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Abstract—Objective. Error-related potential (ErrP)-based1

brain-computer interfaces (BCIs) have received a considerable2

amount of attention in the human-robot interaction community.3

In contrast to traditional BCI, which requires continuous and4

explicit commands from an operator, ErrP-based BCI leverages5

the ErrP, which is evoked when an operator observes unexpected6

behaviours from the robot counterpart. This paper proposes a7

novel shared autonomy model for ErrP-based human-robot inter-8

action. Approach. We incorporate ErrP information provided by a9

BCI as useful observations for an agent and formulate the shared10

autonomy problem as a partially observable Markov decision11

process (POMDP). A recurrent neural network-based actor-critic12

model is used to address the uncertainty in the ErrP signal. We13

evaluate the proposed framework in a simulated human-in-the-14

loop robot navigation task with both simulated users and real15

users. Main results. The results show that the proposed ErrP-16

based shared autonomy model enables an autonomous robot to17

complete navigation tasks more efficiently. In a simulation with18

70% ErrP accuracy, agents completed the task 14.1% faster than19

in the no ErrP condition, while with real users, agents completed20

the navigation task 14.9% faster. Significance. The evaluation21

results confirmed that the shared autonomy via deep recurrent22

reinforcement learning is an effective way to deal with uncertain23

human feedback in a complex human-robot-interaction task.24

I. INTRODUCTION25

Error-related potential (ErrP)-based brain-computer inter-26

faces (BCIs) have been widely used in human-robot inter-27

actions in recent works [1, 2]. The ErrP is an event-related28

potential (ERP) that are involuntarily evoked when a human29

perceives unexpected errors in an environment [3, 4]. The ErrP30

phenomenon was first reported in choice-reaction tasks [5].31

After the participant was aware of an erroneous response made32

by herself, a negative potential approximately 80 ms and a33

sustained positivity in the time interval between 200 and 50034

ms were observed [3, 6]. It was later found that ErrP was also35

evoked 250 ms after the user observed an unexpected event in36

the external environment [4]. Due to the nature of ErrP signals,37

this type of brain activity is particularly useful as supervision38

or feedback signals during human-robot interactions tasks.39

ErrP signals can enhance the scalability of a system in cases40

in which a user can assess a device’s actions as correct or41

incorrect. The agent takes advantage of the implicit brain42
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signals acquired from the human user when determining the 43

appropriate agent action. Thus, the human user does not need 44

to explicitly send action commands, significantly reducing the 45

burden on the human user [7, 8] 46

The shared autonomy in human-robot interaction leverage 47

the strengths of both human and robots, where robots can no 48

longer act solitarily, but must share part of their autonomy 49

space with human. In most traditional shared control tasks, 50

the user needs to provide explicit input, such as keyboard or 51

mouse commands [9–11], during interactions. BCI systems 52

offer new channels that allow shared autonomy by integrating 53

user intent directly according to the ongoing brain activity, 54

thus eliminating the need to exploit muscular control [12, 55

13]. The use of shared-autonomy schemes may allow error- 56

related potentials to be used as complementary signals in BCI 57

systems. Due to the natural uniqueness of ErrPs, ErrP-based 58

shared autonomy can leverage the advantages of human-robot 59

collaboration without interrupting the user’s main workflow. 60

However, due to the uncertainty of EEG signals, a direct 61

mapping of ErrPs to robot actions is not sufficient for optimal 62

behavior. For example, a misclassification of EEG signal will 63

lead wrong robot action. On the other hand, to train a shared 64

autonomy model via deep neural network need a large data set. 65

But real ErrPs data collections can be very time-consuming 66

[14] and have other drawbacks, such as overfitting if there is 67

not enough data. 68

In this paper, we propose a shared autonomy framework that 69

incorporates ErrP-based BCI via deep recurrent reinforcement 70

learning. Considering the uncertainty of ErrP, we formulate 71

the shared autonomy as a Partially Observed Markov Deci- 72

sion Process (POMDP). Unlike the Markov Decision Process 73

(MDP), where the agent decides actions based on the direct 74

observation of the full underlying state, POMDP allows the 75

agent to make optimal decisions based on a history of partial 76

observations or uncertain inputs [15, 16]. We consider the 77

uncertainty of the ErrP signal similar to an agent’s imperfect 78

sensing of the environment. A BCI module might incorrectly 79

infer the user’s intention because of a noisy ErrP signal; 80

similarly, a robot might wrongly identify the direction of an 81

arrow sign due to the noisy image captured from an imperfect 82

camera module. In other words, observations of the actual 83

environmental state could differ and be represented using 84

probabilistic models [17, 18]. Thus in our experiment, instead 85

of real EEG data, we simulate ErrP as a binary input of 0 or 86

1 and represent its uncertainty as a Bernoulli distribution with 87

a probability P of observing the true state. 88

Similar with previous works [12, 19–21], an agent accu- 89

mulatively changes the decision probability over time, in this 90
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Figure 1: An overview of our method for ErrP-based real-time
shared autonomy and deep reinforcement learning, where the
user’s ErrP and robot observation of the environment were
concatenated as the neural network input(a). We evaluated our
method in a navigation task with real human participants (b).
The red arrow with an arrow indicates the agent, and the green
dot indicates the target (c).

