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Abstract: In this study, immersion experiments were conducted on the geopolymer mortar (GPM) by
using artificial seawater, and the effects of alkali equivalent (AE) and waterglass modulus (WGM)
on the resistance of geopolymer mortar (GPM) to seawater immersion were analyzed. The test
subjected 300 specimens to 270 days of artificial seawater immersion and periodic performance
tests. Alkali equivalent (AE) (3–15%) and waterglass modulus (WGM) (1.0–1.8) were employed
as influencing factors, and the mass loss and uniaxial compressive strength (UCS) were used as
the performance evaluation indexes, combined with X-ray diffraction (XRD) and scanning electron
microscopy (SEM) to analyze the time-varying pattern of geopolymer mortar (GPM) performance
with seawater immersion. The findings demonstrated a general trend of initially growing and
then declining in the uniaxial compression strength (UCS) of geopolymer mortar (GPM) under
seawater immersion. The resistance of geopolymer mortar (GPM) to seawater immersion decreased
with both higher or lower alkali equivalent (AE), and the ideal range of alkali equivalent (AE) was
9–12%. The diffusion layer of the bilayer structure of the waterglass particle became thinner with an
increase in waterglass modulus (WGM), which ultimately led to the reduction in the resistance of
the geopolymer structure to seawater immersion. Additionally, a support vector regression (SVR)
model was developed based on the experimental data to predict the uniaxial compression strength
(UCS) of GPM under seawater immersion. The model performed better and was able to achieve
accurate prediction within 1–2 months, and provided an accurate approach to predicting the strength
of geopolymer materials in a practical offshore construction project.

Keywords: seawater immersion; geopolymer; alkali equivalent; waterglass modulus; SVR model

1. Introduction

The durability of concrete is an important basis for assessing its performance in an
aggressive environment. It is known that concrete structural degradation and a considerable
loss in service life are caused by seawater erosion in marine engineering. The more reliable
explanation for why objects deteriorate is because seawater is high in corrosive ions such
as Cl−, SO4

2−, and Mg2+, which react with Ca(OH)2 and hydrated calcium aluminate to
produce insoluble salts in weakly alkaline environments [1]. Insoluble salts tend to produce
large volume expansion followed by the formation of cracks, and the further dissolution
of ions leads to the deepening of cracks, eventually leading to a loss of concrete structure.
The geopolymer material can effectively solve this problem because of its excellent erosion
resistance and mechanical properties. In addition, the production of geopolymer material
is environmentally friendly and studies have shown that the production of fly-ash-based
geopolymer has lower CO2 emissions, at least 11% lower than Portland cement [2]. It has
become a new cement replacement material.

Due to its excellent erosion resistance and mechanical properties, the geopolymer
cementitious material has become a friendly substitute to solve the problem [3–5]. Owing
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to the significant environmental advantages, geopolymer materials have become a hot
topic of research in recent years, with performance-influencing factors receiving a lot of
attention from researchers [6,7]. The aggregate type, activator concentration, activator type,
activator ratio, etc., are the primary variables determining the performance of geopolymer
materials. Wang et al. [8] investigated the effect of NaOH solution concentration on the
mechanical and chemical properties of metakaolin-based polymers and found that the
flexural strength, compressive strength, and apparent density of the metakaolin-based
polymers increased with increasing NaOH solution concentration. Qiu et al. [9] revealed
that high OH- concentrations in the activator caused cementitious building materials to
lose strength. Dai et al. [10] investigated the effect of activator type on the properties of
geopolymers by preparing geopolymers with two different activators, NaOH and KOH.
The results showed that the KOH-based geopolymer had better mechanical properties.
Ground granulated blast furnace slag (GGBS)/fly ash ratio and water-binder (W/B) ratio
are also important factors affecting the performance of geopolymer materials. GGBS/fly
ash ratio is the main factor, while the effect of W/B ratio depends on the ratio of GGBS/fly
ash [11]. Recent years have seen a significant increase in research into the erosion resistance
of geopolymers, particularly with regard to seawater corrosion resistance [12–15]. Xiao
et al. [16] effectively developed high-performance marine concrete using a dual admixture
of mineral admixtures and anti-corrosion additives after analyzing the dissolution process
of ions in seawater on concrete using artificial seawater simulation testing. Chindaprasirt
et al. [17] investigated the effect of NaOH concentration in a marine environment on
chloride penetration and the compressive strength of geopolymer concretes, and the results
showed that a high concentration of NaOH helps to enhance the compressive strength
and reduce the chloride penetration of geopolymer concrete. Ouda et al. [18] focused
on the thermal stability and resistance to seawater immersion of fly ash geopolymers
doped with various percentages of tile waste compared to normal blends, and showed
that the addition of 10% tile waste enhanced the compressive strength and microstructural
properties both before and after exposure to seawater solution. Dai et al. [10] investigated
the effect of activator type on the properties of geopolymers by preparing geopolymers
with two different activators, NaOH and KOH. The results showed that the KOH-based
geopolymer had better mechanical properties.

