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Abstract: NSGA-II is an evolutionary multi-objective optimization algorithm that has been applied to
a wide variety of search and optimization problems since its publication in 2000. This study presents
a review and bibliometric analysis of numerous NSGA-II adaptations in addressing scheduling
problems. This paper is divided into two parts. The first part discusses the main ideas of scheduling
and different evolutionary computation methods for scheduling and provides a review of different
scheduling problems, such as production and personnel scheduling. Moreover, a brief comparison of
different evolutionary multi-objective optimization algorithms is provided, followed by a summary of
state-of-the-art works on the application of NSGA-II in scheduling. The next part presents a detailed
bibliometric analysis focusing on NSGA-II for scheduling applications obtained from the Scopus and
Web of Science (WoS) databases based on keyword and network analyses that were conducted to
identify the most interesting subject fields. Additionally, several criteria are recognized which may
advise scholars to find key gaps in the field and develop new approaches in future works. The final
sections present a summary and aims for future studies, along with conclusions and a discussion.

Keywords: NSGA-II; scheduling; multi-objective optimization; review; scientometric analysis

1. Introduction

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [1] has been proposed as
a powerful decision space exploration engine based on a genetic algorithm for solving
multi-objective optimization problems. The NSGA-II algorithm has been applied to a wide
variety of search and optimization problems since its publication in 2000.

Scheduling problems are dedicated to allocating tasks to resources. Two major schools
of thought in relation to schedule generation are algorithmic and knowledge-based ap-
proaches [2]. The first approach is based on a mathematical formulation that includes
objective function(s) and constraints, while the second approach is not easy to explain in
an analytical format and is often used in cases where a feasible solution is sufficient. In
addition, scheduling problems are generally known to be complex, large-scale, challenging,
NP-hard, and involve several constraints [3,4].

Therefore, discovering efficient and low-cost procedures for use of the scheduling
systems is significantly essential. Although numerous techniques have been proposed
to solve the optimization problem mentioned above, there is still a crucial need for more
suitable techniques. A viable method to manage these issues is to employ global opti-
mization algorithms, including exact optimization methods (e.g., branch-and-bound and
branch-and-cut) and, in some cases, evolutionary computation (EC) techniques [5–9]. EC
techniques have been employed for large, complex real-world problems that cannot be
solved using classical methods [10–12].

Another serious problem is that numerous objectives could be identified to optimize
systems simultaneously. Hence, several objectives must usually be identified for optimizing
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a real-world scheduling problem. Furthermore, multi-objective optimization problems arise
naturally in most disciplines, and solving them has been a challenging issue for researchers.
Although a variety of techniques have been developed in operations research and other
fields to address these problems, alternative approaches are urgently needed because of
the complexities of their solutions [13–15]. Since EC methods are identified as the more
effective methods to handle this limitation, they are suitable for solving multi-objective
optimization problems (MOOPs) [12,16]. EC approaches repeatedly modify a population
of individual solutions to find the optimal set of solutions to a problem. Additionally,
multi-objective evolutionary algorithms are able to find a set of non-dominated solutions,
known as Pareto solutions, in a single run within an ideal time [12,17,18]. Among the EC
approaches, genetic algorithm (GA)-based solution methods are quickly gaining popularity
due to their dependence on the population and, therefore, are suitable for solving MOOPs.

Non-dominated sorting is a technique used to assign solutions in a population to
different Pareto fronts according to their dominance relationships. Because individuals
of the population in the first front have the maximum fitness value, they can obtain more
copies [1,12,19]. The NGA-II [1,20] is a well-known evolutionary computation technique
that has been used widely by researchers, with more than 40,000 citations as of April 2021.
Owing to its lower computational complexity, elitism, and parameterless nature [20–23],
it has been applied to a wide variety of search and optimization problems since its in-
troduction. The NSGA-II algorithm creates a population of individuals, ranks and sorts
each individual based on the nondomination level, and then performs crowding distance
sorting to keep the population diverse [1]. This paper presents a review of the application
of NSGA-II in scheduling problems.

To better understand the research field in this study and provide new insights from
publications, the information provided in this work attempts to answer the following
questions:

• What is the basic concept of scheduling, and why is NSGA-II important (Section 2)?
• What is the contribution of NSGA-II in scheduling (Section 3.2)?
• What are the different types of scheduling? Which fields of scheduling are the most

important (Section 2)?
• What are the most important problems in scheduling, how do researchers tackle them,

and what do researchers find from their experiments (Sections 2 and 3.2)?
• What are the main topics and keywords regarding NSGA-II and scheduling problems

(Section 4)?
• Which journals have the most contributions in the field? Who are the best researchers

in the area, and what are their respective countries of origin (Section 4)?
• What are the current gaps and future trajectories in scheduling (Sections 5 and 6)?

After a brief introduction of different scheduling problems, scheduling algorithms
are introduced. A comparison of algorithms in both single-objective and multi-objective
scheduling problems is addressed, followed by introducing the application of NSGA-II in
scheduling problems. Moreover, scientometric analysis is conducted in the field. The last
section provides a summary and future studies.

The research procedure in this work was divided into five stages (Figure 1). In
the first stage, documents were gathered from the Scopus (https://www.scopus.com/
31 December 2020) and WoS (https://clarivate.com/products/web-of-science/, accessed
on 31 December 2020) databases. Before initiating the search in the databases, special
keywords, namely “NSGA-II” AND “scheduling”, were searched for in titles, abstracts,
and keywords to identify related articles. First, the authors filtered the documents with
the special keywords to find the results, such as the type of objective function, problem
statement, and solution approaches. Second, in some special cases where the research
methodology using the title, abstract, and keywords did not help, the content of the papers
was reviewed.

https://www.scopus.com/
https://clarivate.com/products/web-of-science/
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Figure 1. Research methodology.

It is worthy to note that this work reviewed only the research article type, exclud-
ing books, book chapters, reviews, conference papers, and short letters, and 683 and
875 published articles (between 2000 and 2020) were extracted from WOS (Supplemen-
tary Material A) and Scopus (Supplementary Material B), respectively. Since some of the
articles were duplicates, they were identified and removed from the library in stage 2
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using Mendeley as a powerful reference manager. In addition, some research questions
for this study were designed in stage 2. A comprehensive review was initiated in stage
3 with a general illustration of the basic concepts of scheduling and comparison of the
algorithms. In stage 4, social network analysis was performed to provide a scientometric
analysis of the documents using VOSviewer 1.6.17 and CitNetExplorer 1.0.0 [24,25], which
have been identified as powerful tools for scientometric analysis. Stage 4 required several
steps, including co-occurrence, co-authorship, citation, bibliographic coupling, and citation
network analyses. In the last stage, the results were obtained to formulate a discussion to
answer the proposed research questions. In stage 5, the findings were prepared, important
gaps were identified, and future research directions were determined.