paper, we use recurrent neural networks (RNN) to approach91

the POMDP. The RNN is an approach that involves stacking92

the memory history and is robust to partial observations [22].93

To solve the neural network training issue with a large data set,94

we use binary value (0 or 1) to simulate the decoded results95

of the ErrP classifier, instead using real EEG data to train the96

model. This simulation enables us to train our model without97

real users. Our approach builds upon the shared autonomy98

framework [9] As shown in Figure 1, we apply our method99

in a navigation task. Our studies with both simulated users100

and real human participants suggest that ErrP-based shared101

autonomy can successfully improve task performance.102

Our contributions in this work can be summarized as103

follows:104

• A novel ErrP-based reinforcement learning for shared105

autonomy.106

• Demonstration the feasibility of the proposed shared107

control paradigm with simulated ErrP.108

• Evaluation the ErrP-based shared autonomy with real109

human participants in a navigation task with a pretrained110

shared autonomy model.111

II. RELATED WORKS112

A. ErrP-based BCI for Human-Robot Interaction113

Recently, the ErrP-based BCI has been widely used in114

Human-Robot Interaction tasks[1, 23, 24]. Salazar et al. [1]115

proposed a closed-loop system that used the ErrP as an implicit116

input to guide a robotic arm in a binary bin-sorting task. Kim 117

et al. [2] used the ErrP as an implicit reward of a robot to learn 118

the mapping between human gestures and actions. Stefan K. 119

Ehrlich et al. [23] demonstrated the applicability of ErrPs as 120

human feedback signals for real-time mediating coadaptation 121

in human-robot interactions. Lopes-Dias et al. [24] showed the 122

feasibility of online asynchronous decoding of ErrP signals 123

and used the resulting decoded signals as feedback to guide a 124

robotic arm towards a target after the robot was halted at an 125

unexpected moment. These works show that ErrPs can be used 126

to decode human intention during human-robot interactions. 127

B. Shared autonomy using BCI 128

Shared control is a widely used technology in human-robot 129

interactions. BCI systems provide new channels that allow 130

shared control by integrating the user intent directly according 131

to the ongoing brain activity, eliminating the need to exploit 132

muscular control [12, 13, 25]. Various methods have been 133

used in BCI-based shared autonomy systems. Previous studies 134

[26–28] have proposed flexible self-paced BCI systems that 135

switch between automatic and subject control methods. While 136

the switch model is efficient, only one control command can 137

be executed at a time. Thus, this kind of method cannot 138

take advantage of both human inputs and robot autonomy. 139

Some research [29, 30] has used shared control in hierarchical 140

systems, with the brain signal providing high-level commands 141

via BCIs as the robot performs low-level tasks, such as 142

grasping, navigation, and manipulation. In [30], steady-state 143

visually evoked potentials (SSVEPs) were used to select a 144

target while a robot arm performed a specific grasping action. 145

However, this shared control method subdivides tasks into 146

separate modules for the human user and the robot. Recently, 147

deep reinforcement learning (RL) frameworks incorporate user 148

inputs and agent observations to achieve shared autonomy 149

[9]. This shared control scheme opens the door to the use 150

of ErrP signals as an alternative or complementary signal in 151

BCI systems. 152

C. ErrP-based Human-in-the-loop reinforcement learning 153

ErrP has been widely used in human-in-the-loop RL sys- 154

tems. In these systems, the ErrP signal is used as a positive 155

or negative reward to accelerate the training of autonomous 156

agents [31–33]. In [19], ErrPs was used as negative reinforcers 157

of the actions to infer the optimal control strategies. In [20], 158

ErrP was used to learn the reward function in an inverse 159

reinforcement learning control to the robot to avoid obstacles. 160

In [12], inverse RL based on ErrP signals was used to infer 161

the goal position in a virtual grid. In [31], ErrP-based RL was 162

used to update the reward to determine a policy in a route 163

learning strategy. ErrP has also been used in RL to choose the 164

correct target among several possible targets. In [34], ErrPs 165

served as the reward in a reinforcement learning approach to 166

train an intelligent neuroprosthesis controller. The objective 167

in this work was to improve the control policy. In [2], ErrP 168

was used to train a robot to learn human gestures through 169

a reinforcement learning strategy based on the leap motion 170

and ErrP features. However, when the ErrP signal was used 171
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as a reward, while the ErrPs accelerated learning, the signals172

