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Abstract 

Investigation on the dynamic characteristics of bridges for structural condition assessment is 
challenging when nonlinear breathing cracks in the bridge and nonstationary vehicle-bridge 
interaction are considered. Variational mode decomposition (VMD) method has been widely used to 
analyze the nonlinear time-series, but its performance is highly dependent on the parameter setting, 
i.e., the number of modes and the penalty factor. A new method based on the parameter optimization 
VMD is proposed to extract the nonlinear dynamic characteristics from responses of bridge under 
moving vehicle loads in this paper. The Chicken Swarm Optimization (CSO) algorithm is used to 
optimize the VMD parameters to improve the decomposition and characterization. A general 
breathing crack model is introduced to simulate the bridge damage. The acceleration response of 
bridge considering the cracks is decomposed by the proposed method. The instantaneous frequency 
(IF) is then obtained from the time-frequency representation (TFR) of the bridge-related response 
component using the ridge detection. Numerical simulations are performed to investigate the effect 
of the crack location and extent on the IFs for structural damage detection. The effect of the vehicle-
bridge interaction is also discussed. The method is further verified using the laboratory experimental 
results of a concrete bridge model under the vehicle load. The nonstationary and nonlinear dynamic 
properties of the bridge model with different damage scenarios are successfully identified. The results 
show that the extracted IF clearly reveals the behaviour of breathing crack that can be a potential 
indicator of the damage in the bridge. 
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1. Introduction 

Dynamic characterization of the bridge under operational vehicle loads plays a vital role in 
bridge structural health monitoring for performance evaluation and damage detection [1,2]. Due to 
the wide application of highway bridges, the study on their dynamic characteristics under the vehicle 
loads has attracted great attentions of researchers in solving the vehicle-bridge-interaction (VBI) 
related problems [3,4]. The presence of a heavy traveling vehicle on the bridge may result in the 
nonstationary dynamic characteristics of the VBI system causing variations of the structural modal 
parameters [5]. Moreover, the inevitable cracks emerged in the bridge can lead to the complex 
nonstationary and nonlinear characteristics in structural dynamic behaviour when the vehicle is 
moving over the bridge [6, 7]. The studies have shown that the nonlinear dynamic characteristics of 
structures are sensitive to the breathing crack [8]. A crack on the bridge will open and close during 
its vibration under operational vehicle loads. The edges of the crack come into and out of contact 
leading to changes in the dynamic properties of the structure which is known as the breathing process 
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of the crack [9]. The nonlinear characteristics of the structure can be a good damage indicator, 
especially the breathing crack damage [10]. Therefore, it is essential to investigate these nonlinear 
dynamic characteristics for bridge condition assessment. 

The nonlinear effects caused by a breathing crack in the structural element have been reported 
in numerous works. Bovsunovsky and Surace [11] presented a state-of-the-art review to illustrate the 
nonlinear effects caused by a breathing crack. While the studies of nonlinear behaviour at free and 
resonant vibrations of beams [9, 12] or when beam is subjected to moving masses [13, 14] are 
extensive, studies that deal with the nonstationary and nonlinear VBI problems under the effect of 
breathing cracks are relatively less reported. Law and Zhu [15] proposed to use a crack model as 
presented in [16] to express the degradation in the flexural rigidity to study the dynamic responses of 
a cracked bridge. The opening/closing behaviour was modelled by multiplying a time dependent 
parameter to the degradation damage variable [17]. Nguyen [18] compared the open and breathing 
crack detection of a beam-like bridge by analyzing the displacement response of the bridge under a 
moving vehicle. Yin et al. [19] studied the dynamic behaviour of a bridge with multi-cracks under 
moving vehicles. The massless rotational spring was adopted to describe the local flexibility induced 
by a crack on the bridge. From the above studies, it is observed that the presence of crack results in 
high deflections and alters beam response patterns. Moreover, to appropriately model the crack 
influence on the stiffness of mechanical systems, the most common way was to use a cracked element 
with additional compliance determined using the energy release rate method based on the fracture 
mechanics [11, 20].  

Some experiential studies have been conducted to explore the nonstationary vibrations of the 
bridge under moving vehicles. Pakrashi et al. [21] presented an experimental study on the evolution 
of a crack in a phenolic beam using beam-vehicle interaction responses. An open crack model was 
introduced by notching in the lower section of the beam. McGetrick [22] constructed a scaled vehicle-
bridge interaction model in the laboratory. Damage was simulated via rectangular saw-cuts in the 
flanges of the steel I-beam. The bridge was modelled as a steel beam with rectangular cross-section 
and the local damage was simulated as the additional mass put on the beam [23]. Cantero et al. [24] 
explored the bridge frequency evolution during the passage of vehicles using a scaled laboratory 
model, where an I-section steel beam was adopted. Some field VBI experimental tests were also 
conducted for the bridge modal identification and condition inspection [25, 26]. However, these 
experimental investigations did not consider the nonlinear effects due to breathing cracks. 

A key feature of the nonlinear behaviour of cracked bridge subjected to moving vehicle load is 
an instantaneous change of the bridge stiffness at crack opening and closing. To characterize the 
nonlinear behaviour of a bridge subjected to moving vehicle loads, a variety of methods have been 
developed to examine the instantaneous frequency (IF) of the bridge under moving loads. Wavelet 
analysis [18] and empirical mode decomposition (EMD) [27] were used to analyze the non-stationary 
dynamic responses of vehicle-bridge interaction dynamic system, as well as the improved empirical 
wavelet transform [28] and modified S-transform reassignment [29]. Due to the solid mathematical 
theoretical foundation compared to the abovementioned methods, variational mode decomposition 
(VMD) methods have been proved to be effective in analyzing the nonstationary and nonlinear 
dynamic responses [30,31]. The efficacy and accuracy of VMD based method compared to EMD 
have been demonstrated in [32,33]. Despite of its wide applications, the performance of VMD heavily 
depends on the proper parameter setting, i.e., the number of modes and the quadratic penalty factor. 
Some attempts have been made to optimize the parameters using different optimization algorithms, 
such as the particle swarm optimization (PSO) [34]. The chicken swarm optimization (CSO) 
algorithm can be used to solve the optimization effectively in terms of optimization accuracy, 



 3 

robustness and conciseness [35]. It has been confirmed that CSO outperforms many nature-inspired 
algorithms like PSO and genetic algorithm in solving a wide range of standard benchmark and real-
life problems [36,37]. Therefore, a novel improved VMD method with parameter-optimized by CSO 
(CSO-VMD) is proposed to study the nonlinear dynamic characteristics of cracked bridges. 

