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Abstract
A decentralized service placement policy plays a key role in distributed sys-
tems, such as fog computing, where sharing workloads fairly among active
computing nodes is critical. A decentralized policy is an inherent feature of
the service placement process that may improve load balancing among com-
puters and can reduce the latency in many real-time Internet of Things (IoT)
applications. This article proposes reinforcement optimization for a decentral-
ized service placement policy, which attempts to mitigate some of the drawbacks
of existing service placement policies. Matching task size with node specifica-
tions and the allocation of less popular but time-sensitive applications in the
fog layer are the primary contributions of this study. Extensive experimental
comparisons are made between the proposed algorithm and other well-known
algorithms over service latency, network usage, and computing usage using
the iFogSim simulator. A microservice-based application with varying sizes
of computing requests are tested experimentally and show that the proposed
algorithm effectively serves computing instances that are closer to users, reduc-
ing service latency and network usage. Compared to the existing models,
the proposed modified algorithm reduces service latency by 24.1%, network
usage by 4%, and computing usage by 20%, thus highlighting positive out-
comes when using the proposed algorithm for fog analytics in future real-time
IoT applications.

1 INTRODUCTION

The popularity of smart cities, wearables, e-health, and smart vehicle environments has been increased by the emerging
applications of the Internet of Things (IoT).1-3 According to the report of McKinsey Global Institute,4 the IoT applica-
tions will facilitate $11 trillion economy by 2025. Quality assurance in IoT applications is of paramount importance due
to the rapidly increasing number of human users and their future service requirements. For the quality assurance of IoT
applications, cloud servers were expected to integrate IoT technologies with human users.2,5,6 The cloud-centric IoT net-
work has been designed to alleviate the constraints of IoT devices, which are due to the limitations of computational and
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memory resources, by providing centralized control of IoT devices.5,7,8 Unfortunately, cloud servers are often located
far from IoT edge devices, thus introducing latency and bandwidth challenges between users and computing nodes.9-12

Latency in time-sensitive applications, such as smart grids or unmanned vehicle management can result in major prob-
lems.13-16 A fog network can use the available local computing and storage resources near the IoT edge devices and
can thus provide necessary computations to the IoT edge devices, providing an opportunity to reduce the latency and
bandwidth requirements due to being closer to IoT edge devices than cloud servers.17-20

Cloud servers and fog networks provide alternative options for IoT edge devices to access computing resources. A fog
data manager (FDM) can determine whether the data are executed either in the fog network or cloud servers. The FDM
can transmit part of the data to the cloud servers, while the remaining data are retained on the fog network, as discussed by
Puliafito.21 Once the data are allocated to the fog network, the placement policy (PP) can optimize the resource allocation
within the fog network to maximize the use of computing nodes within the fog network. Fog service orchestrators (FSOs)
can also fairly allocate computing resources among the fog nodes to improve the quality of service (QoS), as presented
by Baranwal.22 However, both of these methods do not address scalability issues in an IoT network well, and Salaht and
Desprez23 addressed scalability in their fog service placement problem (FSPP). An efficient FSPP is vital to assure the QoS
of IoT applications. A failed or suboptimal FSPP can results in delay in fog analytics causing major issues to the real-time
IoT applications.

FSPP is important, but its current centralized practice have some disadvantages: (a) increased network overhead due
to the periodic communications between the resource broker and fog node; (b) longer computing time due to the increased
number of IoT edge devices to control; (c) reduced reliability to a single point of failure (SPOF); (d) management of
heterogeneous fog devices; and (e) inherent latency generated by machine communications between brokers and fog
devices. However, the decentralized scheduling algorithm (DSA) proposed by Desprez and Salaht24 relies on the time
vector for efficient operation. A poorly managed FSPP can cause real-time IoT applications to fail due to the “induced”
high latency.25

This study reinforces the current placement policy FSPP using a proposed new policy to overcome some of afore-
mentioned shortcomings. This study proposes an innovative FSPP that operates in a distributed manner to reduce the
induced and inherent latencies in IoT applications that prioritizes delay-sensitive applications to be served with prior-
ity placement even with a low popularity rate. The father node, which receives the computing tasks from the end-user
nodes, can forward the services or maintain the services if the father nodes are compatible. All tasks are managed
locally by the father node and its subordinate nodes without global scheduling. Such an FSPP is more scalable and
not affected by the increasing number of IoT edge devices or services. This study also performs several experiments
to confirm the above hypothesis. The primary contribution of this study is a more scalable FSPP that also reduces
computing requirements while reducing both inherent and induced delays in time-sensitive IoT applications. The new
FSPP may limit global communication between fog nodes, therefore not guaranteeing global optimization; however,
as the size of the IoT network increases, global optimization is often not necessary.25,26 In this approach, the proposed
method places the most popular or delay-sensitive compute tasks closer to the end-user nodes using the hop number
as the reference. This method manages the workload for fog nodes to remain sustainable with locally optimized QoS,
thereby satisfying the necessary computing requirements of IoT applications in the fog network. The primary objec-
tive of this study is to develop the decision criteria for service allocation, including when and where the services are
to be allocated among the IoT fog nodes, and associated time-sensitive requirements (either closer or further from the
end-user nodes).