operated independently of the system during testing [31–33].173

Unlike others works where human-in-the-loop reinforce-174

ment learning frameworks leverage human feedback to train175

autonomous agents that operate independently of the user at176

test time [31–33], In our paper, We combine user input (ErrP)177

and robot observation as inputs of the deep model for mapping178

optimal actions. The shared autonomy will always need to179

leverage user input to accomplish the task both at training and180

test time.181

D. Formulating Human-Robot Interaction as POMDP182

A POMDP can handle sequential decisions with various183

uncertainties arising from human feedback errors and sensing184

noise. The POMDP formulates a problem in which the state185

measurements are partial observations in sequential decisions.186

Recently, the POMDP has emerged as a popular approach in187

human-robot collaboration tasks [35–38].188

In [35], human-robot collaboration was formulated as a189

POMDP by characterizing the robot’s information and hu-190

man’s intention as the state space. In [36], human-robot collab-191

oration was formulated as a POMDP to learn the human model192

via Bayesian nonparametric learning to determine the human193

state. Moreover, in [37], the observation model, dynamic194

machine model, and human model were combined in one195

framework and formulated as a POMDP model for the human-196

in-the-loop system. In [38], human-computer interactions were197

formulated as a consequence of a POMDP and used to198

model human perception during interactions. In summary,199

the POMDP does not assume that the system state is fully200

observable, and the POMDP’s ability to represent uncertainties201

arising from different sources makes it a suitable model in202

human-robot collaboration applications. In our paper, ErrP203

uncertainty is represented by a Bernoulli distribution with a204

probability P of observing the truth. As a result, our system205

can be considered a partially observable Markov decision206

process with uncertain observations. The POMDP allows for207

optimal decision-making under uncertain input conditions.208

III. METHOD209

A. Overview210

In this section, we first introduce background knowledge211

on the POMDP. We then introduce the ErrP-based shared212

framework, neural network architecture and reinforcement213

learning, task environment, and input feature to the neural214

network.215

B. POMDP background216

A Markov decision process (MDP) assumes that an agent217

can fully observe an environment. Otherwise, the agent senses218

the environment with limited or uncertain observations. If219

the observations are uncertain, the state signal is no longer220

Markovian, violating a key assumption of most reinforcement221

learning techniques [39]. A POMDP allows for optimal de-222

cision making even when the agent’s observation is partially223

[16]. A partially observable Markov decision process is a tuple224

⟨S,A,Ω, T,O,R⟩ in which S is a finite set of states, A is a 225

finite set of actions, Ω is a finite set of observations, T is a 226

transition function defined as T: S ×A× S → [0, 1], O is an 227

observation function defined as O: S×A×Ω → [0, 1], and R 228

is a reward function defined as R: S ×A× S → R. 229

The discrete set of observations Ω =
{
o1, ......, oM

}
230

represents the agent’s observation, which depends on the 231

next state s
′

and is sometimes conditioned on its action a. 232

This set can be determined with the observation function 233

O: S × A × Ω → [0, 1]. The probability of observing o 234

in state s
′

after an action is O
(
s
′
, a, o

)
. This requires that 235

O
(
s
′
, a, o

)
≥ 0 and

∑
o∈Ω O(s

′
, a, o) = 1. In our paper, the 236

discrete partial observation is Ω = {0, 1}, which represents 237

the decoded ErrP result. The probability follows the Bernoulli 238

distribution. If P = 0.7, the probability can be modelled 239

as follows: O
(
s
′
, a, o1

)
= 0.7, O

(
s
′
, a, o2

)
= 0.3, or 240

O
(
s
′
, a, o2

)
= 0.7, O

(
s
′
, a, o1

)
= 0.3. In this case, the 241

agent has a 70% chance to observe the true environment state. 242

Thus, an agent with uncertain ErrP feedback conforms to 243

Partially Observable Markov Decision Processes. 244

C. ErrP-based framework 245

The classification of ErrP signals collected from humans 246

is not perfect due to misclassification. ErrP uncertainty can 247

be regarded as an agent’s imperfect sensing of the true state 248

of the environment. We use a deep reinforcement learning 249

agent that maps observations from sensors (including ErrP) 250

to actions. We incorporate the ErrP information provided by a 251

BCI as useful observations for the agent. Our method jointly 252

embeds the ErrP information et acquired from the user and the 253

agent’s observations of the environment st by concatenating 254

the values. 255

˜
s t =

[
et
st

]
D. Network architecture and reinforcement learning 256

Our network architecture builds on the one proposed by Sut- 257

ton et al. [40]. The actor consists of 64-bit gated recurrent units 258

(GRUs) that use fully connected layers to process the input and 259

produce the output values of the hidden states, ha
t . The action 260

probabilities are produced by the final layers, z, via a bounded 261

softmax distribution: P (u) = (1− ε)softmax (z)u + ε/ |U |, 262

where ε/ |U | lower-bounds the probability of any given action. 263

We anneal ε linearly from 0.5 to 0.05 across 5500 training 264

episodes and set it to 0 during the test. The critic is a 265

feedforward network with multiple ReLU layers and fully 266

connected layers. 267

We choose the widely used advantage actor-critic (A2C) 268

algorithm [41, 42] to stabilize the training by reducing the vari- 269

ance. We train the critic with this policy to estimate the Q value 270

using TD(λ) [41], which is adapted for use in deep neural net- 271

works. We train the actor with advantage function A(τa, ua) = 272

Q(τa, ua)− V (τa), where Q(τa, ua) is action value function 273

and V (τa) is value function. The update direction is defined 274

by the gradient g = ET

[
T−1∑
t=0

∇θπ log π (ut |st )Gt

]
, where 275
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Figure 2: The environment without obstacles (a) and obstacles
(b).

