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Abstract: Agile product development cycles and re-configurable Industrial Internet of Things (IIoT)
allow more flexible and resilient industrial production systems that can handle a broader range of
challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to
support industrial production systems to be flexible and resilient to respond to changes in real time.
This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in
manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL)
and our experimental analysis showed that the proposed model showed improvements with adaptive
and dynamic decision controls in challenging industrial environments.

Keywords: 5G; Industrial Internet of Things; D2D; M2M; reinforcement learning algorithms

1. Introduction

In recent years, the Industrial Internet of Things (IIoTs) has been fuelling the fourth
industrial revolution (IIoT). From early sensor networks to today’s NB-IoT, LoRaWAN
and LTE Cat M1 [1], IIoT has evolved significantly. Edge Computing [2], with its core
components in networking, computers, storage and applications, can provide a platform
that can extract critical information and reduces transmission stress. The smart IIoT is
designed to encourage users to interact at the edges of the computing network. The IIoT
should be able to sense, calculate, determine and communicate using edge intelligence.
The range of possible IIoT edge intelligence applications is broad [3]. Through semantic
representation, sensor correlation and network-wide AI modelling, IIoT-enabled cognitive
technology can improve network awareness and semantic contextual comprehension.
Cognitive technologies, however, require high-level situational awareness and still offer
challenges to IIoT-enabled edge solutions.

The rapid growth in information science and computing intelligence offers some new
solutions to smart edge IIoT applications [4]. In particular, smart edge IIoT has benefited
from intelligent computing such as deep learning (DL) which learns intelligent behaviour
from available machine data (made available) from the edge devices, such as computers
or industrial controllers[5]. Perception, comprehension, learning, judgement, rationality,
planning, design and resolution are all parts of DL. The DL with IIoT allows the network to
represent, learn and argue. Humans can learn from new data analysis easily, but it is difficult
for machines to quickly adjust their knowledge if the input information changes abruptly.
Cognitive technology aims to automate and mimic human learning functions. DL used by
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the edge gadgets, such as the Nvidia Jetson TX, attempts to simulate human brain operation.
Cognitive technology can extract unstructured data from its underlying peripheries. A
semantic database with concepts, entities and links was built to provide an actual dataset
along with the industrial controller. The machine can abstractly observe the world thanks
to cognitive technology. This is helpful for empirically testing a machine-learning model.
Through the cognitive data sources from the IIoTs, DL enables network services to react
adaptively to external events, just as an individual human would. Subsequently, intelligent
applications that go beyond human-level engagements are also conceivable.

Edge Computing provides computer resources at the edge of the network for im-
plementing machine learning algorithms [6,7]. Cognitive technologies enable context
awareness at the intelligent IIoT edge. According to the current study, cognitive technology
significantly affects user interaction with Edge Computing devices. Cognitive technology
can only make decisions based on predetermined criteria and cannot extend to new knowl-
edge easily. With cognitive technology as a starting point, we investigate how, why, where
and when the cognitive capabilities of the intelligent IoT edge for the bi-physics system can
become available.

In summary, the main contributions of this article are as follows:

• Available machine learning techniques are used to expand the cognitive abilities of the
IIoT spectrum. At the edge of the network, we study the cognitive abilities of devices
that can look at data from the IIoT and make smart decisions.

• The built-in processing power of Edge Computing is used to show how intelligent
IIoTs perform in an environment with considerable network traffics. The core skeleton
of Rim computing was used for this purpose. We examined how machine-learning-
enabled edge technologies affect Intelligent IIoT edge networks.

In this article, deep reinforcement learning is used to demonstrate how IIoT can be
intelligent at the edge. After careful observations of how a reconfigurable production
line makes decisions, the machine operation schedule should be optimized based on how
the production line orders behave. This case study provided innovative ideas for solving
the industrial machinery scheduling problem and moving forward with real-world IIoT
applications with edge intelligence.

This study demonstrates how deep learning can enable an intelligent edge-based IIoT.
By combining cognitive techniques with ML algorithms, models, data and a coordination
mechanism, we can improve the cognitive abilities of smart-edge IIoTs. Dynamic adaptive
planning (DAP) for a production line was considered that can be updated using RL. Ideally,
the production line can learn and reason within the IIoT environments. In the following
sections, we examine related work followed by a discussion of the proposed model in
experimental analysis.