The objective of this study is to identify the nonlinear characteristics of the cracked bridge under 
moving vehicle loads. A cracked finite element is developed by considering an overall additional 
flexibility to the flexibility matrix of intact element [38] based on the fracture mechanics. The 
breathing crack switching between being open and closed states is considered according to the 
curvature at the crack location. A novel CSO-VMD method integrated with ridge detection technique 
is proposed for IF identification of the nonlinear and/or nonstationary bridge response of the VBI 
system. The identified IFs are analyzed for possible crack detection. Moreover, the experimental 
study of a VBI model is conducted in the laboratory where the crack damages are introduced to the 
concrete bridge model. It is not only to validate the proposed analytical method, but also to provide 
information of practical engineering relevance for analyzing the structural nonlinear properties under 
a moving vehicle. The rest of paper is organized as followings: Section 2 introduces a generic bridge 
model under moving loads considering the nonlinear dynamic behaviour due to the breathing cracks; 
Section 3 presents the algorithm for the nonlinear characteristic identification of the bridge; Section 
4 conducts the numerical analysis to demonstrate the effectiveness of the proposed method in 
revealing the nonlinear characteristics of bridge and localizing the cracks. The implementation of an 
experimental verification on nonlinear characteristics of a typical Tee-beam under the model vehicle 
load is discussed in Section 5. Finally, the conclusions are drawn in Section 6.  

  
2. Numerical modelling of a cracked bridge subjected to moving loads 
2.1 Bridge model subjected to moving loads 
 The governing equation of motion of a damped beam bridge with NN degrees-of-freedom (DOFs) 
subjected to moving vehicle loads can be expressed as 

𝐌!�̈�! + 𝐂!�̇�! + 𝐊!𝐱! = 𝚽𝐏(𝑡)                   (1) 
where Mb, Cb and Kb are the NN×NN mass, damping and stiffness matrices of the bridge, respectively; 
P(t) are the moving loads on the bridge; Φ is the Hermitian cubic interpolation functions for 
transforming the moving loads P(t) to equivalent nodal forces to the beam element of the bridge [19]. 
 
2.2 Bridge cracked element models 

The local structural damage of the bridge is usually considered as the reduction of flexural 
stiffness. An overall flexibility matrix is especially appropriate for the analysis of a cracked beam 
based on a fracture mechanics approach considering the relationship between the strain energy release 
rate and the stress intensity factor [11]. A description for deriving the stiffness matrix of an open 
cracked element is presented as below. 

 
2.2.1 Stiffness matrix of an open cracked element  

For a rectangular cross-sectional beam element with height h, width b and length Le, the 
additional strain energy due to the existence of the crack considering only the bending deformation 
can be expressed as [38]  

𝛱" = 𝑏 ∫ 𝑊	𝑑𝑎#
$ = 𝑏∫

(&!"'&!#)"'&!!""

)$
	𝑑𝑎#

$         (2) 

where 𝛱" is the additional strain energy due to the crack; a is the total depth of the crack; W is the 
strain energy release rate function; 𝐸* = 𝐸 is the Young’s modulus for plane stress problem and 
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𝐸* = 𝐸/(1 − 𝜇+) for plane strain problem; 𝜇 is Poisson’s ratio; 𝐾,+,	 𝐾,,+ and 𝐾,-  are the stress 
intensity factors due to shear force 𝑉 and bending moment 𝑀 at the right node of the element, 

respectively; 𝐾,+ =
./0%
!1" √𝜋𝑎𝐹+(

#
1
); 𝐾,- =

.2
!1"√𝜋𝑎𝐹+(

#
1
), in which 𝐹+ and 𝐹,,  are the correction 

factors for stress intensity factors. They can be expressed as 

𝐹+(𝑠) = A34(56/+)
56/+

$.9+-'$.:99(:;<=>	(56/+))&

@A<	(56/+)
			(𝑠 = #

1
)         (3) 

𝐹,,(𝑠) =
:.:++;$.B.:6'$.$CB6"'$.:C$6#

√:;6
			(𝑠 = #

1
)            (4) 

 Using Paris equation, the entries of the overall additional flexibility matrix 𝑐EF can be expressed 
as 

𝑐EF =
G"H%
GI'GI(

, 𝑖, 𝑗 = 1,2;              (5) 

𝑐EF =
!
)$

G"

GI'GI(
∫ HI./0%

!1"
J𝜋𝜉𝐹+ L

J
1
M + .2

!1"
J𝜋𝜉𝐹+(

J
1
)N
+
+ I /

!1
J𝜋𝜉𝐹,,(

J
1
)N
+
O 	𝑑𝜉#

$     (6) 

 
The dimensionless forms can be expressed as follows (by setting 𝑥 = 𝑎/ℎ ): 

𝐹(1,1) = 𝑐::𝐸*𝑏 = 2𝜋 I-.0%
"

1" ∫ 𝑥𝐹++(𝑥)	𝑑𝑥
#/1
$ + ∫ 𝑥𝐹,,+(𝑥)	𝑑𝑥

#/1
$ N       (7) 

𝐹(1,2) = ")")$!1"

0%
= 72𝜋 ∫ 𝑥𝐹++(𝑥)	𝑑𝑥

#/1
$            (8) 

and, 𝐹(2,2) = 𝑐++𝐸*𝑏ℎ+ = 𝐹(1,2) ; 𝑐+: = 𝑐:+ . The entries of the overall additional flexibility 
matrix 𝑐EF can be obtained using least squares best-fitted formulas of 𝐹(1,1) and 𝐹(2,2).  

The overall additional flexibility matrix can be expressed as 𝐶KLM = I
𝑐:: 𝑐:+
𝑐+: 𝑐++N . The total 

flexibility matrix of the cracked beam element can now be obtained by  

𝐶NKN = 𝐶EON#"N + 𝐶KLM = T
0*#

-),
+ 𝑐::

0*"

+),
+ 𝑐:+

0*"

+),
+ 𝑐+:

0*
),
+ 𝑐++

U     (9) 

where 𝐶EON#"N is the flexibility matrix of the intact beam element. The stiffness matrix of a cracked 
beam element can be obtained as follows: 

𝐾" = 𝐿𝐶NKN;:𝐿P          (10) 

where 𝐿 = L−1 −𝐿Q 1 0
0 −1 0 1

M
P
. 

 
2.2.2 Stiffness matrix of a breathing cracked element 

A breathing cracked element depending on the curvature of the beam at the crack location is use 
to build the stiffness matrix [14,18]. The stiffness can be expressed as a continuous function as 
follows. 