Gt is empirical returns. At each time step, the policy architec-276

ture is fed the ErrP, agent’s local observation and step number277

and is tasked with estimating the Q-value function and policy278

at each point.279

E. Task statement280

We test our method in two environments. As shown in281

Figure 2, the navigation environment is described by a grid282

map. The first environment is a grid map without obstacles,283

and the second environment is a grid map that includes284

several obstacles. The layout of the map and the positions285

of the obstacles were fixed during training and testing. The286

second environment simulates a real-world environment where287

an agent’s observation is blocked by obstacles. The use of288

two environments demonstrates the generalizability of the289

proposed shared autonomy framework.290

The size of the grid was 11 × 11. The locations of the291

robot and the target were simplified as grid coordinates. The292

horizons of the robot were limited to the four corners of its293

neighbourhood. The robot can move north, south, west, or294

east during each time step. The robot cannot move towards295

the barriers or out of the grid. The robot is surrounded by a296

1 × 1 horizon in which it can detect the target. The agent’s297

task is to identify the goal location within the map. The agent298

has a limited sensing range that is assumed to be substantially299

smaller than the size of the maze. The target will be detected300

when the target is in the sensing range. The goal location and301

agent start position are randomized (spawned) in a constant302

static map in each episode during training and testing. After303

the goal is achieved, a new episode begins. To encourage short304

trajectories, each time step has a step cost (penalty) of 0.01.305

A typical sparse terminal reward (20) and the step cost are306

provided to encourage the agent to reach the target position307

in the minimal number of steps.308

F. Input features of the neural network309

The input features include ErrP feedback from the human310

user and the agent’s observations of the environment. The311

agent’s observations of whether the target is in its current312

position and four adjacent positions. The step number and313

most recent agent action are also included as features. All314

features are normalized by their maximum values. Information315

about the target position was not included in the input.316

1) Last action: The coupled action is a useful input feature 317

because the ErrP signal is cued by the agent’s last action. 318

2) Mark of visited grads: For a stationary target, an optimal 319

search strategy is trivially represented by a path that attempts 320

to cover the entire environment without revisiting any location. 321

The marker was often used as a reward in learning a policy 322

to encourage the agent to explore unvisited locations [43, 44]. 323

However, the uncertainty of ErrP feedbacks could cause the 324

agent to make incorrect decision. In such case, revisiting an 325

explored location might allow a correction. Indeed, we found 326

that the use of the visited marker as a reward limited the 327

optimal policy and thus yielded slightly suboptimal policies. 328

We found that using visited marker as an input allows the 329

model to learn an optimal strategy. 330

3) ErrP information: To eliminate the gap between the 331

simulated EEG data and the real EEG data collected from 332

a human user, we simplified the EEG data as a binary 333

variable, which corresponds to the decoding output of the ErrP 334

classifier. During model training, we use the binary values 335

0 and 1 to simulate the output of the ErrP binary classifier. 336

To generate the ErrP values, we calculated the shortest path 337

towards the target position at each step. The shortest path [45] 338

was computed according to the full map environment. This 339

approach follows a environment in which the human user has 340

a global view of the environment. If the current shortest path 341

is larger than the previous shortest path, we considered the 342

current step to be bad action and assigned an ErrP label of 1; 343

otherwise, we assigned an ErrP label of 0. 344

IV. EXPERIMENT 1: SIMULATED USERS 345

We begin our experiments with simulated users. Then, we 346

evaluate the shared autonomy with real human participants. 347

We use a binary value (0 or 1) to simulate the decoded results 348

of the ErrP classifier. 349

A. Experiment Design 350

We first consider the ErrP as a full observation with 100% 351

accuracy and then consider ErrP as a partial observation with 352

different accuracy levels. We use an autonomous agent without 353

ErrP feedback as our baseline. Our central hypothesis is that 354

our method can improve the agent’s performance despite the 355

partial ErrP observations. We use simulated pilots, which 356

enables us to more thoroughly consider different aspects of 357

our method (such as the effects of the ErrP accuracy level 358

on training an effective shared control model and gradient 359

analyses with different ErrP accuracies at various positions). 360

Moreover, we use a simulated ErrP to train the shared control 361

model that is used to test with real human users. 362

1) Partially observable ErrP and without ErrP: We first 363

trained an autonomous agent without ErrP feedback as the 364

baseline. We then trained six agents receiving ErrP feedback 365

with different levels of accuracy ranging from 65% to 100%. 366

We evaluated the agents in 20000 episodes with random 367

starting and target positions. Figure 3a shows the training 368

curve of the agents and Figure 3b shows the average number 369

of steps used by each agents to reach the target. 370
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2) Trained with full observation and evaluated with partial371

observation: To test the robustness of the POMDP model to372

uncertainty, we compared two model: one was trained with373

partial observations (75% ErrP accuracy) and another one was374

trained with full observations (100% accuracy). We evaluated375

the models with incrementally more complete observations376

(ranging from 70% to 100% accuracy).377

3) Gradient analysis on ErrP with different observation378

levels: The gradient computes the derivatives of the outputs379

of a model with respect to the input variables and identifies380

which input variables are important for predicting the outputs.381

The gradient-based method is a natural and popular attribution382

method [46] for explaining deep neural network decisions.383

This method uses the learned model to determine how impor-384

tant the input dimension is for the output. To better understand385

the mechanisms that allow the POMDP model to perform386

well in uncertain environments, we analysed the performance387

and gradients of POMDP models with different accuracies.388

More specifically, we compared the gradient at 70%, 75%,389

and 80% accuracies. We found that when the ErrP accuracy390

is greater than 80%, the learned policy is the same as that391

learned when the accuracy is 100%. This result indicates that392

the ErrP gradients are the same when the accuracy is greater393

than 80%. Therefore, we compared the gradients of models394

trained with accuracies less than 80%.395

4) ErrP gradient analysis at different positions: During the396

test, we found that ErrP has a greater effect on the outputs in397

the central area than on those in the edge area. We visualized398

the ErrP gradient map of the model in the two environments399

to assess whether the ErrP has different effects on the outputs400

at various positions. The computation of the gradient map is401

extremely quick since it requires only one backpropagation402

pass. The gradient map encodes the effect of the ErrP signal on403

the agent’s action at different locations. The colours represent404

different gradient values.405

5) Agent performance analysis: The performance was op-406

erationalized according to the step number and the success407

rate of the agent in reaching the target position from the408

start position. We compared the performance of agents with409

and without ErrP feedback. Even without human assistance,410

the agent would eventually reach the target. To evaluate the411

search ability of different distance ranges, we varied the initial412

distance between 2 and 20. Each distance was evaluated over413

10000 runs. We compared the agent performance in the two414

environments with no ErrP, 70% ErrP accuracy, and 80% ErrP415

accuracy.416

B. Result417

1) Partial observation ErrP and without ErrP: Figure418

3 shows that the agent with 100% accurate ErrP feedback419

performs better than the baseline agent without ErrP feedback.420

The result also suggested that higher ErrP accuracy corre-421

sponds to fewer steps required to reach the target position.422

2) Trained with full observations and evaluated with partial423

observations: Figure 4 shows the average number of steps424

used during the test with models trained with full observations425

(100% ErrP accuracy) and partial observations (75% ErrP426

accuracy). The average number of steps decreased as the 427

correct probability increased for both conditions. However, 428

when the accuracy was less than 80%, the model trained with 429

partial observations used fewer steps than the model trained 430

with full observations. In contrast, when the accuracy was 431

greater than 80%, the model trained with partial observations 432

used more steps than the model trained with full observations. 433

The POMDP model allows the performance to scale linearly 434

as a function of the observation quality. Note that when the 435

accuracy was 70%, while both models exhibited a reduced 436

performance, the MDP model decreased to approximately 40 437

steps, while the POMDP model decreased to approximately 438

27 steps. The performance of the model trained with full 439

observations declined considerably when presented with in- 440

complete observations. When the accuracy was 100%, the 441

POMDP model used approximately 12 steps, reaching near- 442

perfect levels (approximately ten steps). 443

3) Gradient analysis of ErrP with different observation 444

level: As shown in Figure 5, the ErrP gradient increases as 445

the ErrP accuracy increases. This result indicates that more 446

accurate ErrPs have more important effects on the outputs 447

than ErrPs with low accuracy. In contrast, when the ErrP has a 448

larger effect on the output, the effect of other input variables on 449

the output should be decreased. In other words, the gradients 450

of the agent’s observations, such as the position variables, de- 451

crease. As shown in Figure 5, the position gradient decreased 452

as the ErrP accuracy increased. These results demonstrate that 453

human feedback gradually induces more effects, while agent 454

observations have fewer effects, as the ErrP accuracy increases 455

during training. 456

4) ErrP gradient analysis at different positions: Figure 6 457

shows model gradient maps of the two maze environments. 458

In general, the ErrP gradient is large in the central area and 459

small in the edge areas, which indicates that the ErrP has a 460

substantial effect on the central position. In other words, the 461

agent rely more on human feedback in central area than in 462

edge area. In future research, more advanced interpretation 463

methods, such as integrated gradients [47] and SmoothGrad 464

[48], could be used for further analysis. 465

5) Agent performance analysis: The average number of 466

steps were 51.2, 34.8, and 24.0 for the no ErrP condition, 467

70% accurate ErrP condition and 80% accurate ErrP condition 468

in environment 1 and 50.7, 40.8, and 25.7 in environment 2, 469

respectively. The average number of steps gradually increased 470

as the initial distance increased for both the ErrP conditions 471

and the no ErrP condition in environments 1 and 2. 472

Sixty steps was taken as the maximum number of steps; 473

that is, if the agent successfully reaches the target position 474

within 60 steps, it is considered a success. Otherwise, the 475

agent has failed. Figure 7 shows the success rate to reach 476

the target position within 60 steps for each initial distance. 477

The success rate gradually decreased as the initial distance 478

increased. The average success rates were 79.74%, 83.19% 479

and 95.86% for the no ErrP, 70% accurate ErrP and 80% 480

accurate ErrP conditions for environment 1 (Figure 7a) and 481

69.43%, 76.70% and 94.21% for the no ErrP, 70% accurate 482

ErrP and 80% accurate ErrP conditions for environment 2 483

(Figure 7b). The success rate gradually decreased as the initial 484
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distance increased for both the ErrP conditions and the no ErrP485