The remainder of the paper is organized as follows. Section 2 gives an overview of the
scheduling. Section 3 discusses the scheduling algorithms, the solution methods based on
the genetic algorithm in scheduling, and state-of-the-art works on the application of NSGA-
II in scheduling. Section 4 presents a detailed scientometric analysis in the field. Finally,
a summary and suggested future studies are given in Section 5, followed by concluding
remarks and a discussion in Section 6.

2. Overview of Scheduling

The following subsections provide an overview of the different aspects of scheduling
in manufacturing and services.

2.1. Scheduling

Scheduling and sequencing are the processes of arranging and optimizing the man-
ufacturing and service activities that play an important role in industries [3,26]. Firms
use backward and forward scheduling to allocate plants and resources, plan production
processes, and purchase materials [27–29]. In addition, the benefits of production schedul-
ing include the following: inventory reduction, leveling [30–32], increased production
efficiency [33–35], accurate delivery date quotes [36–38], and real-time information [39–43].
“Manufacturing model” specifies the machine(s) or resource configuration used in the pro-
duction process. Classification of scheduling in manufacturing was built over the last few
decades, and it is proven and applied in defining the complexity of a scheduling problem.
Since the mathematical model is related to the machine configuration, the system uses
the machine configuration instead of the industry type for categorizing problems [44,45].
Table 1 presents a classification of different models.

2.1.1. Scheduling in Manufacturing

In industry, each order should be converted into a list of operations that the organi-
zation must carry out. These operations should be handled by different machines and
are based on certain sequences. It is pertinent to note that the provided schedule of the
organizations helps to optimize the strategic usage of resources, forecasting of demands,
and resource requirements. Single-machine scheduling or single-resource scheduling is an
optimization problem in computer science and operations research. We are given n jobs of
varying processing times, which need to be scheduled on a single machine in a way that
optimizes a certain objective. Parallel machine scheduling (PMS) is for scheduling jobs
processed on a series of machines with the same function with the optimized objective.

In a general job scheduling problem, we are given n jobs of varying processing times,
which need to be scheduled on m machines with varying processing power, while trying
to minimize the makespan (i.e., the total length of the schedule). Flow-shop scheduling
is a special case of job-shop scheduling where there is a strict order of all operations to
be performed on all jobs. Flow-shop scheduling may apply to production facilities for
computing designs as well.
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Table 1. Classification of different scheduling models.

Manufacturing Model Model Type

Single Linear Programing
Parallel Machines Mixed-Integer Programming
Job-Shop Mixed-Integer Quadratic Programming
Flow- or Open-Shop Mixed-Integer Non-Linear Programming
Flexible Manufacturing Queuing Techniques and Simulation
Lot Scheduling System
Project Scheduling

Objective Function Constraints

Economic-Related Objective Economic-Related Constraints

Minimize Makespan Makespan Equation
Minimize or Maximize Tardiness Makespan Value Limitation
Minimize Electricity Cost Tardiness Equation
Minimize Labor Cost Tardiness Value Limitation
Minimize Inventory Cost, etc. Amount of Demand

Environment-Related Objective Total Energy Cost

Minimize Total Energy Consumption Energy Cost in Specific Mode
Minimize Peak Power Electricity Price
Minimize Carbon Emissions Revenue from Power Sold
Minimize Squatted Deviation Labor Cost Equation, etc.

Maximize Utilization Environment-Related Constraints

Minimize Water Consumption Power’s Peak Constraint
Maximize Total Availability System, etc. Total Energy Consumption

Social-Related Objective Energy Consumption in Specific Mode

Minimize Noise Level Total Power Supply
Capacity Limitation
Duration of Initiatives
Carbon Emissions Value Limitation
Carbon Emissions Equation
Amount of Water
Water Quality Class Function
Cleaning Cost
Amount of Water Discharge
Amount of Contaminant
Waste Water and Effluent Limitation, etc.

Social-Related Constraints

Recovery Time
Ergonomic Time Value Limitation, etc.

Machine Scheduling

This type of scheduling includes single-machine, parallel-machine, multi-stage flow-
shop, multi-stage flexible (hybrid) flow-shop, multi-stage assembly flow-shop, job-shop,
flexible job-shop, or open-shop flow-shop, job-shop, and open-shop [46–50]. For example,
there are several objectives pertaining to job-shop scheduling problems, including max-
imizing completion time (Cmax), total flow time (Ctotal), machine workload (Wmax), total
machine workload (Wtotal), and minimizing earliness or tardiness (E/T).

Flexible Manufacturing

A flexible manufacturing system (FMS) is a production approach which is designed
to easily adjust to changes in the type and quantity of the product being produced. As a
result, flexible manufacturing can be an important element of a make-to-order strategy that
allows customers to customize the products [51–54].
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Lot Scheduling System

This type of scheduling is suitable for tactical and strategic processes. Unlike the
previous three classes, the production and demand processes are continuous. The objective
functions of lot scheduling include minimizing inventory and cost [55–57].

2.1.2. Personnel Scheduling

In personnel scheduling, a good schedule should satisfy management and increase the
time an employee stays with an employer [1]. All problems are originally divided into static
and dynamic categories. Static scheduling has a structure that does not change over time.
An example could be a 3-month flight schedule chart at an airport. Dynamic scheduling
often has a variable schedule structure. There are several scheduling classifications in the
literature. As an example, Figure 2 presents a classification of personnel scheduling in
service system scheduling. An example is given in the resource schedules [58–101].

Figure 2. A classification of personnel scheduling problems.

3. Scheduling Algorithms

This section and the following subsections aim to justify the importance of NSGA-II
and compare it with other evolutionary algorithms statistically and briefly.

Several optimization methods have been addressed in the literature to solve schedul-
ing problems in addition to different classifications for solving optimization problems,
namely the exact and approximate approaches (Figure 3). Exact methods include the
efficient rule approach [49], mathematical programming approach [102], and branch-and-
bound method [103,104]. Approximate methods pertain to constructive methods [105–107],
artificial intelligence methods [108], local search methods [109], and metaheuristic ap-
proaches [110,111]. While exact methods are typically expensive in terms of computing
time and often result in poor quality solutions, metaheuristic approaches produce alter-
native optimal solutions in a single run [112]. Most exact solution approaches convert
MOOPs into a single optimization problem, while metaheuristic methods solve MOO
problems without this conversion. Some metaheuristics incorporate certain mathematical
methods [113], and others are suitable for solving global optimization problems [114].
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Figure 3. Proposed solution approaches used in scheduling problems.

For example, the authors of [115] proposed an idea and scheduling for a flexible job-
shop (FJS) based on a hierarchical approach considering multiple performance objectives.
A genetic algorithm for generating robust solutions for flexible job-shop schedules was
introduced in [116].