𝐾! = 𝐾Q + 1/2(𝐾" − 𝐾Q) I1 +
R**
R+,-
$$ N          (11) 

where 𝐾! is the stiffness of the element with a breathing crack; 𝐾Q is the stiffness of the intact 
element; 𝑑′′ is the instantaneous curvature of the beam at the crack position and 𝑑S#T**  is the 
maximum curvature of the beam at the crack position with the passage of the vehicle load. The 
equation shows that when 𝑑** = 𝑑S#T**  the stiffness 𝐾! is minimum and equal to the stiffness of an 
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open cracked element 𝐾" . By this method, the stiffness of a breathing cracked element can be 
determined based on the stiffness of an open cracked and intact element.  
 The beam curvature 𝑑**(𝑥) is approximated by the second derivative of the deflection that can 
be calculated with the nodal displacements and rotations of the beam element. It is important to note 
that the 𝑑S#T**  depends on the properties of the moving load such that it cannot be set a priori. Since 
the maximum value of the curvature is unknown, it is initially obtained from a fully open crack 
problem. Having known the maximum curvature at crack location, the matrix 𝐾! is then calculated 
at each instant of time. The deflections of all nodal points are determined by solving the system of 
differential equations using Newmark-beta method. This process continues till the moving loads 
reach to the end of the beam. The maximum curvature at crack location is recorded during the moving 
load excitation. The problem solves again with this new maximum curvature. This loop continues 
until the difference between the two last maximum curvatures becomes less than a given tolerance 
value.  
 
2.2.3 The global stiffness matrix of the cracked bridge 
    The global stiffness matrix of the cracked bridge can be formed by assembling the stiffness 
matrices of common intact beam elements and the cracked elements. The stiffness matrix of the 
common intact beam element 𝐾Q can be derived as: 

𝐾Q =
),
0*#

⎣
⎢
⎢
⎡
12 6𝐿Q
6𝐿Q 4𝐿Q+

−12 6𝐿Q
−6𝐿Q 2𝐿Q+

−12 −6𝐿Q
6𝐿Q 2𝐿Q+

12 −6𝐿Q
−6𝐿Q 4𝐿Q+ ⎦

⎥
⎥
⎤
                     (12) 

The global matrix of all the common beam elements 𝐊"KS can be assembled according to the DOFs 
of each element with 𝐾Q. The entries corresponding to the DOFs of cracked elements in 𝐊"KS are 
zeros. Assuming that the number of cracked beam elements is 𝑁", the global stiffness of the bridge 
𝐊! can be written as 

[𝐊!]UU×UU = [𝐊"KS]UU×UU + d∑ 𝐀SE𝑻 𝐾!E𝐀SE
U%
EX: g

UU×UU
            (13) 

with  

𝐀SE = T
0 ⋯ 0 1 0 0
0 ⋯ 0 0 1 0

0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0

0 ⋯ 0 0 0 1
0 ⋯ 0 0 0 0

0 0 0 0 ⋯ 0
1 0 0 0 ⋯ 0

U

Y×UU

           (14) 

where, 𝐾!E  and 𝑚𝑖  are the stiffness matrix and the serial number of the i-th cracked element, 
respectively; 𝐀SE is the transformation matrix of the i-th cracked element that its entries are all zeros 
expect at its corresponding DOFs. 
 
3. The algorithm for the dynamic characteristic analysis 
3.1 Variational mode decomposition 

The fundamental of VMD is briefly introduced, while more detailed information can be obtained 
in [30]. The bridge response �̈�!(𝑡) can be expressed as a combination of K number of amplitude-
modulated and frequency-modulated components with a limited frequency bandwidth [31]. 

�̈�!(𝑡) = ∑ 𝑢E(𝑡)&
EX:                            (15) 

where K is the number of the components {𝑢E(𝑡), 𝑖 = 1,2, …𝐾}. The VMD can decompose the bridge 
response into components with an adaptive filter. The decomposition can be considered as a 
constrained variational problem with the corresponding objective function expressed as 
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𝑓AZ[ = min∑ H∑ r𝜕N IL𝛿(𝑡) +
F
5N
M ∗ 𝑢E(𝑡)N 𝑒;F\] 'Nr

+

+
&
EX: O{_'(N)}{\] '} 	      (16) 

            subject to             �̈�!(𝑡) = ∑ 𝑢E(𝑡)&
EX: , 

where 𝛿 is the Dirac function; ∗ is the convolution symbol; 𝑢E(𝑡) and 𝜔xE (for i=1...K) represent 
the different components of the response and their corresponding center frequencies, respectively.  

By introducing the quadratic penalty factor α and multiplication operator λ, the optimization 
objective function of optimization problem in Eq.(16) can be transferred into an unconstrained 
optimization problem as follows: 

𝐿({𝑢E(𝑡)}, {𝜔xE}, λ) = α{|𝜕N }~𝛿(𝑡) +
𝑗
𝜋𝑡� ∗ 𝑢E(𝑡)� 𝑒

;F\] 'N|
+

+&

EX:

 

+��̈�!(𝑡) − ∑ 𝑢E(𝑡)&
EX: �

+
+ + 〈λ(𝑡), �̈�!(𝑡) − ∑ 𝑢E(𝑡)&

EX: 〉    (17) 

Then, the alternate direction method of multipliers approach [31, 40] is used to solve the variational 
problem in Eq.(17). The complete optimization problem is divided into a sequence of iterative sub-
optimization problems.  
 
3.2 Parameter optimization for VMD 

It is generally recognized that the component number K and the penalty factor 𝛼  have a 
significant impact on the performance of VMD. Finding the optimal values of these two variables are 
essential. CSO is to be used for searching the optimal values of K and 𝛼 with a fitness function 
which is made up of the average of both correlation coefficient and energy loss coefficient [40]. It is 
described as follows: 

𝑓abc(𝐾, 𝛼) =
d')
+

         (18) 

where 𝑓abc(𝐾, 𝛼)  is the fitness function regarding the parameters of VMD; C indicates the 
maximum correlation coefficient between all modes, and E denotes the energy loss coefficient.  

𝐶 = max	({𝐶E
F})         (19) 

𝐶E
F =

∑ [_'(N);_]'][_((N);_](].
/0)

h∑ [_'(N);_]']".
/0) h∑ [_((N);_](]".

/0)

       (20) 

where 𝐶E
F is the set of all correlation coefficients in a VMD result; 𝑢E and 𝑢F are two different 

modes, and 𝑢�E and 𝑢�F are the mean of 𝑢E and 𝑢F, respectively. As the energy loss coefficient, E is 
defined as the ratio of the energy of the decomposition residual to the energy of the original signal, 
which can be calculated by the following formula: 

𝐸 = ∑ [T̈1(N);∑ _'(N)2
'0) ]".

