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Abstract Underground chambers or tunnels often 
contain inclusions, the interface between the inclu-
sion and the surrounding rock is not always perfect, 
which influences stress wave propagation. In this 
study, the imperfect interface and transient seismic 
wave were represented using the spring model and 
Ricker wavelet. Based on the wave function expan-
sion method and Fourier transform, an analytical 
formula for the dynamic stress concentration fac-
tor (DSCF) for an elliptical inclusion with imper-
fect interfaces subjected to a plane SH-wave was 
determined. The theoretical solution was verified 
via numerical simulations using the LS-DYNA soft-
ware, and the results were analyzed. The effects of 
the wave number (k), radial coordinate (ξ), stiffness 
parameter (β), and differences in material proper-
ties on the dynamic response were evaluated. The 
numerical results revealed that the maximum DSCF 
always occurred at both ends of the elliptical minor 
axis, and the transient DSCF was generally a factor of 

2–3 greater than the steady-state DSCF. Changes in k 
and ξ led to variations in the DSCF value and spatial 
distribution, changes in β resulted only in variations 
in the DSCF value, and lower values of ωp and β led 
to a greater DSCF under the same parameter condi-
tions. In addition, the differences in material proper-
ties between the medium and inclusion significantly 
affected the variation characteristics of the DSCF 
with k and ξ.

Article Highlights 

• The spring model is adopted to represent the 
imperfect interface.

• The Ricker wavelet is adopted to represent the 
transient seismic wave.

• The numerical results are verified in terms of the 
theory and numerical simulation.

• The effects of four kinds of parameters on the 
DSCF are investigated.

Keywords Dynamic response · Elliptical inclusion · 
Imperfect interfaces · Dynamic stress concentration

1 Introduction

Underground rock strata have numerous discontinu-
ous structures, including cavities formed by structural 
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discontinuities and inclusions formed by medium 
discontinuities. These cavities include roadways, 
chambers, and cracks. After being filled with other 
media, the cavities became inclusions. Therefore, the 
concrete plug structure of a diversion tunnel, mining 
backfill body, underground construction, and even the 
ore body in the rock stratum can be characterized as 
inclusions. Disturbances caused by earthquakes and 
blasting propagate in the form of stress waves in the 
rock strata, and scattering and dynamic stress concen-
trations occur in discontinuous structures, which lead 
to structural failure (Zhang et al. 2011; Sheikhhassani 
and Dravinski 2016; Liu et al. 2017; Li et al. 2019).

The dynamic stress concentration caused by stress-
wave scattering has been extensively investigated, and 
their study methods have been improved and devel-
oped. (Tao et  al. 2017, 2019b, 2020a; Zhou et  al. 
2018; Jiang et  al. 2019; Zhao et  al. 2020). Pao and 
Mow (1973) systematically summarized the research 
status of dynamic stress concentration in 1973 and 
solved the scattering of the circular and elliptical cav-
ity model. The dynamic stress concentration factors 
(DSCF) around these models were determined based 
on the wave function expansion method, and the 
influencing factors of DSCF were analyzed. Liu et al. 
(1980) utilized the complex function method to deter-
mine the spatial distribution of DSCF near arbitrary 
shaped cavity, which extended the complex function 
to solve the process of scattering problem. Ghafarol-
lahi and Shodja (2018) investigated the scattering 
around arbitrarily oriented elliptic cavity/crack using 
the multipole expansion method, and the numerical 
results revealed that the angle and wave number of 
the incident wave had a significant influence on the 
DSCF value for the medium. Lu et  al. (2019) con-
sidered the blasting waves as cylindrical P-waves 
and determined the DSCF for underground tunnels 
based on the wave function expansion method in 
multi-polar coordinates. The numerical results indi-
cated that the main influence factors of DSCF were 
the blasting wave frequency and the scaled distance. 
Li et al. (2020) determined the analytical formula of 
DSCF for an underground circular cavity subjected to 
the transient P wave based on the complex function 
method, and the transient response obtained by using 
the Butterworth filter to eliminate singularities. Leng 
et  al. (2022) evaluated the DSCF around two circu-
lar cavities subjected to SH-wave in a plate by using 
the mirror method with the wave function expansion 

method and the influence of the band thickness, dif-
ference of two cavities sizes, and wave number on 
DSCF was analyzed.