For geopolymer performance prediction, Behnood et al. [19] used the M5P algorithm
to examine high-performance-concrete compressive strength prediction by building model
trees from high-dimensional data. In order to solve civil engineering issues more accu-
rately, Chou et al. [20] created a support vector regression system based on the artificial
intelligence firefly swarm algorithm. In order to increase the precision of high-performance-
concrete compressive strength prediction by parameter optimization, Omran et al. [21]
investigated the impact of three different materials (fly ash, Haydite lightweight aggregate,
and Portland limestone cement) on the compressive strength of high-performance concrete
using the bagging integration algorithm. However, few related scholars have focused on
the prediction of the time-varying performance of geopolymers under seawater immersion.

Numerous researchers have conducted some studies on the durability performance of
geopolymer materials under seawater immersion and have demonstrated that geopoly-
mer materials have excellent resistance to seawater immersion. However, these studies
only focus on the relationship between the influencing factors and durability, and do not
systematically analyze the time-varying patterns of geopolymer materials with seawater
immersion. In addition, a large number of studies are only based on experimental results
without subsequent performance prediction. Therefore, this study focused on analyzing
the influence law of activator parameters and the time-varying law of performance un-
der seawater immersion conditions, and establishing a prediction model for performance
prediction by combining the experimental results.

This study examined the effects of waterglass modulus (WGM) and alkali equivalent
(AE) on the mechanical characteristics and durability of geopolymer mortar (GPM) under
seawater immersion utilizing GPM specimens subjected to artificial seawater immersion
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for 270 days. AE (3%, 6%, 9%, 12%, and 15%) and WGM (1.0, 1.2, 1.4, 1.6, and 1.8) were
used as influencing factors, and mass loss and uniaxial compressive strength (UCS) were
used as performance evaluation indexes, combined with X-ray diffraction (XRD) and
scanning electron microscopy (SEM) to analyze the time-varying patterns and intrinsic
causes of GPM performance with seawater immersion. To further realize the prediction of
the strength of GPM under seawater immersion, a support vector regression (SVR) model
was developed based on the experimental findings, which provides a basis and reference
for the application of geopolymer materials in actual offshore construction projects.

2. Experimental Program
2.1. Raw Materials

Fly ash (FA), silica fume (SF), and slag were employed as three separate raw materials
in this study to cast GPM. The slag is S95 ground granulated blast furnace slag in white
powder form and the fly ash is low-calcium (CaO < 10%), and Table 1 details the chemical
makeup of each. SiO2 makes up 92% of the mass of SF, with an average particle size of
0.1 µm, and the specific properties of the materials are shown in Table 2. Natural river sand
with a medium fineness makes up the fine aggregate. As an alkaline activator, sodium
silicate solution and NaOH were chosen. NaOH is a 99% pure flake, and the sodium silicate
solution has a modulus of 3.35 (8.6% Na2O, 27.9% SiO2, and 63.5% H2O).

Table 1. Chemical composition of the binders.

Oxide
Content SiO2 Al2O3 Fe2O3 CaO TiO2 SO3 K2O MgO Na2O

FA (wt %) 50.94 36.20 3.93 3.63 1.36 1.26 1.11 0.52 0.41
Slag (wt %) 32.73 14.61 0.27 36.50 0.68 2.45 0.43 7.87 0.28

Table 2. Properties of the binders.

Materials Density (g/cm3)
Specific Surface

Area (m2/g) Loss on Ignition /%

FA 2.42 0.43 1.51
Slag 3.00 0.60 2.30
SF 2.35 17.00 2.43

2.2. Sample Preparation

Ae and Mo were used as variables in GPM specimens to study the impact of AE
and WGM on the performance of GPM under seawater immersion circumstances. The
parameters are defined in Equations (1) and (2). Ae ranged from 3 to 15%, Mo ranged from
1.0 to 1.8, and the mass ratio of sand aggregate to base material was 2.0. The specimens
were split into two groups of A and M for preparation. Tables 3 and 4 show the precise
matching ratio.

Table 3. Mixture proportions of group A (kg/m3).

No. Ae/% FA SF Slag Sand NaOH Waterglass Water

A3 3

105 180 315 1200

14.90 75.06 209
A6 6 29.79 150.11 179
A9 9 44.69 225.17 148

A12 12 59.59 300.22 117
A15 15 74.49 375.28 86
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Table 4. Mixture proportions of group M (kg/m3).

No. Mo FA SF Slag Sand NaOH Waterglass Water

M10 1.0

105 180 315 1200

48.86 187.64 168
M12 1.2 44.69 225.17 148
M14 1.4 40.53 262.69 128
M16 1.6 36.36 300.22 108
M18 1.8 32.20 337.75 88

Ae is the mass ratio of the equivalent basic oxide (Na2O) in the activator (Na2SiO3) to
the activated solid powder, and it is computed as follows:

Ae =
m(Na2O)

m(Raw material powder)
× 100% (1)

Mo is the molar ratio of equivalent SiO2 to equivalent basic oxide (Na2O) in the activator
(Na2SiO3), and it is computed as follows:

Mo =
mol(SiO2)

mol(Na2O)
× 100% (2)

