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Abstract: Determining the optimal feature set is a challenging problem, especially in an unsupervised
domain. To mitigate the same, this paper presents a new unsupervised feature selection method,
termed as densest feature graph augmentation with disjoint feature clusters. The proposed method
works in two phases. The first phase focuses on finding the maximally non-redundant feature subset
and disjoint features are added to the feature set in the second phase. To experimentally validate,
the efficiency of the proposed method has been compared against five existing unsupervised feature
selection methods on five UCI datasets in terms of three performance criteria, namely clustering
accuracy, normalized mutual information, and classification accuracy. The experimental analyses
have shown that the proposed method outperforms the considered methods.

Keywords: unsupervised feature selection; densest subgraph; clustering

1. Introduction

Over the past two decades, the pace at which humanity has been producing data is
increasing continuously [1]. The improvement in data acquisition methods has inevitably
led to the availability of high dimensional datasets, especially in applications belonging to
domains like pattern recognition, data mining, and computer vision. High dimensional
data, not only leads to an increase in execution time and memory requirements it also
decreases the performance and restricts the applicability of machine learning methods due
to the curse of dimensionality [2,3]. To mitigate this, various methods exist for reducing
features, which can be broadly categorized into two approaches, i.e., feature extraction and
feature selection. In feature extraction, the feature set is transformed into a new feature
set with lower dimensions. On the contrary, feature selection works on the approach of
selecting a subset of features from the original feature set by eliminating redundant or
irrelevant features [3]. Moreover, the feature selection approach benefits in retaining the
original features of the data, which is advantageous in explaining the model.

In general, feature selection is a combinatorial optimization problem [4] that has
facilitated various research fields such as data comprehension and visualization [5], DNA
microarray analysis [6], text classification [7], and image annotation [8]. The existing
feature selection methods can be either supervised [9–11] or unsupervised [12,13]. In
supervised feature selection, class labels are known beforehand and are part of the context
while predicting the label for unlabeled data points. While unsupervised feature selection
has no such information at any stage of the feature selection process [14]. Moreover,
other categorizations of feature selection methods could be wrapper methods, embedded
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methods, and filter methods [15]. Both wrapper and embedded methods are classifier-
dependent and may lead to overfitting, while filter methods are classifier-independent and
therefore have better generalization capability [16].

In filter methods, the unsupervised approach to performing feature selection is to rank
the features [17–24]. Rather than automatically selecting a subset of features, this approach
provides the flexibility of choosing a number of highest-ranked features that fit within
the memory constraints of the system. However, there is no way of knowing the exact
number of features in the optimal feature subset other than trial and error. On selecting a
higher number of optimal features, the method may add redundant or irrelevant features,
which leads to an increase in computational requirements and noise, respectively. On the
other hand, by selecting a lower number of optimal features, the method may miss out on
relevant or essential features for the complete representation of the data.

To determine the same, different graph approaches have been proposed for feature
selection [25–37]. Das et al. [30] used Feature Association Map to present a graph-based
hybrid feature selection method. While Kumar et al. [34] employed correlation exponential
in the graph-based feature selection method. Lim et al. [18] presented a feature-dependency-
based unsupervised feature selection (DUFS) method that uses pairwise dependency of the
features to perform feature selection. Furthermore, Peralta et al. [35] proposed an unsuper-
vised feature selection method that is robust and scalable in performing feature reduction.
The presented method uses dissimilarity measures along with clustering algorithms [37]
and is tested on a cell imaging dataset. Moreover, Das et al. [36] proposed a feature selection
method by using a bi-objective genetic algorithm with ensemble classifiers. He et al. [26]
employed the Laplacian score for feature selection (LSFS) wherein the power of locality
preservation of a feature is used as a basis for ranking. Multi-cluster feature selection
(MCFS), proposed by Cai et al. [19], is another popular method that ranks features accord-
ing to their ability to preserve the multi-cluster structure. Both LSFS and MCFS are often
considered baseline methods. Goswami et al. [33] devised a feature selection technique that
considers the variability score of the feature to measure the feature’s importance. Recently,
Mandal et al. [17] presented a maximally non-redundant feature selection (MNFS) method
in which features and their pairwise mutual information compression index (MICI [27])
values are used as the nodes and corresponding edge weights of a graph. The densest sub-
graph of the constructed graph is identified, and the corresponding features are selected
as the maximally non-redundant subset. Yan et al. [31] and Saxena et al. [38] presented
an unsupervised feature selection method that returns the appropriate size of the feature
subset. Bhadra et al. [32] employed a floating forward-backward search on the densest
subgraph. Similarly, Bandyopadhyay et al. [12] proposed a variation of MNFS by clustering
around the features of the densest sub-graph and termed it as the densest subgraph finding
with the feature clustering (DSFFC) method. However, by providing a minimum number
of features, there is a possibility of adding irrelevant features to the selected feature set.