The scattering process of stress wave around inclu-
sions has been a focus of research for many years, but 
the boundary conditions of inclusions are more com-
plex than cavities (Yang et al. 2002; Xu et al. 2011; 
Tao et al. 2022). Lee et al. (2013) utilized a volume 
integral equation method to solve the scattering of 
multiple elliptical inclusions in infinite space and 
presented the displacement of inclusions under vari-
ous wave numbers. The advantage of this approach 
was that only the inclusions need to be discretized, 
not the entire region. Qi et al. (2019) investigated the 
dynamic response of the elliptical inclusion in half-
space, which partially debonded with the medium. 
The displacement and stress fields were determined 
by the Green’s function method and conformal map-
ping and the influence factors for the spatial distri-
bution of DSCF were analyzed. Jiang et  al. (2020) 
employed the complex function method to obtain 
the DSCF around an elliptical inclusion in the ani-
sotropic half-space. The numerical results indicated 
that the wave number, incidence angle, and aniso-
tropic parameters significantly influenced the spatial 
distribution of DSCF. Jang et  al. (2020) studied the 
scattering of SH waves by a three-layer inclusion 
near the bi-material interface and obtained the dis-
placement fields resulting from the forces using the 
Green’s function method. Yang et  al. (2021) estab-
lished a mathematical model for an inhomogeneous 
half-space and investigated the dynamic stress around 
a circular inclusion in an inhomogeneous medium. 
In addition, the effects of inhomogeneous param-
eters, reference wave number, and burial location on 
the DSCF around a circular inclusion were analyzed. 
Zhang and Qi (2021) calculated the dynamic response 
of an elliptic inclusion in an infinite strip region under 
a plane SH wave by using the conformal mapping 
method.

In previous studies, the interface between the 
inclusion and surrounding rock was considered a 
perfect bond, which revealed that the stress and dis-
placement at the interface were continuous. In fact, 
owing to the existence of micro-cracks and interstitial 
media, the interface between the inclusion and sur-
rounding rock is not always perfect, which influences 
the propagation of stress waves. In addition, previous 
research has primarily concentrated on the dynamic 
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response of inclusions under steady-state incidence, 
which cannot directly guide the protection of under-
ground structures under transient disturbances caused 
by blasting and earthquakes. Therefore, in this study, 
the spring model and Ricker wavelet were adopted to 
represent the imperfect interface and transient seis-
mic wave. The analytical formula of the DSCF for an 
elliptic inclusion with imperfect interfaces subjected 
to plane SH-wave was derived based on the wave 
function expansion method and Fourier transform. 
The theoretical solution was verified by numerical 
simulation using the LS-DYNA software, and the 
effects of wave number (k), radial coordinate (ξ), stiff-
ness parameter (β), and difference in material proper-
ties on the dynamic response were analyzed.

2  Formulation in the elliptical coordinate system

2.1  Governing equations

The simplified mathematical-physical model is shown 
in Fig.  1. The inclusion and medium are assumed 
to be elastic materials. The l, h and θ depicted the 
major and minor axes of inclusion and incident angle, 
respectively. The μ and k denote the shear modu-
lus and wave number. In addition, subscripts 1 and 
2 denote the parameters related to the medium and 
inclusion, respectively.

In the elliptical coordinate system, the dynamic 
response for inclusion can be determined by the wave 
function expansion method, and the elliptical coordi-
nate system is illustrated in Fig. 2.

The transformation relation between the rectan-
gular coordinate system and the elliptical coordinate 
system and the scale factor is defined as follows:

where ξ and η are the radial and angular coordinates, 
respectively.

The elliptical major axis l, elliptical minor axis h, 
and axis ratio ε can be expressed as

In the elliptical coordinate system, the Helmholtz 
equation and the analytic expression of the incident 
wave can be written as (Pao and Mow 1973)

(1)

⎧⎪⎨⎪⎩

x = a cosh 𝜉 cos 𝜂, 0 < 𝜉 < ∞

y = a sinh 𝜉 sin 𝜂, 0 < 𝜂 < 2𝜋

h2
𝜉
= h2

𝜂
= a2J

J2 = cosh
2 𝜉 − cos2 𝜂

(2)

⎧⎪⎨⎪⎩

l = 2a cosh �

h = 2a sinh �

� = coth�

(3)∇
2� + k2� =

1

a2J2

(
�2�

��2
+

�2�

��2

)
+ k2� = 0

(4)ui
z1
= u

0
ei[k(x cos �+y sin �)−�t]

Fig. 1  The geometry model
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where k and ω denote the wave number and circular 
frequency, respectively, and k = ω/cs.

Assuming that the maximum displacement u0 
of uz

i is one and omitting the time-dependent term 
e−iωt for simplifying the calculation, the incident 
wave can be expressed by Mathieu functions as 
follows:

(5)

ui
z1
= 2

∞∑
m=0

imcem
(
�, q1

)
Mc1

m

(
�, q1

)
cem

(
�, q1

)

+ 2

∞∑
m=1

imsem
(
�, q1

)
Ms1

m

(
�, q1

)
sem

(
�, q1

)

where cem, sem and Mcm, and Msm are the radial 
and angular Mathieu functions, respectively, and 
q = (ak)2/4.

The radial and angular Mathieu functions can be 
represented as follows (Abramowitz et al. 1965):

(6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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Fig. 2  Elliptical coordinate 
system
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The scattering wave around the inclusion uz1
s can be 

expressed as

Therefore, the full-wave expression in the medium 
can be determined as

The standing wave uz2 inside the inclusion can be 
given by the following formulas (Pao and Mow 1973):

In Eqs. (8), (10), Bm, Cm, Dm and Em denote the 
undetermined coefficients.