The alkaline activator was prepared by sodium hydroxide flakes and sodium silicate
solution 24 h in advance. To lessen the impact of unknown impurities, sodium hydrox-
ide flakes were dissolved in distilled water, mixed proportionately with sodium silicate
solution, and kept at room temperature (23 ± 2 ◦C, 65% relative humidity) for storage.
The base material and sand aggregate were mixed in the mixer for 20 min and cooled to
room temperature. Then, the prepared alkali activator was added and stirred into shape.
A normal mortar cube of 70.7 mm in height, width, and depth was used as the specimen,
with 30 specimens in each group. The surface of the specimen was covered with plastic film
after it was manufactured to stop moisture loss and cracking. The samples were exposed to
a standard curing chamber temperature of 23 ◦C ± 2 ◦C for 24 h before being demolded
and tagged. The specimen was kept in the maintenance room with film and water after it
was demolded until the 28 days test age.

2.3. Test Method

The maintained GPM specimens were immersed in artificial seawater. The artificial
seawater liquid level was at least 50 mm above the specimen and the specimen interval was
not less than 50 mm. Plastic film was used to seal the immersion chamber and the artificial
seawater was replaced every 30 days. The mass change test was conducted for fixed
specimens throughout the seawater immersion phase in order to diminish the impact of
individual specimen variances on the test findings. The samples were periodically removed
from the immersion chamber and put into a drying chamber at a constant temperature of
105 ◦C for drying until the quality no longer changed. The samples were weighed using
an electronic scale with an accuracy of 0.01 g. A WES-600 universal testing machine was
used to determine the UCS of the samples. The fine morphological characterization of
GPM was performed by SEM using JEOL’s JSM-IT500 (Akishima, Japan), and the reaction
products and compositions were analyzed by XRD. The artificial seawater was prepared
with reference to the standard ASTM D 1141-98 (2013), and the main salt contents of the
artificial seawater are shown in Table 5.

The configuration of artificial seawater with ion concentration was increased to three
times in order to speed up immersion and reduce the test period. The main dissolved ions
and their mass percentages are presented in Figure 1, where the cations are primarily Na+

and Mg2+ while the anions are primarily Cl− and SO4
2−. Artificial seawater was prepared

and replaced monthly to weaken the effect of water evaporation on seawater concentration.
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Table 5. Chemical Composition of artificial seawater, (g/L).

Compound Standard Concentration Artificial Seawater Concentration

NaCl 24.53 73.59
MgCl2·6H2O 11.11 33.33

Na2SO4 4.09 12.27
CaCl2 1.16 3.48
KCl 0.695 2.09

NaHCO3 0.201 0.60
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2.4. UCS Prediction Model of GPM

It is evident that while the geopolymer material has good resistance to seawater im-
mersion, structural degradation with increasing seawater immersion time is unavoidable.
In actual offshore construction projects, if the strength of the geopolymer structure can
be predicted in advance, engineering disasters caused by structural deterioration can be
effectively avoided. In order to give an effective and scientific technique for the precise
prediction of GPM strength under seawater immersion, this research regressed and pre-
dicted the time-varying UCS of GPM under seawater immersion based on the support
vector regression (SVR) model.

2.4.1. Support Vector Regression (SVR)

Support vector machine (SVM) is a better algorithm for solving small-sample, nonlin-
ear, and high-dimensional problems based on the statistical Vapnik–Chervonenkis (VC)
dimensional theory and the principle of structural risk minimization [22]. SVR is an
important branch of SVM for solving regression problems, which is to find an optimal
classification surface by training set samples so that the error of all samples from that
classification surface is minimized [23]. The prediction of the test set was performed using
the regression function. The mean square error MSE and the coefficient of determination
R2 of the test set were recorded and calculated as:

MSE =
1
l

l

∑
i=1

(ŷi − yi)
2 (3)

R2 =

(
l

l
∑

i=1
ŷiyi −

l
∑

i=1
ŷi

l
∑

i=1
yi

)2

(
l

l
∑

i=1
ŷi

2 −
(

l
∑

i=1
ŷi

)2)(
l

l
∑

i=1
yi

2 −
(

l
∑

i=1
yi

)2) (4)

where l is the number of samples in the test set; yi (i = 1, 2, . . . , l) is the true value of the ith
sample; ŷi(i = 1, 2, . . . , l) is the predicted value of the ith sample.
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According to MSE and R2, the established regression models were assessed. Changing
the kernel function and other model parameters until the performance satisfies the require-
ments was performed to the model if the performance did not satisfy the requirements.

2.4.2. The SVR Prediction Model

The SVR prediction model only considers the effects of three factors, AE, WGM, and
seawater immersion time. In order to better evaluate their effects on the compressive
strength of GPM, the data of A and M groups were processed independently. Let the
sample be {(xi, yi), i = 1, 2, . . . , 50}, where xi is the influence factor of the ith sample, and yi
is the UCS corresponding to the ith sample. The measured data (No. 1–45) before 270 days
of immersion were used as the training set, and the measured data (No. 46–50) at 270 days
of immersion were used as the test set to construct the SVR prediction model. The sample
data are shown in Tables 6 and 7.

Table 6. Data for sample A.

