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Abstract—Binary-source code matching plays an important
role in many security and software engineering related tasks
such as malware detection, reverse engineering and vulnerability
assessment. Currently, several approaches have been proposed for
binary-source code matching by jointly learning the embeddings
of binary code and source code in a common vector space.
Despite much effort, existing approaches target on matching the
binary code and source code written in a single programming
language. However, in practice, software applications are often
written in different programming languages to cater for different
requirements and computing platforms. Matching binary and
source code across programming languages introduces additional
challenges when maintaining multi-language and multi-platform
applications. To this end, this paper formulates the problem of
cross-language binary-source code matching, and develops a new
dataset for this new problem. We present a novel approach XLIR,
which is a Transformer-based neural network by learning the
intermediate representations for both binary and source code. To
validate the effectiveness of XLIR, comprehensive experiments
are conducted on two tasks of cross-language binary-source code
matching, and cross-language source-source code matching, on
top of our curated dataset. Experimental results and analysis
show that our proposed XLIR with intermediate representations
significantly outperforms other state-of-the-art models in both of
the two tasks.

Index Terms—Cross-language, clone detection, intermediate
representation, binary code, code matching, deep learning.

I. INTRODUCTION

Binary-source code matching, which aims to measure the
similarity between binary code and source code, plays an im-
portant role in a variety of security software engineering related
tasks, e.g., malware detection [1], vulnerability search [2], and
reverse engineering [3], [4]. From one hand, given a binary code
fragment, it is useful to retrieve similar source code snippets
that can serve as references for reverse engineering. On the
other hand, given a vulnerable source code, it is also helpful
to check whether its corresponding binary form is included in
a binary file, which is useful for vulnerability assessment and
detection.
Existing Efforts and Limitations. The core technique for
binary-source code matching is the calculation of semantic

∗Yao Wan is the corresponding author.

similarity across two modalities (i.e., binary and source code).
To the best of our knowledge, most current methods are mainly
concerning the matching within single modality, e.g., either
source-to-source code matching [5], or binary-to-binary code
matching [6]. Recently, several works have been proposed
to investigate the binary-to-source matching problem. Yuan
et al. [7] and Miyani et al [3] studied the binary-to-source
matching for open-source software reuse detection and binary
source code provenance, respectively. Yu et al. [8] studied the
cross-modal matching of binary and source code at the function
level. Both of these approaches extracted the semantic features
of source code and binary code, and proposed two encoder
networks to represent them as two hidden vectors. A similarity
constraint (e.g., triplet loss function) is then designed to jointly
learn these two encoder networks.

Despite much progress having been achieved on binary-
source code matching, all current works are exclusively
developed to detect binary-source clones from programs
written in the same programming language. However, detecting
binary-source code clones for programs written in different
programming languages has made little progress in literature.
In practice, software applications are often written in differ-
ent programming languages to cater for different platforms.
Therefore, detecting binary-source code clones across multiple
programming languages is useful in real-world scenarios.
For example, when we have a vulnerable binary code, it is
necessary to retrieve all the relevant source code snippets for
all possible programming languages they are written in, for
better vulnerability assessment. To fill this gap, we, for the first
time, formulate the problem of cross-language binary-source
code matching.
Insights. The key challenge of binary-source code matching
is to bridge the semantic gap between high-level programming
language and low-level machine code even if they are in
different textual appearance. Current approaches aim to align
the semantic embeddings of binary code and source code in an
end-to-end way. In compilers, intermediate representations are
designed to support multiple front-end programming languages
(e.g., C and Java) and multiple backend architectures (e.g.,
ARM and MIPS). That is, the intermediate representations
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3: 
%4 = load i32, i32* %2, align 4
%5 = icmp slt i32 %4, 10
;preds = %6, %9
br i1 %5, label %6, label %9

6: 
%7 = load i32, i32* %2, align 4
%8 = add nsw i32 %7, 1
store i32 %8, i32* %2, align 4
;preds = %3
br label %3

9: 
ret i32 0

dec_label_pc_4004f0: 
%rbx.0.reload = load i64, i64* %rbx.0.reg2mem
%1 = add i64 %rbx.0.reload, 1, !insn.addr !22
%2 = icmp eq i64 %1, ashr (i64 sub (i64 ptrtoint (i64*

@global_var_600e58 to i64), i64 ptrtoint (i64*
@global_var_600e50 to i64)), i64 3), !insn.addr !23

%3 = icmp eq i1 %2, false, !insn.addr !24
store i64 %1, i64* %rbx.0.reg2mem, !insn.addr !24

;preds =%dec_label_pc_4004f0,dec_label_pc_400506
br i1 %3, label %dec_label_pc_4004f0, label

%dec_label_pc_400506, !insn.addr !24
dec_label_pc_400506: 

ret i64 %0, !insn.addr !25

int main(){
int a = 0;
while(a<10){

a += 1;
}
return 0;

}

LLVM Clang
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Figure 1: The insights of representing binary code and source
code using LLVM-IR. A simple loop is implemented in both
the source code file and the binary file, and the LLVM-IRs
generated from both of them indicate the similar semantics.

are typically independent of programming languages and
computer architectures, which can significantly reduce the
gap between binary code and source code by sharing a similar
word vocabulary and the syntax structure.