Therefore, the paper presents a novel unsupervised feature selection method. The
proposed method consists of two phases; the first phase is the formation of the densest
feature subgraph using mutual information for feature selection and the second phase
involves dynamic clustering of features using shared nearest neighbors as the criteria. The
cluster representatives that are mutually exclusive to the feature subgraph are added to the
selected set of features. To experimentally evaluate the proposed method, five standard
UCI datasets have been considered and compared against five existing feature selection
methods in terms of two performance parameters, namely ACC and MCC.

The organization of the remaining paper is as follows. In Section 2, related work is
briefed along with the preliminary concepts. The proposed method is discussed in Section 3.
Section 4 presents the experimental setup followed by the performance analysis of the
proposed method in Section 5. Finally, the conclusion is drawn in Section 6.
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2. Preliminaries
2.1. Maximal Information Compression Index (MICI)

The maximal information compression index (MICI) is a dissimilarity measure defined
by Mitra et al. [27]. Given that Σ is the covariance matrix between two random variables
x and y, the MICI value (λ2(x,y)) is defined as the smallest Eigenvalue of Σ and can be
calculated by Equation (1).

2λ2(x, y)= var(x) + var(y)−
√
(var(x) + var(y))2 − 4var(x)var(y)(1− ρ(x, y))2 (1)

where var(x) is the variance of the random variable x, var(y) is the variance of the random
variable y and ρ(x, y) is the correlation between the random variables x and y.

2.2. Graph Density

Given a graph G(V,E,W), the average density (d) of the graph can be calculated using
Equation (2).

d(G) =
∑i, j ∈V Wi, j
|V|(|V|−1)

2

(2)

2.3. Edge-Weighted Degree

Given a graph G(V,E,W), the edge-weighted degree (δ) of a vertex i ∈ V can be
calculated by Equation (3).

δ(G, i) =
∑ j ∈V, j 6= i Wi, j

|V| − 1
(3)

The mean edge weighted degree of the graph can be calculated using Equation (4).

δmean(G) =
∑ i ∈V δ(G, i)

|V| (4)

As a fully connected graph is used in the proposed method and edge weights do
not change, a subgraph G’ can be uniquely identified by its corresponding vertex set
V’. Therefore, δ(V’), δmean(V’), and d(V’) are defined as equivalent to δ(G’), δmean(G’), and
d(G’), respectively.

2.4. Shared Nearest Neighbors

The shared nearest neighbors (N) represent the average number of features per cluster.
To compute the same, the total number of features is divided by the number of features
in the resultant feature set (S), if S is the ideal feature subset. Equation (5) defines the
mathematical formulation of shared nearest neighbors (N).

N=
Total number o f f eatures

Number o f f eatures in resultant f eatures
(5)

2.5. Nearest Neighbor Threshold Factor (β)

In the proposed method, β is the threshold parameter that limits the number of shared
nearest neighbors between two features (‘a’ and ‘b’) for forming a cluster. Formally, this
condition is defined by relation R which is defined in Equation (6) for two features ‘a’
and ‘b’.

aRb => a ∈ NL(b)∧ b ∈ NL(a) (6)

where, NL(a) and NL(b) have N ∗β neighbors in common and NL(a) depicts the list of N
nearest neighbors for feature ‘a’.

The lower value of β makes feature clusters merge in the second phase of the proposed
approach, which reduces the chance of considering the redundant features. On the contrary,
the higher value of β reduces the chance of missing the unique context of features in the
second phase of the proposed method. For experiments, the β parameter is set as 0.99 to
promote loose clustering of features.
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3. Proposed Method

This paper presents a novel method for the unsupervised feature selection problem,
which is termed as densest feature graph augmentation with disjoint feature clusters (DFG-
A-DFC). Figure 1 illustrates the block diagram of the proposed method. The proposed
method works in two phases:

1. First Phase: Finding the maximally non-redundant feature subset.
2. Second Phase: Maintaining the cluster structure of the original subspace at the cost

of including some redundant features.
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Figure 1. Block diagram of the proposed method. Figure 1. Block diagram of the proposed method.