2 RELATED WORKS

Fog networks can use many optimization techniques, including greedy algorithms, heuristics, genetic algorithms, and
linear programming. In References 27-31, several aspects of fog resource management are defined, including scheduling,
placement, provisioning, allocation, and mapping for clients, virtual machines, services, and resources. These algorithms
have also been investigated for real-time applications, such as smart cities, industrial IoT, and mobile microclouds.32-35

Table 1 summarizes recent work, including application types (eg, eHealth IoT system, general IoT system, or embedded
system) in the column Scope, types of brokers (Broker), proposed algorithms (Alg.), target functions to optimize (Objec-
tive functions), components that the optimization algorithm can control to enhance the objective functions (Decision
variables), validation tools used to test the algorithms, and types of computing environments (Env.).
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T A B L E 1 Summary of approaches to service placement

Authors Scope Broker Alg. Objective function Decision variables Val. Env.

Khoshroabadi et al13 S C-FON SCATTER QoS, response times,
network usage, energy
consumption,
application loop delays

App. sensitivity F, E F

Velasquez et al22 G C(Os) PRP Latency, jitter of app.,
application profile

Popularity of app Y CF

Morkevicius et al23 G H(o3) TSM QoS, security, CPU
performance, storage,
energy consumption

Integer multiobjective
particle swarm
optimization

M CF

Hassan et al24 S C-FRM MinRE Response time energy
consumption, resource
usage

App. sensitivity O CF

Salimian et al2 S H GWO Execution cost, average
waiting time

Matching the task with
node in the colony

M CF

Baranwal et al25 G D(Os) FONs Network relaxation ratio,
processing time
reduction

Enhance the selection of
fog orchestrator nodes

M CF

Zeng et al18 E Ds H Min and max response
time

Minimize computation
and I/O time

O F

Jamil et al32 H C SJF Energy efficiency delay Computing time, network
usage

F CF

Maiti et al28 G H SGAP Average make span
average schedule length

Latency M F

Al-Tarawaneh et al27 G Ds Bi-Obj Application performance,
energy efficiency

Sensitivity and security F F

Taneja et al36 G Ds MM QoS Use the border nods F CF

Deng et al37 G Ds H Energy consumption delay Save communication
bandwidth

Mt CF

Wang et al38 G D H Resource utilization Use the boarder nodes O ME

Guerrero et al33 G D POP QoS, cost, execution time Popularity of service F CF

Yang et al17 G Ds CSPP Hop count, CPU, network Matching the task with
node

E ME

Arora et al31 S C HSMF Network usage Popularity of services F CF

Sami et al14 S C IFSP QoS, cost, execution time Proactivity service O CF

The proposed method G D RODSPP Hop count, network usage Popularity of service, task
sensitivity

F CF

Abbreviations: C, IoT-camera; E, embedded systems; G, general IoT system; H, eHealth IoT system; S, IoT smart home application (Scope). C, centralized; D,
decentralized; Ds, distributed; H, hierarchical, O, orchestrators (Broker). Bi-Obj, bi-objective; CSPP, cost-aware service placement policy; EPOP, enhancement
of placement optimization policy; FONs, fog orchestrator nodes; H, heuristic algorithm; HSMF, heterogeneous shortest module first; IFSP, intelligent fog and
service placement; MM, module mapping; PoP, placement optimization policy; PRP, popularity rank placement; SCATTER, clustering of fog devices and
requirement-sensitive service first; SGAP, schedule GAP’s; TSM, two stage method (Algorithm (Alg.)). E, experiment; F, iFogSim; M, Matlab; Mt,
mathematically; O, their own simulation program; Y, YAFS (Validation (Val.)). CF, cloud/fog; F, fog computing; ME, mobile edge-clouds (Environment
(Env.)).
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Khosroabadi and Fotouhi-Ghazvini5 proposed “a clustering of fog devices and requirement-sensitive services first”
(SCATTER) algorithm to allocate the fog-edge border computing resources to delay-sensitive applications but ignores
the other tasks in demand, which could be a concern in many real-life applications.39 introduced popularity ranked
placement (PRP) based on graph partitions and optimization using genetic algorithms, and showed that PRP yielded
improvements compared to the generic genetic algorithm or first fit (FF) algorithm but could still be improved.
Morkevicius and Venčkauskas40 presented two stages of multiobjective optimization that included multiple metrics
that we use in this study to evaluate the proposed method: security performance, compute usage performance, and
storage utilization. This technique was designed to maintain the QoS level with the minimum usage of available
resources.