For better illustration, Figure 1 shows a source code fragment
and a binary code fragment, together with their corresponding
generated LLVM-IRs. We can transform the source code and
binary code into LLVM-IR based on compiler tools, i.e., LLVM
Clang1 and RetDec2, respectively. In this example, a while
loop is implemented in both the source code file and the binary
file. It is hard to find their semantic similarity from the textual
appearance. However, we can find some clues from their LLVM-
IRs. Figure 1 (right) shows the partial LLVM-IRs generated
from source code and binary code, both of which represent the
semantics of the while loop fragment. From other perspective,
we can see that the intermediate representations can help unify
the representations of source code and binary code of multiple
programming languages and computer architectures.
Our Solutions and Contributions. Motivated by the aforemen-
tioned insights, this paper proposes XLIR, a novel approach
based on Transformer, for the task of cross-language binary-
source matching using intermediate representations (IRs).
Specially, we parse both binary code and source code into
intermediate representations. In this paper, we adopt the
intermediate representation i.e., LLVM-IR which has been
widely used in compiler optimization, program analysis, bug
detection and verification. The LLVM-IR can be translated
from multiple high-level programming languages (e.g., C/C++
and Java) as well as low-level machine code. To embed the
intermediate representations, we adapt a Transformer-based
neural network, which is first pre-trained by a masked language
modeling on an external large-scale corpus of LLVM-IRs. We
then map the LLVM-IR embeddings into a common space and
jointly learn them using a triplet loss function.

1https://clang.llvm.org/
2https://retdec.com/

To the best of our knowledge, there is no dataset for cross-
language binary-source code matching. For evaluation, we
curated and contributed a new comprehensive dataset based
on an existing dataset originally developed for cross-language
source-source code matching. Experimental results and analysis
show that XLIR significantly outperforms other state-of-the-art
models. For the matching between Java binary code (compiled
from corresponding LLVM-IR) and C source code, when
comparing with the state-of-the-art tool B2SFinder, XLIR
significantly improves the Precision, Recall and F1 from 0.35,
0.41 and 0.38 to 0.68, 0.55 and 0.61, respectively.

Overall, this paper makes the following major contributions:
• New problem. We, for the first time, formulate a new

problem of cross-language binary-source code matching.
• New insights. Even though the source code and binary

code are in different modalities, both of them can be
transformed into IRs. In this paper, we provide an insight
that it is feasible to mitigate the semantic gap between
source code and binary code based on IRs (e.g., LLVM-
IR). In addition to representing these LLVM-IRs, we
propose an encoder network based on Transformer which
is initialized by a pre-trained model for IR embedding.

• Comprehensive experiments. To validate the effective-
ness of our proposed approach, we first curate a new
dataset based on a public dataset that is used for cross-
language source code clone detection. We then conduct
comprehensive experiments on two tasks of cross-language
source-source code matching, and cross-language binary-
source code matching, on top of our curated dataset.
Experimental results validate the effectiveness of our
proposed approach when comparing with the state-of-
the-art models.

II. MOTIVATION

In this section, we first introduce the task of cross-language
code clone detection, and then extend it to the cross-language
binary-source code matching. We also present two practical
scenarios of cross-language binary-source code matching.

A. Cross-Language Code Clone Detection

Detecting code clones is essential in software maintenance
and refactoring. Existing efforts mainly focus on identifying
code clones written in a single programming language. With the
emerging of multiple-language platforms where applications are
often written in different programming languages to cater for
different requirements and computing platforms. It is useful to
detect the code clones across different programming languages.
For example, in the collaborative development of software,
when a code fragment is modified by a Java developer, it
is required to propagate the changes to the corresponding
code fragment written by a C developer. Furthermore, when
a developer finds a vulnerability in a code snippet written
in one programming language, it is also useful to locate and
identify the corresponding code fragment in other programming
language. In cross-language code clone detection, the core
insight is that although the source code fragments are written
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Scenario 1: Source-to-binary code matching

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <stdlib.h>

4 // A vulnerability example written in C:
5 // The attacker can execute any command 
6 // if he controls the standard input channel stdin.
7 int main(){
8 char str[60];
9 //input a string from standard input
10 fgets(str, 59, stdin);
11 //excute "str" as a command
12 system(str);
13}

A vulnerability example written in C

std::string str;
std::cin >> str;
system(str.c_str());…

…

BIN

01001
11001
11000

BIN

11001
01001
01001

BIN

01101
11011
01010

Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
Runtime.getRuntime().exec(s);

…
…

Search

Scenario 2: Binary-to-source code matching

OSS: OpenSSL 3.0
Language: C
License: Apache v2

OSS: Protocol Buffers
Language: C++
License: BSD

OSS: InfiniTime
Language: Go
License: GPL

OSS: CURL
Language: C
License: similar with MIT

OSS: Polkadot
Language: Rust
License: GPL

let mut str = String::new();
io::stdin().read_line(&mut str);
Command::new(str);…

…

Figure 2: The motivating scenarios of cross-language binary-source code matching. (1) A real-world scenario of source-to-binary
code matching in vulnerability detection. In this case, given a source code with vulnerability, using which the attacker can
execute any command if he/she controls the standard input channel stdin. It is necessary for us to search for binary target
files that may be written in other programming languages to check if there are similar backdoors in these binary target files. (2)
A real-world scenario of binary-to-source code matching in copyright protection. Given a binary library file, we match it to a
known open source software (OSS) library (or some of its components) to determine whether the binary file is derived from it,
and further check whether the binary file follows the license in the original OSS.

in different programming languages with distinct textual
appearance, they may share similar semantics.

B. Cross-Language Binary-Source Code Matching

In this paper, we extend the cross-language code clone
detection (i.e., cross-language source-source code matching) to
the cross-language binary-source code matching. We illustrate
the motivation of this task using two real-world scenarios, as
shown in Figure 2.

Scenario 1: source-to-binary code matching in vulnerability
detection. As shown in Figure 2 (1), given a vulnerability
source snippet written in C, in which the program accepts a
string from the standard input stream and executes this string
as a command. If the attacker has rights to write to the standard
input stream, he/she can execute arbitrary commands on a target
machine. The essence of this vulnerability is that the program
directly uses the standard input stream as commands to execute,
and this easy-to-implement pattern of backdoor may appear
in existing binary files implemented by other programming
languages. If we can match the vulnerable source code to binary
code directly, we have a chance to find this vulnerability pattern
in existing binary files.