The authors of [117] presented a two-job-shop scheduling problem with unrelated
machines and solved it using the classical geometric approach. A hybrid algorithm based on
swarm optimization and simulated annealing for solving multi-objective flexible job-shop
scheduling problems was introduced in [118]. The authors of [119] presented a mixed-
integer nonlinear program for solving common cycle economic lot scheduling in flexible
job-shops. The latter study considered a combination of job-shops and parallel machines,
and the authors suggested an efficient enumeration method for solving the mentioned
problem. An integer linear programming model for flexible job-shop scheduling for the
jobs that were on a make-to-order basis was proposed in [120]. The authors of [121] used a
genetic algorithm approach for solving FJS scheduling under resource constraints. A Tabu
search approach for flexible job-shop scheduling by minimizing Cmax was proposed in [122].
The authors of [123] established evolving dispatching rules for solving FJS scheduling using
applied genetic programming. In total, more than 29,688 articles have been published in
the area of optimization of scheduling problems (since 2000). Among the published articles,
the genetic algorithm owns the most contributions (just above 26%) for solving scheduling
problems, followed by particle swarm optimization (just above 9%), simulated annealing
(6.4%), ant colony optimization (4.09%), and then tau search (4.47%) (Figure 4).

Figure 4. Contribution of different metaheuristic algorithms applied to scheduling problems.
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3.1. Genetic Algorithm (GA)-Based Solution Methods

Since genetic algorithms are based on the population, they are suitable for solving
MOO problems. The most famous MOO algorithms based on genetic algorithms are as
follows:

• VEGA (Vector-Evaluated Genetic Algorithm) [124]
• MOGA (Multi-Objective Genetic Algorithm) [125]
• WBGA (Weighted Based Genetic Algorithm) [126]
• RWGA (Random Weighted Genetic Algorithm) [127]
• NSGA (Non-Dominated Sorted Genetic Algorithm) [128]
• NSGA-II (Fast Non-Dominated Sorted Genetic Algorithm) [20]
• RDGA (Rank Density-Based Genetic Algorithm) [129]
• NPGA (Niched Pareto Genetic Algorithm) [130,131]
• DMOEA (Dynamic Multi-Objective Evolutionary Algorithm) [132]

Table 2 presents a comparison of the above-mentioned genetic algorithms based on
three criteria: elitism, diversity, and fitness function.

Table 2. Comparison of different GA-based solution methods.

Algorithm Fitness Function Diversity Elitism Strengths Weakness

VEGA [133–136]
Select subpopulation

using an objective
function

No No Easy to code Fast convergence to
an objective function

MOGA [137–139] Pareto ranking Using fitness
function No Extension of single

objective

Slow convergence
and dependency on
niche size parameter

WBGA [140]
Average normalized
weighted objective

function

Identifying
weights No Extension of single

objective
Difficulty in

nonconvex space

RWGA [141,142]
Average normalized
weighted objective

function

Assign weight
randomly Yes Easy to code Difficulty in

nonconvex space

RDGA [143] Ranking based and
reducing problem

Non-concentration
based on cells Yes Updated cells Difficulty in run

NPGA [144–148] No Niche count No Easy tournament
selection

Dependency on
niche size parameter

DMOEA [149] Ranking based on
cells

Adjusting
density of cells Yes Updated cells Difficulty in run

NSGA [150–154]
Ranking based on

non-dominated
solutions

Using fitness
function No Fast convergence Dependency on

niche size parameter

NSGA-II
[22,155–159]

Ranking based on
non-dominated

solutions
Crowding distance Yes

Uses non-dominated
sorting, crowding

distance, and elitist
techniques

Crowding distance
performs only in

objective functions

3.2. NSGA-II

Most evolutionary multi-objective optimization (EMO) algorithms possess the follow-
ing difficulties:

• Computational cost in non-dominated sorting increases significantly when the popu-
lation increases;

• Lack of elitism reduces the algorithm’s performance and inhibits individuals with
good fitness values in different generations;
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• Difficulty in the parameter settings largely affects the performance of the majority of
evolutionary algorithms.

To alleviate these difficulties, NSGA-II was proposed in 2000 [19] and has become one
of the most popular EMO algorithms in use to date, along with multi-objective particle
swarm optimization (MOPSO) and multi-objective ant colony optimization (MOACO).
Figure 5 shows the trend of published articles considering the contributions of these
algorithms. Since 2014, NSGA-II has been the most studied algorithm in scheduling,
followed by MOPSO then MOACO.

Figure 5. Publication counts of the three most-popular EMO algorithms from 2010 to 2019.

The authors of [20] proposed NSGA-II as a revised version of the NSGA [128] that
has lower computational complexity, is parameterless, and possesses elitism [20]. NSGA-II
has been applied in many different fields of study by numerous researchers [22,160–164].
Figure 6 presents the total citations of original NSGA-II papers over the years and indicates
that NSGA-II has been considered by numerous researchers.

Figure 6. Total citations of original NSGA-II papers over the years.

Tables 3–8 present a summary of the literature review in the scheduling field, where
the predominant areas include scheduling problems for job-shop scheduling, routing,
satellites, projects, weapon selection, forest planning, and machinery. It is noteworthy to
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mention that some studies have compared NSGA-II with other well-known evolutionary
algorithms, such as MOPSO, Tabu search, and the memetic algorithm. In addition, some
authors have tried to improve the original version of NSGA-II and expand it for a specific
problem. Optimizing the makespan, machining cost, and idle time are among the top
objective functions in the published documents. Multi-objective constrained optimization
was also found to be an interesting area for researchers.

Table 3. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[165]
Weapon selection and

planning
problem

Optimizing net present
value (NPV) and

effectiveness

An MOEA based on
NSGA-II is employed

The proposed measures are
able to adapt to dynamic

changes.

[166] Allocation problem
Integrating MOMO

process and Monte Carlo
simulation technique.

Integrating MOMO,
NSGA-II, and Tabu search

The MOMO technique
possesses a better

performance of seeking
global optimum than other

proposed methods.

[167] Satellite scheduling
problem

Proposing a
multi-objective

optimization method to
solve the mentioned

problem

Designing a decomposition
method.

Expressing a multi-objective
integer-programming model.

Designing multi-objective
genetic algorithm NSGA-II.

The applicability of the
proposed method under
different situations has

been proven.

[168]
High-dose rate
brachytherapy

planning

Determining an
appropriate schedule of a

radiation source

Four different MOEAs have
been employed

Results present that
MO-RV-GOMEA is the best

performing MOEA.

[169]
FJS problem under mixed

work
calendars

Proposing two key
technologies, namely
time reckoning and

sequential scheduling

Designing NSGA-II with an
elite strategy

The suggested technique
can gain an effective Pareto

set within an acceptable
time.

Table 4. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[170]
Reliability in

Cyber-Physical Systems
(CPS) components

Designing and verifying
CPS using

multi-objective
evolutionary
optimization.

Using three scheduling
methods: fixed priority,
earliest deadline first,

and deadline
monotonic.

The results show that the
proposed approach can be

used to design and validate
CPS for performance and
verify timing guarantees.

[171] Job-shop scheduling
problem

Minimizing the mean
weighted completion

time and the sum of the
weighted tardiness costs.