QoS and energy consumption metrics were used to evaluate the algorithms proposed by Hassan et al38; Kamel19;
and Puliafito.21 Those authors attempted to enhance the service placement policy in a cloud/fog environment, ultimately
improving QoS in delay-sensitive applications. Hassan and Azizi38 proposed a MinRE placement policy to enhance QoS
and energy consumption in a cloud/fog ecosystem. MinRE consists of two algorithms, MinRes and MinEng, where each
focuses on different types of workload. During experimentation, MinRE showed promising results, even with a fixed
number of fog nodes, while increasing computing loads. Baranwal and Vidyarthi36 used distributive fog orchestrator
nodes (FONs) to place services on a fog-integrated cloud. The FON, a mediator entity, was proposed by Al-Tarawneh
to assign the arrival workload to the fog computational node (FCN). Al-Tarawneh41 proposed a biobjective placement
algorithm to enhance the placement policy for interoperated services in a fog network. That study considered the security
requirements and criticality of the application as optimization variables, and improved the satisfaction metrics compared
to other policies, including edge-affinity and cloud-only.

Maiti42 designed a service placement policy to use schedule gaps. Their proposed policy aimed to minimize the
makespan to meet the task deadlines with less utilization of communication resources. In Reference 43, an intelligent fog
and service placement (IFSP) was proposed to proactively place services on demand using deep reinforcement learning
(DRL) hosted in the cloud to predict the system’s load expectations with the entire database. The IFSP can thus prepare
nodes predictively before bearing workloads. Salimian37 proposed autonomous IoT service placement to reduce the exe-
cution costs of a distributed fog system using the gray wolf optimization (GWO) scheme, which outperformed comparable
policies in finding suitable fog nodes to allocate computations. For heterogeneous cloud/fog environments,44 presented
a heterogeneous shortest module first (HSMF) placement policy. The HSMF was based on finding the shortest module
to serve first, which yielded improved performance compared to the other policies. Wang38 introduced a job allocation
methodology for interdependent services in a fog network, where interdependent jobs rely on internode data communica-
tion and were described using a directed acyclic graph (DAG). The Wang model38 was limited because it did not consider
the deadline constraint and workflow execution. A linear approach (first comes, first serviced) has been widely used, but
task completion in ascending order is more time-efficient.34 However, sorting can be resource-intensive in terms of time
and computing.

The decentralized service provisioning introduced by Guerrero45 produced promising outcomes, such that all latencies
in data transmission, decision processing, and return response were reduced, as well as achieving fair load balancing.
However, this system still has a challenge due to its high running cost. Random service allocation was discussed by
Souza46 but resulted in a high service delay due to poor load balancing. Huang47 proposed an energy-efficient approach to
the idea of co-locating service placement, which was adequate for a small network but achieved poor service placement
in a larger network. A similar approach by Wang et al48 reduced execution costs by placing predictive modeling tasks.
The proposed solution performed well, but the cost of the system was high, making it unaffordable to a small company.
Taneja and Davy49 proposed a resource-aware service placement solution, a good approach for QoS optimization, that
first considered the highest-demand application tasks. Thus, the mechanism resulted in a swamped network with idle
and waiting states with low-capacity devices/nodes.

3 PROPOSED ARCHITECTURE AND ALGORITHM

3.1 Architecture

In real applications, a fog network is an extension of a cloud network. The extension of the decentralized, remote distri-
bution of the cloud network can be considered a fog network. The computing nodes within the fog network are equipped
with limited storage capacity and computing power for host instances, and can thus be considered cloudlets.50 Thus, a
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F I G U R E 1 Fog architecture

resource management policy for the IoT network can determine where and when to place computing instances among the
different layers of computing nodes (eg, fog or cloud). This article proposes an innovative service allocation architecture
that alleviates the drawbacks of FSPP, particularly for time-sensitive applications.

Given the three layers of the IoT network (cloud, fog, and edge) as shown in Figure 1, the top layer is the cloud
layer that contains the primary cloud servers. The access layer is the edge layer, where end devices manage requests for
IoT applications. Edge devices can include computers, smart cars, sensors, and smart homes.51,52 The fog nodes connect
to both the edge devices and cloud servers. This study assumes that all applications in an IoT network use microser-
vices.53 These applications were configured as a group of stateless and trivial services. These small services complete a
complex task once executed in a sequence. For example, app1 requires s1, s4, and s6 to perform its complex task, while
app2 requires s1, s2, s3, and s5, where the system consists of N services, as shown in Figure 2. Both applications must
complete a specific number of jumps to perform app1 and app2. Thus, each computing node can be scaled up and down
in their instances to improve the QoS of the distributed fog nodes. The scaling process can use service codes from the
cloud servers.

This article proposes an optimization of service placement by (1) allocating the most demanded services and all
time-sensitive applications in a particular area in the fog nodes that are closer to the clients (edge); (2) migrating the
services that are not used regularly to reserve the available resources for other priority services; and (3) managing ser-
vice allocations to prevent system overloads. For example, if a large computing task is allocated to a less powerful
device, an overload will occur in the system. Due to resource limitations in fog nodes, the service placement policy
must select services that are to be migrated. The proposed algorithm allocates priority services to the nearest nodes
in the shortest path and migrates the lowest nonsensitive requests to the upper levels away from the users and closer
to the cloud.