Scenario 2: binary-to-source code matching in copyright
protection. It is very common to introduce open source software
(OSS) libraries written in different programming languages in
software development, while different OSS libraries may use
different open source licenses (e.g, GPL, Apache, BSD, MIT,
etc.). Different licenses vary in details, for example, the GPL
license requires that if a referrer modifies the original codes,
it must also follow the GPL license. As shown in Figure 2
(2), given a binary library file, if we can find which OSS
(or components of it) it may be derived from, we can check
whether it follows the protocol in the original library, which

is very meaningful for copyright protection. In this scenario,
cross-language binary-to-source code matching can play an
important role.

Directly matching a binary file composed of machine
instructions with a source code file requires professional
knowledge and skills and is usually very complicated, so an
end-to-end method to solve this problem is desired.

III. PRELIMINARIES

A. Intermediate Representation (IR)

The Intermediate Representation (IR) is a clearly-defined and
well-formed representation of programs with generally simple
syntax rules, used by a compiler while making transformation
from source to target. Modern compilers first parse the source
code, translate it into IR, and then generate target code from IR.
This additional layer has a bi-directional independent property,
i.e., the IR is independent from both the source code and the
target machine, while keeping the semantics of a program.
Hence, the IR forms the basis of our cross-language matching
method. In this paper, we adopt the LLVM-IR, a specific type
of IR first proposed by the LLVM infrastructure [9]. While
containing the semantics of source code, the LLVM-IR is also
in Static Single Assignment (SSA) form [10], in which any
local variable is assigned exactly only once.

Originally implemented for C and C++, the language-
agnostic design of LLVM has since spawned a wide variety of
front ends (e.g., C#, and Rust). Source code written in common
programming languages can be easily compiled to LLVM-IR,
and binary files can also be decompiled to LLVM-IR through
some tools. We convert both the source code and binary files
into LLVM-IRs, and then process them through an encoder
to obtain the latent vectors. After calculating the similarity
between the vectors, we can detect source-source, source-binary,
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or binary-source clones. In this way, we can achieve a universal
end-to-end approach for code clone detection.

B. Code Embedding

Code embedding, also termed code representation learning,
aims to preserve the semantics of programs into distributed
vectors. It is essential in current deep learning-based program
analysis. To the best of our knowledge, current code embed-
dings fall into four categorizes according to the code features
they represent: token sequence, AST, IR, and code graphs. It
is natural to represent the code based on its textual tokens,
which reflect the lexical information of code. To represent the
structural information of code, several works [11]–[13], [13]–
[15] also propose to represent the AST and code graphs (such as
control flow graph and data flow graph) using structural neural
networks (e.g., TreeLSTM and GGNN). Recently, several
works [16]–[18] propose to represent the low-level information
of code using the IRs.

C. Problem Formulation

Here we formulate the problem of cross-language binary-
source code matching formally. Note that, as an initial
work, in this paper we limit our scope to matching the
cross-language binary code and source code in files. Let
S(lu) = {s(lu)1 , s

(lu)
2 , . . . , s

(lu)
n } denote a set of source code

files that are written in programming language lu, B(lv) =

{b(lv)1 , b
(lv)
2 , . . . , b

(lv)
n } denote a set of binary code files that

are built from the semantic-equivalent programs in S(lu) that
are implemented in a different programming language lv . When
lu and lv denote the same programming language, the studied
task will be reduced into the binary-source matching task that
has been studied in [8]. Given the paired source code files with
their corresponding binary code files, the goal of this paper
is to respectively learn the embeddings of both of them, and
then align these embeddings in a common space. The intuition
is that the embeddings of paired source code and binary code
in ground truth should be similar, while the embeddings of
unpaired source code and binary code should be distinct as
much as possible.

Formally, given a source code file s
(lu)
i and binary code

file b(lv)j , the embeddings of them are denoted as s
(lu)
i and

b
(lv)
i , respectively. We map the embeddings of source code and

binary into a common feature space via φ and Φ, respectively.

S φ→ VS → J(VS , VB)← VB
Φ← B , (1)

where J(·, ·) denotes the similarity function, e.g., cosine
similarity, which is designed to measure the matching degree
of VS and VB, in order to learn the mapping functions.

In this paper, we argue that source code and binary code
are in distinct feature space, we propose to first map them into
a closer feature space of IRs. Generally, we can parse both
source code and binary code into IRs, and then jointly learn
their embeddings based on the IRs. Therefore, the Eq. 1 can
be reformulated as follows:

S parser−→ Sr
φ→ VS → J(VS , VB)← VB

Φ← Br
parser←− B . (2)

Eq. 1 and Eq. 2 show that we can transform the problem
of matching source code and binary code from their original
textual representation to the mid-level IRs.

IV. CROSS-LANGUAGE BINARY-SOURCE CODE MATCHING

In this section, we present XLIR, which is designed for
cross-language binary-source code matching with IRs.

A. An Overview

Figure 3 shows an overview of our proposed XLIR. The
model training phase is composed of the following three
steps: (1) Transforming Source and Binary Code into IRs
(cf. Sec. IV-B). We first parse both the binary code and source
code that are from different programming languages into IRs
via several compiler tools (i.e., LLVM Clang3 and JLang4).
Currently, we can support the C, C++ and Java programming
languages. (2) Transformer-based IR embedding (cf. Sec. IV-C).
To represent the generated IRs, we feed them into a pre-
trained Transformer-based language model (i.e., IR-BERT)
for IR embedding. We pre-train a masked language model on
a large-scale IR corpus, following the CodeBERT [19] and
OSCAR [20], which are pre-trained models on code corpus
and IR corpus, respectively. (3) Model learning (cf. Sec. IV-D).
To correlate the embeddings of paired binary code and source
code, we first map them into a common feature space, and
jointly learn their correlations.

As the model trained, at the code matching phase, the cosine
similarity is applied to measure the semantic similarity between
binary code and source code. The matching score greater than a
pre-defined threshold indicates that the binary code and source
code from cross languages are matched.