In addition, the stress component in the elliptical 
coordinate can be represented as (Liang and Jia 2011):

2.2  Boundary conditions

In fact, the interface between the inclusion and the 
surrounding rock is not always perfect owing to the 
existence of micro-cracks and interstitial media. The 
stress and displacement behavior of inclusion is very 
dependent on the surface status (Son and Cording 
2007). For the imperfect interface, much fundamen-
tal research has been conducted to develop different 
kinds of models (Gurtin and Murdoch 1975; Chen 
et  al. 2006; Benveniste 2006). The spring model is 
one of the most widely used models, and its validity 
has been verified in previous literature (Yi et al. 2014, 
2016; Fang et  al. 2015; Fang and Jin 2017; Zhang 
et  al. 2019). Therefore, the spring model is adopted 
to model the imperfect interface, which assumes the 

(8)
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{
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aJ

�uz

��
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�

aJ

�uz

��

stress is continuous but displacement is discontinuous 
at the interface. Moreover, the stress is proportional 
to the discontinuity of displacement through a stiff-
ness parameter β. The boundary condition can be 
described as

The extent of contact between inclusion and sur-
rounding rock can be defined through β. For β → ∞, 
which indicates that displacement and stress of inclu-
sion and medium are continuous at the interface. 
Therefore, the imperfect interface approaches the 
perfect interface. For β → 0, we obtain σξz → 0, which 
means that no waves are transmitted from the medium 
to the inclusion, and the inclusion model becomes the 
cavity model.

3  Steady‑state response

3.1  Dynamic stress concentration factor (DSCF)

The wave function has four undetermined coeffi-
cients, but boundary conditions only have two equa-
tions which result in the equation set cannot be solved 
directly. The incident angle θ is set as 0, which means 
that the incident wave is parallel to the x-axis, result-
ing in sem(θ,q) = 0 and Cm, Em does not affect the 
solution of the equation set. Therefore, Eqs. (5), (8), 
and (10) can be written as

Substituting Eqs. (13), (14), and (15) into Eq. (12) 
gives the following two equations:

(12)

{
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��z1

�
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Due to the characteristics of the Mathieu function, 
cem(η, q1) and cem(η, q2) are not orthogonal. Conse-
quently, solving the equation set requires the orthogo-
nal formula of the Mathieu function. The orthogonal 
formula is given as follows:

Substituting Eq.  (17) into Eq.  (16) gives the fol-
lowing two equations:

where

Eliminating Bm from the two equations in Eq.  (18) 
enables an algebraic equation system to be derived for 
Dm:

(16)
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The numerical solution of the Mathieu function 
is obtained by truncating the N-th term. For the accu-
racy of the numerical solution, the value of N needs to 
be determined by comparing the error of the Mathieu 
function between the sum of N and N + 1 terms. N is set 
to 12 in this study. After computing Dm, we returned to 
Eq. (18) to determine Bn, the expression for which is as 
follows:



Geomech. Geophys. Geo-energ. Geo-resour.            (2023) 9:24  

1 3

Page 7 of 23    24 

Vol.: (0123456789)

Therefore, the full-wave expression in the medium 
can be determined as

(22)

Bn =

−2incen
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The DSCF value is defined as the ratio of ση and 
σ0. The σ0 is the stress generated by the incident wave. 
Thus, the DSCF and σ0 can be expressed as (Pao and 
Mow 1973)

Substituting Eq.  (23) into Eq.  (24) gives the 
steady-state DSCF, which is represented as follows:

Both real and imaginary parts of numerical results 
represent the steady-state DSCF, but at different 
moments. The real part and imaginary parts represent 
the moment of T = 0 and T/4, respectively (where T is 
the period of incident waves).

3.2  Case study and verification

In this study, the semi-focal length a was set to 1 m 
for simplifying calculations. The radial coordinate 
ξ was set to 0.2 and 1.5, which controlled the shape 
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Fig. 3  Verification of theoretical results

Fig. 4  The distribution of steady-state DSCF with ξ = 0.2 in case 1
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of the ellipse and the corresponding axis ratios were 
5 and 1.1, respectively. The wave velocity of the SH 
wave was in the range of 2000–3000 m/s at the pro-
ject site. Thus, the wave velocity cs was predeter-
mined to be 2200 m/s. In addition, the incident wave-
number k was set to 0.2 and 1, with the wavenumber 
range covering earthquakes, engineering blasts, and 
most impacts (Tao et  al. 2020b). The difference in 
the material properties of the medium and elliptical 

inclusions also affects scattering around the ellipti-
cal inclusions (Yi et al. 2016). In this study, we set up 
two cases for the calculation. For case 1, k2/k1 = 0.5 
and μ1/μ2 = 0.25, indicating that the inclusion was 
stiffer than the medium. For case 2, k2/k1 = 2 and 
μ1/μ2 = 4, indicating that the inclusion was softer than 
the medium. In addition, three sets of dimension-
less spring stiffnesses were considered: β = 0.1µ2/J, 
1.0µ2/J, and 10µ2/J.