System latency is inherent in all IoT applications. Although the service placement policy can reduce latency in
some fog applications, a delay-sensitive application demands further reduced latency to perform adequately in a
time-critical application. For example, a device for a stroke patient must respond within near-zero seconds, where any
delay in the reporting system can have marked consequences for the patient.54 The metadata of service requests must
be evaluated in priority assignment; thus, such critical tasks can be allocated near edge nodes to support real-time
requirements.

Many IoT applications perform interrelated services, where the cloud server becomes essential as a long-term solution.
The migration of such services along the shortest path to the cloud is essential. The migration of some services can increase
the total execution time (and thus latency) if some essential services do not migrate through the shortest path.27 For
example, an algorithm finds a service Sx with the highest demand for device D1. Unfortunately, due to the limitation of
D′

1s resources, s2, which is selected with the lowest popularity in D1 must migrate to neighboring devices as shown in
Figure 3. Although D3 has a short distance from the source device, the number of hops increases by two for D2, which is
located on the shortest path to the cloud. To accomplish this task, s4 was required.
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F I G U R E 2 Interoperated services and applications

F I G U R E 3 Example of service migration within different paths
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SULIMANI et al. 7 of 20

Some services are in high demand (ie, popular), while others are in low demand. The popularity rule works by migrat-
ing high-demand services to fog nodes that are closer to the client (edge), while other low-demand services are allocated
to the upper nodes with the shortest path to the cloud servers.3

The interoperated service is where a clump of semi-related microservices is combined to accomplish a complex task.
Thus, it is critical to migrate all interoperated services (if possible) if one of them must be migrated; this action tends to
minimize the number of hops. Figure 4 shows the idea of partially migrating the interoperated services. We assume that
the service execution flow for an application is s1 → s2 → s3 → s4 → s5. Due to the limitations of D1’s computing resources,
s3, which has the lowest request rate in D1, must be migrated to D2, which resides at the upper level closer to the cloud and
away from the edge. Two additional hops will be added to the application if the placement management system (PMS)
does not migrate to the next interoperated services, S4 and S5. Thus, it is essential to verify the migration of Sn+1 and
higher, and keep Sn-1 at the same node. If we assume that Sn is the migrated service, as shown in Equation (1), the PMS
must maintain the migration process for the (n+ 1)th interoperated service along the shortest path to the cloud while
keeping the (n−1)th in the initial node D1:

migrationsn
=

x→∞⋀

x=n
sx∀x ∈ interoperated services. (1)

This strategy must be activated if the initial node has limited resources. The computing node uses a decentralized
service broker in the proposed system, which has proven beneficial against a centralized management system.55

A decentralized broker is used to implement the proposed strategy. The modeling and characterization parameters
were obtained from Reference 3 but with modifications. The modification is made using the service placement request
manager (SPRM). A matching code is used in the SPRM to add more restrictions to accept the tasks or migrate them
to the higher layer. Therefore, the computing nodes accept workloads by matching their sizes with node specifications.
Conversely, Figure 5 shows the proposed broker, which keeps the remaining components of the broker having similar
functions as service manager (SM), service usage monitor (SUM), and service popularity monitor (SPM).33

F I G U R E 4 Example of interoperated service migration within the shortest path
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F I G U R E 5 Decentralized service placement, the broker

Fog clients must be connected to one leaf device or gateway in the fog network to start using available services. Each
time the client requests a specific service, a service allocation request (SAR) is generated to obtain permission to reserve
the computing resources. The SPRM decides to accept the allocation of this service or forward the SAR to the next upper
fog device (see Figures 3 and 4). The SPRM decides after analyzing the local device information gathered from the SPM
and SUM. Although the SUM aims to collect internal data about fog devices, the SPM is designed to measure the service
request rate, which the SPRM uses in its calculations. Each node either decides to host the services or migrates them to
the next available node in the upper layer.

3.2 System model

In the proposed model, which follows the principles of FSPP, all applications requested by a group of clients, Cn,
are initially allocated to cloud servers, Scloud. Each application comprises a set of (interrelated) service units. There-
fore, a sequence of service units must be executed to perform a specific application. Applications in the cloud are
called by clients in the lower layer (closer to the edge) with a group of interconnected fog devices D in between.
These fog nodes have constrained but available processing power that can complete the sequence of service units
without relying on cloud servers. SPCloud

S is a term used to define the shortest path between service tasks and the
cloud with the minimum number of hops. The father (D1) of the device defines the first device that receives service
requests.