2. Related Work

Siafara et al. [8] said that the manufacturing plants in Industry 4.0 are beginning to
use a variety of distributed Cyber-Physical Systems (CPSs) both cognitively and practically.
It is impossible to keep up with the increasing demands for adaptability, operating speed,
efficiency and resilience with traditional all-in-one systems. It is possible to use SAMBA
to automate the control and supervision of decentralized CPSs. The data collected on
the factory floor were used in this framework, which was related to the Manufacturing
Execution System (MES). As conditions and environments change, a system’s capacity to
respond quickly and intelligently can safeguard its performance.

Li et al. [9] showed that the linear quadratic regulator (LQR) can control systems
with more than one rate with the help of matrix replacements. The authors used three
methods to make better controllers in multi-rate systems: live policy iteration, off-policy
approaches and reinforcement learning. The off-policy approach is changed to a model-free
reinforcement learning process using least squares. The only pieces of information this
method needed were the input and output.
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You et al. [10] showed that once 6G is used, which has higher technical requirements
than 5G, there will be no difference between natural and virtual worlds, creating an
interesting paradigm for edge intelligence research.

Franco et al. [11] proposed that each manufacturer train the model on their end and
then aggregate the models in a central cloud server, which is assembled to reach global
optimization and reduce communication cycles. To model situations with more than one
assignment, the dataset must be divided into subsets with the same number of devices as
assignments. At each local iteration, each device chooses a subset that improves the model.
Our early research showed that the method works best with a training dataset with a wide
range of factories and devices.

Fenza et al. [12] proposed a cognitive system that can use information learned from
past interventions to give targeted suggestions about reducing the amount of time, resources
and scope needed for routine maintenance. The system used formal conceptual models,
incremental learning and ranking algorithms, among other things, to achieve this goal.

Kolchinsky et al. [13] offered a framework that can be applied to any physical system,
whether it is biological or inorganic, because their framework was based on how a system’s
internal dynamics are related to its environment. In what follows, words like “information
value”, “semantic content” and “agency”, which people have known intuitively to be
related to semantic information, are given their formal definitions.

The other key literature studies are summarized in Table 1.

Table 1. Comparison of deep learning models used with IIoT.

Citation Model/Algorithm IoT Application Advantage Remark

Kegyes et al. [14] Reinforcement
learning (RL)

Development of
Industry 4.0
Applications

Describe the
Reinforcement learning
model for industry 4.0

Theoretical approach

Osifekoet al. [15] Convolutional Neural
Networks (CNN), AI

Cognitive Sensing in
Future IoT

Understanding of AI
techniques deployed
for cognitive sensing

Lightweight algorithms
that work well on
nodes with little

resources.

Chen et al. [16]
Deep reinforcement

learning (DRL)
algorithms

IoT applications
including smart grid,

intelligent
transportation systems

Industrial IoT
applications, mobile
crowdsensing and

blockchain-
empowered

IoT.

Need to DRL in IoT
application.

Khan et al. [17] Hybrid Deep
Learning Approach

Securing Industrial
Internet of Things

Against Botnet Attacks

Identifying accurately
multi-variant

sophisticated bot
attacks

Sophisticated risks and
cyber-attacks using
computational IIoTs

and DL-driven
workflows.

Latif et al. [18]

Deep Feedforward
Neural Networks

Restricted Boltzmann
Machines (RBM), Deep
Belief Networks (DBN)

Deep Learning for the
Industrial Internet of

Things (IIoT)
IIoT applications Lightweight Learning

Frameworks.

Cyber Physical System (CPS)

CPS is a building block of digital manufacturing that makes use of computers and
other related technologies, such as Industry 4.0 communication and intelligence, supporting
production to be more efficient and flexible and better for the environment. Smart digital
manufacturing can support companies to be more competitive in the long run. Intelligent
control of CPS allows reconfigurable industrial applications—which can provide dynamic
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and robust solutions—once supported and managed by a machine learning (or deep
learning) decision model.