Algorithm 1 describes the pseudo-code of the proposed unsupervised feature selection
method. Given an undirected fully connected graph (G), wherein vertex set (V) represents
the feature set while edge weight between any two vertices depicts the MICI value between
the corresponding vertices, the first phase works on identifying the densest subgraph.
In Algorithm 1, steps 1 to 6 detail the first phase of the proposed method. The densest
subgraph is constructed by heuristically removing the vertices that have a lower edge-
weighted degree than the average edge-weighted degree of the current subgraph. As the



Algorithms 2023, 16, 28 5 of 12

edge weight between two vertices represents the dissimilarity between them, the removal
of edges heuristically benefits the identification of features with unique information and
maximizes the average edge-weighted degree. These steps are repeated until the density of
the current subgraph is lower than the one in the previous iteration. The resultant of the
first phase is the feature set (S1), which corresponds to the vertices of the current subgraph.

Algorithm 1: Densest Feature Graph Augmentation with Disjoint Feature Clusters

Input: Graph G = (V,E,W); Parameters 0 < β <= 1, k >= 0
Output: Resultant Feature Subset S
(1) Set S = V
(2) Find S’ s.t. ∀ i ∈ S , δ(S, i) ≥ δmean(S) ⇒ i ∈ S′

(3) if d(S′) ≥ d(S) then
(4) Set S = S′

(5) go to 2
(6) end if
(7) Find N = |V|

|S|
(8) ∀ i ∈ V, Generate nearest neighbor list containing N nearest neighbors of i
(9) Initialize C as an empty list of clusters
(10) Let C’ = C
(11) for each i ∈ V do
(12) Generate Ci s.t. a ∈ Ci ⇒ ( a ∈ C′ ) ∧ ( ∃ j ∈ a s.t. iRj)
(13) if |Ci| 6= 0 then
(14) ∀ a ∈ Ci remove a f rom C′

(15) Add ∪a ∈ Ci a to C’
(16) else
(17) Add {i} to C’
(18) end if
(19) end for
(20) if |C’| < k then
(21) Set C = C’
(22) if |C| = 0 then
(23) Set N = N − 1
(24) go to 10
(25) end if
(26) end if
(27) if C’ 6= C then
(28) Set C = C’
(29) go to 10
(30) end if
(31) f or each c ∈ C′ do
(32) if ¬ (∃ x ∈ c s.t x ∈ S) then
(33) Add i to S where

(i ∈ c) ∧ ¬ (∃ j ∈ c s.t. ((j 6= i) ∧ ( ∑
k∈S

Wik < ∑
k∈S

Wjk)))

(34) end if
(35) end for
(36) Output the set S

In the second phase, the disjoint features are added to the feature set (S1) by following
steps 7 to 36 of Algorithm 1. For this, the value of shared nearest neighbors (N) is calculated
according to Equation (7).

N =
|V|
|S| (7)

Further, the ‘k’ parameter defines the number of vertices to be clustered while main-
taining the minimum number of clusters. The value of ‘k’ is kept 0.5. The subgraph corre-
sponding to a cluster (Ci) is considered ‘connected’ if the connection between two vertices
(‘i’ and ‘j’) are related by Relation R which is depicted in Equation (8).
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Ci s.t. a ∈ Ci ⇒
(

a ∈ C′
)
∧ ( ∃ j ∈ a such that iRj

)
(8)

Then, a representative feature from each cluster is added to S1, which has the highest
aggregated dissimilarity from S1 features and is defined in Equation (9).

(i ∈ c) ∧ ¬ (∃ j ∈ c s.t. ((j 6= i) ∧ (∑
k∈S

Wik < ∑
k∈S

Wjk))) (9)

Finally, the resultant feature set of the proposed method corresponds to the features
in S1.

Furthermore, the proposed method, DFG-A-DFC, seems similar to DSFFC as both
methods are two-phase methods wherein the first phase focuses on generating the densest
subgraph and the second phase tries to improve the generated clusters. However, DFG-
A-DFC is quite comparable to DSFFC. In DSFFC, the first phase identifies the number of
clusters for the optimal feature set and the second phase aims at finding representatives
for decision boundaries. While DFG-A-DFC aims at recognizing clusters for the remaining
features in the second phase. Moreover, DSFFC has additional logic for maintaining the
feature-set size in a given range and DFG-A-DFC has a threshold for keeping the minimum
number of features. Lastly, the DFG-A-DFC method employs shared nearest neighbors to
decide if two nodes belong to the same cluster or not. DSFFC method assigns features to
clusters based on the number of clusters and the expected cluster centers. Therefore, it is
evident that the DFG-A-DFC method is distinguishable from the DSFFC method.

