsorbent dosage.
b Initial pollutant concentration.
c Temperature.
d Activated carbon.
e Rhodamine B.
f Room temperature.
g Sulfamethoxazole.

Fig. 2. Waste-derived adsorbents for metal ions removal. (a) Schema of the
synthesis of a new nanocomposite (SCZ), spherical carbon (SC) loaded with
zerovalent iron (ZVI), and its application in Cr(VI) adsorption. (b) Schematic
diagram of Cr(VI) removal mechanism by SCZ [144], Copyright © 2018,
American Chemical Society.
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should be noted that the adsorption of ions on waste-derived oxides
highly depends on the reaction conditions, including pH value, reaction
time, and temperature. As suggested by Qiu and coauthors, the adsorp-
tion behavior of Cd2þ by the hydrothermally modified circulating flu-
idized bed fly ash (HM-CFB-FA) was controlled by the initial pH value.
When the initial pH value was <6.2, the chemical precipitation process
was inhibited by Hþ, and the adsorption function dominated in the
removal of Cd2þ. Differently, when an initial pH > 6.2 was adopted, part
of the oxides of Ca and Al might undergo hydrolysis and ionization re-
actions. Afterward, the release of OH� improved the solution pH, which
led to the chemical precipitation of Cd2þ (Figure S1) [137]. This
pH-dependent ion adsorption is a ubiquitous phenomenon, which should
attract attention to optimize adsorption performance and uncover the
adsorption mechanism. Another interesting issue worth mentioning here
is the adsorption time-dependent adsorption mechanism. Recently, P�erez
et al. found that the fundamental role of Ca(OH)2 in waste-derived
Ca(OH)2/CaCO3 materials for P adsorption finished before 15 min, and
thereafter, CaCO3 was responsible for the removal of orthophosphate
ions [141]. Under a high concentration of orthophosphate ions, direct
ligand exchange of PO4

3� by CO3
2� appeared while improving the

crystallinity of the generated apatite.
Combining the merits (e.g., large surface area, low cost, and high

adsorption activity) of different adsorbents can form high-performance
composites for pollutant removal. Carbon/zeolite-based composites
have aroused great interest [142,143]. For instance, Han et al.
developed a nanoscale zerovalent iron (nZVI)-loaded microspherical
carbon (SC) composites (SCZ) from the waste carton for Cr(VI) ion
removal (Fig. 2a). The SC facilitated the adsorption of Cr(VI) ions,
which were further reduced to Cr(III) by nZVI and –OH on SC.
Simultaneously, the nZVI converted to iron oxides (Fig. 2b) [144]. The
SCZ composite integrates adsorption and chemical reduction in one
system, which accelerates the removal of hazardous high-valence
metal ions. Apart from nZVI, metal (hydr)oxides/sulfides/me-
tal–organic frameworks (MOFs) with high adsorption capacity are
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widely coupled with carbon/zeolite materials. Ngambia and coauthors
designed a sewage sludge-derived biochar (SDBC)-Mg(II) composite
via a facile precipitation-calcination process, which was able to elim-
inate >99% of Agþ, Pb2þ, Cu2þ, and Cd2þ ions from pond water [145].
The high adsorption performance can be attributed to the high surface
area (91.57 m2/g) and rich sorption sites.
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3.2. Organic pollutants

The wide application of dye, herbicides, pesticides, surfactants,
plastics, pharmaceuticals/antibiotics, and fungicides in the mining,
chemical, food, and light industries causes serious organic pollution and
delivers risks to the aquatic environment and human health [146–151]. It
is effective to remove those organic pollutants by sorption, and the main
removal mechanisms involve electrostatic interactions, hydrogen
bonding, ion exchange π-π interactions, n-π interactions, and pore-filling
[152,153]. Carbon-based materials are widely studied due to their high
surface area and flexible surface chemistry. Using molecular simulations,
Bahamon and coworkers found the adsorption properties of AC for five
typical antibiotics (naproxen, paracetamol, amoxicillin, diclofenac, and
ibuprofen) were different and were essentially associated with their atom
affinities and molecular structures [154]. Given the diversity in the
structure of organic contaminants, a series of strategies aiming at struc-
tural modifications and surface functionalization have been performed
on waste-derived carbon materials.

Texture properties and surface chemistry of adsorbents play a cen-
tral role in determining their adsorption capacity toward organic pol-
lutants. It is widely accepted that adsorbents with a porous structure
and high surface area are suitable for the adsorption of organic con-
taminants [155]. Unlike texture properties, the role of surface func-
tional groups in influencing the adsorption of organic pollutants shows
a case-by-case feature. Alivand et al. found that the melamine incor-
poration (as the agent for mesopore formation) and –NH2 immobili-
zation could enhance the adsorption capacity of asphaltene
residue-derived nanoporous carbons (IANC) for amoxicillin and
metronidazole antibiotics elimination from wastewater effluents. Apart
from the melamine modification-induced high surface area
(2693 m2/g) and mesopore volume (1.61 cm3/g), the introduction of
the –NH2 group significantly improved the adsorption energy of
amoxicillin and metronidazole due to a more favorable electrostatic
and charge-transfer effects [156]. The water flow characteristics should
be optimized to ensure efficient contact between pollutants and func-
tional groups on adsorbents. Guo et al. designed a cross-flow filtration
material (β-CD/WS) based on wood sawdust and β-cyclo-
dextrin-polymer. The pharmaceutical contaminant water flowed
through the micropores on the surface of the cell walls and the sawn-off
vessel channels. The water flow characteristics of β-CD/WS led to full
contact between organic pollutants (e.g., propranolol) and grafted β-CD
on the cellulose backbone of WS, thus improving the pollutant removal
efficiency [157]. It should be noted that not all surface functionaliza-
tion leads to enhanced adsorption performance. For example, Jaria and
coworkers found that the introduction of thiol groups on waste-based
AC resulted in a worse adsorption capacity toward SMX [158]. This
was because the specific surface area played a more decisive role than
the proposed functionalization in the adsorption performance. Similar
studies also pointed out that the most influencing factors for the organic
pollutants’ adsorption were the AC’s textural parameters, but not the
introduced functional groups [159,160]. Therefore, for surface func-
tionalization, it is necessary to consider the effect of functional groups
on the specific surface area and porous properties of adsorbents.