Proposing a new
integer linear
programming.

Modifying PSO and
comparing with

NSGA-II.

The results depict that the
proposed PSO outperforms

NSGA-II.

[172]
Multi-objective

unreliable unbalanced
production lines

Maximizes the
throughput rate and

minimizes the total buffer
capacities and cost.

Proposing DOE and
RSM along with NRGA

and NSGA-II.

The proposed system could be
applied to a large-scale

production line.
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Table 5. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[173]
Multi-objective

traveling salesman
problem

Improving a GA-based
algorithm, namely
Physarum-inspired

computational model (PCM).

Using the hill-climbing
algorithm to improve
the proposed method.

Findings show that the
proposed method has a better
performance compared with

the other MOTSP.

[174] Project scheduling
problem

Proposing a robust project
scheduling.

Two-stage
multi-objective buffer
allocation approach.

The results indicate that the
obtained buffered schedule

reduces the cost of disruptions.

[175] Process planning
and FJS scheduling.

Makespan, critical machine
workload, and machine total

workload.

Integration of WGA
and NSGA-II.

The proposed algorithm
outperforms the exact

solutions.

Table 6. Summary of the literature review on NSGA-II application in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[176]

Generator scheduling
considering

environmental and
economic issues.

Optimal generation
scheduling.

Two-phase approach
(hourly and 24-h

scheduling)

Effectiveness of the proposed
approach has been approved.

[177] Multi-objective spatial
forest planning.

Maximizing timber volume
and minimizing sediment

level.

Spatial NSGA-II
approach

The results show that the
proposed method has better

performance for both
constrained and unconstrained

problems.

[178] Resource allocation
problem in a hospital.

Daily scheduling for
residents or patients in a

hospital.

Using variable
neighborhood search,

scatter search, and
NSGA-II

Able to find efficient solutions.

[59]
Nurse scheduling

problem considering
human factors.

Minimizing the total cost of
staffing as well as the sum of

incompatibility and
maximizing the satisfaction.

Keshtel algorithm,
NSGA-II, and Tabu

search.

Effectiveness of the proposed
methods is approved.

Table 7. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[179] Process planning
and scheduling

Optimizing the makespan,
machine workload, and the

total workload of
machines.

Multi-objective
memetic algorithm.

The results compared with
NSGA-II show that the
proposed algorithm has

better performance.

[180] Scheduling of locks and
transshipment problem

Optimizing water–land
transshipment
co-scheduling.

Hybrid heuristic
method using binary

NSGA-II.

The feasibility and the
superiority of the model

have been verified.

[181]
Integration of process

planning and
scheduling

Minimizing of makespan,
machining cost, and idle

time.

Improved version of
NSGA-II.

Results provide optimal and
robust solutions.

[182] Sudden drinking water
contamination incident

Minimizing the volume of
contaminated water and

the operational costs.

Integration of NSGA-II
and EPANET

simulation model.

The validity of the model has
been approved by two water

distribution
networks.
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Table 8. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[183]

Single machine
scheduling with

controllable processing
times.

Developing a new
multi-objective discrete

backtracking search
algorithm.

Through adaptive
selection scheme and
total cost reduction

strategy.

The performance of the
proposed method compared
with other algorithms was

validated.

[184] Reentrant hybrid
flow-shop scheduling.

Optimizing of makespan
and total tardiness.

Genetic algorithms
with Minkowski
distance-based

crossover operator.

The results show that NSGA-II
outperformed in terms of

convergence, diversity, and
the dominance of solution.

[185]
Sustainable ship

routing and
scheduling.

Estimating the total fuel
consumed and carbon

emission from each vessel
as well as improving the
service level of the port.

Mixed-integer
nonlinear

programming using
NSGA-II and MOPSO.

The robustness of the model has
been approved by

experimental results and
comparative, and sensitive

analysis.

Less than 10% (9.51%) of the papers published on NSGA-II in scheduling have ad-
dressed uncertainty. Among the above-mentioned papers, the power system owns the most
contributions in the field at 32%, followed by project scheduling (13%), resource allocation
(8%), and then job-shop scheduling (8%) (shown in Figure 7).
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Figure 7. Different uncertainty scheduling problems that have been solved by NSGA-II.
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4. Scientometric Analysis

Scientometric analysis is the field of study that scientifically measures and analyzes the
literature [186]. Bibliometrics is the most famous field of scientometrics that uses statistics
to analyze and measure the impacts of books, research articles, conference papers, etc. [187].
Recently, this field of analysis has attracted much attention from researchers and has been
used in various literature review fields [4,188–192]. To achieve this aim, VOSviewer 1.6.17 [24]
and CitNetExplorer 1.0.0 [25] were employed in this work. The following subsections provide
new insights into scientometric analysis in the field of scheduling.

4.1. Statistics Based on Document Types

Among the document types, including articles, proceedings papers, reviews, and other
items indexed by WoS, a total of 683 publications on scheduling and NSGA-II were found
(Table 9). From the search, articles were the most popular document type with a total of 462
(67.64% of 683 documents) and 2.77 authors per publication (APP). Additionally, reviews
as a document type had the highest CPP 2020 of 31, followed by articles (18.97). Moreover,
there was a significant difference between the TC 2020 article and that of the proceedings
paper. Figure 8 presents the distribution of documents based on different types, according
to WoS. It is clear from the figure that proceedings papers had the greatest contributions
before 2010, followed by articles. However, since 2010, articles had the most contributions
in the field.

Table 9. Citation analysis based on document type.

Document type TP % AU APP TC2020 CPP2020

Article 462 67.64 1282 2.77 8766 18.97

Proceedings paper 231 33.82 652 2.82 1126 4.87

Review 5 0.73 15 3.0 155 31

Other items 15 2.19 154 10.26 269 17.93

Figure 8. Type of research outputs.

TP, AU, APP, TC2020, and CPP2020 refer to the total number of articles, total number
of authors, total number of authors for each publication, total citations from WoS since the
publication year to the end of 2020, and total citations for each paper, respectively. Other
items include early access and letters.
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4.2. Keyword Analysis

Figure 9 presents the total citations per year for the published documents (NSGA-II in
scheduling). As an overall trend, it is clear that the sum of the number of times articles were
cited increased gradually until the end of 2012, and then the trend increased sharply up to
2020. Figure 10 presents a treemap visualization of the different categories found by WoS.
Accordingly, computer science artificial intelligence (#86), operation research management
science (#86), computer science interdiscipline applications (#82), industrial engineering
(#71), and manufacturing engineering (#65) were among the top categories, while computer
science information systems (#28), computer science theory methods (#29), and automation
control systems (#33) contributed the least in the field.

Figure 9. Total citations per year including percentage change (NSGA-II in scheduling).

Figure 10. Treemap visualization of different categories (database: WoS https://clarivate.com/
products/web-of-science/, accessed on 31 December 2020).