Fig. 5  The distribution of the steady-state DSCF with ξ = 1.5 in case 1

Fig. 6  The distribution of the steady-state DSCF with ξ = 0.2 in case 2
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Subsequently, to verify the derivation, we set the 
inclusion and medium to the same material prop-
erty parameters. For β → 0 and ξ = 1.5, the elliptical 
inclusion degenerated into a circular cavity, and the 
numerical result was two from Pao and Mow (1973). 
For β → ∞, the imperfect interface approaches the 
perfect interface, which means that the stress waves 
propagate through the rock without a discontinuous 
structure and scattering. According to the definition 

of the DSCF, its maximum value of DSCF is one. 
The verification results are shown in Fig. 3.

As shown in Fig. 3, the DSCF approaches two for 
β → 0, and it becomes one for β → ∞. The maximum 
value of the DSCF appeared at an angle perpendicu-
lar to the incident direction, and its minimum value 
occurred in the incident direction. The DSCF value 
gradually increased with an increasing angle in the 
range of 0° to 90°, and the spatial distribution of 

Fig. 7  The distribution of the steady-state DSCF with ξ = 1.5 in case 2

Fig. 8  The variation in the DSCF with wave number (k) in case 1
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DSCF was symmetrical about the elliptical major and 
minor axes. Its maximum value and spatial distribu-
tion of DSCF were in excellent agreement with the 
available literature.

3.3  Numerical results

The numerical results for the steady-state DSCF are 
shown in Figs. 4, 5, 6, 7, 8, 9, 10 and 11. Figures 4, 

5, 6 and 7 present the distribution of the steady-
state DSCF around the elliptical inclusion in the two 
cases. Figures 8, 9, 10 and 11 depict the variation in 
the DSCF with the wave number (k), radial coordi-
nate (ξ), and stiffness parameter (β) at η = π/2 (3π/2) 
in the two cases. In this study, an area with a DSCF 
greater than one was defined as the stress concen-
tration area, and an area with a DSCF less than one 
was defined as the stress reduction area. As shown 

Fig. 9  The variation in the DSCF with wave number (k) in case 2

Fig. 10  The variation in the DSCF with radial coordinate (ξ) in two cases
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in Figs. 4, 5, 6, 7, the distribution of the DSCF was 
highly dependent on the wave number (k), radial 
coordinate (ξ), stiffness parameter (β), and differ-
ences in material properties. Figure 4 shows that, for 
β = 0.1µ2/J, the DSCF achieved a minimum value of 
zero in the incident direction, gradually increased 
with increasing angle, and reached the maximum 

value at an angle perpendicular to the incident direc-
tion. The spatial distribution of DSCF is symmetrical 
along η = 0 (π) and η = π/2 (3/2π). This phenomenon 
demonstrates that the DSCF achieved minimum and 
maximum values at both ends of the major and minor 
axes and that values were symmetrically distributed 
along the major and minor axes. For k = 0.2 and 1, 

Fig. 11  The variation of the DSCF with stiffness parameter (β) in two cases
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the maximum DSCF values were 0.944 and 0.918, 
respectively. For β = 1.0µ2/J and 10µ2/J, the maxi-
mum DSCF values were 0.7156, 0.6742 and 0.6679, 
0.6115, respectively, indicating that the DSCF 
decreased with the increase in β, but the difference 
range was only about 0.3. In addition, all the values 
of the DSCF were < 1, and the entire elliptical inclu-
sion was in the stress reduction area. Figure 5 reveals 
that the DSCF distribution changed significantly. For 
k = 0.2, the spatial distribution of the DSCF was the 
same as that shown in Fig. 4, but its maximum value 
changed. For β = 0.1µ2/J, the maximum value of the 
DSCF reached 1.410. The stress concentration area 
was mainly distributed in the ranges of η = π/4–3π/4 
and 5π/4–7π/4, and other areas were stress reduc-
tion areas. In the case of β = 1.0µ2/J and 10µ2/J, the 
maximum DSCF value was only about 0.5. Therefore, 
the entire elliptical inclusion was in the stress reduc-
tion area. At k = 1.0, the DSCF had six stress peak 
areas, and the stress concentration area was only pre-
sent when β = 0.1µ2/J, being mainly distributed near 
η = π/2 and 3π/2 with a maximum of 1.325. The other 
four stress peak areas occurred near η = π/6, 5π/6, 
7π/6, and 11π/6, and the DSCF values were 0.7595, 
0.5344, 0.5344 and, 0.7595, respectively. The phe-
nomenon of multiple stress peak areas at a high-wave-
number incidence is consistent with the available lit-
erature (Zhang et al. 2021). The reason for the stress 
peaks appearing at other angles was that multiple 
stress wave crests existed in the elliptical inclusion 
under a high-wave-number incidence and the location 
of the wave crests was prone to dynamic stress con-
centration. In addition, the distribution of the DSCF 
is symmetrical along the elliptical major axis. For 
β = 1.0µ2/J, the DSCF exhibited six stress peak areas, 
and the distribution range was identical to that for dis-
tribution at β = 0.1µ2/J. However, for β = 10µ2/J, the 
DSCF had only four stress peak areas, appearing near 
η = π/2, 5π/6, 7π/6, and 3π/2, respectively. In addition, 
all peaks of the DSCF < 1 in the cases of β = 1.0µ2/J 
and 10µ2/J, indicating that the whole elliptical inclu-
sion was in the stress reduction area.