Composites can integrate the merits of different functional materials
and thereby show enhanced adsorption performance. Materials like
metal oxides, clay minerals, zeolite, silica, and nZVI are promising can-
didates to enhance the adsorption performance of carbon materials by
introducing functional groups and active sites [161–164]. Mei and co-
workers developed a Fe-N co-modified biochar (Fe-N-RSBC) via a one-pot
pyrolysis process. The Fe-N-RSBC possessed rich functional groups,
graphitized carbon structure, and magnetic components (Fe3O4, γ-Fe2O3,
and Fe3C), which led to a high tetracycline (TC) adsorption ability
(156 mg/g). The Fe components decorated porous biochar adsorbed TC
via surface complexation, electrostatic interaction, hydrogen–bond
interaction, pore filling, and π-π interaction [165]. Of particular interest,
low-cost layered clay minerals with large surface areas can not only
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enlarge the specific surface area but also interact with the pollutants via
exchangeable cations in the layer of minerals [163]. Apart from these
carbon-based composites, Basaleh et al. developed a steel
slag-acrylamide acrylic acid (SSAA) copolymer with an addition poly-
merization method. The SSAA composite showed great performance in
the removal of cationic and anionic dyes, and the maximum efficiencies
of 94% and 97% were attained for MB and methyl orange (MO),
respectively. Further investigations suggested that physical adsorption
was found to be the dominating mechanism for MB, while the chemi-
sorption mechanism was found for MO [166]. Such inorganic/organic
composites combining the merits of low cost and high performance are of
great interest in the development of efficient multifunctional adsorbents.

4. Waste-derived photocatalysts for pollutants degradation

Photocatalysis is an appealing strategy to exploit green and renewable
solar energy for pollutant degradation. When photocatalysts are exposed
to appropriate light irradiation, excited holes (hþ) and electrons (e�) will
be generated [167,168]. The photogenerated hþ with a strong oxidation
ability can oxidize pollutants directly, and several important free radicals
(e.g., ⋅OH) generated by the reaction of hþ and e�with OH�, H2O, and O2
can also degrade pollutants into small nontoxic or less toxic compounds
(e.g., CO2, H2O) [169–172]. To enhance the utilization efficiency of
sunlight and cut the cost of semiconductor photocatalysts, waste-derived
metal oxide/carbon-basedmaterials have attracted great interest. Table 2
summarizes representative waste-derived photocatalysts for pollutant
degradation.

4.1. Waste-derived semiconductor photocatalysts

Semiconductor metal oxide-based catalysts are widely implemented
in the photodegradation of pollutants. Metal-bearing solid wastes are
promising precursors for the fabrication of metal oxide photocatalysts.
Abdo et al. found that the recovered SnO2 nanoparticles from WPCBs
leachate solution showed a high photocatalytic performance toward MB
dye degradation under UV light illumination [182]. The key to the suc-
cessful preparation of the high-performance SnO2 nanoparticles was the
selective leaching of Sn from WPCBs in the Na2-EDTA chelating agent.
Eggshell, a ubiquitous biowaste, can be employed to prepare CaO via a
calcination process. The obtained CaO nanopowders enable the photo-
degradation of the textile acid dye Lanasyn Rez F5B [183] and the MB
dye [184]. With a bandgap of 2.75 eV, copper slag (mainly containing
magnetite and fayalite) could be directly applied in the photooxidation of
a series of alcohols and the photoreduction of water [185]. Hence, the
copper slag realizes the oxidation of organic pollutants and the simul-
taneous hydrogen production in industrial wastewater under solar
radiation.

Carbon-based metal-free photocatalysts (e.g., carbon dots, graphitic
carbon nitride (g-C3N4)) obtained from biowastes possess good perfor-
mance toward pollutant mineralization. As a metal-free and visible light-
responsive material, g-C3N4 is widely used in the photodegradation
process. Yang and coworkers developed a g-C3N4 from the mixture of
dicyandiamide and mushroom waste via a thermal condensation process
followed by thermal exfoliation. The waste-derived photocatalyst
exhibited a good activity toward the degradation of MB (over 90%
removal in 270 min) due to its high graphitic degree and few pyrrolic-N
forming repeated tri-s-triazine units oriented along the plane [186].
Photoactive carbon dots and graphene can also be directly fabricated
from biowastes [187–190]. Apart from the photodegradation of dye,
carbon dots also enable the photoreduction of Cr(VI). Aggarwal et al.
found that carbon dots obtained from cellulose could remove 20 ppm of
Cr(VI) completely in wastewater within about 2 h under sunlight illu-
mination [189]. In this context, the applications of carbon dots can
realize the co-removal of organic and inorganic pollutants.

The emerging single-atom catalysts (SACs) have gained growing sci-
entific attention due to their ultrahigh atom utilization efficiency and



Table 2
Summary of representative waste-derived photocatalysts for pollutant degradation.