condition in environments 1 and 2, except when the initial486

distance was the maximum value for the no ErrP condition in487

environment 2. The start and target positions were limited to488

the four corner positions, which allow the initial distance to be489

maximum value. We found that when the agent start position490

was (0, 0), the agent moved in the direction of the opposite491

corner. If the agent start position and target position were (0,492

0) and (10, 10), 20 steps were used to reach the target position,493

which is the optimal number of steps. These results indicate494

that even when the ErrP signal is 70% accurate, the success495

rate is higher than the success rate in the no ErrP condition.496

C. Discussion497

1) Performance of the shared control model: The sim-498

ulation experiment indicates that the shared control model499

can greatly improved the task efficiency compared with au-500

tonomous agent. As shown in Figure 7, even when the human501

feedback was partially inaccurate, the success rate of 70%502

and 80% of ErrP accuracy on the success rate to reach the503

target position is larger than in the case of no ErrP. The504

integration of the agent observations and human perception505

help the agent gains more information about the environment506

than an autonomous agent. Besides, the higher success rate507

of 80% ErrP accuracy compared with 7% one demonstrated508

that the agent can make better decisions with more accurate509

observation of the environment.510

In the shared control policy with 100% accuracy, we found511

that if the ErrP signal is provided, the agent changes its search512

direction to the left in an anticlockwise search approach, as513

shown in Figure 8a. The agent changes its trajectory in real-514

time to adapt to the human feedback as previous study [49].515

The same performance was observed when the ErrP accuracy516

was greater than 80%. However, when the ErrP accuracy was517

less than 80%, the agent learned a different accuracy. In this518

case, the agent did not change its search direction immediately519

after an ErrP signal was provided. Instead, the agent changed520

its direction when it was more confident. Thus, we hypothesize521

that the confidence level is related to the ErrPs of the previous522

steps and the current position. For the no ErrP condition,523

the agent’s trajectory followed an anticlockwise search. The524

trajectory was fixed and depended only on the agent’s starting525

point, as shown in Figure 8b.526

2) ErrPs with different accuracies: We investigated the527

performance of agents trained with various noise levels during528

training. We provide the input accuracy during training. Figure529

3a shows that the agent learned different policies during530

training with different ErrP accuracy levels, demonstrating531

that the ErrP accuracy could be learned by the model during532

training. Figure 3b shows that the less uncertain the human533

feedback, the better decision the agent can make. In addition,534

we investigated the threshold of the ErrP accuracy that is535

sufficient for training an efficient shared control model. We536

found that if the ErrP accuracy is greater than 70%, the537

model trained with this ErrP accuracy performs better than an538

autonomous agent. However, if the ErrP accuracy is less than539

70%, the shared control performance was not considerably540

different from that of a sole autonomous agent, as the sole 541

agent could learn a search policy without human feedback. 542

Thus, we take 70% as the threshold for training an effective 543

model. This result provided a new perspective on human 544

feedback accuracy in shared control critic models. Therefore, 545

we selected participants with offline accuracies greater than 546

70% for the online test. 547

3) Model robustness: As shown in Figure 4, the model 548

trained with high ErrP accuracy was more sensitive to ErrP 549

input than the other models. The agent is more likely to 550

change its search direction when the human user provides 551

negative feedback. In other words, human users have a more 552

significant effect on the agent’s action in a more accurate ErrP 553

model than in a less accurate ErrP model. The performance 554

declines dramatically when using the model trained with full 555

observations and tested with partial observations. However, 556

the model trained with partial observations is more capable 557

of handling partial observability when the observation quality 558

changes during the evaluation. The results are consistent with 559

the results of [22]: the model trained with partial observations 560

is robust towards missing game screens and remains scalable, 561

improving the performance as more data become available. 562

Furthermore, the model trained with partial observations was 563

more robust to uncertainty during evaluation, despite the fact 564

that the two learned models used the same neural network 565

architecture. In addition, the model is scalable enough to 566

improve performance as the observation accuracy increases. 567

Therefore, during the test with real human participants, we 568

chose the shared control model trained with ErrP accuracy, 569

which is similar to real EEG classification accuracy with cross- 570

validation. 571

V. EXPERIMENT 2: REAL-WORLD USER STUDY 572

In this section, we evaluate our method during the test phase 573

with real human participants. Our model was pretrained with 574

simulated EEG data. We want to validate the feasibility of 575

using the model trained on simulated EEG data with real 576

human participants in the same task environment. We validate 577

the feasibility of the learned model in two environments: 578

a environment without obstacles and a environment with 579

obstacles. 580

A. Experiment Design 581

1) Interaction environment design: To evoke ErrP signals, 582

the interaction environment, especially the stimulus, needs to 583

be carefully considered [50]. The environment design was 584

based on the design presented in [21], which includes a grey 585

grid with a red agent and a green target on a black background. 586

The agent’s start and target positions were generated under 587

the condition that their distance be larger than one grid (the 588

agent’s observation ability). At each step, the agent moved 589

from its current position to one of the four adjacent positions. 590

A 1 s animation within the agent served as a countdown 591

to draw the participants’ attention. The agent then jumped 592

instantaneously to the next position, with an arrow directed 593

towards the position. This arrow remained visible for 1 s. 594



3

0 25000 50000 75000 100000 125000 150000 175000 200000

Episodes

−20

−15

−10

−5

0

5

10

15

20

R
ew

ar
d

Traning

NoErrP
65%
70%
75%
80%
90%
100%

(a)