B. Transforming Source and Binary Code into IRs

Without loss of generality, we choose C, C++ and Java
as source programming languages in cross-language scenario,
since the parser has greatly developed in these mature procedu-
ral languages. Additionally, we also choose the LLVM-IR as an
intermediate representation, because (1) the LLVM-IR is source-
independent, which yields different programming languages
sharing the same semantics will keep similar IR structure;
(2) the LLVM-IR is also target-independent and translation
from LLVM-IR to any target-dependent assembly code is easy
in practical; and (3) the LLVM-IR is widely recognized by
the community, which can ease the code transformation, e.g.,
decompilation, optimization, and semantics extraction.

For the sake of rigor, in order to avoid leakage of string
information such as function and variable names into the binary
file during compilation, we pass the “-s” parameter to compiler
to strip out all debug information when compiling.

At the stage of training data preparation, we exploit a variety
of tools to transform different program representations into
LLVM-IR. The procedure applies to two major representations
of program: source code and binary code. For source code, we
use LLVM Clang1 to emit LLVM-IR from C and C++, which

3https://clang.llvm.org/
4https://polyglot-compiler.github.io/JLang/
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Figure 3: An overview of our proposed XLIR. In the model training phase (a), we first parse both the binary code and source
code into IRs via several compiler tools. Then we feed the generated IRs into a pre-trained language model (i.e., IR-BERT
based on Transformer for IR embedding (b). We learn the whole network by jointly mapping the embeddings of binary code
and source code in a common space.

is officially supported by LLVM community. We use Jlang4

and Polyglot5 to translate Java into LLVM-IR. For binary code,
we use the RetDec decompiler2 to convert non-obfuscated
binary files into LLVM-IR. Obfuscation is the deliberate act of
creating source or binary code that is difficult to understand, the
semantic information in obfuscated code is considered harder
to extract. However, there is only a limited range of code in
this form.

Note that, LLVM-IR has two different representations
holding exactly the same semantic information. The bitcode
format is intentionally designed for machine processing, e.g.,
code transformation and automatic optimization. The machine
IR (MIR) format is human-readable and has been widely used
in program debugging and analysis. For the sake of efficiency,
we make use of the bitcode format as a universal representation
of IR for code embedding.

C. Transformer-based LLVM-IR Embedding
We adapt Transformer [21] for LLVM-IR embedding. Trans-

former is based on the self-attention mechanism and has
become a popular model for source code embedding. As
shown in Figure 3(b), a Transformer model is composed
of K layers of blocks, which can encode a sequence of
instructions into contextual representation at different levels:
Hk = [hk

1 ,h
k
2 , . . . ,h

k
n], where k denotes the k-th layer. For

each layer, the layer representation Hk is computed by the
k-th layer Transformer block Hk = Transformerk(Hk−1),
k ∈ {1, 2, . . . ,K}.

In each Transformer block, multiple self-attention heads are
used to aggregate the output vectors of the previous layer. A
general attention mechanism can be formulated as the weighted
sum of the value vector V using the query vector Q and the
key vector K:

Att(Q,K,V) = softmax

(
QKT

√
dmodel

)
·V , (3)

where dmodel represents the dimension of each hidden repre-
sentation. For self-attention, Q, K, and V are mappings of

5https://www.cs.cornell.edu/projects/polyglot/

previous hidden representation by different linear functions,
i.e., Q = Hl−1Wl

Q, K = Hl−1Wl
K , and V = Hl−1Wl

V ,
respectively. At last, the encoder produces a final contextual
representation HL = [hL

1 , . . . ,h
L
n ], which is obtained from the

last Transformer block.
Pre-Training of IR-BERT. Following [20], we first pre-train
a masked language model on a large-scale external LLVM-IR
corpus, termed IR-BERT, and then transfer the parameters into
our model. Given a LLVM-IR corpus, each LLVM-IR is first
tokenized into a series of tokens, using Byte Pair Encoding
(BPE [22]). Before pre-training, we first take the concatenation
of two segments as the input, defined as c1 = {w1, w2, . . . , wn}
and c2 = {u1, u2, . . . , um}, where n and m denote the lengths
of two segments, respectively. The two segments are always
connected by a special separator token [SEP]. The first
and last tokens of each sequence are always padded with
a special classification token [CLS] and an ending token
[EOS], respectively. The concatenated sentences are then fed
into a Transformer encoder as input. In the masked language
modeling, the tokens of an input sentence are randomly sampled
and replaced with the special token [MASK]. In practice,
we uniformly select 15% of the input tokens for possible
replacement. Among the selected tokens, 80% are replaced with
[MASK], 10% are unchanged, and the left 10% are randomly
replaced with the selected tokens from vocabulary [23]. Without
loss of generality, we adopt the pre-trained model in [20],
which can be seen as a variant of IR-BERT.

D. Model Learning

We learn XLIR by mapping the embeddings of binary
code and source code into a common space, with a similarity
constraint. The intuition is that if a binary code and a source
code have similar semantics, their embeddings should be close
to each other. Let triplet 〈b, s+, s−〉 denote a training instance,
in which for binary code b, s+ denotes the corresponding source
code in compilation (also termed positive sample or anchor),
s− denotes a negative code snippet that is randomly chosen
from the collection of all source code files. When training
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on the set of 〈b, s+, s−〉 triplets, XLIR predicts the cosine
similarities of both 〈b, s+〉 and 〈b, s−〉 pairs and minimizes
the ranking loss [24] as follows:

L =
∑

〈b,s+,s−〉∈D

max(0, α− sim(b, s+) + sim(b, s−)) , (4)

where D denotes the training dataset, sim denotes the similarity
score between the binary code and source code, and α is a
small constant margin. b, s+ and s− are the embeddings of
b, s+ and s−, respectively. In this paper, we adopt the cosin
similarity function and set α to 0.06 by default.