Photocatalyst Pollutant Photodegradation conditions Degradation
efficiency (%)

P.A.a (g/L) C0 (mg/L) Irradiation Time (h) pH

Cotton waste-derived carbon microtube BPAb 0.5 10 Visible light 2 – ~95 [173]
Industrial waste-derived TiO2/Fe2O3 Methyl blue 1 79.9 Natural sunlight 2 5 100 [174]

RhB 1 47.9 Natural sunlight 2 5 93 [174]
Congo red 1 69.67 Natural sunlight 2 5 99 [174]

Waste toner powder-derived g-C3N4-Fe2O3 MO 1 20 Natural sunlight 1.5 99 [175]
Spent batteries-derived graphene oxide/copper composite MB 0.5 100 UV lightc 3 – 90 [176]
Industrial waste-derived multiphase photocatalysts Ritonavir 0.4 10 Visible light 0.25 – 95 [177]

Lopinavir 0.4 10 Visible light 1 – 95 [177]
ZnO immobilized onto wood waste-derived AC MB 3 10–50 Visible light 3 8 100 [178]
Cd2þ-loaded spent adsorbent MB 0.4 20 Visible light 0.33 – 97.41 [179]
Pb2þ-loaded spent adsorbent Acetaminophen 0.2 5 Visible light 3 7 93 [180]
Polystyrene waste supported Ag-TiO2 MB 6.7 45 UV light 2.5 6 60 [181]

Cr(VI) 6.7 15 UV light 2.5 2 32 [181]
Red mud modified montmorillonite Phenol 1 100 Visible light 1 6 95 [67]

Cr(VI) 1 60 Visible light 2 4 97 [67]

a Photocatalyst amount.
b Bisphenol A.
c Ultraviolet light.
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remarkable catalytic activity [191–193]. Li et al. recently synthesized a
Fe single-atom catalyst (FeSAC-800) from iron mines contaminated
biomass waste ferns by facile pyrolysis (Fig. 3a) [35]. The FeSAC-800
owned a FeN4 structure confined in the porous carbon (Fig. 3b). The
Fig. 3. Waste-derived single-atom catalysts for pollutant photodegradation. (a) Schem
(b) Extended X-ray absorption fine structure R-space fitting curve of FeSAC-800. (c)
[35], Copyright © 2022, Elsevier.
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FeSAC-800 presented a high photodegradation efficiency in the catalytic
of typical antibiotics in 60 min. With the addition of peroxymonosulfate
(PMS), the photodegradation of norfloxacin (NOR) followed a
Fenton-like oxidation route, and ROS (e.g., O2

⋅�, 1O2) played a central
a of utilizing biomass waste ferns for photocatalytic degradation of antibiotics.
Photocatalytic mineralization mechanism of NOR by waste-derived FeSAC-800
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role (Fig. 3c). Thus, metal-contaminated biomass wastes are appealing
precursors for the preparation of cheap and photoactive SACs for
wastewater remediation.

4.2. Waste-derived composite photocatalysts

For upgrading the photocatalytic performance of semiconductor
photocatalysts, it is highly recommended to design waste-derived com-
posite photocatalysts with low electron–hole recombination efficiency, a
wide range of light absorption, strong photo anticorrosion, and high
electronic conductivity. Typically, photoactive carbon-based composites
are frequently employed to degrade organic pollutants [194,195]. Take
the e-waste-derived g-C3N4-Fe2O3 photocatalyst as an example [175].
Compared with the single g-C3N4 and Fe2O3, the composite showed
better photocatalytic activities for the degradation of MO and textile
effluents due to the enhanced absorption of visible light, formation and
synergistic effect of heterojunction in g-C3N4-Fe2O3, and the promoted
separation efficiency of photoinduced electron-hole pairs. Another
feature of the iron oxide-based composite was that it could be easily
separated and recovered from the solution under an external magnetic
field. For the graphitic carbon-encapsulated V2O5 nanocomposites
(GC-V2O5) developed via an ultrasonication process (Figure S2a), the
enhanced photocatalytic performance toward dye degradation could be
attributed to the encapsulation of defective V2O5 by the waste-derived
conductive carbon that would enhance the photocarrier transport and
the catalytic reaction at the interface and in the medium of the
dye-catalyst mixture (Figure S2b-c) [196]. Beyond these binary car-
bon/metal oxide composites, the ZnO-polypyrrole (PPy)-AC-based
trinary-nanocomposite also attained a high photodegradation efficiency
of 98.12% toward MB dye in 20 min at room temperature under visible
light. Therefore, designing multicomponent composites from wastes
might improve photocatalytic performance, and an emphasis should be
put on figuring out the role of each component in the composites.

Waste biomass-derived biochar-based composites are widely
employed for organic and heavy metal photodegradation [197]. Biochar
is good support for photoactive materials due to its large surface area,
which can effectively upgrade the durability of photocatalysts and shape
the morphology of the nanoparticles. What is more, the strong adsorption
capacity, rich surface functional groups, and good electrical conductivity
of biochar can improve the photocatalytic performance of composite
catalysts [198]. Recently, metal oxide/biochar composites have
demonstrated high potential in the photodegradation of pollutants.
Taking the red mud/g-C3N4 (RM-CN) composite as a representative,
which was synthesized by a thermal polymerization process (Figure S2d)
[199]. Compared with single g-C3N4, the specific surface area and the
optical absorption and photocurrent response of RM-CN have been
significantly enhanced with the presence of red mud. Under the syner-
gistic effect of adsorption and photocatalysis, RM-CN composite exhibi-
ted excellent photodegradation performance for dyes and antibiotics. In a
tricomponent composite biochar@CoFe2O4/Ag3PO4, Zhai et al. found
that the electrical conductivity of biochar enabled to assist the transfer of
e� from the conduction band (CB) of Ag3PO4 to the valence band (VB) of
CoFe2O4 and then to the CB of CoFe2O4, in the Z-scheme bio-
char@CoFe2O4/Ag3PO4 photocatalyst (MBA-3) [200]. This
biochar-mediated electron movement significantly promoted the sepa-
ration of photogenerated electron–hole pairs, and thus, contributed to
the efficient degradation of BPA.