NoErrP 65% 70% 75% 80% 90% 100%

−10

0

10

20

30

40

50

60

70

St
ep

NoErrP
65%
70%
75%
80%
90%
100%

(b)

Figure 3: Training curve with different ErrP accuracies
conditions as well as no ErrP condition (a). The average
number of steps used to reach the target position (b).
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Figure 6: ErrP gradient distribution at different positions in
the maps of the two environments. The color indicates the
gradient value at different positions

Then, the highlights disappeared, and the agent remained at 595

its new position for 1 s before its next step. 596

Before the real-time control experiment, participants were 597

first asked to perform five blocks of 120 trials in environment 598

1, which contained no obstacles. The agent’s initial and target 599

positions were randomly generated. If the agent did not reach 600

the target position after 60 trials, a new run was started. 601

The EEG data collected during these five blocks were used 602

to calibrate the classifier. If the agent’s action decreased 603

the distance to the target position, the action was labelled 604

“correct”; if the agent’s action increased the distance to the 605

target position, the action was labelled “error”. During the 606

experiment, the participants were asked to mentally judge 607

whether the agent’s action was correct or an error. 608

2) Participants: Sixteen participants (average age 28.57± 609

3.11 years old, two females) participated in the experiment. 610

Seven participants participated in both the offline-BCI and 611

online-BCI experiments. Seven participants participated in 612

only the offline experiment, as their ErrP BCI performance 613

were below the 70% threshold. As described in Section IV.C, 614

the shared autonomy model performs better only when the 615

ErrP classification accuracy is greater than 70%. The remain- 616
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ing two participants were excluded from further analysis, as617

the participants could not complete the online experiment due618

to battery power issues. All participants provided informed619

consent for the study, which was approved by the University of620

Technology Sydney (UTS) Human Research Ethics Committee621

(ETH19-3830). All participants had normal vision and did not622

report any known neurological or psychiatric diseases.623

3) EEG recording and pre-processing: EEG signals were624

recorded from 64 locations according to the extended 10/20625

system using a LiveAmp wireless EEG system from Brain626

Vision [51] with a sampling rate of 500 Hz. The reference627

channel was placed at the FCz channel position, and the628

ground channel was placed at the forehead position [51]. The629

signal was resampled to 256 Hz and filtered using a finite630

impulse response (FIR) bandpass filter with cut-off frequencies631

1-50 Hz.. Then, the common average reference was used to632

reduce signal contamination. Both offline training and online633

testing used a same EEG signal pre-processing pipeline634

4) ErrP Feature extraction: Temporal features extracted635

from time-series data have been used in many ErrP activity636

studies [1, 50, 52, 53]. It has been reported that the classi-637

fication results of temporal features are better than those of638

spectral features for decoding ErrP signals [54]. Thus, tempo-639

ral features were used for classification in this study. Similar640

with studies [21, 24], the averaged signal amplitude within641

a 30-ms-long window between 150 ms and 600 ms at each642

trial and channel was extracted. Thus, during the time window643

from 150 ms to 600 ms, there will be 15 = ((600− 150)/30)644

samples for one channel. The classification between correct645

and error feedback was performed from all 64 EEG electrodes646

[21]. Thus, the feature vector length is 64*15=960.647

5) ErrP classifier training: To enable real-time detection648

of neural activity during each trial, the classifier must be649

calibrated to classify the EEG waveform as ErrP or non-650

ErrP. This ErrP classification is a binary classification task651

that indicates the agent’s action as correct or incorrect.652

To minimize overfitting effects, we used tenfold cross-653

validation to train the classifier with 90% of the data, and654

the remaining 10% of the data were used for testing. The655

extracted features include redundant features, and traditional656

linear discriminant analysis (LDA) has limited flexibility for657

complex features. Thus, it is necessary to search for a subset658

of the available features that can improve the classification659

performance. Shrinkage and selection methods are commonly660

used feature selection methods. We use shrinkage LDA [55] as661

the classifier in our paper, which is widely used for decoding662

ErrP signals [50].663

A binary linear classifier can be characterized by a projec-664

tion vector w and a bias term b referring to the separating665

hyperplane wx + b = 0 . The projection vector of LDA is666

defined as:667

w = S−1
w (ua − ub) (1)

Where S−1
w is the covariance or within class variance, ua668

and ub is the mean value of class A and class B.669

The empirical covariance of the above is unbiased and670

has good properties when the number of observations is671

greater than the dimensionality of variables. However, for 672

high-dimensional data with only few data trials, the estimation 673

covariance may become imprecise because the covariance 674

of matrix estimate is singular and the inverted matrix in 675

imprecise. This phenomenon leads to a systematic error: large 676

eigenvalues of the original covariance matrix are estimated 677

too large, and small eigenvalues are estimated too small [56]. 678

This estimation error makes the performance of LDA in 679

high-dimensional situations far from optimal. Shrinkage is a 680

common method that compensates the systematic bias in the 681

estimated covariance matrix by a regularized covariance matrix 682

Sb : 683

Sb = (1− λ)Sb + λD (2)