E. Code Matching

At the inference phase, given a binary code b, as well a set
of source code files S, For each source code file s ∈ S, we
first feed the binary code and source code files into our trained
model and obtain their corresponding embeddings, denoted as
b and s. Then we calculate the matching score between b and
s as follows:

sim(b, s) = cos(b, s) =
bT s

‖b‖‖s‖ , (5)

where b and s are the vectors of binary code and source code,
respectively. If the matching score is larger than a threshold, we
consider the pair of binary code and source code as matched,
otherwise unmached. Generally, 80% is used as the similarity
threshold for code clone detection. In our experiments, unless
otherwise specified, this value is used as default. We also
evaluate the impact of threshold in Section VI.

V. EXPERIMENTAL SETUP

A. Research Questions

We conduct experiments to answer the following research
questions.
• RQ1: Is our proposed XLIR effective in cross-language

binary-source code matching?
• RQ2: What is the effectiveness of our proposed XLIR

in single-language binary-source code matching?
• RQ3: Can our approach with IRs be extended to detect

source-source code functionality clones effectively?
• RQ4: What is the influence of major factors of XLIR?

B. Evaluated Tasks and Dataset

Cross-Language Source-Source Code Matching. This task
aims to detect the source code clones across different pro-
gramming languages, and has been studied previously in [25].
In [25], the authors introduced the CLCDSA dataset6, which is
composed of code snippets across four programming languages
(i.e., C++, C#, Java and Python), collected from two online
judge and contest platforms (i.e., AtCoder7 and Google Code-
Jam8). In this dataset, each programming problem is affiliated
with multiple solutions implemented in different programming
languages. To validate the effectiveness our proposed XLIR

6https://github.com/Kawser-nerd/CLCDSA/
7https://atcoder.jp/
8https://codingcompetitions.withgoogle.com/codejam/

Table I: An overview of the CLCDSA [25] dataset for cross-
language binary-source code matching.

Train Validation Test

AtCoder
C 4,772 1,672 1,743
C++ 4,606 1,605 1,692
Java 4,856 1,706 1,770

CodeJam
C 1,168 409 447
C++ 1,176 410 445
Java 1,105 379 397

Total 17,683 6,181 6,494

on cross-language source-source code matching, we choose C,
C++, and Java as the studied languages. Since our approach
depends on IRs, all the source code files are supposed to be
compiled, we filter out files that are unable to be successfully
compiled, and divide the dataset into training, validation and
test set according to a ratio of 6:2:2. Table I shows the statistics
of filtered dataset used in this paper.
Cross-Language Binary-Source Code Matching. Currently,
there is no available dataset for the evaluation of cross-language
binary-source code matching. To mitigate this gap, we curate
a new dataset based on the CLCDSA dataset, by compiling
the source code in one programming language into binary
code, while keeping the source code in another programming
language unchanged. In particular, we compile each source
file into binary files using different compilers (i.e., GCC and
LLVM Clang), with multiple optimization options (i.e., -O0,
-O1, -O2, and -O3), across multiple platforms (i.e., x86-32,
x86-64, arm-32, and arm-64). Consequently, each source
code file is compiled into 32 different object files. Under the
single-language setting, we conduct experiments mainly on
POJ-104 [26], which is a public dataset composed of about
50,000 programs written in C and C++, we also collected data
from a variety of online judge and contest platforms. In our
dataset, each problem is affiliated with around 500 solutions.
Dataset for Pre-Training. We first pre-train an IR-BERT on
a separate large-scale IR corpus. We adopt the dataset that
has been used in [20], which is composed of eleven real
world popular softwares (i.e., Linux-vmlinux, Linux-modules,
GCC, MPlayer, OpenBLAS, PostgreSQL, Apache, Blender,
ImageMagcick, Tensorflow, Firefox) from GitHub. We can
compile these softwares into LLVM-IRs using LLVM Clang
with -O0 optimization level. Finally, 48,023,781 LLVM-IR
instructions from 855,792 functions are obtained.

C. Baselines

We evaluate our proposed XLIR on two code matching
tasks (i.e., cross-language binary-source code matching and
cross-language source-source code matching). For each task,
the performance of our model is compared XLIR with the
following state-of-the-art baselines.
Cross-Language Binary-Source Code Matching. We extend
the baselines for binary-source code matching, from single-
language setting to cross-language setting.
• BinPro [3] extracts function call graphs (FCGs) for both

binary and source code, and uses a bipartite matching
algorithm (i.e., Hungarian algorithm [27]) to match them.
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Table II: Performance of cross-language binary-source code matching (BinPro and B2SFinder do not support Java, and Java
binary code refers to the binary code compiled from the corresponding LLVM-IR).

C/C++ binary code with Java source code Java binary code with C/C++ source code
Precision Recall F1 Precision Recall F1

BinPro - - - 0.36 0.37 0.36
B2SFinder - - - 0.35 0.41 0.38
XLIR (LSTM) 0.62 0.53 0.57 0.55 0.51 0.53
XLIR (Transformer) 0.73 0.59 0.65 0.68 0.55 0.61

Table III: Performance of single-language C++ binary code to
C++ source code matching on POJ-104 dataset

Precision Recall F1
BinPro 0.38 0.42 0.40
B2SFinder 0.43 0.46 0.44
XLIR (LSTM) 0.67 0.72 0.69
XLIR (Transformer) 0.85 0.86 0.85

• B2SFinder [7] extracts seven features from three per-
spectives (i.e., strings, integers and control-flow) for
both binary and source code, and introduces a weighted
matching algorithm to match them.

• XLIR (LSTM) is a variant of our proposed approach, in
which LSTM [28] is used to encode the IRs.

Cross-Language Source-Source Code Matching. We first
extend our proposed XLIR to the task of cross-language
source-source code matching, and then compare XLIR with
the following baselines.
• LICCA [29] is a tool for detecting source-to-source code

clones across programming languages based on syntactic
and semantic features of code. It has been verified in Java,
C, JavaScript, Modula-2 and Scheme.