Aside from carbon-based composites, recent attempts have investi-
gated waste-derived metal oxide-based composites for pollutant degra-
dation. By using eggshells as the template and support, Zhang et al.
developed a CuS/CaCO3 nanocomposite. Under NIR irradiation, the
nanocomposite displayed good photocatalytic performance for 4-nitro-
phenol reduction (98% removal efficiency in 15 min) and strong pho-
tothermal ablation behavior against bacteria [201]. Notably, the waste
eggshell not only acted as a support to immobilize nanoparticles but also
could provide active carbonate radicals for the degradation of target
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pollutants. Composites based on earth-abundant mining/industrial
wastes, including the mesoporous ZnO@silica fume-derived SiO2 [202],
TiO2/biogenetic jarosite composite [203], and red mud/montmorillonite
[67] show good catalytic performance for the degradation of organic
pollutants and the reduction of metal ions. Considering the large-scale
production and negative effect of mining/industrial wastes, as well as
their oxide–rich properties, it is of great environmental and economic
value to design high-performance mining/industrial wastes-based com-
posites with suitable band structures for photodegradation of
contaminants.

5. Waste-derived materials for electrochemical wastewater
treatment

Electrochemistry-driven wastewater treatment techniques have many
advantages, including high efficiency, less chemical consumption, ease of
implementation, and environmental friendliness [4,204]. The perfor-
mance of the electrochemical wastewater treatment system largely de-
pends on the electroactive materials, and designing cost-effective
materials is a critical issue. At present, waste-based electroactive mate-
rials have displayed great potential in the electrochemical deionization
and pollutant electrodegradation processes (Table S1-2), which are dis-
cussed in this part.

5.1. Waste-derived materials for electrochemical deionization

Electrochemical deionization is a highly energy-efficient and effective
desalting technique to remove ionic elements or salt ions from waste-
water/seawater via electrosorption and/or faradaic reactions [205].
Electrochemical deionization properties significantly rely on the elec-
trode materials. High-performance electrodes should meet several
textural and electrochemical requirements, including large specific sur-
face area, high ionic conductivity, high porosity, and strong mechanical
stability [206]. Recently, biomass and plastic waste-derived carbon ma-
terials have been widely employed as promising electrodes for electro-
chemical deionization [207]. Great efforts have been made to engineer
porous structures within carbon materials to enhance the deionization
performance. Wang et al. prepared graphitic porous carbon nanosheets
(GPCSs) from straw waste via an integrated Zn salt activation and
graphitization treatment. Benefiting from the graphitic carbon sheets and
abundant pores in the carbon framework, the GPCSs showed a large
specific surface area and good wettability and conductivity, contributing
to a good deionization capacity of 19.3 mg/g at 1.2 V in 500 mg/L NaCl
solution [208]. Aside from Zn salt activation, KOH modification [207,
209,210], calcination temperature control [211], and microwave treat-
ment [212,213] are also powerful methods to enlarge the specific surface
area and regulate the porosity of carbon materials.

Introducing dopants and functional groups can enhance carbon ma-
terials’ electrochemical deionization performance [214–216]. Chang
et al. found that the N and S co-doped carbon (NS-C) from plastic wastes
held higher deionization capacities and faster deionization rates than
those of the single-element (N or S) doped carbon. The improved per-
formance of NS-C in the removal of heavy metal ions could be attributed
to the large accessible specific surface area and the deeply AC surface by
rich heteroatom doping sites (~4.55 at% N and ~13.30 at% S) [217]. A
recent study suggested that the N, S, O-co-doped porous carbon (NSO-PC)
obtained from buckwheat husk exhibited a high electrosorption capacity
(12.7 mg/g in 500 mg/L NaCl solution at 1.2 V), a high charge efficiency
(over 0.9), and good reusability (the electrosorption capacity retained
96% after 30 cycles) in the capacitive deionization (CDI) application
[214]. The N, S, and O dopants improved the deionization performance
via enlarging the specific surface area, regulating the porous structure,
enhancing the wettability, providing faradaic pseudocapacitance, and
facilitating the adsorption and distribution of ionic charges. Adding
functional groups to biochar can enhance pollutant removal capacity and
ion selectivity. Stephanie et al. found that the sulfonate and amine groups
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functionalized biochar showed an enhanced electrosorption capacity and
improved charge efficiency than the bare biochar because the
ion-selective functional groups ameliorated the wettability and provided
more ion transport inside the pore of the electrode [218]. Wang and
coworkers found that the quaternary ammonium nitrogen functionalized
mesoporous biochar presented a high electrosorption capacity of
28.31 mg/g toward 20 mg/L ClO4

� at 1 V. The good electrosorption ac-
tivity should contribute to the increased specific surface area and regu-
lated pore structure via ZnO activation, as well as the improved surface
wettability and conductivity caused by quaternary amine nitrogen
(Figure S3a) [219].

Compositing biochar with electroactive components for electro-
chemical deionization has gained growing interest. For example, the Ag
nanospheres incorporated biomass waste-derived AC (Ag/P-AC) was
synthesized via a multi-step process and employed in the electro-
sorption of NaCl and toxic metal ions within a CDI system (Figure S3b)
[206]. Using Ag/P-AC as the anode and P-AC as the cathode, the
asymmetric Ag/P-AC//P-AC based CDI system possessed a higher NaCl
electrosorption capacity over the P-AC//P-AC-based symmetric system
(36 vs. 22.7 mg/g). Additionally, the asymmetric CDI system was more
suitable for anions adsorption than the symmetric one. Metal oxi-
des/biochar composites also retain good capacities for electrochemical
deionization application because the pseudocapacitive property of
metal oxides derived from reversible and fast Faradaic reactions can
synergistically improve the electrochemical performance when com-
bined with biochar [220–223]. Rambabu et al. synthesized a
watermelon-derived AC (WMAC)/MnFe2O4 composite (WMAC/Mn-
Fe2O4) via a pyrolysis-hydrothermal process (Figure S3c). Based on the
principle of the analogous desalination battery system, the
WMAC/MnFe2O4 electrode attained a high NaCl electrosorption ca-
pacity of 29.7 mg/g, with rapid desalination and good recyclability
(Figure S3d) [224].

