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Abstract 

One of the key parts of a pavement management system is the maintenance and 

rehabilitation planning. In highway agencies, the plan is usually developed under the 

assumption that all parameters are known with certainty. In practice, there are various 

parameters that are afflicted with large uncertainty. Ignoring the uncertainty may lead to 

a suboptimal plan which can adversely affect the network conditions. The objective of 

this study is to develop an optimisation framework for network-level pavement 

maintenance and rehabilitation planning considering the uncertain nature of pavement 

deterioration and the budget with an applicable approach. A multistage stochastic 

mixed-integer programming model is proposed to find the optimal plan that is feasible 

for all possible scenarios of uncertainty and optimise the expectation of objective 

function. Two case studies of 4 and 21 pavement sections are presented to show the 

applicability of the proposed method. The value of stochastic solution and the expected 

value of perfect information which are the indices for evaluating the benefits of using 

the stochastic model are, respectively, 30% and 85% of the objective function of here 

and now model for the first case study and 26% and 42% of it regarding the second one. 

The indices' values are high, which indicate the effectiveness of the stochastic solution. 
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1. Introduction 

The development of transport road network plays a vital role in achieving national 

development, economic development, and growth and brings notable social benefits. 

The agency and user costs tend to increase with the deterioration of road conditions 

significantly. Maintenance and rehabilitation (M&R) is the key to the preservation of 

pavements and ensure they remain productive throughout their lifespan. It is of great 

importance to manage the M&R strategies time and cost-effectively (Mathew and Isaac, 

2014). 

One of the main objectives of a pavement management system (PMS) is to select and 

optimise an efficient M&R plan in the network and project level. At the network level, 

decisions regarding the budgets and general resource allocations are made, and the 

overall strategy of the pavement network is determined; while at the project level, 

the focus is on performance and maintenance of individual and specific sections 

(Meneses and Ferreira, 2015). 

At the network level, a number of mathematical models have been presented for 

pavement maintenance planning. They have mainly solved the problem under the 

assumption of deterministic parameters. However, in reality, randomness and 

uncertainties are inherent and several areas might contain uncertainty in the entire 

process. Two of the main parameters contributing to the uncertainty in pavement M&R 

planning problem are the budget and the pavement deterioration. 

The budget is subject to economic fluctuations and political interventions and cannot 

consider as a constant parameter. In our country, Road Maintenance & Transportation 

Organization (RMTO) (RMTO, 2019) is responsible for budgeting and planning the 

maintenance strategy of the road network of the country. The budget of RMTO has 

fluctuated over the years and for example, it has not been increased over the last two 
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years, unlike the predictions. The budget decreased from 1804 billion Iranian Tomans 

(1 US dollar = 11500 Tomans on Sep 2, 2019) in 2017 to 1680 billion Tomans in 2018, 

which reflects a 6/8 % decrease in budget. Besides, statistics show a 26% decrease in 

budget between 2017 and 2016 (RMTO, 2019). Furthermore, splitting the budget 

between maintenance and other activities like safety measures is another challenge. 

Hence, the actual allocation of funds to maintenance may deviate from the initial 

estimate. 

In many mathematical models, the pavement deterioration is also considered as a 

deterministic process. Deterioration of pavement is caused by various factors, including 

age, environment, traffic, the strength of pavement, and material properties. Many of 

these factors are not predictable, and on the other hand, the interaction between these 

factors is not identified. Accordingly, the deterioration of pavement is a probabilistic 

phenomenon, and a reliable pavement performance model should be used to estimate 

the pavement condition. Ignoring the random nature of budget and pavement 

deterioration may provide an inapplicable solution, and it is reasonable to explore the 

effect of uncertainty on the optimal decision (Zhang and Gao, 2016). 

2. Basic Concept and Literature review 

Since the early 1980s, several optimisation models have been developed for network-

level pavement M&R planning. Generally, there are two dominant approaches in the 

literature, of which one solves the problem concerning the uncertainty of the 

parameters, especially uncertainty in pavement deterioration, and the other is based on 

the assumption that all parameters are deterministically known quantities. The most 

popular models of the first approach are the models which are based on the theory of 

Markov Decision Processes (MDP). Integer programming-based models are the 

prominent models regarding the latter approach. 
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2.1. MDP-based models 

The Markov chain is the most widely used probabilistic approach for modeling the 

deterioration of pavements. MDP-based models commonly lead to a linear 

programming problem. In these models, the network sections are divided by their 

characteristics, and the results are usually expressed as the percentage of each 

group that should receive each level of treatment (de la Garza et al., 2011). The inability 

to develop a pavement M&R plan for each section is a disadvantage of these models 

compared to integer programming models. Additionally, the pavement must be 

discretised in terms of its condition indicator in the MDP framework, and this procedure 

could result in reduced accuracy in the solution because pavement condition indicators 

are mostly continuous (such as pavement condition index, international roughness 

index). 