Experiment No.
Influencing Factors(xi) Measured Compressive

Strength (yi)/MPaImmersion Time/d Ae/%

1 0 3 41.08
2 0 6 69.27
3 0 9 74.19
4 0 12 74.09
5 0 15 67.41
6 30 3 44.90
7 30 6 75.83

. . . . . . . . . . . .
48 270 9 66.68
49 270 12 65.38
50 270 15 52.44

Table 7. Data for sample B.

Experiment No.
Influencing Factors(xi) Measured Compressive

Strength (yi)/MPaImmersion Time/d Mo

1 0 1 76.95
2 0 1.2 74.19
3 0 1.4 74.35
4 0 1.6 69.55
5 0 1.8 68.54
6 30 1 81.18
7 30 1.2 78.73

. . . . . . . . . . . .
48 270 1.4 67.23
49 270 1.6 62.57
50 270 1.8 54.83

In the analysis of GPM performance prediction under seawater immersion, it was
found that the Radial Basis Function (RBF)K(xi, x) = exp(−‖xi − x‖2/2ε2) has high com-
putational accuracy [24,25]. Consequently, considering the model prediction accuracy and
generalization ability, RBF was selected as the kernel function, and cross-validation and
grid search were implemented to obtain the best penalty factor C and kernel function
variance g. The insensitivity coefficient ε = 0.01 was set to generate the SVR model.

3. Results and Discussion
3.1. Mass Change

Tables 8 and 9 display the mass changes of the GPM specimens under seawater
immersion conditions.
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Table 8. Mass change of Group A.

No. Indicators
Seawater Immersion Time/d

0 30 60 120 180 270

A3
Mass/g 754.22 763.52 765.67 769.50 760.10 762.80

Loss rate/% - 1.23 0.28 0.50 −1.22 0.36

A6
Mass/g 744.92 759.67 760.07 764.40 760.30 759.80

Loss rate/% - 1.98 0.05 0.57 −0.54 −0.07

A9
Mass/g 746.20 750.45 768.42 769.70 762.60 763.40

Loss rate/% - 0.57 2.39 0.17 −0.92 0.10

A12
Mass/g 735.37 738.42 757.55 756.70 756.10 748.80

Loss rate/% - 0.41 2.59 −0.11 −0.08 −0.97

A15
Mass/g 738.98 744.80 754.68 754.30 742.60 738.92

Loss rate/% - 0.79 1.33 −0.05 −1.55 −0.50

Table 9. Mass change of Group M.

No. Indicators
Seawater Immersion Time/d

0 30 60 90 180 270

M10
Mass/g 755.37 757.38 761.20 763.80 758.60 761.20

Loss rate/% - 0.27 0.50 0.34 −0.68 0.34

M12
Mass/g 746.20 750.45 768.42 769.70 762.60 763.40

Loss rate/% - 0.57 2.39 0.17 −0.92 0.10

M14
Mass/g 751.67 760.28 767.67 760.80 767.20 760.80

Loss rate/% - 1.15 0.97 −0.89 0.84 −0.83

M16
Mass/g 743.35 754.28 760.47 755.80 760.50 761.70

Loss rate/% - 1.47 0.82 −0.61 0.62 0.16

M18
Mass/g 733.93 749.40 746.65 740.60 738.40 733.80

Loss rate/% - 2.11 −0.37 −0.81 −0.30 −0.62

The GPM specimens displayed an overall trend of growing and subsequently reducing
mass change during the seawater immersion phase, as shown in Tables 8 and 9. This
indicates that a higher rate of GPM hydration products was produced than hydrolysis
during the early stages of seawater immersion. The specific cause is that the tetrahedral
A1O4

− in the geopolymer mesh structure has negative charge and needs cations such as
Na+ and Mg2+ to balance the charge [26]. As a result, high concentrations of Na+ and Mg2+

in the seawater prior to immersion diffuse into the interior of the geopolymer, resulting in
an increase in mass. Notably, sea salt crystals were discovered during the SEM investigation
(Figure 2d), which may also lead to a change in the mass of the GPM. In the late stages of
immersion, the rate of hydration product formation declined at the same time as the rate of
internal gel phase hydrolysis increased, leading to the phenomena of mass reduction, i.e.,
the release of aluminate and silica into solution from the gel structure [27]. Table 8 responds
to the effect of AE on the change in GPM mass, and it is clear that the mass reduction in
GPM happened at immersion in 180 days when AE was between 3% and 9%. The mass
reduction phenomenon was advanced to 120 days when AE was further enhanced. The
reason could be that the excess sodium remained in the sample and weakened the structure
of the geopolymer, which triggered an early hydrolysis of the gel phase structure [28].
Table 9 provides an illustration of the impact of WGM on the mass change of GPM, and it
is clear from Table 9 that WGM had no effect on the trend of its mass growth throughout
the initial stage. When WGM was between 1.0 and 1.6, the rate of mass change fluctuated
around 1% without an obvious pattern and no additional mass reduction occurred with the
increase in seawater immersion time (>60 days). This suggests that the silica-alumina mesh
structure of GPM was not harmed, showing that seawater immersion had less of an impact
on GPM. Analysis of the cause for the lack of additional mass reduction suggests that it may
be related to the low solubility of silica, which prevents further erosive action of seawater
when it precipitates on the contact surface between GPM and seawater [29]. Additionally,
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the unreacted silicate particles in geopolymer acted as insoluble fillers, enhancing their
chemical resistance. After 270 days of seawater immersion, none of the test groups revealed
significant mass loss, indicating that the GPM structure had good resistance to seawater
immersion and had not suffered significant damage.
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3.2. Time-Varying Law of Compressive Strength
3.2.1. Initial Compressive Strength