Apart from biomass and plastic wastes, industrial and electronic
wastes have also been used in the electrochemical deionization appli-
cation [225–227]. For instance, Weng and coauthors developed activated
microporous carbon spheres (AMCS) from anodematerials of spent Li-ion
batteries, which could be employed as efficient CDI electrodes. With a
high specific surface area (2626 m2/g) and pore volume of (0.98 cm3/g),
the AMCS demonstrated good NaCl electrosorption capacity
(12.73 mg/g) and a fast salt adsorption rate (2.64 mg/(g⋅min)) at 1.2 V
[227].

5.2. Waste-derived materials for pollutant electrodegradation

As a destructive technology for pollutant degradation, electrocatalysis
has made great progress in wastewater treatment because of its high
effectiveness, high energy efficiency, and easy implementation [4,34]. It
is widely recognized that electrocatalysts/electrodes play a central role in
pollutant degradation, and designing cheap and efficient catalysts is an
important task. In this context, waste (e.g., biomass wastes, sludge, in-
dustrial wastes)-derived materials have been extensively implemented
for contaminant electrodegradation [228,229]. With good electrical
conductivity, large specific surface area, high chemical resistance, and
flexible, functional groups, biochar is widely applied as the electro-
catalyst or the support for metal-based electroactive materials. Liu and
coauthors found that Fe and Zn-modification enlarged the specific sur-
face area and surface functional groups of biochar and enhanced the
adsorption and electrolysis of nitrobenzene [230]. Since the electro-
catalytic performance of catalysts highly depends on their nanostructure
and electronic properties [191,193,231–233], more studies loaded
electroactive materials on porous biochar and formed composites for
electrocatalytic applications [234–236]. Starting from municipal sludge,
Zhao and coworkers developed a Pd/sludge-biochar loaded foam nickel
electrode (Pd-SAC@Ni) for the electroreductive degradation of 4-chloro-
phenol (4-CP) (Figure S4a) [237]. Under a current density of 5 mA/cm2,
the removal efficiency of 4-CP reached 98.9% within 2 h, with an initial
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concentration of 0.8 mM. The indirect and direct reduction pathways
were both involved in the 4-CP electrodegradation process, and their
contributions were 80.5% and 19.5%, respectively. In a similar
Pd/N-doped loofah sponge-derived biochar electrode, the N dopant
played an important role in the electroreduction of bromate by
enhancing the adsorption ability and electrocatalytic activity of the
composite electrode [238]. Aside from these noble metals, transition
metal-based oxides and sulfides are also employed to construct composite
with biochar. Zhou et al. found that the porous structure of TiO2/tea
porous carbon (TPC) composite created a large number of good channels
for electron transport and promoted the yield of hydroxyl radicals (⋅OH)
in the degradation of phenol [47]. Gong and coworkers designed an O
and N-enriched hierarchical MoS2 nanospheres decorated with
cornstalk-derived AC (MoS2/CSAC) for phenol degradation. The hierar-
chical structure of the MoS2/CSAC composite contributed to more cata-
lytic active sites, and the abundant mesopores with diverse pore sizes
benefited fast electrocatalytic reactions. In addition, the coexistence of
Mo6þ and Mo4þ species in the MoS2/CSAC composite accelerated the
formation of ⋅OH from H2O2 (Figure S4b) [236].

The development of three-dimensional electrochemical reactors
(3DERs) is a breakthrough in electrochemical pollutant degradation
due to the high mass transfer, high current efficiency, easy operation,
and high area-to-volume ratio [239,240]. In a 3DER, the particle
electrode governs the electrocatalytic efficiency. A Ti-Sn-Ce/bamboo
biochar (BC) composite was synthesized and used as particle electrodes
in a 3DER for coking wastewater treatment (Figure S4c-d). The BC
possessed compact and uniform pores, and the metal oxides effectively
covered the internal pore surface of the biochar support. These struc-
ture and chemical compositional features contributed to an enhanced
degradation performance of the BC particle electrode [239]. Apart from
these biochar-based composites, industrial flotation tailings have also
been adopted as particle electrodes for the degradation of TC in a
three-dimensional aeration electrocatalysis reactor (3D-AER)
(Figure S4e). The flotation tailings particle electrode (FPE) exhibited a
high TC adsorption capacity, and the adsorption-saturated FPE could be
regenerated by an electrochemical process to induce further absorption
and form in situ electrodegradation [34].

6. Waste-derived materials for AOPs

AOPs utilizing powerful hydroxyl (⋅OH) or sulfate radicals (SO4
‧ �) as

the major oxidizing active species have gained growing attention in
wastewater treatment due to their great potential in removing anthro-
pogenic pollutants [241]. Generally, nanomaterials are involved in the
activation of oxidizers and the subsequent oxidation process, and
waste-derived materials (especially carbon materials) are extensively
studied, as depicted in Table S3.