The spatial distribution of the DSCF as shown 
in Fig. 6, was approximately equal to that in Fig. 4, 
and minimum and maximum values appeared at 
both ends of the major and minor axes. However, β 
had no significant influence on the DSCF value. For 
k = 0.2 and 1.0, the maximum values of the DSCF for 
the three values of β were approximately 1.1817 and 

1.1999, but the distributions of the stress concentra-
tion areas were different. For k = 0.2, the stress con-
centration area was mainly distributed in the ranges 
of η = π/6–5π/6 and 7π/6–11π/6. Whereas, for k = 1.0, 
the stress concentration area was mainly distributed in 
the ranges of η = π/3–2π/3 and 4π/3–5π/3. The spatial 
distribution of the DSCF in Fig.  7 is similar to that 
in Fig.  5. For k = 0.2, the DSCF exhibited only two 
stress concentration areas, which were mainly distrib-
uted in the ranges of η = π/6–5π/6 and 7π/6–11π/6. 
Meanwhile, the DSCF reached maximum values at 
both ends of the minor axis, being 1.9124, 1.7633, 
and 1.6638, respectively. In the case of k = 1.0, the 
DSCF had six stress peak areas for the three values of 
β, mostly appearing near η = π/6, π/2, 5π/6, 7π/6,3π/2, 
and 11π/6. The stress concentration and stress reduc-
tion areas were mainly distributed around π/2, 3π/2 
and 5π/6, 11π/6. The DSCF values of stress peak 
areas near η = π/6, 11π/6 were around 1. The maxi-
mum values of DSCF at both ends of the minor axis 
were 1.5197, 1.6977, and 1.421, respectively.

These analyses reveal that changes in k and ξ led to 
variations in the DSCF value and spatial distribution, 
but changes in β resulted only in variations in the 
DSCF value. This is because k and ξ directly affected 
the number of stress peaks in the elliptical inclusion, 
which led to the appearance of multiple extreme val-
ues at different angles, and then affected the spatial 
distribution and values of the DSCF. However, β 
only affected the propagation of stress waves and 
did not alter the number of stress peaks in the ellip-
tical inclusion, which resulted in β not affecting the 
DSCF spatial distribution but only the DSCF value. 
According to previous studies, the spatial distribu-
tion of the DSCF should exhibit multiple stress peak 
areas under high-wave-number incidence. However, 
the numerical results showed that this phenomenon 
only occurred when the ellipse approached becoming 
a circle. This is because, at 0° incidence, the effective 
incident area of the elliptical inclusion was directly 
proportional to the elliptical minor axis, and the 
reduction in the effective incident area weakened the 
scattering. Therefore, the distribution of the DSCF 
with a shorter elliptical minor axis did not exhibit 
multiple stress peak areas.

Figures 8 and 9 present the variation in the DSCF 
with wave number (k) in two cases. As shown in these 
figures, for β = 0.1µ2/J, the DSCF first decreased and 
then increased with the increase in wave number and 
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finally approached a constant value being 1.04 and 
1.32 for ξ = 0.2 and 1.5, respectively. For β = 1.0µ2/J 
and 10µ2/J, the DSCF decreased gradually with 
increasing wave number, and their maximum value 
did not exceed one. In addition, with the varia-
tion in wave number, the DSCF with a small β was 
always greater than that with a large β value. Fig-
ure  9 indicates that the variation in material prop-
erty parameters had a significant influence on the 
variation in the DSCF with wave number. At ξ = 0.2, 
the DSCF first increased with increasing wave num-
ber, decreased sharply at greater wave number, and 
then increased gradually. In the case of ξ = 1.5, the 
DSCF first increased with increasing wave num-
ber, reached a maximum value for k = 0.2, and then 
gradually decreased to a constant value. The DSCF 
values approached were different for different β val-
ues being 1.4143, 1.3682, and 0.8920 for β = 0.1µ2/J, 
1.0µ2/J, and 10µ2/J, respectively. However, the DSCF 
with larger β changed dramatically in the process of 
approaching the constant value, exhibiting an oscil-
lation. This behavior can likely be attributed to reso-
nance scattering, as observed by Rajabi and Hashem-
inejad (2009). In addition, under the same conditions, 
the DSCF with a low wave number was greater than 
that with a high wave number, which was consistent 
with the conclusions of available studies (Hei et  al. 
2015; Yi et al. 2016; Tao et al. 2019a).