/0)
∑ [T̈1(N)]".
/0)

          (21) 

where �̈�!(𝑡) is the original signal; N is the length of the signal data, and M is the number of modes. 
Therefore, the parameter optimization of VMD for a signal can be described as follows: 

arg 𝑓abc(𝐾, 𝛼)
𝐾, 𝛼 = arg𝑚𝑖𝑛 (d')

+
)

𝐾, 𝛼
         (22) 

 
3.3 IF identification based on Chicken Swarm Optimization for VMD  
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3.3.1 CSO 
The chicken swarm optimization algorithm mimics the hierarchal order and behaviors of 

searching food in the chicken swarm. The whole chicken swarm is divided into three groups of 
chickens, i.e., rooster, hen, and chick. When the CSO algorithm solves the optimization problem of 
Eq.(22), each chicken represents a feasible solution and different chickens follow different 
optimization strategies. In performing CSO algorithm, assume that the total population number of 
chickens is N, among which there are Nr roosters, Nc chicks, Nh hens, and the number of mother hens 
is Nm. The chickens are arranged in rising order according to their individual fitness values. 
The Nr chickens in front with the best fitness are defined as roosters, and the Nc chickens at last with 
the worst fitness values are called chicks. The remaining Nh (=N−Nr−Nc) chickens in the middle are 
treated as hens, and the mother hens are randomly selected from the hens. Each virtual chicken is a 
vector consisting of D elements, where D denotes the dimension of the solution space (control 

variables), i.e. D=2 in this study. Let  𝑥E,FN  denotes the position of the i-th chicken in the j-

th dimension of solution space in the t-th iteration, where 𝑖 ∈ (1,2, … . , 𝑁), 𝑗 ∈ (1, … . , 𝐷), 𝑡 ∈
(1,2, … , 𝑇S#T); 𝑇S#T is the maximal iterative number.  

The position update formula of different types of chickens in each iteration is as follows [36, 37]. 
(1) The position updating of rooster is formulated as: 

𝑥E,FN': = 𝑥E,F
N,Zk<3 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜎+) ∗ 𝑥E,F

N,Zk<3       (23) 

𝜎+ = �
1,																					𝑖𝑓	𝑓E ≤ 𝑓l
exp Lm3;m'|m'|'o

M , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑘 ∈ [1, 𝑁], 𝑘 ≠ 𝑖    (24) 

where, 𝑥E,FN':  is the position of j-th dimension of a chicken i in t+1 iteration; 𝑥E,F
N,Zk<3  is the 

position of the i-th chicken in t-th iteration, which corresponds to the smallest fitness value; 
𝑟𝑎𝑛𝑑𝑛(0, 𝜎+)  is a random number of Gaussian distribution whose variance is 𝜎+ ; 𝜀  is 
infinitesimal to avoid zero-division-error; k is a rooster’s index, randomly selected from the 
rooster’s group; 𝑓E and 𝑓l are the fitness values of roosters i and k, respectively. 

(2) The position updating of hens can be expressed as 

𝑥E,FN': = 𝑥E,F
N,Zk<3 + 𝑆1 ∗ 𝑅𝑎𝑛𝑑 ∗ �𝑥p:,FN − 𝑥E,FN � + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 ∗ �𝑥p+,FN − 𝑥E,FN �   (25) 

𝑆1 = exp	((𝑓E − 𝑓p:)/(𝑎𝑏𝑠(𝑓E + 𝜀)))       (26) 
𝑆2 = exp	((𝑓p+ − 𝑓E)          (27) 

where 𝑥p:,FN  is the position of individual rooster individual 𝑟1 in the population of hen 𝑥E; 𝑥p+,FN  

is the position of random individual 𝑟2 (rooster or hen) in the other population (𝑟1 ≠ 𝑟2), 
respectively; Rand is a random number in the interval [0,1]; 𝑆1 and 𝑆2 denote the weights; 𝑓p: 
and 𝑓p+  are the fitness value of individual rooster in the population of hen 𝑥E  and random 
individual 𝑟2 in the other population, respectively; 

(3) The position updating of chicks can be formulated as: 

𝑥E,FN': = 𝑥E,FN + 𝐹𝐿 ∗ �𝑥S,FN − 𝑥E,FN �, 𝐹𝐿 ∈ [0,2]     (28) 

where FL is a parameter, indicating the degree that the chick would follow its mother to forage 

for food; 𝑥S,FN  stands for the position of the mother of i-th chick (𝑚 ∈ [1, 𝑁S]) 
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(4) The change of hierarchical order: the status of the chicken swarm’s hierarchical order will remain 
stable during a period of time. To guarantee the optimal solution, these statuses should be updated 
every G iterations to adapt to changes in chickens’ fitness values.  
 

3.3.2 CSO-VMD 
 The procedure of CSO-VMD is depicted as follows: 
(1) Parameter initialization: the total number of chickens (N), the number of roosters (Nr), hens (Nh), 

chicks (Nc) and mother hens (Nm), the maximum iterations (Tmax), the frequency of change of 
hierarchical order in the swarm (G) are initialized, respectively. The control variables are the 
positions of the chickens in the CSO algorithm. Their initial values are randomized with the 
following equation: 

𝑥E.F = 𝑟𝑎𝑛𝑑 ∗ �𝑢𝑝F − 𝑙𝑜𝑤F� + 𝑙𝑜𝑤F      (29) 

where 𝑙𝑜𝑤F and 𝑢𝑝F denote the lower and upper bounds of variable j, respectively. 
(2) Generation of hierarchical order in the swarm: the initial hierarchical order is defined according 

to the fitness values of individual chickens which are calculated by Eq.(22). If the number of 
iteration time t is divisible by G, the hierarchical order will be updated. 

(3) Update the positions and recalculate the fitness values, respectively: roosters, hens, and chicks 
update their positions according to Eqs.(23), (25), and (28), respectively. Their fitness values are 
then recalculated using updated positions. 

(4) Update individual’s best fitness value and the global best fitness value: in this iteration, if the 
chicken’s fitness value is smaller than the previous best one, the chicken’s best value and the 
global best solution will be updated. 

(5) Completion of one iteration: if the number of iteration time t is less than Tmax, return to Step (2). 
Otherwise, the algorithm is terminated and the global best solution is outputed as the optimal 
values of control variables, i.e., the optimal values of (𝐾, 𝛼) for VMD. 
The flowchart of the CSO-VMD method is presented in Figure 1.  

 
Figure 1. Flowchart of the proposed CSO-VMD 
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3.3.3 Instantaneous frequency identification  
The extraction of the IFs from the decomposed bridge related components can be achieved by 

Hilbert transform (HT). However, the identified results using HT includes a fast-varying frequency 
portion that may interfere with the critical nonlinear characteristics due to the crack damage [31,41]. 
Therefore, ridge detection in TFR of the decomposed component is adopted to estimate the IFs. In 
this study, the wavelet transform is used to obtain the TFR of the response components extracted by 
CSO-VMD. The ridge detection approach proposed in [42] is employed to extract the ridge of the 
TFR that corresponds to the IF at each instant of time.   
 