Where D is a diagonal matrix taking the diagonal elements 684

of Sb. Thus, the parameter λ forces the extreme eigenvalues 685

towards average [56]. 686

6) Online test with real participants : The participants 687

who achieved ErrP accuracy threshold of 70% further the 688

online test. The shared control model that best matched the 689

participant’s offline accuracy was used in the online test. 690

For example, if the participant’s offline ErrP classification 691

accuracy is 78%, we chose the shared control model that pre- 692

trained with 80% ErrP accuracy. The computational cost for 693

the training model is about 40 hours and 30 munites, which 694

is running on a workstation with two Intel Xeon 6132 CPUs 695

and NVIDIA RTX 6000 GPUs, as well as 96GB of RAM. 696

B. Results 697

1) Electrophysiology analysis: Figure 9 shows the correct, 698

error, and difference grand average potentials (error minus 699

correct averages) in the Fz channel averaged across all subjects 700

in the online sessions for both environments. The difference 701

grand average was characterized by three components: a neg- 702

ative deflection at approximately 200 ms, a positive deflection 703

at approximately 300 ms, and another negative component at 704

approximately 400 ms. 705

2) Classification analysis of ErrP: In this section, we 706

analyse the real-time classification accuracy of the ErrP signals 707

with the classification model calibrated with offline data for the 708

two environments. As mentioned in the simulation section, if 709

the ErrP accuracy is less than 70%, the low ErrP classification 710

accuracy and no ErrP models perform similarly. Table I shows 711

the offline training accuracy using 10-fold cross-validation 712

and the online test accuracy for the two environments. The 713

overall offline training accuracy was 76.65%. The overall 714

online test accuracy were 73.22%, 69.20% for environment 715

1 and environment 2, respectively. 716

3) Agent performance analysis: In this section, we analysed 717

the success rate and number of steps for real human users to 718

evaluate the feasibility of the shared control model with real 719

human participants. To test the model’s target search ability 720

for different initial distances, we chose episodes with initial 721

distances between 2 and 20 (maximum), resulting in a total 722

of 19 episodes with random sequences for each environment. 723

The episodes were pregenerated for all the participants. 724

During the online test, the brain signal’s classification of 725

the agent’s last action as either correct or an error was fed 726
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Participant Offline training (%) Online test of environment 1 (%) Online test of environment 2 (%)
S2 73.33 77.68 77.73
S4 72.83 60.88 58.02
S5 85.17 94.75 65.02
S6 74.67 69.01 66.54
S8 76.17 71.91 66.11
S10 80.17 71.81 70.25
S15 75.33 64.28 70.11

Average 76.65 73.22 69.20

Table I: ErrP training accuracy with 10-fold cross-validation and test accuracy for the two environments.
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Figure 7: Success rate of reaching the target position within 60
steps for each initial distance with the no ErrP, 70% accurate
ErrP, and 80% accurate ErrP conditions for environments 1
and 2.

into the model in real-time to generate the next action. If the727

agent did not reach the target position after 60 steps, the run728

was ended, and a new episode was started. The maximum729

number of steps was set to ensure that participants were not730

discouraged by long runs. In the experiment with real human731

participants, the maximum number of steps was set to 60 for732

each episode. Therefore, episodes with more than 60 steps733

were not included when calculating the average number of734

steps.735

(a)

Agent

Target

Trajectory

(b)

Figure 8: The agent search policy with 100% accurate ErrP
(a) and no ErrP (b).

Fz

Figure 9: ERP analysis for the correct and error conditions,
averaged over the online trial sessions at Fz channel by re-
moving baseline [-300 0]ms. The black line is the difference
between correct and error condition. The red and blue dotted
lines are the standard deviation for the error and correct con-
ditions respectively.

As shown in Table II, the success rate to reach the target po- 736

sition within 60 steps was 81.20%, and this value was averaged 737

over all participants. The average number of steps was 24.87, 738

which was averaged over all participants by removing failed 739

episodes. The success rate was approximately the same as 740

the success rate of the 70% accurate ErrP condition (83.19%) 741

and was larger than the success rate of the no ErrP condition 742

(79.74%) in the simulations. The average number of steps was 743

almost the same as the number of steps in the 70% accurate 744
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Success rate (%) Mean and standard of number of steps
Env 1 Env 2 Env 1 Env 2

S2 94.74 89.47 23.11±13.2 20.06±14.38
S4 78.95 84.21 26.07±16.56 26.88±13.97
S5 94.74 84.21 21.06±11.73 22.69±12.93
S6 63.13 63.16 29±18.69 28.42±15.78
S8 78.95 89.47 24.8±14.57 17.53±9.91

S10 84.21 94.74 24.94±15.74 23.61±12.81
S15 73.68 89.47 28.86±17.59 21±13.35
Ave 81.20 84.96 24.59±14.66 21.92±12.97

Table II: Success rate and average number of steps with real
human participants.