4. Experimental Setup

This section details the considered datasets and performance metrics for the evaluation
of the proposed approach. For performance validation, the proposed method (DFG-A-
DFC) is compared against four state-of-the-art unsupervised feature selection methods
namely, unsupervised feature selection using feature similarity measure (FSFS) [27], densest
subgraph finding with feature clustering (DSFFC) [12], multi-cluster feature selection
(MCFS) [19] and Laplacian score for feature selection (LSFS) [26]. Moreover, it has been
observed in the literature that the number of considered features is half of the original
features for fair comparison [12]. To achieve the same, LSFS considers features on the basis
of their ranking, while DFG-A-DFC and DSFFC keep half of their original feature size
at least.

4.1. Considered Dataset

The performance of the proposed method is evaluated on eight publicly available UCI
datasets [28] namely, Colon, Multiple Features, Isolet, Spambase, Ionosphere, WDBC, Sonar
(Connectionist Bench), and SPECTF. Table 1 details the considered datasets in terms of the
number of features, classes, and sample size of the considered dataset. It can be observed
from Table 1 that the range of feature size in considered datasets varies extremely, which
will evaluate the consistency of the proposed method.

Table 1. Details of considered datasets.

Dataset Name No. of Features No. of Classes No. of Samples

Colon 6000 2 62
Multiple Features 649 10 2000

Isolet 617 26 6238
Spambase 57 2 4601
Ionosphere 33 * 2 351

WDBC 30 2 569
Connectionist Bench 60 2 208

SPECTF 44 2 80
* In the ionosphere, there are originally 34 features; but as the second column is the same for all rows, we have not
considered it during our experiments.
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4.2. Performance Evaluation

Two popular metrics are considered for the performance evaluation of the proposed
method namely, classification accuracy (ACC) and Matthews correlation coefficient (MCC).
Equations (8) and (9) depict the mathematical formulation of ACC and MCC, respectively.

ACC =
TP + TN

TP + TN + FP + FN
(10)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

where, TP, TN, FP, and FN correspond to True Positive, True Negative, False Positive, and
False Negative, respectively.

For each feature selection method, 10-fold cross-validation is performed to calculate
mean ACC and mean MCC along with respective standard deviations. Further, the clas-
sification performance of the considered feature selection methods is evaluated on four
classification models, namely K-Nearest Neighbors (KNN), Naïve-Bayes, Support Vector
Machine (SVM), and Adaboost.

In the KNN classifier, K is considered the square root of the data size. For the SVM
classifier, RBF kernel is used with the parameters according to grid search. Finally, Naïve
Bayes is used as the base estimator in the Adaboost classifier. For other parameters, the
default values are referred from the respective literature.

5. Performance Analysis

Tables 2 and 3 demonstrate the performance of the considered feature selection meth-
ods on different classifier models in terms of mean ACC and mean MCC, respectively. From
the table, it can be observed that the proposed method, DFG-A-DFC, has achieved the best
results for more than 50%. The runner-up is DSFFC in terms of overall best classification ac-
curacy. Further, Figure 2 illustrates the visual comparison of the feature-selection methods
in the form of a bar chart. In the figure, the x-axis corresponds to the considered methods,
while the y-axis depicts the number of times the best value is reported by a method on both
parameters, i.e., ACC and MCC. It is clearly envisaged that DFG-A-DFC is best as it reports
the best value for the maximum number of times among the considered methods.
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Further, Figure 3a depicts the comparison of the considered feature-selection methods
with different classifiers on the number of datasets on which each has reported the best
value for the ACC parameter. From the figure, it is visible that the proposed method, DFG-
A-DFC, with SVM classifier has outperformed other methods on 87% of the considered
datasets. Similarly, DFG-A-DFC with KNN and Naïve Baye was superior on 50% of
the datasets. Moreover, the proposed method shows competitive performance with the
Adaboost classifier. Further, the same comparison was conducted for the MCC parameter
in Figure 3b. Here, DFG-A-DFC with SVM classifier has attained the best value on 5 out of
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6 datasets, while it is better on 50% of the datasets with KNN and Naïve Baye. However,
FCFS fails to report a best value on any dataset for both parameters.