4. Numerical study 

Numerical study is conducted to investigate the dynamic characteristics of the bridge subjected 
to moving loads. Properties of the target bridge model are: 𝐿 = 50𝑚, 𝜌 = 7860𝑘𝑔 𝑚-⁄ , 𝐸 =
2.1 × 10::𝑁/𝑚+. The Rayleigh damping is considered with the damping ratio being 1%. The breadth 
and depth of the beam are b=0.5 and a=1.0m, respectively. The first natural frequency of the bridge 
is 0.94Hz. For structural health monitoring using the nonlinear characteristic of the bridge under a 
moving vehicle, the vehicle at a low moving speed is recommended [18]. In this study, the vehicle 
speed is set as 2m/s, unless otherwise specified. The sampling frequency of the numerical simulation 
is 200Hz. 
4.1 Dynamic responses of the bridge under a moving load 

The effect of open crack to the bridge is often modelled by a rotational spring connecting two 
undamaged beam segments considering a crack compliance. To validate the proposed model and 
algorithm in this study, the mid-span displacement of the bridge under a moving load of 40kN is 
compared with that by the rotational spring model in [14]. Two crack cases are studied, e.g. the crack 
depth ratio a/h=0.3 at the location of 1/5L from left support of bridge, and the crack depth ratio 
a/h=0.4 at mid-span, in correspondence to a moving load at the speed 2m/s and 4m/s, respectively. 
Figure 2(a) shows the bridge displacement responses at mid-span. The results obtained by the present 
model are very close to those in [14]. Considering the first crack case, the mid-span acceleration 
responses of the bridge subjected to a moving load at a speed 2m/s using two crack models are shown 
in Figure 2(b). In the figure, the results by two models also agree well. The results show that the 
proposed model is effective and accurate for the crack model. 

 

(a) Displacement responses 
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(b) Acceleration responses 

Figure 2 Comparison of bridge responses at mid-span subject to a moving load 
 

Figure 3 shows the displacement responses of the bridge at mid-span when the load is passing 
with a speed of 2m/s considering different crack conditions at mid-span, i.e., no damage, a/h=0.2 and 
a/h=0.4 for open and breathing crack cases, respectively. The results show that the displacement of 
the bridge without the crack is much smaller than that with the crack. The displacement response of 
bridge with a breathing crack is smaller than that with a fully open crack of the same depth, but the 
difference is not obvious when the crack depth is small, i.e., a/h=0.2. It means that when the crack is 
small, the behaviors of breathing and open cracks are quite similar and it is difficult to see the opening 
and closing phenomena of the breathing crack.  

  
Figure 3 Bridge displacement response at mid-span considering different crack conditions 

 

0 5 10 15 20 25 30 35 40 45 50
Distance along the bridge [m]

-14

-12

-10

-8

-6

-4

-2

0

2

D
is

pl
ac

em
en

t [
m

]

10-3

No damage
Open crack: a/h=0.2
Breathing crack: a/h=0.2
Open crack: a/h=0.4
Breathing crack: a/h=0.4



 11 

4.2 Sub- and super-harmonic resonances of a cracked beam  
    The non-linear dynamic behaviour of a cracked beam due to the crack opening and closing 

may lead to the manifestation of nonlinear effects such as the sub- and super-harmonic resonances 
[43]. Thus, the spectral analysis of the vibration response around non-linear resonances has been used 
for damage detection. The existing study indicates that when the cracked beam is excited by the 
forcing frequency fw=1/n*fb1 or n*fb1 (n=1, 2, 3,…; fb1 is the first bridge natural frequency), the 
nonlinear behaviour presented in bridge response spectrum can be more visible than that by other 
exciting frequencies [44, 45]. Therefore, a moving sinusoidal force with its amplitude 10 N and its 
frequency fw=1/2 fb1 is simulated in the same way as [46], which is used to excite the bridge. The 
exciting force is moving over the bridge at a speed of 2m/s, that the acceleration response measured 
at 3/8 span of the bridge is used for spectral analysis. The Fourier spectra of bridge responses 
considering different crack cases of bridge are shown in Figure (4a), with crack depth ratio a/h=0.4 
at mid-span. For no damage and open crack cases, the principal harmonic component around the 
exciting frequency fw has the largest amplitude. The amplitude of the harmonic component around 
the bridge natural frequency fb1 is relative small. For the breathing crack case, the amplitude of the 
harmonic component around the natural frequency is slightly larger than that around the exciting 
frequency. Moreover, the response spectrum of the bridge with breathing crack exhibits richer 
harmonic contents than that of no damage and open crack cases. There are two more harmonics with 
frequencies approximates to fw+fb1 and 2fw+ fb1, respectively. The finding is consistent with the results 
of [44]. Similarly, for the exciting force with frequency fw=2 fb1, some sub-harmonic resonances are 
observed in the response as shown in Figure (4b) for breathing crack case that their frequencies are 
3fw and 4fw, respectively. The amplitudes of the non-linear resonances are much less significant, i.e. 
less than 3.2% of the principal resonances. The appearance of the sub-harmonic resonance indicates 
the presence of the breathing crack. However, using these nonlinear vibration characteristics for 
structural damage detection has certain drawbacks such as the problems of unstable solutions and 
pseudo-superharmonic resonances [11]. Therefore, the CSO-VMD based method is developed to 
increase the sensitivity and reliability of non-linear vibration.  

 
(a) For frequency of exciting force fw=1/2 fb1 
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(b) For frequency of exciting force fw=2 fb1 

Figure 4 Spectra of bridge response considering different damage cases and exciting forces 
 
4.3 Nonlinear characteristics of the cracked bridge under moving loads 

The bridge acceleration response is analyzed to extract the nonlinear characteristics of the 
cracked bridge under moving loads using the proposed CSO-VMD. 5% Gaussian white noise is added 
to the acceleration response to simulate the measurement in the real situation. The setting of 
parameters for the CSO-VMD is: the total number of chickens N=30, the number of roosters Nr=round 
(0.15*N), hens Nh= round (0.7*N), chicks Nc=(N-Nr-Nh) and mother hens Nm=round (0.5* Nh), the 
maximum iterations Tmax=100, and the frequency of change of hierarchical order G=10. The range of 
model number K is set as [2, 10] and the range of penalty factor 𝛼  is set as [1000, 10000], 
respectively. The CSO-VMD is used to decompose the bridge response into mono-components. The 
component related to the first bridge dynamic mode is analyzed by ridge detection for IF identification 
since the first mode is usually the dominant mode of the considered bridge model. 