3. Proposed Methodology
RL Learning Paradigm

The RL learning paradigm assumes that only a certain number of possible states
and actions exist. When a system is already in state x, action y moves it to the next state,
which is another state of x. Real-number vector is often used to describe both x and y. The
environment provides the agent with a reward, represented by R(x, y). This reward tells the
agent that when in state x, it should perform action y. In the Markov Decision Process, also
called MDP, the agent’s goal is to maximize the expected value of cumulative discounted
rewards as they build up over time by taking the right actions. In this study, discounted
payments are used to do two things: (1) get the agent to the goal state as quickly as possible
and (2) ensure that the total amount of money paid out is finite. With the discount factor,
the extent to which a discount will be applied to future prizes can be changed.

X is the set of all possible states and Y is the set of all possible results of using
the suggested approach. Txy(x) represents the probability of moving from one state to
another [19]. R represents the reward function and Q represents the set of all possible
actions. Most of the time, it is up to the policy function to turn state action pairs into real
numbers (R : XYR), whereas the reward function R is in charge of doing the exact opposite
(R : XYR). In some programs, you can get a reward even if you did not do what you were
supposed to (R : XR). The value function V is the expected sum of discounted rewards
and is defined by a particular initial state and a policy that has already been decided. The
equation for Y (refer to Equation (7)) shows the procedures that are carried out and they
are carried out according to the rules that are in place when the system is in its current
operating state (x, y). The job of the value function is to give each state a value that is
specific to that state. The concept of a value function is what the RL paradigm proposed.
Determining the policy is sometimes more complex than calculating the value function.
Therefore, the value function provided by RL is used to determine the policy function. In
this section, we discuss one of these value functions.

Vπ(x) = E
(

R(x0) + γR(x0) + γ2R(x0) + . . . |x0 = x, π
)

(1)

As shown in Equation (1), the discount factor [0, 1] makes the present reward more
important while making the future reward less critical. From the point of view of RL, the
end goal is to come up with the best policy that will help earn the most discount rewards
possible. When the best policies are implemented, the value functions that reach their full
potential are called optimal value functions.

V∗(x) = max
π

Vπ(x) (2)

The Bellman equation for the optimal value function is given by Equation (2). Ac-
cording to this formula, state p′s immediate reward R(x) and the discounted maximum
predicted rewards from state p′s next state p′s cumulative discounted rewards are the sum
of these two sums. This is an example of a stochastic process in which the next state can
only be reached by chance. We can find the value of a state by using the Bellman Equation
and moving forward in time one prediction step at a time. Using these numbers, we can
find which situations are best. When we use a Markov Reward Process, on the other hand,
the way we move from one state to the next is completely random. We will need to take
steps and switch to a Markov Decision Process to reach this goal. Ultimately, decisions can
only be made based on past decisions. Because of this, the player can choose both the next
state to visit and the prize that comes with it. In a stochastic system, the expected result or
outcome might not always happen. Now, both the reward function and the likelihood of
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the next transition depend on the one that just happened with the policy determining the
starting status. This means that the best decisions can be made in any future situation.

V∗(x) = R(x) + γ max
yεQ

Xxy

(
x
′)

V∗(x
′
) (3)

A non-deterministic system has no probabilities at all, except for the chance that it will
change from one state to another (for which the probability is 1). The Bellman’s equation
in Equation (1) describes an ideal policy in a deterministic setting. This type of policy is
optimal because it maximizes the future discounted rewards. According to Equation (3),
the best thing to do in state pi is to give you the most expected discounted cumulative
rewards in the next state p.

V∗(x) = R(x) + γ max
yεQ

V∗(x
′
) (4)

In the abbreviated form of Bellman’s (1957) equations in Equation (3), the Value Itera-
tion and Policy Iteration algorithms were employed. For these algorithms to operate, the
state and action space in MDP must be finite. Value function states are set to 0 in the initial
stage of the process for iterating over values. For each state, the value function is found by
retracing the steps in Equation (2)’s Bellman’s Equation. A value function can be updated
in two ways. A value function can be updated in various synchronous and asynchronous
ways. Each state’s new value function is computed first in the synchronous technique of
updating. There are no additional functions left to run. If value functions are updated
asynchronously, new values are applied immediately after the old ones are updated. New
value functions are employed in Equation (4) to determine the optimum course of action.
The algorithms for the value iteration method are shown in Equations (5)–(7). First, a
random collection of policies is generated in a policy-iteration process. After determining
the policy’s value function, the policy is tested and evaluated.