Table 2. Classification accuracy of different models on considered approaches for various datasets.

Dataset Algorithm SVM Naive Bayes KNN Adaboost

Colon

FSFS 81.45(0.85) 73.39(3.16) 74.84(1.56) 76.29(3.57)
LSFS 71.62(2.04) 51.29(1.83) 73.55(1.56) 60.97(4.35)

MCFS 79.52(1.09) 67.96(3.41) 78.06(1.13) 77.10(2.72)
DSFFC 82.10(1.19) 73.87(1.67) 77.42(1.32) 79.03(3.48)

DFG-A-DFC 86.90(1.44) 61.42(1.57) 81.90(1.57) 56.42(1.81)
None 80.71(1.92) 58.57(2.64) 75.71(1.92) 50.47(1.65)

Multiple
Features

FSFS 97.91(0.11) 95.51(0.16) 94.49(0.21) 96.54(0.29)
LSFS 97.74(0.11) 94.32(0.2) 93.02(0.2) 96.15(0.20)

MCFS 98.13(0.13) 95.59(0.13) 95.58(0.13) 97.06(0.19)
DSFFC 98.35(0.13) 94.43(0.12) 95.61(0.12) 96.22(0.17)

DFG-A-DFC 98.60(0.07) 96.00(0.12) 96.24(0.14) 95.55(0.13)
None 98.45(0.07) 95.49(0.16) 96.10(0.11) 96.10(0.09)

Isolet

FSFS 88.17(0.23) 65.82(0.21) 71.42(0.25) 65.78(0.19)
LSFS 92.95(0.11) 75.49(0.27) 82.6(0.19) 75.53(0.31)

MCFS 95.75(0.12) 82.09(0.33) 87.99(0.13) 81.99(0.21)
DSFFC 95.26(0.08) 83.61(0.22) 86.19(0.14) 84.82(0.38)

DFG-A-DFC 97.06(0.05) 79.99(0.13) 88.40(0.12) 80.33(0.13)
None 97.38(0.06) 81.45(0.13) 88.69(0.10) 81.29(0.18)

Spambase

FSFS 78.95(0.11) 66.68(0.10) 80.81(0.18) 66.85(0.15)
LSFS 83.84(0.16) 69.26(0.11) 82.68(0.16) 69.28(0.22)

MCFS 80(0.09) 65.27(0.09) 82.27(0.14) 65.24(0.12)
DSFFC 86.69(0.07) 75.63(0.12) 84.31(0.11) 75.71(0.15)

DFG-A-DFC 93.65(0.06) 80.06(0.13) 86.22(0.12) 82.67(0.244)
None 93.63(0.11) 81.65(0.19) 85.95(0.15) 83.50(0.25)

Ionosphere

FSFS 91.77(0.49) 73.73(0.61) 75.41(0.64) 85.93(1.36)
LSFS 91.37(0.43) 76.84(0.71) 84.67(0.6) 88.83(1.18)

MCFS 94.22(0.7) 87.89(0.73) 82.11(0.6) 90.46(0.91)
DSFFC 94.07(0.29) 89.06(0.57) 82.54(0.72) 90.85(0.81)

DFG-A-DFC 95.73(0.36) 89.47(0.60) 84.02(0.99) 90.31(0.38)
None 94.02(0.19) 88.88(0.50) 84.61(0.62) 92.03(0.45)

WDBC

FSFS 94.41(0.18) 91.11(0.22) 93.22(0.43) 94.22(0.63)
LSFS 96.87(0.2) 93.71(0.16) 95.87(0.21) 95.85(0.50)

MCFS 96.68(0.24) 93.39(0.24) 96.22(0.24) 95.11(0.44)
DSFFC 96.82(0.15) 94.34(0.16) 95.73(0.17) 96.22(0.31)

DFG-A-DFC 97.77(0.01) 91.73(0.43) 95.95(0.02) 95.78(0.27)
None 97.36(0.21) 93.14(0.56) 96.13(0.21) 97.01(0.22)

Sonar

FSFS 80.24(1.35) 70.82(2.41) 68.51(1.62) 77.16(1.97)
LSFS 81.01(1.27) 71.88(1.98) 67.98(1.20) 75.67(1.64)