• XLIR (LSTM) is a variant of our proposed approach,
in which the LSTM [28] is used to encode the IRs. This
approach has been adapted to the task of cross-language
source-source code matching.

D. Evaluation Metrics

We adopt recall, precision and F1-score for model evalu-
ations, which have been widely used in text matching and
information retrieval [30]. For a query code snippet (source or
binary code), we call the corresponding cloned code snippet
as positive, and the non-cloned code snippet as negative. Let
Tp and Fp be the number of positive clones detected true and
false, and Fn be the number of negative clones detected false,
the precision P and recall R is calculated as follows:

P =
Tp

Tp + Fp
, R =

Tp
Tp + Fn

. (6)

We also use F1 for evaluation, which is defined as the
harmonic mean of Precision and Recall. It can be interpreted
as a trade-off between them. Formally, F1 is defined as follows:

F1 = 2 · P ·R
P +R

. (7)

E. Implementation Details

We implement XLIR with PyTorch 1.9. As mentioned above,
the encoder for LLVM-IR is based on the Transformer. For

Transformer, the settings of each encoder are the same as
BERT [23]. For the masking strategy, we take random 15%
instructions from IR. For these selected instructions, we replace
them with the [MASK] token and random characters with 80%
and 10% probability, and keep them unchanged with 10%
probability. We set the hidden size and word embedding size
to 256. In pre-training phase, we generate a dictionary from
the LLVM-IRs compiled from a large code corpus. When fine-
tuning our model on the clone detection task, unrecognized
characters will be replaced with 〈UNK〉.

We conducted experiments on a Linux server having four
Tesla V100 GPU of 32GB memory. Our model training
procedure is distributed on all four GPUs, and the parameters
are updated via ADM optimizer, with the learning rate of 1e-3
for training. To prevent over-fitting, we use a dropout of 0.4.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. RQ1: Effectiveness of IR for Cross-Language Binary-Source
Code Matching

In order to verify the performance of our proposed model, we
conduct experiments on our curated dataset based on CLCDSA.
Table II shows the performance of binary-source code matching
between binary files and source files written in C/C++ and
Java. From this table, we can see that our algorithm is capable
of detecting cross-language binary-source code clones. In the
task of C/C++ binary to Java source code matching, precision,
recall and F1 are as high as 0.73, 0.59 and 0.65, respectively,
and in the task of matching Java binary and C source code,
they are 0.68, 0.55 and 0.61, respectively. We have noticed
that C/C++ and Java, source code files and binary files are
quite different. Because of these differences, our results are
quite encouraging. The results reveal that although source code
and binary file are written in different programming languages
and in different forms, functionality clone can be detected
after they are converted into LLVM-IR by our approach. We
think this may be attributed to the equivalent conversion of
semantic information when source code files and binary files
are transformed into LLVM-IR.

B. RQ2: Effectiveness of IR for Single-Language Binary-Source
Code Matching

Since the CLCDSA dataset with a total of only about 30,000
source files after screening is relatively small, we extended
the experiment of binary-source clone detection to the single-
language dataset POJ-104 to further verify the performance
of our approach in binary-source code matching. Table III
shows the performance of C++ binary code to C++ source
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Table IV: Performance of cross-language code clone detection.

LICCA XLIR (LSTM) XLIR (Transformer)
Precision Recall F1 Precision Recall F1 Precision Recall F1

C&C++ 0.43 0.37 0.40 0.78 0.65 0.71 0.92 0.86 0.89
C&Java 0.31 0.29 0.30 0.62 0.51 0.56 0.75 0.55 0.63
C++&Java 0.33 0.29 0.31 0.65 0.53 0.58 0.77 0.57 0.66

Table V: Performance of XLIR on cross-language code clone
detection without pre-training.

Precision Recall F1
C&C++ 0.88 0.84 0.86
C&Java 0.71 0.52 0.60
C++&Java 0.72 0.54 0.62

code matching. We can see that our XLIR outperforms all
baselines by large margins, e.g., F1 score of XLIR is higher
than BinPro and B2SFinder by 0.42 and 0.41, respectively.
This shows the effectiveness of our method in binary-source
code matching.

C. RQ3: Extended Evaluation on Cross-Language Source-
Source Code Matching

We conduct code clone detection between C, C++ and Java,
and the results are shown in Table IV. When the similarity
threshold is 80%, no matter our XLIR uses Transformer or
LSTM as the encoder, the performance exceeds LICCA by a
large margin. Specially, XLIR achieves an average precision
of 0.81, an average recall rate of 0.77, and an average F1 score
of 0.73. This shows that our method can effectively detect
cross-language functional clones. We can also see that the
similarity between C and C++ is higher than that of between
C/C++ and Java, because the basic syntax of C and C++ is
very similar.

D. RQ4: Influence of Major Factors

We study the influence of the following major factors on
our approach separately, i.e., pre-training, Transformer encoder,
compilation options, and similarity threshold.
Impact of Pre-Training. To verify the impact of pre-training,
we conduct the experiment of cross-language code clone
detection without pre-training, and the results are shown in
Table V. Compared with the performance with pre-training in
Table IV, we can see the performance of our approach without
pre-training deteriorates by a small but perceptible margin, i.e.,
Precision, Recall, F1 decreased by a an average of 0.04, 0.03
and 0.03, respectively. This shows the obvious effectiveness
of pre-training on external large-scale datasets.
Contribution of the Transformer Encoder. To verify the
effectiveness of Transformer encoder in our approach, we
conduct experiments of cross-language binary-source clone
detection and source-source clone detection using LSTM as
encoder for LLVM-IR embedding instead of Transformer. The
experimental results are shown in Tables II, III, and IV. The
three tables show that our model with Transformer encoder
outperforms that with LSTM encoder in terms of all evaluation
metrics, on all the three tasks. We attribute it to the fact that

Table VI: Performance of code-binary clone detection on POJ-
104.