π∗(x) = arg max
yεY

∑
x′ εX

Xxy

(
x
′)

V∗(x
′
) (5)

π∗(x) = arg max
yεY

V∗(x
′
) (6)

This category is for RL algorithms that use value iteration to solve problems without
a model. It is possible to update the Q-function online, by detecting the output of the
following state change: As a result, an update to the Q-function can be performed as shown
in the following example: xk+1, yk = 1

Yk+1(xk, yk) = Yk(xk, yk) + α[rk+1 + γ max
y′

Yk

(
xk+1, y

′)−Yk(xk, yk) (7)

Equation (7) states that rk+1 is the reward or return obtained by the intelligent rein-
forcement learning agent. This reward or return has a discount factor and learning rate.
The dynamic range of the learning agent was between 0 and 1. When both the state space
and action space are broken up into a finite number of steps, the Q function converges to its
best value, Q, after many iterations. Equation (8) is used to determine the policy function
based on the Q-function.

π∗(x) = arg max
yεY

V∗(x
′
) (8)

In this type of RL, agents take action by either using their action space or looking
into it. The word “exploitation” refers to using the knowledge and skills you have gained
from your past experiences. When we talk about “exploration”, on the other hand, we
mean the process of doing something that has never been done before. Exploration and
extraction will always cost money in one way or another. The “exploration vs exploitation
conundrum” is a well known idea in the field of learning and development that has to do
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with the real world. It was called the “soft-max action selection approach” and it worked
well to solve the “exploration-exploitation conundrum” .

4. ML-Enabled Framework of Edge Intelligent IIoT

Utilizing cognitive IIoT networking technologies such as perceptual control, network
communications and information technology, it is feasible to establish information links
between physical and virtual worlds.

Edge intelligent IIoT and DL techniques use state-of-the-art production, network
cooperation, customization and extension in service offerings. The perception, transmission
and application layers of the DL-enabled IIoT framework are illustrated in Figure 1.

Figure 1. The ML-enabled framework of cognitive IIoT.

4.1. Perceptual Layer

During the life cycle of an industrial process, raw data can be collected through
sensors or radio frequency identification. The perceptive layer serves as the data source and
foundation for an intelligent plant to achieve its maximum potential use. In order to collect
data in the perceptual layer, we use a Programmable Logic Controller (PLC) as well as a
monitoring system and a distributed monitoring system. Therefore, it is possible to link
the physical form of the field equipment with its quality (e.g., an industrial robot). Edge
Computing is utilized to facilitate the transition from a centralized control model to one that
is dispersed to solve this issue. RESTful web nodes can provide application programming
interfaces (APIs) for field devices if they use RESTful web services (Representative State
Transfer). Utilizing movable sensor nodes is one method that can be utilized to improve
the mobility of the perceptual stratum [10].

4.2. Transmission Layer

The transmission level incorporates industrial Ethernet, a technology for wireless
communications that is used in the short term and a vast network that uses very little power.
NB-IoT, LoRaWAN, LTE CAT M1 and cellular 5G are technologies currently used as the
standard transmission layer technologies. Regarding applications in the industrial sector,
the Internet of Things (IoT) has always met stringent criteria, such as high dependability
with low power consumption and high levels of security. On the other hand, sample transfer
can be required if a large amount of the raw data is lost. Because of these discoveries,
an intelligent IIoT aircraft must include a cognitive science-based and knowledge-based
aircraft. Installing Raspberry Pi-based Raspberry edge nodes on a solid foundation is made
possible by intelligent IoT-enhanced edge services and applications. Cognitive models are
used to describe data related to the IIoT in terms of its cognitive standards and needs. This
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new paradigm can potentially eliminate data ambiguity caused by numerous protocols,
allowing for semantic data collection.

4.3. Perceptual Layer

The IIoT data were analyzed, computed and gathered in the application layer. Op-
timization: The development of intelligent apps relies heavily on DL techniques in the
IIoT. A.I. models may be better built and validated using the DL theory, which relies on
simple network resources. The need for a precise representation of a single cognitive
technology has also been addressed. DL approaches are well supported in intelligent
IoT applications (e.g., pattern identification, precise modeling, information processing,
thinking and decision-making). A realistic resource planning approach for IIoT services
can be achieved through intelligent applications. In connection with Pattern Identification
(PI) and Precise Modelling (PM) information Processing (IP), we arrived at the Thinking
and Decision-Making Process (DMP) that required the following attributes:

The interactive functions of influence (F(ki)) have described elements of personaliza-
tion and D.M.P. has been studied based on these hypotheses and the decision-maker model
shown in Figure 2.