4.3. Network Visualization

The keywords indicate the basic parts of a certain field of research and can offer
insight into the organization and knowledge provided in the articles. Figures 10 and 11
depict the overlay visualization co-occurrence analyses via a network map based on the
Scopus and WoS databases, respectively. In Figure 11, “scheduling”, “optimization”,
“NSGA-II”, “multi-objective optimization”, “multi-objective genetic algorithm”, “Pareto-
optimal”, “makespan”, and “stochastic models” were identified as the top keywords in

https://clarivate.com/products/web-of-science/
https://clarivate.com/products/web-of-science/
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Scopus. Figure 12 reveals that “genetic algorithm”, “algorithm”, “multi-objective genetic
algorithm”, “design”, “cost”, “parallel machines”, “task analysis”, and “operations” were
the most important keywords in WoS. The color of each circle represents the identified
cluster, and the size of each circle illustrates the importance of the keywords; in other words,
the keywords with larger circles were used more than others. The green and yellow colors
show the keywords that were used recently, while the dark blue color indicates those that
were used earlier (around 2012).

Figure 11. Overlay visualization occurrences (database: Scopus www.scopus.com, accessed on 31
December 2020).

Figure 12. Overlay visualization occurrences (database: WoS https://clarivate.com accessed on 31
December 2020).

www.scopus.com
https://clarivate.com
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Tables 10 and 11 present the top 10 keywords of 1-word, 2-word, and 3-word lengths
extracted from WoS and Scopus, respectively. NSGA-II, scheduling, and makespan were the
top three one-word-long keywords for both WoS and Scopus. Multi-objective optimization,
genetic algorithm, and multi-objective were the top three two-word-long keywords in WoS,
while preventive maintenance, NSGA-II algorithm, and project scheduling were the top three
two-word-long keywords in Scopus. In WoS, multi-objective genetic algorithm and particle
swarm optimization were the top two three-word-long keywords, while EMO algorithm and
non-dominated sorting were the top two three-word-long keywords in Scopus.

Table 10. The top 10 keywords of 1-word, 2-word, and 3-word lengths (WoS https://clarivate.com,
accessed on 31 December 2020).

1-Word 2-Word 3-Word

Keyword Frequency Keyword Frequency Keyword Frequency

NSGA-II 76 Multi-objective optimization 86 Multi-objective genetic algorithm 9

Scheduling 38 Multi-objective 19 Particle swarm optimization 6

Makespan 22 Genetic algorithms 17 Unrelated parallel machine 3

Optimization 10 Energy consumption 13 Differential evolution algorithm 3

Reliability 9 Production scheduling 10 Single machine scheduling 3

Uncertainty 8 Cloud computing 9 Flexible job-shop 3

Microgrid 6 Project scheduling 8 Grey wolf optimizer 3

Metaheuristics 5 Preventive maintenance 8 Job-shop scheduling 3

Tardiness 4 Memetic algorithm 7 Just-in-time 3

Heuristic 3 Dynamic scheduling 6 Charge-discharge scheduling 1

Table 11. The top 10 keywords of 1-word, 2-word, and 3-word lengths (Scopus www.scopus.com,
accessed on 31 December 2020).

1-Word 2-Word 3-Word

Keyword Frequency Keyword Frequency Keyword Frequency

NSGA-II 100 Preventive maintenance 10 Multi-objective evolutionary
algorithm 13

Scheduling 54 NSGA-II algorithm 10 Particle swarm optimization 7

Multi-objective 32 Project scheduling 10 Non-dominated sorting 7

Makespan 28 Evolutionary algorithm 9 Ant colony optimization 6

Reliability 9 Multi-objective scheduling 8 Variable neighborhood search 6

Optimization 9 Optimal scheduling 7 Energy efficient scheduling 6

Microgrid 9 Task scheduling 7 Hybrid flow-shop 4

Metaheuristics 7 Memetic algorithm 6 Controllable processing times 4

Rescheduling 7 Generation scheduling 5 Demand side management 3

Uncertainty 6 Demand response 5 Single-machine scheduling 3

4.4. Bibliographic Coupling

When two documents reference other common documents, bibliographic coupling
occurs [147,193]. Figure 13a–d shows the bibliographic coupling in documents from the
WOS database. Specifically, Figure 13a,b presents the network visualization and overlay
bibliographic visualization coupling, revealing that most bibliographic coupling [194–197]
occurred prior to 2016 (dark blue), while the yellow color represents recent studies [198–201].

https://clarivate.com
www.scopus.com
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Figure 13c,d displays the network and overlay visualization bibliographic coupling orga-
nization over the studied time period, revealing that the Islamic Azad University (Iran),
Capital University of Economics and Business (China), and Hong Kong University of Sci-
ence and Technology (Hong Kong) were the three top universities in 2016, 2018, and 2020,
respectively. Figure 14 shows the density visualization of bibliographic coupling based on
item density sources. It is apparent that Computers & Industrial Engineering, International
Journal of Advanced Manufacturing Technology, and Applied Soft Computing were three major
sources, while Science of the Total Environment, Advanced Science Letters, and the IEEE Internet
of Things Journal were three minor sources.

4.5. Publication Statistics Based on the Journal

Table 12 presents the top 10 journals that published the greatest number of related
papers based on Scopus. Accordingly, Lecture Notes in Computer Science (#30), Comput-
ers and Industrial Engineering (#20), and Computer Integrated Manufacturing Systems (#20)
predominated in the field of optimization and evolutionary computations.

Table 12. The top 10 productive Scopus categories.

Scopus ISSN Number of Documents

1 Lecture Notes in Computer Science 1611-3349 30

2 Computers and Industrial Engineering 0360-8352 20

3 Robotics and Computer-Integrated Manufacturing 0736-5845 20

4 International Journal of Advanced Manufacturing Technology 1433-3015 19

5 Applied Soft Computing Journal 1568-4946 18

6 International Journal of Production Research 0020-7543 15

7 Advances in Intelligent Systems and Computing 2194-5365 13

8 IEEE Access 2169-3536 13

9 China Mechanical Engineering 2192-8258 13

10 Computers and Operations Research 0305-0548 11

A total of 683 articles were published in 432 journals, which were classified among the
46 WoS categories in Sci-Expanded. Table 13 lists the 10 most productive WoS categories. A
total of 175 articles (25.62% of 683 articles) were published in the first category (computer
science artificial intelligence), followed by computer science theory methods (7.17%) and
engineering electrical electronic (5.85%). When comparing the top 10 categories, the highest
CPP 2020 of articles published in the computer science cybernetics category was 28.14,
followed by engineering manufacturing (18.55). The highest APP for articles published in
the computer science information systems category was 3.66.
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Figure 13. Bibliographic coupling (network and overlay visualization). (a) Network visualization bibliographic coupling document (b) Overlay visualization
bibliographic coupling document (c) Network visualization bibliographic coupling organization (d) Overlay visualization bibliographic coupling organization.
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Figure 14. Density visualization bibliographic coupling (item density sources).

Table 13. The top 10 productive WoS categories.