The decentralized approach allocates services to local (neighboring) fog devices. Various instances (Sy
x, where x is

the service number and y is the code of the device that hosts the services) are allocated across the fog nodes. Thus, con-
sidering a given instance, we can formulate the relation as a many-to-one relationship alloc ∶

[
Sy

x
]
→ [Dx]. Conversely,

many-to-many is the relationship if we consider [Sx] → [Dx].
To complete an application, every client Cx must be connected to the system through a leaf device. The leaf device can

communicate with one or more devices simultaneously. Thus, the relationship in this model was defined as a many-to-one
relationship conn. [Cn]→ [Dx]. The service request rate 𝛾Cn

Sx
for each client must be considered in this study to categorize
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SULIMANI et al. 9 of 20

services. Each device Di connected to the system must analyze its behavior by monitoring the request rate 𝛾Di
Sx

that it
receives for each task. To calculate the request rate for Dx, for example, we must sum all the requests of clients who are
in the range covering Dx as follows:

𝛾

Di
Sx
=

Cn∑
𝛾

Cn
Sx
∀Cn ∈ The coverage area of Di. (2)

To determine the performance of each device in the system, we consider the computational capacity of a fog device.
Therefore, the resource capacity is introduced as RCap

Di
=
[
rcpu

]
, which is constant for each device and where RConsp

Di
is the

power consumption of Di depending on the allocation process in each device, which must be variable. Therefore, it is
essential to calculate the total resource usage Rutz

Di
for each computing node. The total resource usage can be calculated as

follows:

Rutz
Di
=

sx∑
RCap

Di
× 𝛾Di

Sx
∀Sx ∈ Di. (3)

3.3 Optimization model

The proposed algorithm allocates the most popular (in-demand) computing loads closer to the client layer and allows all
nodes to accept computer loads if resources are available with the correct specifications. Thus, the service request rate is
part of the acceptance metric in the SPRM module. The decision for each fog node is to locally analyze the service request
rate prior to migrating less popular services to the cloud. The heavy tasks that overload the local nodes also migrate to the
upper level.56 Notes that heavier tasks should be kept closer to the cloud provider. In both cases, the interoperated services
migrated to the cloud once classified. The migration of the interoperated services with the undesirable service decreases
the number of unwanted hops in the network, as previously discussed in reference to Figure 4. Table 2 summaries the
functions and variables that are used in the proposed model.

Algorithm 1 shows the pseudocode for the proposed enhanced service placement policy. The placement algorithm is
invoked when a particular service cannot serve appropriately with the local fog nodes and/or when the available capacity
of a fog device is inadequate to satisfy the maximum service requirements. (line 1). The latter condition ensures that all
fog nodes in the proposed policy have sufficient capacity to run the most popular services. If these criteria are met, the

T A B L E 2 Summary of the functions and variables used in the proposed model

Notation Description

Variable Sx Service Sx in the system

Sy
x An instance y of service x

Di Specific fog device in the system

Scloud The cloud server

Rcap
Di

Resource capacity of fog device

Rconsp
Di

Rdi cons Resource consumption of dog device

Function AvaS (Di) Function that return the list of the variable instances in device Di

Install (Sy
x) Function that download and install specifc instance on specific device

Father (Sx) Function that identify father device for service Sx

Overh (Di) Function that return 30% of current resource for device Di

ShrtP( Di) Function that return the list of fog nodes in the shortest path to cloud

TopRSev(𝛾Di
Sx

) Function the service which record the lowest request rate in device Di

DAS (Sx) Function that return true if the service is delay-sensitive application.

nDSA (Sx) Function that return the list of non-delay-sensitive application.

Migrate (Sy
x) Function that deactivate the instance Sx or several instances in Di and send SAR request to next

device to start migration process
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10 of 20 SULIMANI et al.

gateway or leaf device Di is the father of route Dfather (line 2). The father device is the closest computing node to the client’s
gadget. Thus, it is critical to maintain the highest demand instances in a leaf device.57

Additionally, once the father device is selected, the first-child device DChild1 must be selected (line 4) by identifying
the shortest path to the cloud (line 3). Thus, the first-child device DChild1 receives SAR messages if Di begins straggling.
The service placement request manager (SPRM) in the child device decides to either host the service or migrate it again
by generating another SAR to its own child while recalculating the shortest path. The decision of the child depends on
the popularity of the service in DChild1 . Typically, SPRM gathers essential data by SUM and SPM, where both are located
within the same local broker. The reinforcement optimization for a decentralized service placement policy (RODSPP)
algorithm also ignores the remaining child in the route to the cloud, where each fog node recomputes the shortest path
once the previous criteria are satisfied. This strategy reduces the dependency on operational conditions for the remaining
distant fog nodes.