The nonlinear characteristic of the bridge with single crack and multiple cracks under one 
moving load is first investigated. For the single crack scenario, the crack is at the mid-span of bridge, 
with crack depth ratio a/h=0.2 and 0.4, respectively. Figure 5(a) shows the identified IFs considering 
the open and breathing crack cases from responses at the mid-span. The figure shows that the 
identified IFs for open crack cases are approximately constant during the passage of the moving load 
and very close to the first bridge natural frequency. For the breathing crack cases, the IFs are time-
varying that reach a minimum at the crack location. The location of the IF minimum values indicates 
the location of the breathing crack well. In this study, the nonlinear bridge dynamic behaviour is due 
to the presence of breathing crack. When the vehicular load is at the different locations on the bridge, 
the moment or curvature at the crack location is changed and that induces the crack opening and 
closing. The opening and closing of the crack would lead to the instantaneous change of the stiffness. 
Therefore, the IFs identified from the nonlinear bridge dynamic response are time-dependent that 
would change during the passage of the moving load along the bridge. Figure 5(b) shows a 
comparison of the instantaneous frequency for a/h= 0.4 extracted using ridge detection of the TFR 
and HT, respectively. The colors in Figure 5(b) represents the TFR amplitude of the extracted 
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component related to the first bridge dynamic mode. The results show that the IF from HT is 
modulated by a fast-varying component and it is hard to be extracted clearly. The proposed method 
can eliminate the fast-varying component of IF and the accurate nonlinear dynamic information of 
bridge can be obtained.  

For two-crack case, the crack depth ratios and locations are set as: a/h=0.4 at 1/5L and a/h=0.3 
at 3/5L, respectively. The acceleration responses at 1/4L and 1/2L of the bridge under the moving 
load are analyzed. Figure 6 shows the identified IF results considering the breathing crack case. The 
results show that there are two local minimums in the IFs which are corresponding to the locations 
of two cracks (at 10m and 30m, respectively). The results identified from responses at different 
measurement points are very close expect at the two ends. The distortion at the ends of the 
instantaneous frequency curves is due to end effect of VMD caused by the finite duration of the 
measured signal. In VMD, due to the original signal is always non-periodic and finite length, 
recovering after the Hilbert transform and Fourier transform, there will be distortion at two ends. The 
end effect of modal decomposition can be reduced by the mutual information extension. It will be 
further study in the quantitative analysis for determining the damage extent, especially for the damage 
around the supports.  

  

(a) IFs of bridge considering different crack cases 
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(b) IFs identified by ridge detection and HT  
Figure 5 IFs of bridge subjected to a moving load considering a single crack 

 

 
Figure 6 IFs of bridge subject to a moving load considering multiple cracks 

 
The nonlinear characteristic of bridge with multiple breathing cracks subjected to multiple moving 
loads is investigated. Two loads with a distance of 4.27m, where the front one is 40kN and the rear 
one is 60kN, move successively along the bridge with a speed of 2m/s. Figure 7(a) shows the IFs 
identified from the bridge mid-span acceleration. The results show that there are two minimum values 
of the IF during the passage of the loads on the bridge. The first minimum value is at about 15m and 
the other one is between 30m and 35m of the bridge. The distance in the x-axis of figures showing 
instantaneous frequency and instantaneous curvature denotes the moving distance of first (/front) load 
to the left support of the bridge. The results indicate that the IF reaches to a local minimum value at 
about the time when the second load arrives at the crack locations. Therefore, after shifting with the 
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distance between two loads, that is subtracting 4.27m from the locations of the minimum IF values 
in the figure, can improve the accuracy of crack localization under given conditions. Figure 7(b) 
shows the instantaneous curvatures of the bridge under moving loads. The maximum values of the 
instantaneous curvatures occur at crack locations, respectively. The results are consistent with the 
analytical model of the breathing crack in Section 2.2.2 that the maximum curvature leads to the full 
open of the breathing crack. The effect of measurement noise is also studied by considering another 
two levels of Gaussian noise to the response measurement, i.e., 10% and 15%, respectively. The 
results in Figure 7(a) show that the measurement noise has little effect on the identified IFs by the 
proposed method.   

 

(a) Instantaneous frequencies 

 
(b) Instantaneous curvatures at crack locations 

Figure 7 Instantaneous frequencies and curvatures of bridge considering multiple loads and cracks 
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4.4 Nonlinear characteristics of cracked bridge considering VBI 

In previous study, the constant moving load is considered. However, when heavy vehicle is 
passing over the bridge, the dynamic interaction between the vehicle and bridge needs to be 
considered. The nonstationary and nonlinear dynamic characteristics of cracked bridge due to the 
VBI needs further investigation. A widely used VBI model in the literature is considered as shown in 
Figure 8, where the vehicle is modeled as a two-axle half-car with 4 degrees-of-freedom. The motion 
equation of the VBI system considering a random road surface roughness can be found in [47]. The 
adopted vehicle parameters and dimensions are given in Table 1. The natural frequencies of the 
vehicle are 1.63, 2.30, 10.35 and 15.10Hz, respectively. The bridge acceleration response at midspan 
during the passing of the vehicle is measured. The speed of vehicle is 2m/s and 5% measurement 
noise is added. 

 
Figure 8 Vehicle-bridge interaction model 

 
Table 1 Properties of the vehicle model 

Property Unit Symbol Value 
Body mass kg mv 17735 
Pitch moment of inertia kg m2 Iv 147000 
Mass of front axle kg m1 1500 
Mass of rear axle kg m2 1000 
Stiffness of front suspension N/m Ks1 2.47×106 
Stiffness of rear suspension N/m Ks2 4.23×106 
Damping of front suspension N s/m Cs1 3.00×104 
Damping of rear suspension N s/m Cs2 4.00×104 
Stiffness of front tyre N/m Kt1 3.74×106 
Stiffness of rear tyre N/m Kt2 4.60×106 
Axle distance m S 4.27 
Axle distance ratio  a1/a2 0.52/0.48 

 
4.4.1 Nonlinear characteristics of bridge for a smooth road surface  

The IFs of bridge with a smooth road surface subjected to the moving vehicle are identified for 
open and breathing crack cases. Single crack and multi-crack conditions are the same as that in 
Section 4.3. Figure 9 shows the identified IFs for single crack situation. For both of the open and 
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breathing crack cases, the IFs are time-varying. The IFs decrease to a minimum around the midspan 
and then increase to form a variation trend of sinusoidal wave. This variation trend is due to the 
interaction between the vehicle and bridge which is consistent with the findings in the literature [48]. 
Comparing the results for open and breathing crack cases in Figure 9, the amplitude of IF variation 
at the crack location is enlarged for breathing crack case due to its opening when the vehicle arrives 
near the crack location at midspan. For the multi-crack scenario, the IFs and instantaneous curvatures 
of bridge at crack locations are shown in Figures 10(a) and 10(b), respectively. The results show that 
the local reduction of the IFs correspond to the maximum values of the instantaneous curvatures at 
crack locations which indicates the full open of the breathing cracks.  