The initial uniaxial compressive strength of GPM was measured when they were not
eroded by seawater, and the results are shown in Figure 3. The correlation between AE,
initial compressive strength, and rate of strength change is illustrated in Figure 3a. The
initial compressive strength of GPM showed a trend of increasing and then decreasing
with the increase in AE. In the case of AE less than 9%, the compressive strength increased
with AE, and when it was more than 12%, the compressive strength showed a decreasing
trend. At AE of 9%, the compressive strength reached its maximum value of 74.19 MPa.
The compressive strength was only 41.08 MPa at AE of 3%, which is because the lower AE
failed to allow the aggregates to react adequately, and a significant portion of unreacted
aggregates were wrapped by the cementitious material and eventually formed a relatively
loose gel phase, reducing its strength. This conclusion was supported by the corresponding
SEM image (Figure 2a). When AE gradually increased to 12%, the compressive strength
of GPM continuously increased while the strength growth rate kept decreasing, and the
strength growth rate of AE from 9% to 12% was almost 0. The compressive strength
decreased when AE increased from 12% to 15%, which could be caused by the high alkali
concentration. Our results are in line with those of Alonso et al. [30], demonstrating that
a high concentration of NaOH inhibits the synthesis of geopolymers. The link between
WGM and GPM compressive strength and the rate of change of strength is shown in
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Figure 3b. As seen in Figure 3b, WGM increased from 1.0 to 1.8, whereas the corresponding
strength reduced from 76.95 MPa to 68.54 MPa, a 10.9% loss in strength. It can be seen that
although the UCS of GPM fluctuated slightly with the increase in WGM, the overall trend
was downward and there was an inverse correlation. There was no discernible trend in
the rate of change in its strength, which varied between −6.46% and 0.35%. The decrease
in GPM strength was because the elevation of WGM leads to the thinning of the diffusion
layer in the waterglass structure, the transfer of Na+ and OH- to the compact layer, and the
decrease in free Na+ and OH- content. This leads to the inability of Ca2+, Si2+, and Al3+ in
the aggregate to be fully activated, which eventually leads to the decrease in the strength
of the formed condensed structure [31]. It is worth noting that too low a WGM (Mo < 0.8)
during the test causes the solution to quickly crystallize, preventing it from effectively
participating in the polycondensation reaction to generate strength.
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Figure 3. Relationship between initial compressive strength and activator parameters: (a) Relationship
with AE; (b) Relationship with WGM.

3.2.2. The Impact of AE

Figure 4a illustrates the correlation between the UCS of GPM specimens, seawater
immersion time, and AE during simulated seawater immersion. From the upper surface of
Figure 4a, it is clear that the UCS of GPM showed a trend of increasing and then decreasing
with both immersion time and AE. From the bottom projection of Figure 4a, it can be seen
that the optimum strength range of the GPM specimens occurred between 9% and 12% for
AE and 30 d and 90 d for immersion time, with a maximum value of 78.73 MPa at 9% for
AE and 30 d for immersion time. In each stage of immersion, the trend of UCS with AE
showed an increasing trend followed by a decreasing trend, which was the same as the
initial strength change pattern without seawater immersion. When AE was 3–12%, the UCS
of GPM grew rapidly with immersion time in the initial stage of immersion (<60 days),
then declined as immersion time increased (60–90 days). The rate of decline in UCS slowed
down and stabilized when the structure became stable (90–270 days). This indicates that
short-term seawater immersion can increase the UCS of GPM. The UCS of GPM gradually
decreased as immersion time increased, which is consistent with Ouda’s findings [18]. The
large amounts of metal cations such as Mg2+ and K+ in seawater that enter the reticular
structure of GPM and replace the Na+ equilibrium charge to stabilize the silica-aluminate
reticulation are to blame for the strength enhancement in the initial stage. This is consistent
with the increment in the mass of GPM specimens in the pre-seawater immersion period.
Contrarily, the UCS of GPM decreased at a later stage with increasing immersion time,
which was attributed to a decrease in calcium content [32]. Chi and Huang [33] attributed
this to the decreased activity of fly ash. Combined with the XRD pattern (Figure 5) and SEM
images (Figure 2), it was discovered that no appreciable amount of destructive material
was created. Therefore, this loss in UCS was more likely caused by the weakening of the
gel phase structure.
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Figure 5. XRD patterns of GPM specimens.