Because this algorithm aims to improve service availability in the fog nodes, the system downloads the services from
the cloud in some cases. To download service Sy

x in the candidate fog device Di (line 6), the candidate node must have
adequate resources to serve the requested tasks; the device overload must also be within the acceptable threshold, and the
tasks must be recognized as part of delay-sensitive applications (line 5). Eventually, the algorithm uniquely guarantees the
maintenance of the overload of all computing nodes, while the POP algorithm focuses only on the guaranteed availability
of services at the nodes.35 The proposed algorithm then installs services with the highest service rate (line 8); otherwise,
the candidate service is migrated to the upper level (line 17). The migration process extends the computing capacity by
alleviating current loads. If the service is recognized as a high priority, the interoperated services for the lowest service rate
must be migrated together (line 11). To create the required computation space to perform the top services, the number
of spaces must be identified (line 9). The placement algorithm begins to sequentially migrate the lowest services and
its interoperated services to its child (lines 12-14). Thus, the node begins by sending SARDChild

Sx
to its child. Every child

identifies his or her own child to communicate directly. Once the migrated services are deallocated from the father device,
the required services are downloaded (line 15).

Algorithm 1. Enhancement of placement optimization policy algorithm
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SULIMANI et al. 11 of 20

We now consider that the case study device Di is currently allocated s1, s2, and s4 in Figure 4. Due to emerging
popular services and limited resources, SPRM may decide to migrate s2 as the lowest service usage. This action had sev-
eral consequences. First, D1 is assigned as the father device, and D2 is assigned as the child, where the shortest route
D1 → D2 → SCloud has two hops, and the other route has one more step D1 → D3 → D2 → SCloud. Second, the most popu-
lar service requirements must be less than the currently available computing resources, and the node configurations must
satisfy computing requirements; the latter condition avoids overloading the computing nodes. Then, we are obligated to
migrate s2 and its interoperated services s4, and the first migration process occurred for s2, followed by s4. Finally, the
required service triggers the download, while the migrated services commence finding another child host in the shortest
path.

Algorithm 1 shows the pseudocode of the proposed resource optimization algorithm. The request for migration is
activated only when the requested service exceeds the currently available resources. We have provided a service for
data classification using a lightweight module.56 The service allocation request is sent to the gateway and then onto
the fog layer. In this layer, the controller estimates the service requirements and sorts the devices accordingly. Thus,
time and complexity are limited in sorting and job allocation. Devices that have the required capacity will be identi-
fied and allocated for computing in a predictive manner; thus, the tasks will be assigned to those nodes that have the
capacity and are available for operation. Also, complex tasks will be assigned to nodes that are not busy and have suf-
ficient power to perform effectively. Simple tasks are thus assigned to nodes that are busy and have less capacity. This
approach minimizes latency and power consumption, and a reduction in power consumption generally reduces overall
operational costs.

4 EVALUATION AND EXPERIMENTAL RESULTS

4.1 Evaluation

We used iFogSim simulator58 for the microservice-based simulation. The module placement class has been modified to
evaluate the proposed model. This evaluation compared the POP5 with the edge based on iFogSim’s built-in placement
policy. Different scenarios were considered to evaluate the proposed algorithm by varying the parameters of the number
of applications, the number of fog devices, and the number of users/clients. The configurations of the devices in the
simulation environment are shown in Table 3, and the experiments followed the same configuration parameters in the
POP study.45 The experiments used a tree-based network topology to manipulate the number of devices in a system.
Each fog device interacted with another fog device at the next level via the shortest path to the cloud. This forwarding
process represents the migration activity for the lowest-priority task. For simplicity, the network device’s behavior was
not changed and was fixed with the shortest path once identified. This proposal identifies the number of children at each
level, as shown in Figure 6.

As discussed in Section 4.1, cloud servers are assumed to provide unlimited computational resources. The memory in
fog devices was sufficiently large in these experiments; thus, we can ignore memory’s immediate influence, which is the
current trend in fog devices: memory is rarely a limitation.59 Although computational capacity is the prime evaluation
vector, network bandwidth was also considered to affect migration, which relies on the exchange of data between devices.
As the number of migrations increased, the number of hops also increased. Thus, we considered the number of hops as
the metric to evaluate network usage.

Microservice-based applications are common in IoT domains. In microservice-based applications, the number of ser-
vice placement requests describes service popularity. System latency is a critical factor for real-time services because delays
may not be tolerated in some cases. The case considered in these experiments was an online store application, as shown
in Figure 7. A similar benchmarking experiment is discussed in Reference 45.

This microservice-based online store application is widely used in IoT modeling and is called a shock shop.1 The
configurations for this application in the proposed container followed the benchmark.45

4.2 Experimental results

The experimental setup for the proposed system followed existing recommendations. A different set of models was used
in the experiment to compare and evaluate performance. The execution of simulation-based applications varies from
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12 of 20 SULIMANI et al.