X86 ARM
Precision Recall F1 Precision Recall F1

gcc

-O0 0.87 0.84 0.85 0.84 0.87 0.85
-O1 0.84 0.86 0.85 0.86 0.88 0.87
-O2 0.89 0.85 0.87 0.83 0.84 0.87
-O3 0.89 0.88 0.88 0.88 0.82 0.85

clang

-O0 0.85 0.86 0.85 0.83 0.87 0.85
-O1 0.83 0.85 0.84 0.81 0.86 0.83
-O2 0.84 0.83 0.83 0.84 0.87 0.85
-O3 0.87 0.82 0.84 0.89 0.82 0.85
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Figure 4: Influence of threshold on Java binary to C++ source
code matching.

LLVM-IRs are always long sequences, while the Transformer
works better on representing them.
Influence of Compilation Options. In order to investigate the
impact of different compilation options on binary-source clone
detection, we carried out an experiment on dataset POJ-104: we
use different compilation options of compilers, platforms and
optimisations to compile POJ-104 into binary files (Linux elf
files) , and then conduct clone detection between the source files
and binary files. The results are shown in Table VI. We can see
that our approach can consistently achieve good performance
for various binary files. In particular, the average of precision,
recall and F1 is about 0.85, and the variances are 0.0006, 0.0004,
0.0002, respectively. These results reveal that our approach is
effective in matching source code and different binary files.
Influence of Threshold. In our experiment, we set 0.8 as the
default threshold value, that is, when the similarity is greater
than or equal to 0.8, the code pair is considered to be cloned.
In order to explore the impact of threshold values on the
final results, we adjust the threshold and carry out a series
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Similarity score : 0.92

import java.util.*;
class Main {

public static void main(String[]
args){

Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
if(a == 12){System.out.println(1);}
else{System.out.println(a + 1);}

}
}

4249928.java

BIN

01001
11001
11000

Binary file of C implementation

...
define i64 @function_400540()
local_unnamed_addr {
dec_label_pc_400540:

%stack_var_-16 = alloca i64, align 8
...
%1 = load i64, i64* %stack_var_-16,

align 8, !insn.addr !21
%2 = trunc i64 %1 to i32, !insn.addr !21
%3 = icmp eq i32 %2,12, !insn.addr !21
br i1 %3, label %dec_label_pc_40058c,

label %dec_label_pc_40056e, !insn.addr !22
...

...
continue19: 

... 
store i32 %call25, i32* %a, !dbg !16
call void @llvm.dbg.declare(metadata

i32* %a, metadata !25,
metadata !18), !dbg !16

%load.a = load i32, i32* %a, !dbg !27
%icmp = icmp eq i32 %load.a,

12, !dbg !27
br i1 %icmp, label %if.true, label

%if.false, !dbg !28
...

Figure 5: A case study to show how Java source code matchs
with C binary code.

of experiments on Java binary to C++ source code matching.
The experimental results are shown in Figure 4. From this
figure, we can see that when the threshold rises from 0.5 to
0.98, the precision increases significantly while the recall drops
quickly. This result is consistent with our intuition: the higher
the similarity, the higher the precision; the lower the similarity,
the higher the recall rate. When the threshold is between 0.7
and 0.8, a balanced point is achieved. In our work, we set the
threshold as 0.8 by default.

VII. DISCUSSION

A. Case Study

Figure 5 shows a real example of how a C binary file
matches a Java source file. The two images in the upper side
of the figure show a C binary file and a Java source file for
the same problem ABC011/A9 in the programming contest
website AtCoder. The problem is: given the input value n, if
n equals to 12, outputs n+ 1, otherwise outputs 1. The two
code snippets in the bottom of Figure 5 are extracted from the
LLVM-IR obtained by disassembling the binary object file and
compiling the LLVM-IR of Java source code, respectively. We
can see that the two LLVM-IR code snippets have equivalent
semantics. Both of them contain a branch, conditioned on
whether the input value n equals to 12 or not. The previous
input instructions and the subsequent output-related instructions
are omitted based on the space limitation. From this example
we can see that an important reason why our method can work
is that the semantic information is equivalently retained after
converting to LLVM-IR.

B. Strength of XLIR

We have identified two advantages of XLIR: (1) Compared
with some previous methods based on mainly extracting code
literals in binary target file and specific characteristics in source
code file, we transform source code file and binary target file

9http://atcoder.jp/contests/abc011/tasks/abc011 1/

into semantically equivalent LLVM-IRs for code matching
task, which can greatly reduce the loss of program semantic
information compared with extracting some manually selected
features. (2) Our method is an end-to-end binary-source and
source-source matching approach, so users do not need to grasp
complicated reverse engineering skills to use this tool. This
can greatly improve the efficiency of code clone detection and
can be useful for software security related tasks.

C. Threats to Validity and Limitations

The first threat is that the source code for clone detection
in our approach must be compilable, and the binary object file
can be disassembled into LLVM-IR. In a few scenarios, there
may be cases where incomplete or grammatically incorrect
code snippets cannot be compiled but still need to be checked.
Furthermore, parsing a binary object file that is seriously
obfuscated and cannot be decompiled has always been a
challenging problem in reverse engineering and is not the
focus of this paper. The tool RetDec we use is capable of
decompiling binary object files to LLVM-IR in most cases.

Another limitation of our method is that it only supports
programming languages that have static LLVM compilers.
Although many programming languages can be easily compiled
by LLVM compilers, such as C/C++, Rust, Java, Ruby, CUDA,
LUA, Objective-C, C#, OpenCL, etc., there are still some
commonly-used programming languages that can not. For
example, Python has only JIT’s LLVM compiler due to the
characteristic of being a dynamic programming language,
that is, Python can only be translated into LLVM-IR during
runtime. However, we believe that more and more programming
languages will support static compilation to LLVM-IR, because
LLVM has great potential in compiler optimization.