Figure 6a shows the strength loss rate of GPM specimens after 270 days of seawater
immersion. As seen in Figure 6a, when AE was 3%, the compressive strength loss rate was
lowest at 4.31%. Its compressive strength loss rate varied from about 10% when AE was
between 6% and 12%. When AE was 15%, the UCS of GPM dropped from 67.41 MPa to
52.44 MPa, a reduction of 22.21% in strength. It is noteworthy that the strength enhancement
phenomenon of pre-seawater immersion did not occur when AE was 15% (Figure 4a), which
shows that higher AE leads to a decrease in compressive strength of GPM and a decrease in
resistance to seawater immersion. This finding that a higher AE generates more free bases
and free bases result in increased detrimental qualities such as brittleness is also supported
by Wang et al. [34]. They concluded that the optimal range of AE was from 3% to 5.5%,
which was smaller than the optimal range from 9% to 12% in this test. This decrease in the
optimal range is attributable to the thorough consideration of performance and economy.
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Figure 6. Compressive loss rate of GPM after 270 d of seawater immersion: (a) The impact of AE;
(b) The impact of WGM.

3.2.3. The Impact of WGM

The change pattern of the UCS of GPM specimens with seawater immersion time and
WGM is shown in Figure 4b. It is easy to see from the upper surface of Figure 4b that the
immersion time of 60 days displayed a raised shape, indicating that the change in WGM
did not affect the phenomena of the increment in compressive strength in the initial stage of
seawater immersion. Unlike the pattern of compressive strength change brought on by AE,
the strong compressive strength surface was “downhill-shaped” with an increase in WGM,
meaning that following seawater immersion, the UCS of GPM dropped with an increase
in WGM. According to the compressive strength projection at the bottom of Figure 4b,
the optimum strength range of GPM specimens occurred when WGM was 1.0–1.4 and
the immersion time was 30 days~90 days. When WGM was 1.0 and immersion time was
30 days, the UCS of GPM attained a maximum value of 81.18 MPa, and a minimum value of
54.83 MPa when WGM was 1.8 and the immersion period was 270 days. It can be seen that
the increase in WGM and silica content resulted in a decline in compressive strength rather
than an increase in strength. The link between compressive strength loss rate and WGM
was plotted (Figure 6b) in order to further study the relationship between WGM and the
compressive strength of GPM following seawater immersion. As demonstrated in Figure 6b,
the compressive strength loss rate varied between 10 and 15% when GWM was less than
1.6, indicating that the structure had not been seriously harmed. When GWM increased to
1.8, the UCS of GPM decreased from 68.541 MPa to 54.83 MPa, a strength loss of around
20%, and the resistance to seawater immersion sharply declined, demonstrating that the
increase in WGM resulted in a reduction in the resistance of GPM to seawater immersion.
Wang et al. [34] similarly found that the strength of alkali-activated slag diminished with
increasing modulus after WGM was larger than 1.5. Xie et al. [35] found that an increase in
NaOH content decreased the modulus of the sodium silicate solution and the formation of
crystalline sodium silicate in the matrix was more favorable to obtain higher strength. All
of their studies all indicated that the lower modulus of the sodium silicate solution was
more favorable to obtain higher strength. The reason for this analysis may be related, on the
one hand, to the bilayer structure of the waterglass particle (Figure 7) [36], where a change
in the modulus causes a change in the bilayer. The bilayer structure of the waterglass
particle is an amorphous (SiO2)m as the cores, the outer layer of the cores adsorbs a large
amount of negatively valent H3SiO4

−, the negatively valent H3SiO4
− and part of the Na+

are distributed within the dense layer, and another part of Na+ is free in the diffusion layer,
which finally forms the bilayer. An increase in the modulus generates more negatively
valent H3SiO4

−, and more Na+ is adsorbed within the dense layer leading to a forced
thinning of the diffusion layer and a decrease in the free Na+ and OH- content. As per
the “depolymerization-condensation” theory of Davidovits [37], the Si4+, Al3+, and Ca2+,
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which are involved in the formation of structure in raw materials, need to be activated by
Na+ and OH-. Consequently, the high modulus leads to the reduction in Si4+, Al3+, and
Ca2+ in the system, which cannot form a more dense and complete condensation structure,
so the resistance to seawater immersion is poor. On the other hand, it is likely that the
increment in WGM resulted in a decline in the relative amount of Na2O and a reduction in
the impact of alkali activation, which led to a loss of strength [34]. It was more likely that
this decrease in strength was connected to the bilayer architecture of the waterglass particle
because the experimental design fixed the AE of group M at 9% (Table 4), i.e., the content
of Na2O was the same.
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3.3. X-Ray Diffraction (XRD) Analysis

An XRD diffraction study on GPM specimens with various AE, WGM, and immersion
times was carried out in order to further investigate the internal process of the change in
geopolymer material properties; the findings are shown in Figure 5. As demonstrated in
Figure 5, the primary crystalline phase of GPM was quartz (PDF#33-1161), which is mostly
produced from the geopolymer’s raw material and non-reactive material [38]. Comparing
the XRD patterns under different AE and WGM in the figure, it is easy to see that the
strength of the quartz phase diffraction peaks tended to decline with increasing AE and
decreasing WGM, indicating that the unreacted material in GPM was reduced and the
reaction degree was intensified, which is consistent with the change trend of compressive
strength in the previous Section 3.2. It is further shown that AE and WGM primarily
modified the seawater immersion resistance of GPM by affecting the raw materials’ degree
of reactivity. A limited number of inconspicuous X-diffraction peaks appeared as calcite
(PDF#05-0586) after 270 days of seawater immersion. Calcite itself has low strength, so it
also contributes to the reduction in strength of the geopolymer material. No significant
new crystalline phases appeared throughout the immersion cycle, and the loss of strength
came mainly from changes in physical aspects.