T A B L E 3 The summary of configurations of experiments

Device Parameters Units Value

Cloud CPU MIPS 40 000

RAM GB 40

Bandwidth Byte/ms 10 000

Link latency ms 100

Power Watt 107

Request rate Req/ms 0.01

Gateway CPU MIPS 10 000

RAM GB 10

Bandwith Byte/ms 1000

Link latency ms 50

Power Watt 100

Fog device CPU MIPS 20 000

RAM GB 10

Bandwidth Byte/ms 2000

Link latency ms 100

Power Watt 100

Request date Req/ms 0.01

T A B L E 4 System specification

Device Model OS RAM HDD Processor

1 HP Win-10 6 GB 500 GB AMD 2.9 GHz

2 Dell Win-10 8 GB 1 TB Intel 3.0 GHz

3 Lenovo Win-7 4 GB 500 GB Intel 2.56 GHz

machine to machine, depending on its scalability level. The details of the device model, operating system (OS), random
access memory (RAM), hard disk drive (HDD), and processors that participated in the experiment are shown in Table 4.

CloudSim60 is a requirement for iFogSim for cloud-based operations, and datacenter is managed by this tool. Java and
JavaScript object notation (JSON) used to program the proposed algorithm, while common math is the library used for
complex mathematical computations in the simulations.

The results of the experimental evaluation are presented in terms of CPU usage, system latency, and network usage.
The equations used to calculate these two metrics were programmed in the simulator. By analyzing the iFogSim source
code, we obtained the equation used to calculate them, as shown in Equations (4) and (5), respectively:

NetUsg =

Requ(Dx,Dy)∑ (
Tltsy

Dx→Dy
× ReqSize

)

Total simulation time
, (4)

where Tltsy
Dx→Dy

is the time consumed to migrate the request from one device to another and ReqSize is the size of the request
that travels through the network. Network usage is the amount of data transferred from the original device or the loaded
device to the destination device, which enriches free resources at a specific time.

An increase in the number of devices leads to more complex network usage scenarios, which can create network
congestion, which indicates low system performance. A network usage comparison indicates the low or high performance
of a system. Compared to the edge policy, the proposed solution reduces network usage by executing most of the tasks
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SULIMANI et al. 13 of 20

F I G U R E 6 Proposed network

closer to the clients and by a well-formed job allocation mechanism at the fog layer. This strategy minimizes cloud usage,
which eliminates the use of data transfer/communication networks by default.

System latency is the time required to perform a set of interoperated services to achieve the required application.
iFogSim measures system latency by determining the average time required to execute the complete path of the interop-
erated services. Latency is the most important characteristic of the computing paradigm: the lower the system latency is,
the more reliable the system. Equation 6 was used to calculate the system latency

(
Ltysys

)
as configured in the simulation

tool:

Ltsysys =

Cn∑
TSrt

n − TFnl
n

Requ
∀Requ ∈ interoperated task, (5)

where TSrt
n and TFnl

n are the start and final times required by the nth service, respectively, and Requ is the total number of
requests in the interoperated service list.

The following figures show a comparison of the three algorithms. The results of the proposed algorithm are labeled
as RODSPP; those for Guerrero and Lera45 are labeled as POP; and the edge is the label for the base policy of iFogSim.
Figures 8 to 10 include two subfigures that show the effects of variation in the setting of execution: (A) variations in the
number of users connected to one leaf device or gateway to examine varying levels of workloads; and (B) variations in the
number of devices in the fog environment to study the influence of the route length on the network performance.

Figure 8 shows the hop count outcomes and plots the weighted average hope count proposed in the POP manuscript,45

representing how the most popular services are closer to customers. Figure 9 shows the latency results for a representative
loop of the application. At their highest rates, the experiment configured most of the parameters, such as accounts, orders,
frontend, and edges. The simulator calculates the time taken by the edge server to complete the requested tasks.

CPU usage is an important performance metric of a system because the processing quality of a system in a scalable
manner is measured in terms of the CPU. If CPU usage is too high, delays occur during processing.

The results of CPU usage, UCPU, are determined by the Equation (6) as follow:

UCPU =
(Tb − Ti) × Rt

Tmips − Fmips
× 100, (6)
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14 of 20 SULIMANI et al.

F I G U R E 7 Application edges for online store-based case study

where Tb is the busy task rate, Ti is the idle task rate, Rt is the average tuple time, Tmips is the total number of mips (million
instructions per second) in the host, and Fmips is the final mips in the control of the CPU.

Figure 10 shows the CPU usage of the devices by varying the number of users in each device. The experimental setup
was configured as follows: two applications, up to five users per gateway, one child per device, and two fog devices per
level. This setup is similar to the experimental benchmarking setup.

5 DISCUSSION

System latency is an important performance metric in fog computing. The weighted average hops effectively measures
the proximity between the services and users, therefore providing some sense of system complexity. Thus, we used both
metrics to answer the first research question. The series labeled edge, POP, and RODSPP in Figure 8 were thus analyzed.
In Figure 8A, the graph shows a marked increase in the number of hops for all three approaches when the number of
users increases, implying that the system would slow down once the number of users increases, and the resources conflict.
The weighted average hops indicated that RODSPP consumed 4% more hops than POP and 23.1% fewer hops than edges.
The increase in hops in the RODSPP was due to migrating the interoperated services, which have low request rates and
matching the size of the task with the node resources to avoid overload. RODSPP prevented overload for the computing
nodes in all layers by migrating excessive tasks from the overloaded ones.