Figure 2. Decision-making process.

Concerning the decision-making process, a close examination of the correlations
between the functions of degradation (I(R.I.)) and the rapid state was also completed.

In the next section, we attempt to formulate human behavior attributes into mathemat-
ical formulas utilizing artificial states: Two functions are used to formulate the concepts;
function F is a polynomial function of one or several variables. The functions I are also
polynomial. We utilized a two-dimensional polynomial with varying degrees of complexity
and variable seeding. There are several ways to represent the whole of the processes. The
polynomial function, denoted by the letter F, is one that is dependent on one or more
variables. The polynomial function is also used to represent I. Assuming that each variable
in personalization and instantaneous state is independent, the functional relationships of
F(kn) and I(rm) are expressed by the following attributes.

k1 = Reality
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k2 = knowledge

k3 = Relationtotime

k4 = Expensiveness

k5 = Ego

k6 = Creativity

k7 = Risk

k8 = AnxietyLevel

k9 = Authorization

Rapid state attributes are as follows:

r1 = Fatigue

r2 = Integration

r3 = Sleepdeprivation

r4 = Tiredness

r5 = Morality

r6 = Motivation

Using the above attributes, the equation can be formulated for each state as follows;
Irrational Behavior State:

D1 = F(k1,k2,k5,k8) + I(r1,r5) (9)

Observation of what we want to state:

D2 = F(k1,k2,k3,k4,k7,k9) + I(r1,r2,r5) (10)

Possessions State:

D3 = F(k1,k2,k3,k4,k7,k8,k9) + I(r2,r3,r4,r5) (11)

Losing sight of our Main Goal state:

D4 = F(k1,k2,k3,k5,k7,k8) + I(r2,r4,r5) (12)

Expectations from our mindfulness state:

D5 = F(k3,k4,k5,k7,k9) + I(r2,r4,r5) (13)

Performance state:
D6 = F(k3,k4,k7,k8) + I(r1,r4,r5) (14)

Untrustworthy state:
D7 = F(k1,k2,k3,k8) + I(r2,r4) (15)

Natural state:
D8 = F(k3,k4,k7,k8) + I(r4,r5) (16)

No cost state:
D9 = F(k5,k7,k8) + I(r1,r3,) (17)
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5. ML Methods for Improving the Cognitive Ability of Edge Intelligent IIoT

There is a terminal for every step of industrial development in the IIoT array of termi-
nals. Mobile communication terminals, all-in-one computer terminals and environmentally
sensitive terminals are a few options available today.

The Intelligent IIoT connects low-cost sensors and smart distributed terminals to
modern computers by making these devices more popular. Edge Smart IIoT can transport
cloud services with low latency, high bandwidth and low jitter, as illustrated in Figure 3.
We may be able to detect changes in industrial circumstances if we ensure that the data
we collect makes sense. The intelligent IIoT border’s intelligent Deep Learning (ML)
approaches make the entire IIoT system integrated, easy to comprehend and complete.

Figure 3. ML-enabled network optimization method.

Machine learning algorithms are essential tools that may improve decision-making
precision in real-time industrial data processing and offline training. Intelligent IIoT
applications are the basis upon which a robust machine-learning model can be constructed.
It is essential to gain a deep understanding of the algorithms behind machine learning.
Deep learning (DL) is one of the most common methods, along with improved study and
profound enhancements.

It is possible to teach a machine how to represent data through a process called machine
learning. The development of a neural network in DL allows the study and comprehension
of the activity that occurs in the human brain [20]. When it comes to determining functions
and fitting models, DL offers many benefits that are difficult to overcome. Mathematical
models can easily handle large datasets owing to their inherent flexibilities. The value of
a precise Smart IIoT model cannot be overstated. RL is an interactive decision-making
learning system. RL is a more alluring model for learning because it is more in line with
human behavior and psychology than other learning models. It can map outputs that are
dependent on inputs that can be either a single input or multiple inputs simultaneously
(e.g., the Markov Decision Process). RL was a revolutionary method to achieve remarkably
accurate results in allocating IIoT content-centered services. It is possible to use RL to
alter the status of the environment concerning the activities that can be carried out in the
condition that is currently present. Learning occurs through observing and comparing
different pairs of operational states in their respective environments (or creating a state–
operation pairs table). It is utilized to calculate monetary incentives for state–operating
partnership programs. In order to accomplish the desired result for the environment, the
most well known activity is selected.
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As a result of the presence of DL, the player is no longer confined to a small region,
which results in increased levels of comfort and mobility. As a result, deep reinforced
learning (DRL) is most likely to be utilized in an IIoT scenario that involves multiple
dimensions and numerous components. Mao et al. [21] established DRL to address the
challenges caused by global cluster planning. During the experimental phase of the project,
dynamic adaptive routes for reconfigurable DRL lines were put through their paces.