3.4. Scanning Electron Microscope (SEM) Analysis

GPM specimens with various AE, WGM, and immersion times were chosen for SEM
to explore the microstructure in order to further analyze the change in geopolymer material
properties and the internal process of seawater immersion, and the findings are displayed
in Figure 2. Figure 2a shows the scanned structure of GPM with AE at 3%, and it is clear
from this that the GPM microstructure was poorly formed, with an overall loose and porous
shape. A substantial amount of unreacted fly ash, pores, and a minor amount of gel state
hydration products could be seen in the structure after being magnified by 2000 times. This
is because Na+ helps to produce zeolite phase crystallization while OH- in NaOH speeds up
the dissolution of Si4+ and Al3+ in the raw material. Due to the low NaOH content in the low-
AE environment, neither the OH- nor the Na+ levels were sufficient to fully dissolve the Si4+

and Al3+ in the raw material, which prevents the network from fully polymerizing [28,39].
All of these factors might result in a lack of raw material reaction and a low concentration of
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gel structure created by condensation, which prevents the particles from binding together
to form a compact structure. When the AE was raised to 9%, as shown in Figure 2b, the
overall structure of GPM was more compact and the sample’s pores greatly diminished. It
can be seen that the raw materials not involved in the reaction were significantly reduced
after being magnified 3 k times, and instead, a large amount of geopolymer gel phase was
formed to wrap some unreacted silica fume particles, which indicated that the increase in
AE caused more raw materials to be dissolved and condensed into gel material to achieve
the strength improvement. Figure 2c shows the scan structure when the modulus of GPM
increased to 1.8. The internal structure of the geopolymer gel phase was less dense than
the modulus of 1.2 (Figure 2b), which further explains that the increase in WGM causes
a decrease in the resistance of GPM to seawater immersion, confirming the validity of the
waterglass particle’s bilayer theory. Additionally, the presence of numerous microcracks
observed with the electron microscope, combined with the XRD pattern analysis, may be
ascribed to the internal dolomite reacting with alkaline materials to produce Mg(OH)2
with swelling properties, which weakens the bond between the geopolymer gel and the
aggregate. The SEM picture of GPM following 270 days of seawater immersion is shown in
Figure 2d. In comparison to the specimen without seawater immersion, two geopolymer
gel phases with varying degrees of densification, i.e., the two areas A and B, were also
noticed in addition to some unreacted raw components. Area B was close to the surface
of the specimen and had a large number of light-colored sea salt crystals attached, which
were absent from area A. This indicates that the GPM specimen had a good resistance to
seawater invasion and seawater did not entirely infiltrate the interior. Additionally, the
structural state of the area B was discovered to be irregularly fishnet-like when magnified
20,000 times, as shown in Figure 2d, and the structure was less dense in comparison to area
A. It indicates that seawater immersion hydrolyzed part of the gel phase structure of GPM,
which had a certain destructive effect on the structural denseness.

3.5. Predicted Results and Discussion of SVR Model

Utilizing the developed SVR model, the regression prediction of GPM strength under
seawater immersion was carried out. Figure 8 displays the measured and predicted results
of the acquired training and test sets.

The MSE and R2 results for the training and test sets are presented in Table 10. The
training and test sets of sample A both had a low MSE, reaching 10−3, and R2 was above
0.97; the MSE of sample M also reached 10−3, and the R2 was more than 0.99. It is clear that
the prediction results of both sample sets were in good agreement with measured results,
and the SVR model was able to predict the time-varying UCS of GPM under seawater
immersion with a good accuracy. By comparing the MSE and R2 of the two groups, it is
obvious that the training effect for sample A was weak and the R2 of the training set was
quite low, which was caused by the discrete character of the data. In contrast to WGM, the
influence of AE variations on GPM strength had a wider range. The extreme difference
of sample A was 39.42 MPa, whereas the extreme difference of sample M was 26.35 MPa.
The dispersion of Sample A was larger than that of M; hence, the training impact of the
regression model was generally subpar.

Table 10. MSE and R2 of the training and testing sets.

Sample
Training Set Testing Set

MSE R2 MSE R2

A 0.00103 0.9709 0.00118 0.9974
M 0.00200 0.9919 0.00224 0.9966
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Figure 8. Comparison of prediction results of the training set and the test set: (a) Training set of
sample A; (b) Testing set of sample A; (c) Training set of sample M; (d) Testing set of sample M.

3.6. SVR Model Analysis
3.6.1. Parameter Analysis

In this study, the RBF was used to train the SVR, and the optimal parameter penalty
factor C and kernel function variance g of the model were obtained with the help of the
cross-validation method. The results are illustrated in Table 11.

Table 11. The best parameters C and g.