MCFS 82.45(1.04) 67.36(1.37) 70.14(1.12) 77.21(2.07)
DSFFC 82.21(1.38) 69.42(0.94) 71.83(1.09) 79.09(1.94)

DFG-A-DFC 83.59(1.00) 71.21(0.84) 72.04(0.99) 81.85(0.91)
None 83.52(0.99) 67.35(0.97) 68.64(1.08) 79.30(0.819)

SPECTF

FSFS 73.38(2.13) 73.63(1.61) 66(1.94) 65.50(2.78)
LSFS 74(1.42) 72.75(1.42) 69.63(2.50) 69(3.48)

MCFS 71.88(2.14) 72.13(1.45) 66.38(2.32) 72.75(3.16)
DSFFC 76.88(1.79) 79.75(1.84) 68.13(1.59) 76.88(1.79)

DFG-A-DFC 80.00(1.39) 80.00(1.39) 67.50(0.16) 82.50(0.99)
None 78.75(1.25) 78.75(1.68) 65.00(2.07) 77.5(1.22)



Algorithms 2023, 16, 28 9 of 12

Table 3. MCC of different models on the considered approaches for various datasets.

Dataset Algorithm SVM Naive Bayes KNN Adaboost

Colon

FSFS 0.585(0.02) 0.439(0.07) 0.439(0.044) 0.465(0.092)
LSFS 0.336(0.061) 0.16(0.042) 0.406(0.052) 0.232(0.088)

MCFS 0.54(0.026) 0.347(0.076) 0.528(0.025) 0.495(0.056)
DSFFC 0.600(0.028) 0.461(0.039) 0.512(0.037) 0.537(0.084)

DFG-A-DFC 0.639(0.034) 0.202(0.036) 0.559(0.040) 0.242(0.033)
None 0.399(0.394) 0.257(0.051) 0.434(0.038) 0.170(0.034)

Spambase

FSFS 0.554(0.002) 0.456(0.002) 0.613(0.004) 0.459(0.003)
LSFS 0.659(0.004) 0.497(0.002) 0.633(0.003) 0.497(0.004)

MCFS 0.586(0.002) 0.451(0.002) 0.624(0.003) 0.449(0.002)
DSFFC 0.719(0.002) 0.585(0.002) 0.668(0.002) 0.586(0.002)

DFG-A-DFC 0.866(0.012) 0.643(0.022) 0.709(0.027) 0.675(0.036)
None 0.865(0.023) 0.668(0.035) 0.703(0.031) 0.688(0.045)

Ionosphere

FSFS 0.823(0.011) 0.435(0.013) 0.462(0.016) 0.689(0.030)
LSFS 0.814(0.01) 0.521(0.01) 0.669(0.013) 0.755(0.026)

MCFS 0.874(0.015) 0.746(0.013) 0.615(0.013) 0.792(0.020)
DSFFC 0.873(0.006) 0.766(0.011) 0.627(0.017) 0.822(0.015)

DFG-A-DFC 0.908(0.07) 0.770(0.138) 0.672(0.160) 0.788(0.101)
None 0.859(0.058) 0.761(0.096) 0.673(0.117) 0.827(0.094)

WDBC

FSFS 0.88(0.004) 0.809(0.005) 0.854(0.01) 0.876(0.014)
LSFS 0.933(0.004) 0.866(0.003) 0.912(0.004) 0.911(0.011)

MCFS 0.929(0.005) 0.859(0.005) 0.92(0.005) 0.895(0.009)
DSFFC 0.932(0.003) 0.879(0.003) 0.909(0.004) 0.919(0.007)

DFG-A-DFC 0.950(0.02) 0.823(0.094) 0.915(0.041) 0.910(0.059)
None 0.944(0.04) 0.855(0.114) 0.918(0.044) 0.938(0.045)

Sonar

FSFS 0.606(0.026) 0.415(0.048) 0374(0.036) 0.541(0.039)
LSFS 0.620(0.026) 0.438(0.039) 0.360(0.027) 0.511(0.033)

MCFS 0.650(0.021) 0.379(0.026) 0.408(0.024) 0.543(0.042)
DSFFC 0.642(0.028) 0.409(0.020) 0.440(0.022) 0.580(0.039)

DFG-A-DFC 0.691(0.184) 0.438(0.170) 0.458(0.146) 0.647(0.162)
None 0.679(0.200) 0.353(0.172) 0.390(0.236) 0.589(0.166)