5.1. Data-Driven Learning and Reasoning

As the amount of IIoT data increases, so does the need for more advanced data
mining techniques [22]. DL is able to better utilize large volumes of data than the previous
methods. The typical IoT technologies utilized in intelligent IIoT applications can only
partially represent industrial datasets. Instead of relying on specialized knowledge, DL
uses data that accurately portrays the underlying problem. Consequently, the mathematical
model is more detailed than expert systems. Most IIoT ML systems operate in two steps:
learning and reasoning. The proposed model weights and partial bias were both built using
data from the training sets. The proposed model was evaluated using a suitable method.
In order to generate an evidence-based forecast, the reasoning is the process of gathering
information and spotting occurrences. As a general rule, models are judged on the basis of
the accuracy of their reasoning. The DL model design approach is schematically illustrated
in Figure 4. Through extensive data training on the verification set, a candidate model
with an excellent match was selected and avoided in the cross-validation. As a result, the
model’s ability to generalize was enhanced. In the actual world, too, prior knowledge
is necessary.

Figure 4. Flow chart of the proposed approach.

Data sets generated by Cognitive IIoT can be utilized to make intelligent inferences,
predictions and decisions when external variable change. Tagging, semantic tagging
and abstract functionality are some of the cognitive IIoT network transfer functions that
can be used. Typical IIoT applications can benefit from online and offline training (e.g.,
active operation and maintenance). Data-driven reasoning and prediction create intelligent
decisions based on learning principles. Predictive testing and enhanced data modeling can
now be achieved by moving ordinary Industrial Internet of Things (IIoT) sensors closer
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to the edge. In order to reduce environmental turbulence, application models may gather
data at the network edge and then refine their models.

5.2. Coordination with Cognitive Methods

The development of intelligent capabilities for the Internet of Things (IoT) can be facil-
itated through machine learning and cognitive processes. Utilizing semantic perception
technology allows for automatic search, localization and access to sensitive equipment (e.g.,
ontology). Semantic technology makes it feasible to recreate real-world items and correctly
recognize electronic devices. It is possible to engage with intelligent edge IIoT sources or
cooperate with them by using cognitive techniques based on semantics. Intelligent devices
can be modeled more efficiently using logical, semantic and computational modelling
methodologies. The production equipment used by the IoT has been simplified because
of its own decisions to experience the world. However, it is very challenging for them to
think outside of the parameters they have been given. Within the cognitive sphere, the
author of the codes holds the final say. It is necessary to have a deep understanding of the
surrounding environment and a significant amount of free time to successfully perform the
resource management task [23]. An insightful study of data from the IIoT indicates that
machine learning is unsuccessful. Deep Learning techniques, when combined with cogni-
tive approaches, have the potential to build accurate semantic analysis models. This model
can carry out autonomous ideas and behaviours that affect their surrounding environment.
It is much simpler for Deep Learning to comprehend the perceptual environment when
employing cognitive semanticization tactics. The gathering and modification of sensory
inputs, idea identification and problem finding are the three main components of cognitive
techniques known as information processing. Cognitive coping skills can be highly ben-
eficial when confronted [24] with information sources that are inconsistent, erroneous or
otherwise difficult to understand. In machine learning, abstraction is an essential concept.
In the end, it boiled down to the following:

1. Gaining a new perspective on cognition
2. Abstraction of the underlying information
3. Dynamic human programming

Because the vast majority of IIoT data are stored in a time series, more advanced
machine learning algorithms may be able to generate predictions by drawing on previously
collected information (e.g., predictive maintenance of equipment). CAS-IIoT-RL can be
utilized in dynamically adaptive scheduling, adjusting system parameters and optimizing
measures, such as removing the network status from the IIoT. The CAS-IIoT-RL technique
offers large-scale IIoT monitoring because it does not rely on a sample node or specialized
field knowledge. An accurate machine learning model is essential to construct an intelli-
gent service for edge IIoT. It is challenging to obtain realistic test sets closer to the virtual
environment of an IIoT network. It may be simpler to get around the obstacles an unautho-
rized machine learning model presents. Learning that is embedded in machines employs
models that are more specific in order to interact with domain experts. The next subsection
examines the planning that is Dynamic and Adaptive for a reconfigurable production line.

Because the market demands customization of several products, intelligent organiza-
tions frequently need to respond quickly to changes in the orders they receive. In order
to produce diverse products using a reconfigurable production line, a DAP is required for
the processing process along that line. Currently, four grasping robots, one packing robot
and one stock robot are operating on our prototype line. A method for describing anything
is to use a test scenario. Orders for candies can be placed on the Internet. Depending
on the tastes of individual customers, confections can be purchased in various forms and
dimensions. Because each robot receives a unique candy flavor, the production line needs
to adjust the path that the candy takes to be packaged.

We know that a candy packaging line features typical multi-packing characteristics.
These characteristics can be observed for a variety of sizes. It is not easy to schedule a candy
packaging line because there are frequent shifts in the order of importance of different
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tasks. This is because the production process for many goods can be customized. Essential
supplies are typically in short supply, but many categories of material stock are currently
abundant. CAS-IIoT-RL is a clever method that combines the sensitive nature of DL with
the decisiveness of RL in order to get optimal results. Depending on how the conditions of
the packaging line are perceived, a CAS-IIoT-RL model achieves the aim with the maximum
amount of incentives possible. This learning aimed to develop a more effective strategy for
context-based ML planning.

5.3. CAS-IIoT-RL Model for Dynamic Adaptive Planning

Figure 4 shows the RL model that takes into account the environment. The order
data, material inventories and workload of one engine were considered, taking the model’s
current state into account. The inputs showed different changes that occurred in the
environment. The output of dynamic planning for CAS-IIoT-RL is an adaptable production
line that is used as an input for dynamic adaptive planning. When determining the value
of our solution, we examined several factors, such as shorter total completion times, less
energy use and better use of equipment. We used utility value analysis to find a strategy
that would allow us to accurately and precisely change the CAS-IIoT-RL model. When
a decision was made regarding where the road would go, the intelligent agent changed
how the candy packing line worked. Even though the status of the packing line and the
intelligent agent’s utility value remained the same, the RL structure for the packing line
maintained order quantity decisions and planned decisions separately. CAS-IIoT-RL was
used to estimate constant spaces and these qualities were considered. A condensed version
of high monitoring data, a condensed version of high-dimensional monitoring data, was
made so the packaging process could be recreated. Because CAS-IIoT-RL model training is
difficult, a CAS-IIoT-RL context-sensitive model was developed for Raspberry Pi. Order
information, current stock level and amount of work done by the unit are three standard
inputs for edge intelligent IIoT. Rewards were provided based on how long it took to
finish, how much energy it used and how well it was used. These factors were used by
the cognitive agents [25–28] in our previous work to determine the location of the product
line. The packing line with sensors always acts as the “intelligent actor”. With the help of
Edge Intelligent IIoT, we were able to find data that would make it possible to focus on the
workplace. Massive data sets from production clouds were used to train the CAS-IIoT-RL
model offline. The model was improved by the new data we obtained and the things we
learned from research on the Internet.

6. Experimental Results

We tested both ML and Cognitive Adaptive Systems for IIoTs using the Reinforcement
algorithm (CAS-IIoT-RL) adaptive planning on the platform for the prototype. We acted
like consumers by simulating their behavior by placing orders on the customer side of
the production chain. We found that the increase in the order amount caused CAS-IIoT-
RL planning to have a larger effect on the production line. Figure 3 shows that we took
separate measurements to determine how long it took to finish an order, how much energy
the production line used and how often the equipment was used. The CAS-IIoT-RL is a
the Static Algorithm [29]. When the order size was small, it took much work to tell the
difference between the three stages. Figures 5 and 6 show that when the number of orders
was increased to 1900, the static system and CAS-IIoT-RL mechanism worked better than
the centralized scheduling system. This was true in terms of both the amount of time and
power used. The CAS-IIoT-RL mechanism improved as the number of orders increased.
Figure 7 shows how the production line’s equipment [29] uses ratio changes over time.