Sample Penalty Factor C Kernel Function Variance g

A 1024 0.0884
M 90.5097 1

The penalty factor C represents the weight given to outlier samples, and the higher
the value of C, the more samples must be used as a support vector for the model. The
penalty factor C of sample A in this study was significantly larger than that of sample M,
indicating that sample A required more support vectors for training. The influence distance
of a single training sample was managed by the kernel function variance g. The radius of
effect was narrower with a greater value of g, and the sample values must be highly similar
to one another before they can be categorized as belonging to the same sort, which leads to
the overfitting phenomena. Sample A’s g was modest, suggesting that the model support
vector had a larger radius of sample effect during training. This phenomenon was still
caused by the discrete nature of the data.
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3.6.2. Comparative Performance Evaluation

The same data were subjected to regression analysis using a neural network prediction
model in order to compare and evaluate the applicability of the SVR model. Figure 9 shows
the results of the regression analysis of GPM strength using the back propagation (BP) neu-
ral network prediction model for samples A and M after 270 days of seawater immersion.
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Figure 9. Comparison of prediction results of BP neural network: (a) Sample A; (b) Sample M.

The R2 of the BP neural network’s prediction results was calculated as 0.99 and 0.91,
respectively. The R2 and goodness-of-fit of the BP neural network model decreased as
compared to the SVR model (Table 10). It is worth noting that the prediction accuracy of the
individual tests (Nos. 46 and 47) in Figure 9b significantly decreased, and the maximum
prediction error reached 4.24 MPa, indicating the relatively low accuracy of the BP neural
network model for predicting GPM strength under seawater immersion.

An attempt was made to further anticipate the compressive strength of GPM after
300 days of seawater immersion in order to confirm the prediction time range of the
constructed SVR model, and the expected outcomes are shown in Figure 10.
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Figure 10. Comparison of predicted results of seawater immersion of sample A for 300 days.

The prediction accuracy of both models declined after 300 days of seawater immersion
(No. 51–55) in comparison to 270 days, and the projected values of compressive strength
were higher than the true values (Figure 10). This is due to the fact that when seawater
immersion deepens, the UCS decay rate of GPM increases compared with the previous
period, which causes a drop in forecast accuracy. When comparing the prediction accuracy
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of the two models, it is clear that the SVR model was relatively better, with a maximum
error of 1.48 MPa in prediction (No. 53), whereas the highest error of the BP neural network
reached 4.59 MPa (No. 55). It demonstrates that the BP neural network model had a very
constrained prediction range capacity, whereas the SVR prediction model can essentially
achieve the UCS prediction of GPM within 1–2 months.

In summary, the SVR model outperforms the artificial neural network model for
predicting the strength of GPM under seawater immersion, and in the case of small samples
and short-term prediction, the SVR model can more accurately predict the trend of the
strength of geopolymer structures under seawater immersion, particularly the relationship
with AE and WGM. Additionally, the created SVR model can forecast the compressive
strength of GPM with high accuracy in 1–2 months, which can offer a reliable, scientific way
for predicting the strength of geopolymer materials in actual offshore construction projects.

4. Conclusions

The effects of AE and WGM on the performance of GPM before and after seawater
immersion were investigated, as well as the effective prediction of GPM strength under
seawater immersion using the SVR prediction model. The following conclusions can be
reached after discussing the results of the above sections:

(1) The time-varying law of UCS of GPM with seawater immersion was obtained.
The UCS of GPM showed a trend of rapid increase followed by slow decrease. The rapid
increment in strength from 0 to 60 days was related to the charge balancing of metal cations
in seawater entering the reticular structure of the GPM; the gradual decline in strength
after 60 days was attributed to the reduction in the gel phase structure.

(2) The influence of AE and WGM on the resistance of GPM to seawater immersion was
studied. The GPM became less resistant to seawater immersion as AE increased because
it produced more free alkali. The GPM construction revealed that the best resistance to
seawater immersion when AE was in the range of 9%-12%. The diffusion layer of the
bilayer structure inside the waterglass micelle attenuated as WGM increased (>1.0), and
the resistance of GPM to seawater immersion decreased as a result.

(3) The mechanism of seawater immersion was exposed. The XRD and SEM data
indicated that the hydrolysis of the gel phase in the geopolymer structure was primarily
responsible for the immersion of seawater and did not produce a significant amount of
new destructive material.

(4) Time-varying intensity regression and prediction of GPM were achieved. The SVR
prediction model could more accurately estimate the trend of the UCS of GPM during
seawater immersion, especially in respect of AE and WGM, with limited samples and
short-term forecast. It could accurately forecast the UCS of GPM within 1–2 months, which
can offer a reliable, scientific way to predict the strength of geopolymer materials in real
offshore construction projects.

This work investigated the effects of AE and WGM on GPM performance before and
after seawater immersion, and used the SVR model for the first time in predicting GPM
strength under seawater immersion. However, the study still has some limitations, such
as more complex influencing factors. Multi-influencing factors such as activator type and
aggregate type can be introduced in future studies. Studying more influencing factors
requires further improvement of the algorithm, so swarm intelligence algorithms such as
the dragonfly algorithm (DA) and whale optimization algorithm (WOA) can be used in
future studies [40–43].
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