6.1. Waste-derived materials for hydroxyl radical-based AOPs

Hydroxyl radicals (⋅OH) are a kind of powerful and nonselective
oxidizing agent, with an oxidation potential of 2.8 V vs. NHE (normal
hydrogen electrode, pH ¼ 0) and a short lifetime (t1/2 � 1 μs). Hydroxyl
radicals can attack organic pollutants through four basic mechanisms:
radical addition, radical combination, hydrogen abstraction, and elec-
tron transfer [242,243]. Since hydroxyl radicals show a very short
lifetime, they are generally in situ generated during application by
various methods, including a combination of oxidizing agents (e.g.,
H2O2), catalysts (e.g., Fe2þ, carbon), and/or irradiation (e.g., ultravi-
olet light) [244]. In this context, controlling the production of hydroxyl
radicals via using waste-derived catalysts would benefit the water
treatment process.

Waste-derived metal-bearing Fenton-like catalysts (such as those
containing Fe, Cu, Cr, Co, Ce, and Ru) are widely used due to their high
efficiency in the decomposition of H2O2 to ⋅OH [245–247]. For instance,
Wang et al. developed iron-doped biochar (Fe@BC) Fenton-like catalyst
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from sawdust, which presented high degradation performance toward
RhB (over 92.7% degradation within 140 min). In addition, the biochar
support of Fe@BC was ineffective in activating H2O2 for RhB removal,
and iron species on biochar were central active sites for RhB degradation
[248]. Similarly, diverse Fe-based Fenton catalysts have been designed
from wastes (e.g., waste lithium-ion batteries [75], iron ore tailings
[249], sludge [250,251], and biomass [252]) for organic contaminant
degradation. Aside from Fe-based catalysts, Cu-based Fenton-like cata-
lysts synthesized from WPCBs also held a good performance for RhB
degradation (a removal efficiency of 95.78% within 6 h at neutral pH)
[253]. Given the differences in the electronic properties of various
metals, constructing dual/triple metal active sites would enhance the
production of hydroxyl radicals. It should be noted that the difference in
pollutants’ concentration between actual water (μg/L level) and simu-
lated sewage (mg/L level) severely hinders the application of Fenton-like
oxidation in natural wastewaters. To overcome this challenge, Zhou et al.
designed an adsorptive catalyst fromwaste leather to degrade trace SMX.
First, the adsorptive catalyst (WLBC) was able to effectively adsorb trace
SMX via hydrophobic interaction, electrostatic attraction, π-π interaction,
etc. Then, the oxidation of SMX by the in situ produced ⋅OH from WLBC
mediated Fenton-like process could recover WLBC’s adsorption ability
(Figure S5a) [254]. The integrated adsorption and in situ Fenton-like
oxidation process enables the removal of organic pollutants with low
concentrations.

Metal leakage is a general problem of metal-bearing Fenton-like
catalysts, which leads to performance degradation and metallic sludges
[255]. Hence, metal-free Fenton-like catalysts from biowaste have
attracted great interest. For example, Zhuang and co-workers developed
a metal-free 3D graphene-based Fenton-like catalyst (OG) from biowastes
[245]. Compared with the common two-dimensional (2D) graphene
structure, the 3D graphene assembly associated with the confinement
effect of OG led to a smaller energy barrier (1.1 vs. 1.6 eV) for the
decomposition of H2O2. In addition, the electron migration via the
C–O–C bridge in OG increased electron loss from the C–F bonds and
facilitated the mineralization of perfluorooctanoic acid (PFOA). These
structural and electronic properties of OG contributed to a high degra-
dation performance (93.4% of PFOA was removed in 150 min).

Waste-derived catalysts involving field-assisted Fenton-like processes
can degrade pollutants effectively. Sono-Fenton-like, photo-Fenton-like,
and electro-Fenton-like catalytic oxidation has attracted great interest.
Sonolysis is capable of producing ⋅OH and other strong ROS through the
thermal dissociation of water vapor inside the cavitation bubble during
the transient collapse and improving the mass transfer efficiency in the
reaction medium via intensive microturbulence and micromixing [256,
257]. Coupling sonolysis with a Fenton-like process is thus of great ef-
ficiency for organic degradation [258,259]. Chu et al. studied the
applicability of waste antivirus copper film (CF) as a Fenton-like catalyst
in the sono-Fenton-like catalytic oxidation of BPA (Figure S5b) [256].
The degradation of BPA was significantly enhanced by ultrasound irra-
diation, and both surface-bound and free ⋅OH participated in the
pollutant degradation under the sono-Fenton-like process using CF as the
catalyst.

The Fenton-like process can also be intensified by the application of
solar radiation, namely the photo-Fenton-like process [260]. Thus, the
optical properties of catalysts are important for degradation perfor-
mance. Nasuha and coworkers found that the magnetic-activated electric
arc furnace slag (A-EAFS) was an effective Fenton-like catalyst for the
photodegradation of MB and acid blue 29 (AB29) [261]. The A-EAFS
provided additional Fe3O4 due to the changes in the iron oxide phase and
its favorable response to visible light. Taking advantage of metal oxides’
good photoactivity, spent Li-ion batteries [262] and sludge [263] have
been employed to design photo-Fenton-like catalysts for organic degra-
dation. Photoactive sulfides also attract scientific interest. Chen et al.
developed CuS nanoparticles embedded with carbon nanosheets
(CuS@CNs) using waste biomass-derived hydrogel as a template, which
performed well for degrading 2,4-dichlorophenol in a photo-Fenton-like
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system [264]. The introduction of CNs significantly improved the sepa-
ration of photogenerated charge carriers to stimulate the degradation of
pollutants by CuS.