Web of Science Category TP AU APP TC 2020 CPP 2020

1 Computer Science Artificial
Intelligence 175 523 2.98 2023 11.56

2 Computer Science Theory
Methods 49 159 3.24 290 5.91

3 Engineering Electrical
Electronic 40 125 3.12 541 13.52

4
Computer Science
Interdisciplinary

Applications
37 118 3.18 664 17.94

5 Operations Research
Management Science 24 82 3.41 418 17.41

6 Automation Control Systems 16 44 2.75 201 12.56

7 Computer Science Information
Systems 15 55 3.66 46 3.60

8 Engineering Manufacturing 9 31 3.44 167 18.55

9 Robotics 8 25 3.12 14 1.75

10 Computer Science Cybernetics 7 19 2.71 197 28.14

TP, AU, APP, TC 2020, and CPP 2020 present the total number of articles, total number of authors, total number
of authors for each publication, total citations from WoS from the publication year to the end of 2020, and total
citations for each paper, respectively. Other items: early access and letters.

4.6. Statistics Based on Authors

Figure 15 shows the top authors with the most publications according to Scopus. Reza
Tavakkoli-Moghaddam from the University of Tehran (Tehran, Iran), Farouk Yalaoui from
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Université de Technologie de Troyes (Troyes, France), and Mostafa Zabdieh from Shahid
Beheshti University (Tehran, Iran) were the top 3 authors in the field, as indexed by Scopus,
with 22, 18, and 14 publications, respectively.

Figure 15. The most active authors in the field (Scopus https://www.scopus.com).

4.7. Publication Statistics by Country

Figure 16 presents the distribution of documents by the most active countries in the
database (Scopus). It is apparent that China, Iran, and India were the top three most active
countries in the field. Additionally, it can be seen that there was a significant difference
between the first rank (China) and second rank (Iran) based on the number of publications
indexed by Scopus. Although Iran was identified as the second-ranked country in the field,
when comparing the populations of China and Iran, it is noteworthy to mention that Iran
performed well in this area.

Figure 16. Research output of top 10 most productive countries across the database.

https://www.scopus.com
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Figure 17 displays the growth rate of the top five active countries. While China, Iran,
and France had smooth trends between 2000 and 2020, India and the United States showed
some fluctuations. Between 2009 and 2015, the US presented the highest growth rate
(positive and negative rate), and then the trend continued smoothly until the end of 2020.

Figure 17. Growth rate of published documents for top 5 countries.

5. Summary

This paper presents a comprehensive review of NSGA-II applied to different schedul-
ing problems. In the first part of the paper, the main idea of scheduling was defined, and
the second part described the scientometric analysis in the field in detail.

It is noteworthy to mention that the European Journal of Operational Research owns the
most contributions (19%) of published documents in scheduling, which is in the area of
operations research.

This paper also reviewed different aspects of scheduling, namely production schedul-
ing and personnel scheduling. It should be noted that about 9.51% of the published articles
in the field considered uncertainty, while the majority of the mentioned articles addressed
scheduling in power systems (32%), followed by project scheduling (13%), resource al-
location (8%), and job-shop scheduling (8%). Among the different objective functions
pertaining to job-shop scheduling, maximum completion time (Cmax) possessed the most
contributions (32%), followed by maximum machine workload (19%).

Although there are several optimization algorithms, metaheuristics are among the top
solution approaches that have been used by researchers. Since genetic algorithms are based
on populations, researchers have widely used genetic algorithms for scheduling problems
(about 26%), followed by simulated annealing (6.4%), ant colony optimization (4.09%),
and tau search (4.47%). The other GA-based solution methods in the field include VEGA,
MOGA, WBGA, RWGA, NSGA, NSGA-II, RDGA, NPGA, and DMOEA. While most of
the evolutionary algorithms possess difficulties, such as high computational cost, lack of
elitism, and difficulty in parameter settings, NSGA-II, proposed in 2002, has attempted to
alleviate all of the above difficulties.

Furthermore, the scientometric analysis indicated that computer science artificial
intelligence (#86), operation research management science (#86), and computer science
interdicipline applications (#82) were among the top categories. In addition, network visu-
alization identified that scheduling, optimization, NSGA-II, multi-objective optimization,
multi-objective genetic algorithm, Pareto-optimal, makespan, stochastic models, design,
cost, parallel machines, task analysis, and operations were the top keywords. Moreover,
the authors of this paper found that NSGA-II, scheduling, and makespan were the top
three one-word-long keywords for both WoS and Scopus. Additionally, two-word- and
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three-word-long keywords were identified. Additional analyses, namely citation network,
bibliographic coupling, and journal mapping, were conducted in this work.

Future Studies

In this paper, we discussed the benefits of NSGA-II and its application in different
fields of study. Since NSGA-II was specifically designed to solve two- and three-objective
problems, less than 1% of NSGA-II articles have considered many-objective scheduling
problems (with more than three objectives) [202]. NSGA-III [203,204], its successor, was
designed to solve problems with more than three objectives. Hence, it is suggested to review
the application of NSGA-III in the field while considering many-objective scheduling
problems. Furthermore, the majority of the studies used deterministic approaches, and
there is an urgent need to provide more robust approaches for tackling uncertainties in
scheduling problems. Additionally, a comprehensive review in other fields of solution
methods applied to scheduling problems is encouraged for future studies. As the authors
presented in the paper, MOPSO and MOACO are two other famous EMO algorithms, and
thus, a comprehensive review in the area using the above-mentioned solution approaches is
suggested. Moreover, the application of scheduling for energy conservation is an interesting
area for research.

6. Conclusions and Discussions

Since exact methods are expensive in terms of computing time and often possess poor-
quality solutions, researchers have become more interested in applying metaheuristics in
scheduling problems, which can produce alternative optimal solutions in a single run. This
study reviewed the most important scheduling problems that have been solved by the NSGA-
II method and provides a bibliometric analysis of the published literature. In terms of
MOO problems, most of the exact solution approaches convert MOO problems into a single
optimization problem, while metaheuristic methods obtain solutions without this conversion.

This study addressed the most important subject fields based on keywords and net-
work analysis. Moreover, a detailed scientometric analysis was employed as an influential
tool in the bibliometric analyses and reviews.

According to the analyses performed in the work, several key arguments that are
worthy of further discussion are offered below:

• In terms of keyword analysis, scheduling, optimization, NSGA-II, makespan, design, cost,
genetic algorithm, and decision making are the most prevalent keywords for scholars;

• Among the current scheduling problems, machine scheduling (specifically job-shop
scheduling), routing, satellite scheduling, project scheduling, weapon selection, and
forest planning are most predominant in the reviewed articles;

• Among the proposed solution methods for solving scheduling problems, the genetic
algorithm possessed the greatest contribution of (26%), followed by PSO (9%), SA
(6.4%), ACO (4.09%), and then tabu search (4.47%);

• Since 2014, NSGA-II has been the most studied algorithm, followed by MOPSO and
then MOACO;

• Despite the increasing complexity of scheduling problems, metaheuristic algorithms (specif-
ically NSGA-II) are more suitable for finding efficient solutions or near-optimal solutions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10010098/s1, The supplementary materials are available for
research purposes in Supplementary Files A and B.