In IIoT applications, many events require real-time decision processing. These events
are; however, often highly complex and sparse, lacking information for decisions on many
occasions. DL/ML can support such decision processing. In this experimental analysis,
each event occurrence was added to one of the data sets. Among the collected data,
70 percent of event-occurrence data were used for training the DL/ML models, 15 percent
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for verification and 15 percent for testing. Once the ML/DL model error output was
acceptably small, each ML/DL model was compared for its overall performance as part of
the IIoT automation applications. Figures 5–7 show:

• The amount of time it takes to complete the task.
• The amount of energy that is used.
• The amount of variation in the amount of equipment that is used along the manufac-

turing line.

Figures 5–7 indicate that as the number of tasks increased, the proposed CAS-IIOT-RL
showed less time, energy and utility variations compared to the other comparable models.

Figure 5. Evaluation of time (seconds) required to complete the task.

Figure 6. Evaluation of energy required to complete the task.

When utilizing the ML approach, carrying out the order before anything else was
common practice. The DL mechanism analyzed how long it would take to complete the task
and how effectively various production lines and pieces of machinery collaborated. CAS-
IIoT-RL has the cognitive capacity to consider additional factors, such as order behavior,
stock and strain placed on a single machine. Because of this, it is at the forefront of
intelligent IIoT. It was crucial to look at the machinery’s condition, how it was utilized and
how much of it was in stock when determining whether it was functioning. In the end,
CAS-IIoT-RL gained new knowledge regarding the operation of the production chain. The
CAS-IIoT-RL mechanism, which is CAS-IIoT-RL, has made significant progress due to the
creation of the Deep Learning model.
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Figure 7. Evaluation of equipment variation used along the manufacturing line.

7. Conclusions

This paper investigated the application of computer-assisted edge cloud strategies to
optimization planning. Combining historical scheduling information with cloud server
information allowed the optimization of the future performance of the intelligent edge
IIoT. The cognitive knowledge provided by the edge IIoT enabled the observation of
diverse industrial environments. We provided DL-based optimization methods that assist
in strengthening the cognitive capability of the IIoT intelligent edge as the network services
became sensitive to data. In order to conduct a context-aware and exploratory test of the
multi-product customization production line, DAP based on DRL was employed. The
complex problem of juggling several duties was addressed. The experimental outcomes
showed that the proposed CAS IIoT-RL model required less time, energy and utility
variations compared to the other comparable models (refer to Figures 5–8).

Cognitive IoT was able to make use of the one-of-a-kind characteristics of social
networks to extract the most value possible from a network and ensure that it functions
to its full potential. In this paper, we demonstrated a socially aware, enhanced D2D
communication network model for the cognitive Internet of Things (IoT). This model made
use of information pertaining to social orientation. This model considered the fact that
various Internet of Things devices had varying requirements for the quality-of-service
(QoS) that they required, ranging from ultra-reliable and low-latency communications to a
minimum data rate. In order to accomplish this, we presented the optimization problem
as a multi-agent reinforcement learning formulation and offered a new coordinated multi-
agent deep reinforcement learning-based resource management approach to optimize the
combined radio block assignment and transmission power control strategy. This is done by
describing the optimization problem as a multi-agent reinforcement learning formulation.

Transferrable DL models are yet to reach a level of maturity that allows them to
satisfy the requirements of demanding industrial applications. More data are essential for
developing intelligent edge applications for IIoTs. This paper investigated the possibilities
presented by integrated intelligent IIoT cognitive technologies as its primary objective. The
planning strategy for Edge Computing and cloud computing can be improved. In order to
better the process of future development, data from the prior timing are integrated with
data from the cloud server.
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Figure 8. Comparison of ML, DL and CAS IIoT-RL.

Cognitive Adaptive Systems for the IIoTs using reinforcement algorithms should
address IoT data, security and system vulnerabilities appropriately. Even small security
improvements would greatly encourage service adoption of IIoT-driven edge intelligence.
We can achieve pervasive connectivity by extending IIoT combined with smart cloud
service and security models.
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