Compared with sono-Fenton-like and photo-Fenton-like oxidation,
electro-Fenton systems gain more attention due to the advantage of in situ
H2O2 generation through electrochemical oxygen reduction reaction
(ORR). Both the selective generation of H2O2 and the conversion of H2O2
to ⋅OH significantly depend on the cathode catalysts [265,266]. Signifi-
cant progress has been made in applying waste-derived materials as
high-performance cathode catalysts in the electro-Fenton process.
Figure S6 shows a general electro-Fenton system in which the nickel
foam cathode was functionalized with a giant reed-derived N-doped
biochar [267]. The obtained B@Ni-F cathode demonstrated a high ORR
activity and H2O2 selectivity (70.41%) due to the rich pyridinic N and
O-bearing groups on the biochar. Along with the Fe-F catalyst, the
B@Ni-F involved electro-Fenton system enabled the efficient degradation
of sulfamerazine (SMR). This study also emphasized the importance of
electrolytes. Using polyphosphate-based electrolytes induced enhanced
SMR degradation. This should be linked with the improved generation of
⋅OH from Fe2þ-polyphosphate ligand complexes through the activation
of O2. To reduce the energy consumption of the electro-Fenton process,
the self-powered electro-Fenton degradation system based on triboelec-
tric nanogenerator (TENG) technology realizes pollution mineralization
in an eco-friendly and energy-saving manner [268]. Zhu et al. synthe-
sized N-doped biomass carbon catalysts for a self-powered electro-Fenton
system. This system combines 3D printed flexible multilayered TENG
(PFM-TENG) with the N-doped porous carbon as the electro-Fenton
catalyst (Fig. 4). With a high surface area (1790.8 m2/g) and a high
content of N/O dopants (20.6 at%), the waste-derived cathode-driven
electro-Fenton process enabled high degradation efficiencies of crystal
violet (95.4%) and orange IV (96.0%) in 1 h [269]. Furthermore,
waste-derived cathodes can also realize an effective neutral Fe-free
electro-Fenton process. As reported, the bamboo-derived graphitic bio-
char (GB) could support O2 reduction and H2O2 activation at pH 7
simultaneously. The composite cathode that combined GB with stainless
steel mesh (GBSS) was able to remove various model pollutants
(4-nitrophenol, orange II, reactive blue 19) effectively within 2 h, in the
absence of Fe salts [270]. Beyond electrochemistry-assisted Fenton re-
action, the heterogeneous visible-light-driven photo-electro-Fenton
(H-VL-PEF) system based on N/O biomass self-doped porous carbon
(NO/PC) cathode demonstrated a high degradation performance toward
tetracycline [271]. In the H-VL-PEF process, the introduction of
CuFeO2/biochar catalysts and visible light decreased energy consump-
tion and improved pollutant mineralization efficiency via promoting
�Cu2þ/�Cuþ and �Fe3þ/�Fe2þ redox cycles and benefiting ‧OH/O2

‧�

formation. These modified electro-Fenton systems promote the devel-
opment of low-cost and efficient techniques for organic pollutant
degradation based on hydroxyl radicals.

6.2. Waste-derived materials for sulfate radical-based AOPs

AOPs based on SO4
‧ � gain significant attention due to the high redox

potential (2.5–3.1 V vs. NHE), long half-life time (t1/2 ¼ 30–40 μs), and
fast pollutant degradation rate (106–109/(M‧s)) of SO4

‧� [50]. SO4
‧� can

be produced from peroxydisulfate (PDS) or PMS activated by catalysts,
ultrasound, heat, UV light, electro-chemistry method, etc [44,49].
Currently, a crucial issue is to develop low-cost and efficient catalysts to
activate PDS/PMS, and waste-derived materials have presented their
advantages such as high catalytic efficiency, low price, and environ-
mental friendliness [48].

Metal-bearing industrial and electronic wastes can be converted to
activators for PDS/PMS [272]. Rahimi et al. found that the grounded
pyrite (FeS2) mine waste could be directly employed as nontoxic catalysts
for PMS activation to oxidize tetracycline [273]. Simultaneous genera-
tion of SO4

‧� and ⋅OHwas observed in the pyrite/PMS system, and a high
tetracycline (50 mg/L) degradation efficiency of 98.3% was attained



Fig. 4. Waste-derived materials for hydroxyl radical-based advanced oxidation processes. Schema of an energy-saving electro-Fenton system based on biochar and
triboelectric nanogenerator (TENG) technology [269], Copyright © 2021, Elsevier.
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within 30 min. Rahimi and coauthors developed a Fe-containing carbo-
naceous catalyst (PMCW) from coagulation wastes, which displayed a
good performance in activating PMS for degradation of Reactive Red 2
(RR2). Both radical and nonradical pathways contributed to RR2
decomposition in the PMCW/PMS system. Apart from ROS (SO4

‧�, ⋅OH,
and 1O2), the –OH and π-π* system-induced electron transfer also
contributed to the reaction [274]. Starting from iron sludge, Zhu et al.
designed a dual-active metal component on SiO2 (Co-Fe/SiO2 LC) as the
activator of PMS for the mineralization of ciprofloxacin (CIP) (Fig. 5)
[275]. A synergistic effect between Fe and Co was witnessed on the
catalyst’s surface because Fe2þ accelerated the reduction of Co3þ. In
addition, both ⋅OH and SO4

‧� were produced in the PMS activation
process, and SO4

‧� dominated the CIP degradation process. Similarly, a
Fe/Mn-based catalyst (MS-N3H) derived from electrolytic manganese
slag could activate PMS for levofloxacin degradation [276]. In the
degradation of levofloxacin, both radical and nonradical pathways were
Fig. 5. Waste-derived materials for sulfate radical-based advanced oxidation processe
Copyright © 2020, Elsevier.
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disclosed. The rich Mn and Fe sites on the MS-N3H catalyst surface
contributed to the formation of SO4

‧�, ⋅OH, and O2
‧� radicals, and the

lattice oxygen benefited the nonradical 1O2 production. Thus, the suc-
cessive oxidation reaction induced by active species led to the efficient
decomposition of levofloxacin (degradation rate of 82.6% in 2 h). Besides
these Fe-based wastes, copper oxide derived from the anode electrode of
spent lithium-ion batteries was capable of activating PMS for degradation
of various organic contaminants (e.g., RhB, MO) [277]. The redox cycle
of Cu(II)/Cu(I) in the catalyst was the main force to drive PMS activation
for the generation of active oxygen species, in which SO4

‧� and 1O2
exerted a dominant effect.