Figure 10 shows the variation in the DSCF value 
with the radial coordinate (ξ) in two cases. For 
β = 0.1µ2/J, the DSCF gradually increased with the 
increase of radial coordinate, finally becoming greater 
than one. For β = 1.0µ2/J and β = 10µ2/J, the DSCF 
decreased gradually with the increase in radial coor-
dinate, always being less than one. The variation 
characteristics of the DSCF with radial coordinates 
seen in Fig. 10(b) are remarkably different from those 
in Fig. 10(a). For k = 0.2, the DSCF increased gradu-
ally with the increase of radial coordinate, reached 
a maximum value in the range of ξ = 1.5–1.6, and 
then decreased with increasing radial coordinate. In 
the case of k = 1.0, the DSCF exhibited an oscilla-
tion with the increase in radial coordinate, which was 
likely ascribed to the existence of multiple stress peak 
areas in the elliptical inclusion with high wave num-
ber, and the distribution of stress peak areas and the 
value of DSCF changed dramatically. Figure 10a and 
b reveal that the difference in the material properties 
of the surrounding rock and inclusion significantly 

affected the variation in the DSCF with the radial 
coordinate. When the elliptical inclusion was stiffer 
than the surrounding rock, the variation characteris-
tics of the DSCF mainly depended on β, but when the 
elliptical inclusion was softer than the surrounding 
rock, the variation characteristics of the DSCF mainly 
depended on k.

Figure  11 presents the variation in the DSCF with 
stiffness parameter (β) in two cases. Figure  11(a) 
shows that the DSCF decreases rapidly in the range of 
β = 0–5µ2/J, then gradually decreases in the range of 
β = 5µ2/J–100µ2/J before approaching a constant value. 
This behavior demonstrates that the DSCF exhib-
ited high sensitivity to the variation in β in the range 
of 0–5µ2/J and that the imperfect interface approached 
the perfect interface for β > 100µ2/J. The final con-
stant DSCF values differed from those for different ξ 
and k values being 0.6621, 0.6031, 0.3846 and 0.2954, 
respectively. The variation characteristics of the DSCF 
with β in case 2 were approximately the same as those 
in case 1, and its final constant values were 1.1470, 
1.2024, 1.6458, and 1.3468. However, a rapid oscilla-
tion occurred for k = 1.0. Computing the distribution 
of the DSCF near the oscillation, showed that this phe-
nomenon was not caused by a singular value. It was 
likely attributed to the drastic variation in the distribu-
tion of the stress peak area and the value of the DSCF 
in the elliptical inclusion with the high wave number. 
Moreover, the maximum DSCF value did not appear at 
both ends of the elliptical minor axis.

4  Transient response

The steady-state incident wave is a simple harmonic 
wave in the infinite time domain, but the dynamic dis-
turbance of the project site is an incident wave with a 
complex waveform in the finite time domain. Therefore, 
it is significant for practical engineering to determine 
the dynamic response for inclusion under transient dis-
turbance. The transient response can be obtained by 
using the Fourier transform based on the steady-state 
response. The transient DSCF of elliptical inclusion can 
be expressed as

where χ(ω) and F(ω) denote the steady-state response 
and frequency distribution function, respectively.

(26)ut =
1√
2�

∫
∞

−∞

F(�)�(�)e−i�td�
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The Ricker wavelet is a zero-phase seismic wavelet 
that is widely used in theoretical calculations and engi-
neering simulation (Assimaki et al. 2005; Wang et al. 
2012). Therefore, the Ricker wavelet was adopted to 
represent the transient disturbance generated by earth-
quakes. The Ricker wavelet can be written as (Wang 
2015; Zhang et al. 2017):

(27)f (x) =
(
1 −

1

2
�2

p
t2
)
e
−

1

4
�2
p
t2

where ωp denotes the dominant frequency.
In the time domains, the Ricker wavelet has one 

wave crest and two wave troughs in a short duration, 
the ratio of the wave crest and trough amplitude is 
0.5e1.5, which is ≈ 2.241 (Ricker 1940). In the fre-
quency domains, the Ricker wavelet achieves the 
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Fig. 12  The distribution of the transient DSCF with ξ = 0.2 in case 1



Geomech. Geophys. Geo-energ. Geo-resour.            (2023) 9:24  

1 3

Page 15 of 23    24 

Vol.: (0123456789)

maximum value at the dominant frequency. In this 
study, the dominant frequency ωp was set to 100, 800, 
and 2500, which corresponds to low, medium and 
high frequencies for the Ricker wavelet, respectively.

Substituting Eqs. (25) and (28) into Eq.  (26), the 
transient response of inclusion with the time-depend-
ent term was determined. The transient DSCF is 
even more significant for engineering projects at the 
moment of the Ricker wavelet crest. Therefore, that 
moment was chosen for numerical calculation and 
analysis in this study.

The numerical results for the transient DSCF are 
shown in Figs. 12, 13, 14, 15. Notice that, under the 
same conditions, the distribution of the transient 
DSCF was approximately equal to that of the steady-
state DSCF, with minimum and maximum DSCF 
values occurring at both ends of the major and minor 
axes. The distribution of the transient DSCF always 
appeared in the stress concentration areas, which was 
mainly in the ranges of η = π/8–7π/8 and 9π/8–15π/8. 
This phenomenon was the most significant difference 
between the transient and steady-state responses. At 