 
Figure 9 IFs of bridge subjected to a moving vehicle considering a single crack 
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(b) Instantaneous curvatures at crack locations 

Figure 10 IFs and curvatures of bridge subjected to a moving vehicle and multiple cracks 
 
4.4.2 Nonlinear characteristics of bridge with a rough road surface 

The nonlinear characteristics of bridge with the same single and multi-crack conditions are 
respectively considered except that a random road surface roughness is included. Figures 11 and 12 
show the identified IFs of bridge under moving vehicle for single and multi-crack conditions, 
respectively. The results show that the IFs of bridge contain fluctuations due to the modulation of 
random roughness. It makes the localization of breathing crack difficult using the IF of breathing 
crack case alone. However, when compared to the bridge IF of open crack case, there is an obvious 
IF reduction at the midspan of the bridge for single crack condition, as shown in Figure 11. For the 
multi-crack condition, two obvious local IF reductions near the crack locations can also be observed, 
as shown in Figure 12. The reduction of IF values of breathing crack case compared to the open crack 
case is due to the open of breathing cracks for both conditions. Therefore, the identified nonlinear 
characteristics due to the breathing cracks of bridge can provide preliminary information to estimate 
the crack locations.    
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Figure 11 IFs of bridge subjected to a moving vehicle considering a single crack and roughness 

 

 
Figure 12 IFs of bridge subjected to a moving vehicle considering multiple cracks and roughness 

 
4.5 Comparison of the proposed CSO-VMD to the conventional VMD 

The superiority of the proposed CSO-VMD over the conventional VMD is demonstrated by 
examining their performance in bridge response decomposition. The bridge acceleration response 
when the vehicle moves over the rough bridge deck is analyzed. Figure 13 shows the bridge response 
and response spectrum considering aforementioned multiple breathing cracks. From the spectrum, it 
shows that the bridge response contains the dynamic components related to the vehicle due to VBI, 
indicated as fv1 and fv2 in the figure. The fb1 represents the first natural frequency of bridge. The 
parameter setting for the CSO-VMD is the same as the above. For the CSO-VMD, the identified 
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optimal number of modes in the response is 6 and the optimal penalty factor is 9850. For the 
conventional VMD, the mode number 6 is used, and penalty factor is 8373 (=0.85*9850 ) which are 
deliberately selected to close the optimal values. The decomposition performance of CSO-VMD and 
VMD is studied. Figures 14(a) and 14(b) show the extracted first four components in time and 
frequency domains, respectively. The fifth and sixth components are related to the higher modes of 
bridge and the results from two methods are very similar which are therefore not presented 
accordingly. The first component from two methods is the related to the first modal frequency of 
bridge. The second and third modes from CSO-VMD are related to the vehicle frequencies fv1 and fv2, 
respectively. The results indicate that the CSO-VMD successfully extracts the slight component 
related to the vehicle dynamic mode fv1, as shown in Figure 14(b). While, the second and third modes 
from conventional VMD are both related to fv2. The components related to fv1 and fv2 are not well 
separated. The fourth mode is related to the third bridge dynamic mode. It can be seen that the CSO-
VMD provides better decomposition performance than VMD due to the parameter optimization.  

 
Figure 13 Bridge response and response spectrum 
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(a) Components in time domain 

 
(b) Components in frequency domain 

Figure 14 Bridge response decomposition by CSO-VMD and VMD 
 
5. Laboratory experimental study  
5.1 Experimental set-up and test procedures 
    Reinforced concrete Tee-section beam (RC Tee-beam) is a typical structural component to 
fabricate simply supported highway bridges. An experimental investigation on the dynamic 
characteristics of the RC Tee-beam is conducted. The schematic description of the experimental set-
up is presented in Figure 15(a), which includes three Tee-section reinforced concrete beams and a 
test model vehicle pulled by an electric motor to move along the beam. Three beams consist of the 
leading and trailing beams with a length 4.5m each and a main beam in the middle. The length of the 
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main beam is 5m and the dimensions of the cross-section are shown in Figure 15(b). A 60mm 
diameter hole is left in the beam rib for post-tensioning of the beam after introducing damage to the 
beam. The total mass of the beam is 1050kg. For the model vehicle, the axle spacing is 0.8m, and the 
wheel spacing is 0.39m with a total weight of 10.60kN. The vehicle/bridge weight ratio is 1.03 that 
can be considered as the situation of a bridge under an extra heavy vehicle. The vehicle moves along 
the beam at an approximate speed of 0.5m/s during the moving VBI tests. Seven accelerometers are 
evenly distributed at the bottom and along the beam to measure the dynamic responses of the beam. 
An INV300 data acquisition system is used to collect the data with the sampling frequency 2024.292 
Hz.  

The beam is tested in three different states, i.e., intact state case, small damage case, and large 
damage case, respectively. The damage is created in the form of cracks using incremental static load 
tests. For small damage case, a three-point load system was applied at 1/3L from the left support of 
the main beam with the peak static load to 50kN. The loading and unloading procedures caused 
several tensile cracks with a crack zone of 760mm length around the loading point. For the large 
damage case, similar loading procedure to the small damage case was applied at 2/3L of the beam at 
first. Further loading was applied with a four-point load system at 1/3L and 2/3L with the final load 
105kN to create a crack zone 2371mm length. During the static load test, the monitoring of the loads 
and strains revealed the nonlinear deformation behaviors of the beam due to the cracks of the concrete. 

 

(a) Elevation view 
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(b) Cross-section of the RC Tee-beam 

Figure 15 Experimental set-up of the VBI test model 
 
5.2 Experimental modal analysis 

Impact hammer tests were performed with or without a 10.6kN static vehicle load in the middle 
of the main beam for the modal analysis of beam under different health cases. The identified natural 
frequencies for different cases are summarized in Table 2. When the vehicle is parked at the midspan, 
the first modal frequency is 16.04Hz that is close to the first vertical mode of the vehicle model 
17.08Hz. The 2nd to 4th modes are corresponding to the first three modes of the beam when there is 
no static vehicle on top of the beam. When there is no damage, the first bridge modal frequency is 
30.69Hz and 48.96Hz for the cases with and without static vehicle load, respectively. The frequency 
variation ratio due to the static vehicle load reaches 37.31% which is larger than those due to the 
damage. Moreover, the static vehicle load amplifies the difference in the natural frequencies between 
the undamaged and damaged cases because the load leads to the crack opening and the reduction of 
the flexural rigidity. The frequency change ratio between small damage case to large damage case is 
small compared to the change ratio between no damage case and damage case. 