SPECTF

FSFS 0.493(0.039) 0.480(0.032) 0.424(0.037) 0.312(0.055)
LSFS 0.513(0.030) 0.474(0.029) 0.472(0.060) 0.381(0.069)

MCFS 0.479(0.039) 0.468(0.028) 0.383(0.047) 0.458(0.066)
DSFFC 0.540(0.033) 0.600(0.038) 0.468(0.027) 0.540(0.033)

DFG-A-DFC 0.529(0.327) 0.600(0.283) 0.433(0.029) 0.666(0.221)
None 0.489(0.282) 0.591(0.326) 0.433(0.029) 0.590(0.242)
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Further, the proposed feature selection method is analyzed in the terms of the reduction
in the selected features. Figure 4 illustrates a bar chart for the percentage of the reduced
features by considered method on the considered datasets. It can be observed that the
proposed method, DFG-A-DFC, has attained a maximum reduction of 40% on the WDBC
dataset. While the DFG-A-DFC method is competitive on other datasets. Therefore, it can
be claimed that the proposed method is an efficient feature selection method.
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Moreover, this paper presents an ablation study on the two-phase architecture of the
proposed method. It focuses on studying the performance of the proposed method after the
second phase. Table 4 highlights the classification accuracy (ACC) of the proposed method
after the first and second phases with different classifiers for each considered dataset. It
is notable that the proposed method has shown significant improvement in classification
accuracy for each dataset after the second phase. Therefore, it can be concluded that the
inclusion of the second phase has strengthened the proposed method.

Table 4. Ablation study of the proposed method in terms of ACC parameter.

Dataset Algorithm SVM Naive Bayes KNN Adaboost

Colon
First Phase 74.04(0.82) 57.61(1.65) 78.33(2.13) 52.14(1.53)

Second Phase 86.90(1.44) 61.42(1.57) 81.90(1.57) 56.42(1.81)

Multiple
Features

First Phase 97.44(0.05) 87.79(0.23) 92.15(0.16) 83.44(0.26)
Second Phase 98.60(0.07) 96.00(0.12) 96.24(0.14) 95.55(0.13)

Isolet
First Phase 33.50(0.21) 21.00(0.13) 31.66(0.14) 18.78(0.19)

Second Phase 97.06(0.05) 79.99(0.13) 88.40(0.12) 80.33(0.13)

Spambase First Phase 79.24(0.13) 55.05(0.24) 55.98(0.24) 79.04(0.11)
Second Phase 93.65(0.06) 80.06(0.13) 86.22(0.12) 82.67(0.244)

Ionosphere First Phase 93.72(0.25) 87.15(0.72) 82.61(0.53) 89.15(0.51)
Second Phase 95.73(0.36) 89.47(0.60) 84.02(0.99) 90.31(0.38)

WDBC
First Phase 82.08(0.62) 77.32(0.43) 80.67(0.37) 81.18(0.26)

Second Phase 97.77(0.01) 91.73(0.43) 95.95(0.02) 95.78(0.27)

Sonar
First Phase 64.45(0.57) 65.30(1.00) 62.50(0.84) 63.50(0.86)

Second Phase 83.59(1.00) 71.21(0.84) 72.04(0.99) 81.85(0.91)

SPECTF
First Phase 70.00(1.39) 78.75(0.80) 64.50(1.39) 70.00(1.39)

Second Phase 80.00(1.39) 80.00(1.39) 67.50(0.16) 82.50(0.99)

6. Conclusions

In this paper, a new unsupervised feature selection method, densest feature graph
augmentation with disjoint feature clusters (DFG-A-DFC), has been proposed. The pro-
posed method represents the feature set as a graph with the dissimilarity between features
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as the edge weights. In the first phase, the features selected in the densest subgraph are
considered the initial feature subset. In the second phase, shared nearest-neighbor-based
clustering is applied to the feature set. Lastly, the final feature subset is formed from the
augmentation of the initial feature subset with representative features from the formed
clusters. To validate the efficiency of the proposed method, eight UCI datasets have been
considered and compared against four existing unsupervised feature selection methods in
terms of two performance criteria, namely classification accuracy and Mathews correlation
coefficient. Experiments demonstrate that the proposed method is an efficient method in
reducing the number of features along with better performance. Thus, it can be used as
an alternative for performing feature selection. In the future, the proposed method can be
applied to real-time applications such as image segmentation, wireless sensor, and data
mining. Furthermore, the proposed method can be extended to big data.
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