Fig. 13  The distribution of the transient DSCF with ξ = 1.5 in case 1
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ξ = 0.2, only the DSCF with ωp = 2500 is symmetri-
cally distributed along the elliptical major axis. In 
the case of ξ = 1.5, only the DSCF with ωp = 800 and 
2500 were symmetrically distributed along the ellip-
tical major axis. The DSCF was not symmetrically 
distributed along the elliptical minor axis, which 
indicates that the spatial distribution of the DSCF 
between the front and back-wave surfaces was differ-
ent. In addition, only for the high-frequency incident 
wave and when the shape of the inclusion approached 
that of a circle did the distribution of the DSCF 
exhibit six peak stress areas, which is consistent with 

the steady-state response. However, as the distribu-
tion and properties of the stress peak areas changed, 
all stress peak areas under transient incidence were 
stress concentration areas, mainly occurring near 
η = π/4, π/2, 3π/4, 5π/4, 3π/2, and 7π/4. Under the 
same parameter conditions, lower values of ωp and 
β led to a larger DSCF value, and the value of the 
transient DSCF was greater than that of the steady-
state DSCF, and it was generally greater by a factor 
of 2–3. For ωp = 100 and β = 0.1µ2/J in the two cases, 
the maximum DSCF values were 2.3711, 3.5281, 
2.9536, and 4.726, respectively. This phenomenon 

Fig. 14  The distribution of the transient DSCF with ξ = 0.2 in case 2
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demonstrates that a transient low-frequency inci-
dence and weak interface connections are more likely 
to result in structural failure. Figure  16 reveals that 
the distributions of the DSCF in the two cases were 
approximately the same under the same parameter 
conditions. However, the value of the DSCF in case 
2 was greater than that in case 1, which indicates that, 
for the inclusion that was softer than the surround-
ing rock, the dynamic stress concentration was more 
significant, and structural failure was more likely to 
occur.

5  Simulation verification results

The numerical simulation is an effective verification 
method for the scattering process in the rock. In this 
study, we validate the numerical results by simula-
tion using LS-DYNA software. The model was ini-
tially constructed as a 27 × 8 × 10 m cube. The ellip-
tical major and minor axes were constructed to be 2 
and 0.4 m, and some planar areas in the model were 
selected and loaded with transient disturbances along 
the z-axis. Through this loading mode, an SH-wave 

Fig. 15  The distribution of the transient DSCF with ξ = 1.5 in case 2
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propagating along the x-axis direction was gener-
ated, simulating the scattering process around the 
elliptical inclusion subjected to the transient SH 
wave. The keyword of “CONTACT_AUTOMATIC_
SURFACE_TO_SURFACE” defined the boundary 
between the elliptical inclusion and the surrounding 
rock, which indicated continuous stress and discon-
tinuous displacement at the interface. The loading 
waveform was a Ricker wavelet with ωp = 2500, and 
the peak stress was 60 MPa.

The numerical model and transient loading curves 
are shown in Fig. 17. To ensure that the propagation 
waveform was consistent with the Ricker wavelet, 
the displacements in the x- and y- directions of the 
elements from the unloaded part were constrained. 
Subsequently, a non-reflecting boundary was set 
on the surface of the model, excluding the plane 
where the loading face was located, thereby avoid-
ing the influence of the reflected wave on the scat-
tering process. The surrounding rock and elliptical 
inclusion were defined as linear elastic materials. By 
using the relationship between the wave velocity (cs) 
and basic mechanical parameters according to the 
parameter setting of case 2, the following material 
parameters were determined: ρ1 = ρ2 = 2700  kg/cm3, 
υ1 = υ2 = 0.25, E1 = 32.67GPa, and E2 = 8.1675GPa.

Figure 18 shows the verification of the theoretical 
results and numerical simulations. The simulation 

results demonstrate that the DSCF always exhibited 
minimum and maximum values at both ends of the 
elliptical major and minor axes under a transient 
disturbance and that the stress concentration area 
was mainly distributed in the ranges of η = π/8–7π/8 
and 9π/8–15π/8, which is consistent with the results 
of theoretical calculations. Consequently, the simu-
lation results verified the accuracy of the theoreti-
cal calculation, which revealed that the theoreti-
cal derivation of this study was effective. The size 
of the numerical model elements has a significant 
influence on the numerical simulation results. The 
greater the number of elements, the closer the 
numerical simulation results are to the theoreti-
cal calculation results, and the computation of the 
numerical simulation is correspondingly larger. In 
this study, the number of elements on a plane was 
3832 and their size was 0.25 × 0.25; the calcula-
tion results were almost the same as those for an 
element size of 0.125 × 0.125. Therefore, elements 
with a size of 0.25 × 0.25 were selected for numeri-
cal simulation to minimize the computational time 
as much as possible under the condition of ensuring 
the accuracy of the numerical simulation results. In 
addition, the shape of the element affects the results 
of the numerical simulation. The elliptical boundary 
of the inclusion caused the shape of the elements 
not to be all quadrilateral with equal area, therefore, 

Fig. 16  The distribution of the transient DSCF in different cases
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even if the appropriate element size was chosen, the 
numerical simulation results and the theoretical cal-
culation results deviated from each other.

6  Discussion

In this study, a model of an underground elliptical 
inclusion with imperfect interfaces subjected to tran-
sient loads was investigated in detail. The distribution 

of the transient DSCF near the elliptical inclusion was 
determined, and the influence of the wave number (k), 
radial coordinate (ξ), stiffness parameter (β), and dif-
ference in material properties between the medium 
and inclusion on DSCF was analyzed.