 
Table 2 Natural frequencies from modal analysis (unit: Hz) 

Mode 
No. 

Without static vehicle load Mode 
No. 

With static vehicle load 
No 
damage 

Small 
damage 

Large 
damage 

No 
damage 

Small 
damage 

Large 
damage 

    1 16.04 
 

12.51 
(22.00%) 

11.63 
(27.49%) 

1 30.69 
 

27.02 
(11.96%) 

25.72 
(16.19) 

2 48.96 36.68 
(25.08%) 

34.23 
(30.09%) 

2 100.93 94.43 
(6.44%) 

88.84 
(11.98) 

3 104.45 97.52 
(6.63%) 

88.95 
(14.84%) 

3 168.25 158.39 
(5.86%) 

154.36 
(8.26%) 

4 180.22 178.15 
(1.15%) 

164.68 
(8.62%) 

Note: the percentage in parenthesis is the frequency change ratio to the ‘No damage’ case 
 

The modal test results in Table 2 show that the presence of static vehicle on the bridge leads to 
an increase in the beam frequencies that means an increase of beam stiffness. It indicates that both 
the stiffness and mass of the vehicle contribute to the combined stiffness of the beam-vehicle system. 
This phenomenon has been found in a field test and it demonstrates that the effect of vehicle on the 
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bridge may cause distinguishable difference on the change of bridge modal frequencies [49]. In some 
extreme practical transportation situations, the weight of overloaded vehicle would be comparable to 
the weight of the bridge. It is important to investigate the non-stationary and non-linear dynamic 
characteristics of bridge due to the heavy vehicle load and structural cracks. Therefore, the 
experimental study fabricates the test VBI model that the weights of vehicle and bridge are 
comparable. This experimental modal test confirms the need to include the moving vehicles on top 
of the beam for an accurate dynamic analysis of the supporting beam. 
 
5.3 Beam under moving vehicle  
5.3.1 Spectrum analysis 

Figure 16 shows the bridge responses at 1/2L and the power spectral densities of the responses 
under moving vehicle for different bridge conditions. The power spectral density is estimated via 
Burg’s method with the length of window being 1024. In the spectra, two prominent peaks can be 
identified for each response. The first peak around 10Hz is related to the vehicle dynamic frequency, 
and the second peak is related to the first bridge frequency. The results show that the vehicle 
frequency remains the same for different bridge damage conditions, while there is a reduction in the 
bridge frequency when damage is introduced. Besides, the difference of identified bridge frequencies 
for small damage and large damage conditions is relatively small. 

 
Figure 16 Bridge responses and spectra under moving vehicle load 

 
5.3.2 Dynamic characteristics considering crack damages 

The dynamic characteristics of beam under the moving vehicle load when the beam is no damage, 
with small damage, and with large damage are investigated. The identified IFs related to bridge 
dynamic responses measured at 3/8L of the beam are shown in Figure 17. It reveals critical dynamic 
characteristics of the beam in different damage states. In general, there is an increase in the IF due to 
the effect of moving vehicle load. The frequency reaches its maximum when the vehicle moves to 
the middle of the bridge span. When the same vehicle crosses the beam in small damage state and 
close to the first loading point, a net decrease in the frequency is observed due to the reduction of 
stiffness compared to the no damage case. When the vehicle passes the crack zone, the IF increases 
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to close to some part of the IF from no damage case around the midspan. After the large damage is 
introduced, the reduction in the IF is prominent for most of the time during the passage of the vehicle 
on the beam. When the IF for large damage case is compared to that of small damage case, it can be 
seen that the introduction of large damages at 2/3L of the main span causes local reduction of the IF 
after the passing of vehicle to the cracked zone. The acceleration responses measured from sensors 
at 1/8L, 4/8L, and 6/8L of the beam are used to analyze the sensitivity of the IF identification to the 
sensor location. Figure 18 shows the identified IFs from the responses measured at different locations 
for large damage state. The IF curves are generally in good agreement except some local difference 
around the two ends. The results demonstrate that the IF identification using proposed method is not 
sensitivity to the sensor location. 

It is obvious that the IF curves of bridge under moving vehicle load are concave in the 
experimental study, while the IF curves in numerical study are mostly convex. The convex or concave 
of bridge IF curves depend on the vehicle/bridge frequency ratio that has been discussed in the 
literature [48]. When the bridge frequency is smaller than the vehicle frequency, the instantaneous 
frequency curve of the bridge will be convex and it will be concave if the bridge frequency is larger 
than the vehicle frequency. In the numerical study of this paper, the vehicle frequency is larger than 
the bridge frequency. The bridge frequency in experimental study is larger than the vehicle frequency.  

 
Figure 17 The identified IFs considering different damage states 
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Figure 18 The identified IFs considering different measurement locations 

 
5.3.3 Considering the effect of posttensioning 

After the introduction of large damage to the beam and finishing previous tests, a 3*140kN 
tension force was applied to the cracked beam. Figure 19 shows the identified IF after posttensioning. 
The results show that the IF increases to a level that is close to that of no damage state. The results 
demonstrate that the stress leads to the regain of the stiffness loss due to the cracks.   

 
Figure 19 The identified IFs after posttensioning 

 
6. Conclusions 
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by the CSO-VMD is used to characterize the nonlinear behaviour of the damaged bridge. The 
parameter optimization for VMD by CSO improves the decomposition performance and the ridge 
detection for the IF extraction can avoid the interfere of the fast-varying frequency portion from HT.   
Numerical and experimental results have been used to verify the proposed method. Open and 
breathing crack models are introduced to simulate the damage on the bridge. The locations of the 
breathing cracks can be estimated using the extracted nonlinear dynamic characteristics. The effects 
of measurement noise, VBI and road surface roughness on the identified IFs have been discussed. 
The proposed method is much robust to the measurement noise. With the road surface roughness and 
VBI, the crack location can still be identified. Experimental study is further carried out on a RC T-
beam under the moving model vehicle. Damage is created from incremental static loading in the form 
of cracks or crack zone. The identified IFs considering the combined effects of the moving vehicle 
and the damage reveal the nonstationary and nonlinear dynamic characteristics of the bridge. The 
increase of the IFs is observed due to the presence of the vehicle. The introduction of the cracks to 
the beam causes the general and localized reduction of IF which can be helpful for crack identification. 
Finally, the post-tensioning on the cracked beam is found to improve the beam stiffness significantly.  
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