Metal-free biochar also demonstrates good catalytic performance for
PMS/PDS activation, and the surface functional groups and N dopants
play a central role in enhancing pollutants’ degradation properties [278,
279]. Wang et al. developed an N-doped biochar catalyst from agricul-
tural waste pomelo peel. The N-doped biochar exhibited a high specific
s. The preparation of Co–Fe/SiO2 LC and the catalytic mechanisms of PMS [275],
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surface area (738 m2/g) and a high level of nitrogen content (13.54 at%)
[280]. Integrating with rich defects, carbonyl groups, and high content of
pyrrolic N and graphitic N, the N-doped biochar showed high catalytic
performance for PMS activation to degrade SMX (95% of the pollutant
was removed within 30 min) via a nonradical oxidation process. Simi-
larly, in a passion fruit shell-derived biochar (PFSC)/PMS system for
tetracycline hydrochloride degradation, the graphitic N atoms and the
carboxyl group of ketones were the possible active sites of the nonfree
radical pathway, including the formation of O2

‧�/1O2 or direct electron
transfer [281]. To this end, the catalytic performance of biochar can be
improved via chemical component regulation, which can be achieved by
selecting suitable biomass precursors and optimizing the pyrolysis
parameters.

To enhance the catalytic performance of biochar, developing transi-
tion metal-bearing/doping biochar and constructing metal component/
biochar composites are extensively studied. By using waste watermelon
peel as the starting material, a co-doped carbon aerogel catalyst (Co–CA)
was synthesized by a hydrothermal method. The Co–CA catalyst was
capable of activating PMS for 2, 4-dichlorophenol (2, 4-DCP), CIP, and
BPA degradation in various water matrices. The PMS activation mainly
followed two pathways, radical (⋅OH and SO4

‧�) pathways and non-
radical (1O2) pathways, depending on the Co2þ/Co3þ redox cycle [282].
In a sludge-derived biochar/PS system, the Fe2þ/Fe3þ redox cycle also
influenced the generation of active SO4

‧� and O2
‧� for the degradation of

4-chlorophenol [283]. Combining biochar with metal-based materials
enables improved catalytic performance. For a biochar-supported iron
sulfide (FexSy) composite (FexSy@biochar), the high catalytic perfor-
mance of FexSy@biochar for PS activation was mainly attributed to the
production of free radicals (⋅OH and SO4

‧�) induced by FexSy particles on
biochar, followed by the possible activation by oxygen-containing func-
tional groups [284]. Benefiting from the advantages of metals’ redox
properties and carbon’s high conductivity and large surface area,
ZVI-sludge derived biochar/PS system [285], Ag2O-Ag-waste egg-
shell/PMS system [286], and FeClO-sludge derived biochar/PMS system
[287] also possess high performance for organic degradation.

7. Conclusions and perspectives

Developing waste-derived functional materials for wastewater
remediation is significant in ensuring sustainable clean water security.
Herein, the recent applications of waste (e.g., biomass wastes, electronic
wastes, and industrial wastes)-derived materials for wastewater purifi-
cation are reviewed. Sophisticated strategies like pyrolysis and com-
bustion, hydrothermal synthesis, sol–gel method, coprecipitation, and
ball milling for turning wastes into functional materials are first
analyzed. Also, critical experimental parameters within different design
strategies are discussed. After that, recent applications of waste-derived
functional materials in adsorption, photocatalytic degradation, electro-
chemical treatment, and AOPs are detailed. The advancement of efficient
functional materials via regulating the internal and external character-
istics of waste-derived materials is well illustrated, and the material’s
property–performance correlation is emphasized.

Currently, although great progress has been achieved in the devel-
opment of waste-derived materials for wastewater remediation, there
remain some critical issues that deserve further investigation. First,
exploring more waste precursors for the design of cost-effective materials
for wastewater purification is needed. Currently, biomass wastes have
been well explored, while industrial and electronic wastes attract less
attention. Because of the negative environmental impacts and favorable
metal-rich features, the conversion of industrial and electronic wastes
into functional materials may have high environmental and economic
values. Second, for the application of waste-derived materials, the purity
of materials should be well examined since the chemical composition
profoundly affects their performance. Third, integrating advanced char-
acterization techniques (e.g., Raman spectroscopy, microscopy, spec-
troscopy, and X-ray absorption spectroscopy) with computational tools
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can facilitate the understanding of the materials’ structure–performance
correlation and optimize the material design/synthesis. Furthermore,
novel strategies are required to design materials with low fabrication
costs and high performance, and strategies with a short process and low-
carbon emissions are highly favorable for achieving the carbon neutrality
goal. In addition, since many waste-derived materials work in different
techniques, the applications of waste-derived materials in integrated
technologies (e.g., adsorption-AOP process, electro-Fenton process,
photo-Fenton process, photo-assisted PMS activation process, and bio-
electrochemical system) for wastewater remediation may upgrade the
performance and decrease the operational costs. In addition, coupling
solar energy with the wastewater treatment process (e.g., electro-
chemical degradation) can reduce the utilization of fossil fuels and
further limit carbon emissions. Last, it is of great significance to apply
waste-derived functional materials in other rising fields, such as elec-
trochemical water splitting, by which we can develop a carbon-free en-
ergy system.
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