ErrP condition (24.4) and less than the average number of steps745

in the no ErrP condition (28.4). With real human participants,746

the number of steps was 12.43% less than the number of steps747

in the no ErrP condition.748

As shown in Table II, the success rate to reach the target po-749

sition within 60 steps was 84.96%, and this value was averaged750

over all participants. The average number of steps was 23.28,751

which was averaged over all participants by removing failed752

episodes (failure rate=1-success rate). The success rate was753

better than that of the 70% accurate ErrP condition (76.70%)754

and the no ErrP condition (69.43%) in the simulations. The755

average number of steps was smaller than that in the 70%756

accurate ErrP condition (25.6) and no ErrP condition (25.4).757

With real human participants, the number of steps was 8.35%758

less than the number of steps in the no ErrP condition.759

C. Discussion760

1) Feasibility of simulated ErrP for training: We demon-761

strated the feasibility of our method, which involves training762

with simulated data and testing with real EEG data, with763

human participants in real time. The key idea is that the764

simulated data were binary values (0 or 1) based on the ErrP765

classifier, which has a binary output (0 or 1). The simulated766

pilot enables us to train the model without real users. Training767

an RL model requires a vast amount of data, which rendered768

the capturing of the EEG from real users infeasible. Thus, we769

use binary values instead of a linear scale between 0 and 1770

to increase the similarity between the simulation data and the771

classification results of real EEG data. The simulated ErrP data772

can also be scaled linearly between 0 and 1 to train the model.773

In this case, the classifier’s output should scale linearly with774

the real ErrP data, which is related to the goal congruency, as775

discussed in [21].776

2) Consider the learning as a POMDP with noisy ErrPs:777

The policy learned with clean observations (100% accurate778

ErrP) is not robust and vulnerable when the environment is779

inherently noisy during the test. The discrepancy between780

the clean simulated ErrP data and the real human EEG781

data contributes to this “reality gap”. The real human ErrP782

feedback cannot match the simulated feedback with 100%783

certainty. Thus, the shared policy may fail with real human784

participants because the ErrP signal cannot be decoded with785

100% accuracy. We formulate the learning as a POMDP786

and train the model with simulated noise observations. We787

find that the model trained with partial observations is more788

robust to noise during the test than the model trained with full 789

observations. 790

3) Area analysis: As shown in Figure 10, the environment 791

was divided into two areas: the central area and the edge area. 792

Figure 11 shows the ErrPs of online sessions in the central 793

and edge areas. The positive and negative peaks of the ErrP 794

in the central area were larger than those in the edge area. 795

We hypothesize that the participant was more involved in 796

the experiment when the agent was in the central area than 797

when the agent was in the edge area. We also analysed the 798

accuracy in the central and edge areas during environment 2. 799

As shown in Figure 12, the online test accuracy was higher in 800

the central area than in the edge area, except for participant 801

S10, where the accuracy in the edge area was slightly higher 802

than that in the central area, and participant S15, where the 803

accuracy was the same in both the central and edge areas. 804

Both the larger ERP peak amplitude and higher ErrP accuracy 805

in central area demonstrated that the participants give more 806

correct feedback in the central area than in the edge area. 807

These findings indicate that human participants with better 808

performance should be assigned more authority in the critical 809

central area than in the edge area. The simulation result of the 810

gradient map shown in Figure 6 demonstrates that the ErrP 811

acquired from the simulated users has a greater effect in the 812

central area than in the edge area. 813

4) ErrP peak analysis: As shown in Figure 9, the amplitude 814

of negative peak of error condition is bigger than correct 815

condition. However, the correct condition has positive peak 816

amplitude that error condition. Similar result was found in 817

[57], where P300 amplitude following error feedback was 818

not larger than those following correct feedback . We also 819

analyse the difference between the positive peak and nega- 820

tive peak while an agent continuously performed the wrong 821

action. Figure 13 shows that the peak decreased in the first 822

four sequences. We hypothesize that the participant has less 823

expectations of the agent behaviour, as ErrP signals are evoked 824

by unexpected errors. Similar finding was also reported in [58], 825

where the 1st and 2nd feedback ErrP responses exhibited slight 826

differences in terms of latency and amplitude. However, we 827

could not explain the increase after the fifth sequence. This 828

increase may be related to the participant’s emotional state. 829

Future research should attempt to determine how continuous 830

errors affect the ErrP peak. Note that the agent action was 831

determined by the control model and the agent observations, 832

including the environment information and the ErrP signal. 833

Even if the ErrP classification is correct, the agent can still 834

perform incorrect actions, especially in the edge areas, as the 835

ErrP has a smaller effect on the agent actions in this region 836

based on the gradient analysis. 837

5) Potential and Limitation of the shared control model: 838

In addition to testing the shared control model in a simulation 839

environment, one potential breakthrough of this research was 840

to test and demonstrate the shared autonomy in real environ- 841

ment. The ErrP classification accuracy would be a key part 842

of feasibility of the shared control used in real environment. 843

Unlike in previous study of ErrP-based shared control[12, 844

19, 21], we demonstrated that the model worked successfully 845

when the ErrP classification reached higher accuracy. One 846
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Figure 10: The environment was divided into central areas
and edge areas.
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major limitation of the proposed shared control model is847

that the shared-controlled agent would perform better than an848

autonomous one only if the ErrP classification accuracy is849

above 70%. Achieving such classification accuracy in a real-850

world environment where the user is subject to distractions851

and noises could be challenging. Further advancements in852

EEG hardware is required before the proposed framework can853

be adapted outside a lab environment.The preprocessing and854

classification could also be optimized to improve the ErrP855

classification accuracy. The preprocessing used in this paper856

are not considering possible confounds due to eye movements,857

which is critical for error-related signals analysis. Moreover,858

the feature selection and classification algorithm could be859

optimized to improve classification accuracy.860

VI. CONCLUSION861

We proposed an ErrP-based shared control paradigm with862

deep recurrent reinforcement learning. To address the low863

decodability of the ErrP signals, we formulated the learning864

as a POMDP and used an RNN to solve the POMDP. The865

shared control model was trained with a simulated ErrP with866

a Bernoulli distribution with probability P of observing the867
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Figure 12: ErrP accuracy of online test for central and edge
areas.
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Figure 13: The average difference between the positive and
negative peaks versus the error level.

truth. We validated the proposed model with real-time EEG 868

data obtained from human participants during a navigation 869

task. The agent can adaptively change its search direction 870

based on human feedback. The good performance of the model 871

in simulations and experiments with real human participants 872

suggests that our method is effective in human-robot shared 873

autonomy environments with uncertain noise input, such as 874

neural activities. 875
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episode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Failed
Numberdistance 13 12 6 19 14 9 3 18 17 5 16 4 7 10 15 20 8 2 11

S2 step 17 14 42 60 32 13 45 20 45 11 44 6 19 12 19 26 22 6 23 1
S4 step 60 32 54 31 60 21 3 30 60 17 49 20 17 10 60 42 10 6 49 4
S5 step 17 22 8 45 42 23 17 18 21 7 17 4 9 36 19 20 18 36 60 1
S6 step 21 24 16 35 56 60 3 60 60 7 56 16 23 60 60 60 60 36 55 7
S8 step 23 20 26 57 32 21 5 20 60 5 43 6 41 18 60 24 31 60 60 4
S10 step 53 50 60 60 22 28 3 60 25 7 16 4 13 34 31 42 40 14 17 3
S15 step 17 60 60 48 38 60 7 23 45 7 55 6 15 42 17 60 50 34 60 5

Table A1: Number of steps used in environment 1 with real human participants

episode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Failed
NumberDistance 3 13 14 7 15 4 11 8 9 19 17 6 12 2 18 10 20 5 16

S2 Steps 3 23 48 7 60 12 19 10 12 53 29 6 24 4 28 30 60 17 16 2
S4 Steps 43 21 30 7 21 4 19 10 29 31 60 38 60 28 26 58 24 41 60 3
S5 Steps 3 17 28 7 21 12 60 12 40 37 60 8 16 16 38 38 36 60 34 3
S6 Steps 3 60 58 7 41 60 60 60 30 60 31 36 26 11 38 22 60 60 38 7
S8 Steps 11 19 22 17 25 6 17 10 60 24 24 8 16 4 60 14 40 7 34 2
S10 Steps 13 27 60 9 31 6 17 12 37 29 33 10 20 46 44 34 30 5 22 1
S15 Steps 3 27 18 7 45 60 60 10 12 19 29 6 38 4 24 40 37 18 20 2

Table A2: Number of steps used in environment 2
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