There were two important features of the model 
in this study: transient wave incidence and imperfect 
interfaces. In practical engineering, a dynamic distur-
bance is a non-periodic transient incidence, having 
a limited action time. Previous studies have mainly 

Fig. 17  Numerical model and transient loading curve
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focused on steady-state responses. Our numerical 
results demonstrate that the steady-state and tran-
sient responses of elliptical inclusions differ and that 
the dynamic stress concentration caused by transient 
disturbance is more obvious and the structural failure 
likelihood of the surrounding rock is greater. Moreo-
ver, the interface between the inclusion and surround-
ing rock is not always perfect, which influences the 
propagation of the stress wave and boundary condi-
tions. Consequently, the imperfect interface was rep-
resented by the spring model. This study serves as a 
foundation for the development and design of mining 
backfill bodies, underground construction, and other 
underground space projects and thus will prove valu-
able in the field of practical engineering.

Compared with the complex function method 
based on conformal transformation (Liu et  al. 1982; 
Zhang et al. 2016; Yang et al. 2020; Sun et al. 2021), 
the Mathieu function is more convenient for handling 
elliptic boundary problems, which prevents errors 
from conformal transformations and difficult bound-
ary mapping. Additionally, the mathematical form is 
simpler. The semi-analytical solution determined by 
truncating Eq. (20) is more precise than the numerical 
solution obtained using the complex function method. 
In this study, to ensure the correctness of the deriva-
tion, the numerical results were verified in terms of 
theory and numerical simulation. The elliptical inclu-
sion model with imperfect interfaces approached the 
circular cavity model and the same continuum model 
by controlling the parameters, and the theoretical 

results were consistent with those from previous stud-
ies. The spatial distribution and maximum value of 
DSCF from the numerical simulation were in good 
agreement with the theoretical results, which was 
significant for the preservation of the underground 
structure.

However, only the dynamic response of the inci-
dence angle θ = 0 can be determined, because the 
number of boundary conditions is less than that of 
undetermined coefficients when incidence angles θ 
is not equal to 0. Due to the Mathieu function hav-
ing no primitive function, the transient response 
was difficult to calculate by definite integrals. 
Therefore, the trapezoidal integral was used for the 
Fourier transform, which significantly increased 
the computation. The truncation term number 
N of the Mathieu function affects the accuracy 
of the numerical solution. The error range of the 
Mathieu function was within 0.01% by compar-
ing the sum of 12 and 16 terms. Thus, the value 
of N is set to 12 for numerical calculations in this 
study. In addition, the β in the numerical simula-
tion cannot be set directly, which is determined by 
the basic parameters of the elliptical inclusion and 
surrounding rock. It can only be obtained using 
stress and displacement calculation after numerical 
simulation.

7  Conclusions

In this study, the theoretical solutions of an elliptical 
inclusion with imperfect interfaces under plane SH-
wave incidence were determined by using the wave 
function expansion method and Fourier transform. 
The theoretical solution was verified by numerical 
simulation using LS-DYNA software, and the calcu-
lation results were provided. The wave number, radial 
coordinate, stiffness parameter, and difference in 
material properties, all of which influenced the spa-
tial distribution and value of DSCF for the elliptical 
inclusion were analyzed. The following conclusions 
were drawn reached:

1. The maximum DSCF always appeared at both 
ends of the elliptical minor axis, and the transient 
DSCF was generally a factor of 2–3 greater than 
the steady-state DSCF. Under the same parameter 
conditions, lower ωp and β led to a larger DSCF. 

Fig. 18  The verification of the theoretical results and numeri-
cal simulations
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Therefore, strengthening the interface between 
the upper and lower parts of underground con-
struction can effectively prevent structural failure 
caused by low-frequency seismic waves.

2. Changes in k and ξ led to the variation in the 
DSCF value and spatial distribution, but changes 
in β resulted only in a variation in the DSCF 
value. Because k and ξ directly affect the num-
ber of stress peaks in the elliptical inclusion and 
β only affects the propagation of the stress wave, 
the latter did not affect the number of stress peaks 
in the elliptical inclusion.

3. The DSCF exhibited high sensitivity to varia-
tions in β in the range of 0–5µ2/J. The sensitiv-
ity of the DSCF to the variation in β diminished 
when β was in the range of 5µ2/J –100µ2/J. For 
β > 100µ2/J, the imperfect interface approached 
the perfect interface.

4. The difference in the material properties between 
the medium and inclusion significantly affected 
the variation characteristics of the DSCF with k 
and ξ, and under the same parameter conditions, 
the value of the DSCF in case 2 was greater than 
that in case 1. The surrounding rock is more 
likely to experience structural failure when the 
inclusion is softer than the surrounding rock.

5. Because the reduction in the effective incident area 
led to the weakening of the scattering, the spatial 
distribution of the DSCF exhibited multiple stress 
peak areas under high-wave-number incidence 
only when the ellipse approached a circle.
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