VIII. RELATED WORK

A. Deep Learning for Source Code

The last few years have witnessed increasing interests
on applying deep learning for source code modeling, so
as to build intelligent tools to increase the productivity of
software developers. One fundamental task is code embedding,
which can support a variety of downstream tasks, including
code search [31], [32], code summarization [33]–[35], code
completion [36]–[39] and code clone detection [5], [40]–[42].
From our investigation, current approaches mainly represent
source code in four perspectives, i.e., sequential code tokens,
ASTs, code graphs, and IRs. It is natural to simply represent the
semantics of program as a sequence of tokens, like that in NLP.
Current approaches mainly tokenize the program into sequential
tokens by several special separators, e.g., whitespace or Camel
cases (for identifiers like SortList and intArray). To
represent the structured syntactic information inside a program,
one line of work use ASTs in the form of tree or graph
for network feeding, this type of networks including Tree-
CNN [11], Tree-LSTM [12] and GGNN [13]. Furthermore,
another line of work represent the AST by serializing the
structured AST into a list of instructions, so that sequential
learning methods can be used [33], [43]. To add information

9



from different perspective, a program can be translated into
different representations. Augmented ASTs hold more detailed
properties for a node [13], data-flow graphs [15] and control-
flow graphs [14] tend to skeletonize the program by highlighting
execution paths and changing of variables. Recently, some
works resort to represent a program by IR, which is independent
to programming languages and platforms [16]–[18]. Benefited
from the pre-training techniques in processing natural language
tasks [44], Feng et al. [19] pre-trained CodeBERT for the
bimodal of programming language and natural language, which
has shown promising results in various code-related tasks, such
as code search and code summarization. Furthermore, Guo et
al. [15] proposed GraphCodeBERT to advance CodeBERT by
incorporating data-flow information into pre-training.

B. Code Clone Detection

It is a fundamental task to detect similar code (or clone
code) in many software engineering tasks (e.g, code reuse,
code summarization, and bug detection). Code clones can be
roughly categorized into the following types: Type-1, Type-2,
Type-3 and Type-4. CCFinder [45] extracted a series of tokens
from code file and transform it according to several rules
into a regular form for Type-1 and Type-2 clone detection.
NICAD [46] introduced a two-stage approach which first
finds and regulates potential clones to remove noise using
pretty-printing and then enumerate potential clones using
dynamic clustering. There are a variety of methods operation
at different level to represent the syntax and semantic structure
of a program. Jiang et al. [47] proposed Deckard, which
incorporates ASTs into code representation learning use locality
sensitive hashing for efficient clustering. To detect Type-3 clone,
SourcererCC [48] was designed to capture the shared similarity
of tokens among multiple approaches.

Recently, deep neural networks are applied to the task of
code mathing. For example, White et al. [49] proposed DLC,
which takes the lexical and syntactic information of code into
account, and designs Recurrent Neural Networks to represent
them. To better express structured syntactic information of code,
Wei et al. [50] proposed to represent the syntactic information
of code using TreeLSTM over ASTs. Furthermore, Zhang et
al. [40] decomposed the AST into sentence-based abstract
syntax subtrees, and proposed a two-way loop network for
representation. This method has achieved good results in code
matching. Zhao et al. [5] proposed to consider the data flow
and control flow of source code, and proposed a deep learning
framework for code representation. Based on the control-flow
graph of code, Wu et al. [41] introduced a centrality analysis
method from the perspective of social network analysis, which
is efficient and effective in source code matching. Zhang et
al. [40] proposed ASTNN, an AST-based model for code
embedding, which decomposes a big AST into a series of
limited-scale statement trees. ASTNN has achieved promising
performance in code clone detection.

C. Cross-Language Source Code Analysis

With the recent progress in transfer learning, transferring
knowledge across different programming languages has become
a promising research direction. Xia et al. [51] studied the
problem of cross-language bug localization based on language
translation, which focuses on ranking source code files based
on comments written in different natural languages. Chen et
al. [12] proposed a tree-to-tree approach to transform programs
from one language into another [12]. Bui et al. [52] proposed a
bilateral model of two encoders, each of which is for encoding
the abstract syntax of code in one programming language.
Bui et al. [53] proposed to improve program translation
via mining API mappings across programming languages
based on adversarial learning. Nafi et al. [25] proposed an
approach for cross-language source clone matching based on
structured syntactic features and code API documentation. Gu
et al. [54] proposed DeepAM, which can automatically mine
API mappings between two languages from code corpus with
single-language projects. Our paper is the first to study binary-
source code matching across different programming languages.

IX. CONCLUSION AND FUTURE WORK

In this research, we have formulated a new problem of
cross-language binary-source code matching. We also propose
a novel approach, termed XLIR, based on Transformer and
intermediate representations of programs. Comprehensive ex-
periments are conducted on two tasks of cross-language binary-
source code matching, and cross-language source-source code
matching, over a created cross-language dataset. Experimental
results and analysis show that XLIR significantly outperforms
other state-of-the-art models. For the matching of Java binary
code to C source code, when comparing with B2SFinder, XLIR
significantly improves the Recall, Precision, and F1 from 0.41,
0.35 and 0.38 to 0.55, 0.68 and 0.61, respectively.

Due to the challenging nature of the cross-language binary-
source code matching problem, there is still ample room for
enhancing the strength of our XLIR. In our future work, we
will design more effective mechanisms to further improve
the accuracy of code matching. We also plan to extend our
approach to support smaller clone detection granularity, such
as clone detection on a single function or small code snippet.
Artifacts. All the experiments in this paper are integrated into
the open-source toolkit NATURALCC [55]. Our datasets and
source code used in this work are available at https://github.
com/CGCL-codes/naturalcc.
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