Author Contributions: Conceptualization, I.R., K.D. and A.H.G.; methodology, I.R.; software, I.R.;
validation, I.R., K.D., A.H.G., M.R.N. and F.C.; formal analysis, I.R.; investigation, I.R.; resources, I.R.;
data curation, I.R.; writing—original draft preparation, I.R.; writing—review and editing, A.H.G., M.R.N.,
F.C. and K.D.; visualization, I.R.; supervision, A.H.G. and K.D.; project administration, A.H.G.; funding
acquisition, A.H.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

https://www.mdpi.com/article/10.3390/pr10010098/s1
https://www.mdpi.com/article/10.3390/pr10010098/s1


Processes 2022, 10, 98 24 of 31

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany,
2000; pp. 849–858.

2. Salvendy, G. Handbook of Industrial Engineering: Technology and Operations Management; John Wiley & Sons: Hoboken, NJ, USA, 2001.
3. Lenstra, J.K.; Kan, A.H.G.R. Complexity of vehicle routing and scheduling problems. Networks 1981, 11, 221–227. [CrossRef]
4. Pinedo, M.; Hadavi, K. Scheduling: Theory, Algorithms and Systems Development. In Operations Research Proceedings 1991;

Springer: Berlin/Heidelberg, Germany, 1992; pp. 35–42.
5. Gandomi, A.H.; Emrouznejad, A.; Rahimi, I. Evolutionary Computation in Scheduling: A Scientometric Analysis. In Evolutionary

Computation in Scheduling; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–10.
6. Wang, Y.; Dang, C. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. IEEE

Trans. Evol. Comput. 2007, 11, 579–595. [CrossRef]
7. Sun, J.; Zhang, Q.; Tsang, E.P.K. DE/EDA: A new evolutionary algorithm for global optimization. Inf. Sci. 2005, 169, 249–262.

[CrossRef]
8. Wang, Y.-J.; Zhang, J.-S. Global optimization by an improved differential evolutionary algorithm. Appl. Math. Comput. 2007, 188,

669–680. [CrossRef]
9. Guo, D.; Wang, J.; Huang, J.; Han, R.; Song, M. Chaotic-NSGA-II: An effective algorithm to solve multi-objective optimization

problems. In Proceedings of the 2010 International Conference on Intelligent Computing and Integrated Systems, Guilin, China,
22–24 October 2010; pp. 20–23.

10. Liu, J.; Abbass, H.A.; Tan, K.C. Evolutionary Computation and Complex Networks. In Evolutionary Computation and Complex
Networks; Springer: Singapore, 2019; pp. 3–22.

11. Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013.
12. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer:

Berlin/Heidelberg, Germany, 2007; Volume 5.
13. Behmanesh, R.; Rahimi, I.; Gandomi, A.H. Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems:

A Comparative Study. Arch. Comput. Methods Eng. 2021, 28, 673–688. [CrossRef]
14. Deb, K. Multi-objective optimization. In Search Methodologies; Springer: New York, NY, USA, 2014.
15. Marler, R.; Arora, J. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395.

[CrossRef]
16. Deb, K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In Multi-Objective Evolutionary Optimisa-

tion for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–34.
17. Liu, L.; Gu, S.; Fu, D.; Zhang, M.; Buyya, R. A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition.

KSII Trans. Internet Inf. Syst. 2018, 12, 1–20.
18. Yuan, S.; Deng, G.; Feng, Q.; Zheng, P.; Song, T. Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy-

aware Scheduling in Heterogeneous Computing Systems. J. Univers. Comput. Sci. 2017, 23, 636–651.
19. Long, Q.; Wu, X.; Wu, C. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. J.

Ind. Manag. Optim. 2021, 17, 1001–1023. [CrossRef]
20. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
21. Yusoff, Y.; Ngadiman, M.S.; Zain, A.M. Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Eng. 2011,

15, 3978–3983. [CrossRef]
22. Deb, K.; Rao, U.B.N.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case

study on hydro-thermal power scheduling. In Proceedings of the International Conference on Evolutionary Multi-Criterion
Optimization, Matsushima, Japan, 5–8 March 2007; pp. 803–817.

23. Bekele, E.G.; Nicklow, J.W. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341, 165–176. [CrossRef]
24. Van Eck, N.J.; Waltman, L. VOSviewer Manual; Univeristeit Leiden: Leiden, The Netherlands, 2013; Volume 1, pp. 1–53.
25. Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Inf. 2014, 8,

802–823. [CrossRef]
26. Pinedo, M. Planning and Scheduling in Manufacturing and Services; Springer: Berlin/Heidelberg, Germany, 2005.
27. Özdamar, L.; Ulusoy, G. A note on an iterative forward/backward scheduling technique with reference to a procedure by Li and

Willis. Eur. J. Oper. Res. 1996, 89, 400–407. [CrossRef]

http://doi.org/10.1002/net.3230110211
http://doi.org/10.1109/TEVC.2006.886802
http://doi.org/10.1016/j.ins.2004.06.009
http://doi.org/10.1016/j.amc.2006.10.021
http://doi.org/10.1007/s11831-020-09415-3
http://doi.org/10.1007/s00158-003-0368-6
http://doi.org/10.3934/jimo.2020009
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.proeng.2011.08.745
http://doi.org/10.1016/j.jhydrol.2007.05.014
http://doi.org/10.1016/j.joi.2014.07.006
http://doi.org/10.1016/0377-2217(94)00272-X


Processes 2022, 10, 98 25 of 31

28. Li, K.; Willis, R. An iterative scheduling technique for resource-constrained project scheduling. Eur. J. Oper. Res. 1992, 56, 370–379.
[CrossRef]

29. Gonçalves, J.F.; Resende, M.G.C.; Mendes, J.J.M. A biased random-key genetic algorithm with forward-backward improvement
for the resource constrained project scheduling problem. J. Heuristics 2010, 17, 467–486. [CrossRef]

30. Qi, X. A logistics scheduling model: Inventory cost reduction by batching. Nav. Res. Logist. 2005, 52, 312–320. [CrossRef]
31. Tiemessen, H.; van Houtum, G. Reducing costs of repairable inventory supply systems via dynamic scheduling. Int. J. Prod. Econ.

2013, 143, 478–488. [CrossRef]
32. Liu, W.; Ke, G.Y.; Chen, J.; Zhang, L. Scheduling the distribution of blood products: A vendor-managed inventory routing

approach. Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 101964. [CrossRef]
33. Wang, S.; Wang, X.; Chu, F.; Yu, J. An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. Int.