POP and edge were not affected by the changes in the number of fog devices; RODSPP tended to migrate more services
to the upper levels closer to the cloud. Due to the addition of two more service categories to activate the RODSPP algorithm,
such as delay-sensitive applications, even with a low request rate, the migration process increased with an increasing
number of fog levels in the system, as shown in Figure 8B. Therefore, RODSPP did not decrease the number of hops while
maintaining the most usable and delay-sensitive services in the edge-fog network. This behavior is acceptable if we try to
solve many issues with limited resources in leaf nodes. In Figure 9, after we split the tasks into high and low request rates,
Figure 9A shows that there has been a marked rise in the time latency incurred by the highest popularity applications.
What is striking in the chart is the outperformance of RODSPP by 24.1%, which is due to matching the workloads with
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SULIMANI et al. 15 of 20

F I G U R E 8 Hops count with different situations. Experiment with two applications, two users, and two levels of fog devices: (A)
changing the number of devices associated with the edge device; and (B) changing the number of proposed fog levels

the capability of the computing nodes. Although RODSPP recorded a noticeable increase in hops, it achieved fair results
in the overall scheme of the performance.

POP ignores low-requested services without considering their sensitivities. We added a delay-sensitive application
with a low request rate to the proposed experiment. RODSPP allocates low-popularity applications on a leaf device if it is a
delay-sensitive application. To answer the second research question, we consider Figure 9B, which shows the performance
of the POP and RODSPP for applications with low popularity but high time sensitivity. The chart shows the comparable
behaviors of both the RODSPP and POP policies in non-time-sensitivity applications. The chart shows that there has been
a sharp decline in system latency for RODSPP in delay-sensitive applications. Thus, RODSPP is recognized as a valid
policy for delay-sensitive applications even with low popularity. Generally, even though the system places all services
at the border in the case of one user, the gateway still engages the cloud to accomplish complex tasks in real life. The
third question in this study addresses the performance of RODSPP, among other models, in CPU, network usage, and
system latency. The system latency parameter has already been discussed in the second question. The RODSPP showed
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16 of 20 SULIMANI et al.

F I G U R E 9 Service latency in different situations. Experiment with two applications, two users, and two levels of fog devices: (A)
changing the number of devices associated with the edge device; and (B) changing the number of proposed fog levels

outstanding outcomes for delay-sensitive applications with low request rates, as shown in Figure 9. Thus, RODSPP can
be highly recommended for time-sensitive applications.

Figure 10 shows the relation between the CPU usage in different layers and the network usage. Figure 10A shows the
CPU usage of the father nodes in the proposed algorithm, which outperformed POP by matching the workloads with the
available resources. This feature has improved the use of border CPUs. The proposed algorithm tends to decrease the load
of children’s CPUs once a new layer appears, which increases network usage. Although RODSPP consumes 4.5% more
network bandwidth than POP, it decreases all fog resource usage by 20%. The primary contribution of this study was to syn-
thesize well-disciplined resource allocation approaches using them in local optimization through a divide-and-conquer
approach in a carefully articulated realistic IoT fog networking environment. This study demonstrates successful IoT
fog resource allocations in terms of controlled response time and constrained computing resource usage, thus provid-
ing important insights and guidelines for the community to refer to and seek further enhancements in real-time IoT fog
applications.
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SULIMANI et al. 17 of 20

F I G U R E 10 CPU usage of the devices with regard to their topology distribution. Experiment with two applications, two users, and two
levels of fog devices: (A) CPU performance with the POP algorithm; and (B) CPU performance with the RODSPP algorithm

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

The span of IoT devices is growing day by day, generating large amounts of data. However, the cloud cannot manage and
process an increasing number of IoT devices for real-time processing, which requires low latency and reduced resource
consumption due to its centralized and distant architecture. Server mobility and decentralization are requirements for IoT
devices for real-time data processing. A fog computing paradigm is thus proposed in this study to meet the requirements
of future IoT networks. In this regard, this research proposed reinforcement optimization for a decentralized service
placement policy (RODSPP), which attempts to mitigate the drawbacks of existing placement policies by decentralizing
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18 of 20 SULIMANI et al.

FSPP intelligently. To verify the performance of the proposed RODSPP, extensive experimental comparisons were made
against the other well-known algorithms including edge and POP using the evaluation parameters of service latency,
network usage and computing usage. The experimental analysis showed that the proposed load-balancing algorithm
better utilized the local fog computing resources and supported well the real-time performance requirements of the IoT
applications.

6.2 Future work

Although the proposed algorithm (RODSPP) achieved the improved performance within the parameters considered in
this study, we plan to improve upon these results further by considering more performance dimensions relevant to the IoT
applications in the industry. Thus, we aim to support the real-time industry IoT application with the proposed innovative
FSPP scheme.
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