J. Prod. Res. 2020, 58, 2283–2314. [CrossRef]
34. Xu, Z.; Zheng, Z.; Gao, X. Energy-efficient steelmaking-continuous casting scheduling problem with temperature constraints and

its solution using a multi-objective hybrid genetic algorithm with local search. Appl. Soft Comput. 2020, 95, 106554. [CrossRef]
35. Li, X.; Jin, X.; Lu, S.; Li, Z.; Wang, Y.; Cao, J. Carbon-Efficient Production Scheduling of a Bioethanol Plant Considering Diversified

Feedstock Pelletization Density: A Case Study. Processes 2020, 8, 1189. [CrossRef]
36. Wang, S.; Che, Y.; Zhao, H.; Lim, A. Accurate Tracking, Collision Detection, and Optimal Scheduling of Airport Ground Support

Equipment. IEEE Internet Things J. 2020, 8, 572–584. [CrossRef]
37. Zhou, B.; Zhu, Z. Optimally scheduling and loading tow trains of in-plant milk-run delivery for mixed-model assembly lines.

Assem. Autom. 2020, 40, 511–530. [CrossRef]
38. Torabbeigi, M.; Lim, G.J.; Kim, S.J. Drone delivery scheduling optimization considering payload-induced battery consumption

rates. J. Intell. Robot. Syst. 2020, 97, 471–487. [CrossRef]
39. Sheikh, S.Z.; Pasha, M.A. Energy-efficient real-time scheduling on multicores: A novel approach to model cache contention. ACM

Trans. Embed. Comput. Syst. 2020, 19, 1–25. [CrossRef]
40. Wang, J.; Yang, J.; Zhang, Y.; Ren, S.; Liu, Y. Infinitely repeated game based real-time scheduling for low-carbon flexible job shop

considering multi-time periods. J. Clean. Prod. 2020, 247, 119093. [CrossRef]
41. Kim, E.; Lee, Y.; He, L.; Shin, K.G.; Lee, J. Power Guarantee for Electric Systems Using Real-Time Scheduling. IEEE Trans. Parallel

Distrib. Syst. 2020, 31, 1783–1798. [CrossRef]
42. Fathollahi-Fard, A.M.; Ranjbar-Bourani, M.; Cheikhrouhou, N.; Hajiaghaei-Keshteli, M. Novel modifications of social engineering

optimizer to solve a truck scheduling problem in a cross-docking system. Comput. Ind. Eng. 2019, 137, 106103. [CrossRef]
43. Bossche, T.V.D.; Çalık, H.; Jacobs, E.-J.; Toffolo, T.A.; Berghe, G.V. Truck scheduling in tank terminals. EURO J. Transp. Logist.

2020, 9, 100001. [CrossRef]
44. Demeulemeester, E.L.; Herroelen, W.S. Project Scheduling: A Research Handbook; Springer Science & Business Media: Berlin,

Germany, 2006; Volume 49.
45. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling: Notation, classification,

models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]
46. Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [CrossRef]
47. Mosheiov, G. Parallel machine scheduling with a learning effect. J. Oper. Res. Soc. 2001, 52, 1165–1169. [CrossRef]
48. Cheng, T.C.E.; Sin, C.C.S. A state-of-the-art review of parallel-machine scheduling research. Eur. J. Oper. Res. 1990, 47, 271–292.

[CrossRef]
49. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
50. Fu, Y.; Tian, G.; Fathollahi-Fard, A.M.; Ahmadi, A.; Zhang, C. Stochastic multi-objective modelling and optimization of an

energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. J. Clean. Prod. 2019,
226, 515–525. [CrossRef]

51. Denzler, D.R.; Boe, W.J. Experimental investigation of flexible manufacturing system scheduling decision rules. Int. J. Prod. Res.
1987, 25, 979–994. [CrossRef]

52. Zhang, W.; Freiheit, T.; Yang, H. Dynamic scheduling in flexible assembly system based on timed Petri nets model. Robot. Comput.
Manuf. 2005, 21, 550–558. [CrossRef]

53. Sawik, T. Loading and scheduling of a flexible assembly system by mixed integer programming. Eur. J. Oper. Res. 2004, 154, 1–19.
[CrossRef]

54. Valckenaers, P.; Van Brussel, H.; Bongaerts, L.; Bonneville, F. Programming, scheduling, and control of flexible assembly systems.
Comput. Ind. 1995, 26, 209–218. [CrossRef]

55. Elmaghraby, S.E. The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Manag. Sci. 1978, 24, 587–598. [CrossRef]
56. Dobson, G. The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes. Oper. Res. 1987, 35,

764–771. [CrossRef]
57. Rogers, J. A Computational Approach to the Economic Lot Scheduling Problem. Manag. Sci. 1958, 4, 264–291. [CrossRef]
58. Schoenfelder, J.; Bretthauer, K.M.; Wright, P.D.; Coe, E. Nurse scheduling with quick-response methods: Improving hospital

performance, nurse workload, and patient experience. Eur. J. Oper. Res. 2020, 283, 390–403. [CrossRef]

http://doi.org/10.1016/0377-2217(92)90320-9
http://doi.org/10.1007/s10732-010-9142-2
http://doi.org/10.1002/nav.20078
http://doi.org/10.1016/j.ijpe.2012.08.008
http://doi.org/10.1016/j.tre.2020.101964
http://doi.org/10.1080/00207543.2019.1624857
http://doi.org/10.1016/j.asoc.2020.106554
http://doi.org/10.3390/pr8091189
http://doi.org/10.1109/JIOT.2020.3004874
http://doi.org/10.1108/AA-01-2019-0013
http://doi.org/10.1007/s10846-019-01034-w
http://doi.org/10.1145/3399413
http://doi.org/10.1016/j.jclepro.2019.119093
http://doi.org/10.1109/TPDS.2020.2977041
http://doi.org/10.1016/j.cie.2019.106103
http://doi.org/10.1016/j.ejtl.2020.100001
http://doi.org/10.1016/S0377-2217(98)00204-5
http://doi.org/10.1016/S0377-2217(98)00246-X
http://doi.org/10.1057/palgrave.jors.2601215
http://doi.org/10.1016/0377-2217(90)90215-W
http://doi.org/10.1287/moor.1.2.117
http://doi.org/10.1016/j.jclepro.2019.04.046
http://doi.org/10.1080/00207548708919890
http://doi.org/10.1016/j.rcim.2004.12.002
http://doi.org/10.1016/S0377-2217(02)00795-6
http://doi.org/10.1016/0166-3615(95)00013-T
http://doi.org/10.1287/mnsc.24.6.587
http://doi.org/10.1287/opre.35.5.764
http://doi.org/10.1287/mnsc.4.3.264
http://doi.org/10.1016/j.ejor.2019.10.047


Processes 2022, 10, 98 26 of 31

59. Hamid, M.; Tavakkoli-Moghaddam, R.; Golpaygani, F.; Vahedi-Nouri, B. A multi-objective model for a nurse scheduling problem
by emphasizing human factors. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 234, 179–199. [CrossRef]
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