Golabi et al. (Golabi, Kulkarni and Way, 1982) developed pioneering work in applying 

MDP for the Arizona PMS. They calculated that the implementation of the M&R 

optimal plan saved $14 million during the first year. Mbwana et al. (Mbwana and 

Turnquist, 1996) proposed a large-scale linear program model that is derived from an 

underlying dynamic programming formulation. The MDP-based models were extended 

by applying the latent Markov decision process (LMDP) that relaxes the assumptions of 

error-free facility inspections (Guignier and Madanat, 1999) and developing randomised 

policies in conjunction with network-level constraints, like condition standards 

(Smilowitz and Madanat, 2000). Moreover, Wu and Flintsch (Wu and Flintsch, 2009) 

proposed a linear programming approach for pavement preservation planning that uses 

multi-objective optimisation.  
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2.2. Integer programming-based models 

Several researchers used approaches based on integer programming (IP) or mixed-

integer programming (MIP) for planning optimal M&R strategies. The solution of 

integer programming addresses the question of when, where, and what M&R treatment 

should be performed and identifies the best treatment for each section individually. The 

computational complexity (in general, NP-hard) involved in the IP problems is a 

challenge, which makes it difficult to solve large-scale problems efficiently (Denysiuk 

et al., 2017). 

Li et al. proposed a cost-effectiveness-based integer M&R planning on a year-by-year 

basis (Li, Haas and Huot, 1998). The minimum budget requirements for maintaining a 

prescribed level of the pavement network performance was determined. A sample 

network of 5 sections was used as a pilot study. Wang et al. established a multi-

objective MIP model for M&R planning, including constraints of available annual 

budgets and minimum requirements on pavement conditions and were applied it to a 

case study with ten sections (Wang, Zhang and Machemehl, 2003). A MIP model for 

optimal highway pavement rehabilitation was proposed by Ouyang and Madanat 

(Ouyang and Madanat, 2004). Two solution approaches, a branch-and-bound algorithm, 

and a greedy heuristic were presented and evaluated using a network of 3 sections. 

Chakroborty et al. were presented a binary linear IP formulation for an optimum 

determination of maintenance strategies for a network of 42 sections (Chakroborty, 

Agarwal and Das, 2012). A comparative study on the budget allocation between three 

methods of cost-benefit analysis (CBA), integer programming (IP), and a “decision tree 

+ needs-based” allocation was carried out by Mensah et al. (France-Mensah and 

O’Brien William, 2018). The findings showed that the IP approach was more effective 

than others. Karabakal et al., Dahl and Minken and Gao and Zhang used the Lagrangian 
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decomposition method to decompose and solve a large-scale pavement M&R planning 

problem (Karabakal, Bean and Lohmann, 1994)(Dahl and Minken, 2008)(Gao and 

Zhang, 2012). 

2.3. Stochastic approaches 

In mathematical programming, most of the problems are solved in the case of 

deterministic conditions. In real cases, however, these parameters are subject to 

uncertainty and may undergo significant variations. Likewise, in the pavement M&R 

planning problem, the uncertainty in some parameters is considerable and should take 

into account.  

The budget and pavement deterioration are the parameters that mostly contribute to the 

uncertainty of the problem. The budget allocated to the highway agencies is subject to 

uncertainty due to various financial and political conditions. If the budget decreases 

from the original estimate during one or more years of the planning period, some parts 

of the scheduled maintenance plan either could not be completed or maybe delayed, and 

rescheduling is therefore needed. It also causes potential pavement condition 

fluctuations compared with expectations (Al-Amin, 2013). Besides, it is rational to 

employ a probabilistic approach to model the pavement deterioration process because 

the predicted pavement performance is sensitive to many factors such as the accuracy of 

the performance model, traffic load, weather condition, and structural properties and the 

uncertainty in pavement performance is associated with the reduction in the reliability 

of pavement M&R plan (Chootinan et al., 2006). 

Several optimisation approaches have been introduced to deal with uncertainty, and its 

consequences include stochastic programming, probabilistic programming, robust 

optimisation, fuzzy programming, etc. Table 1 shows a summary of the studies on the 

pavement network and project-level M&R planning considering the uncertainty of 
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important parameters. In Table 10, the parameter of uncertainty, the approach to deal 

with uncertainty, MDP, or IP based modeling, the level of maintenance, and the case 

study of the research are presented. 

As shown in Table 1, the uncertainty in pavement deterioration and the budget in the 

network level is often investigated using MDP framework. As was mentioned before, 

two major drawbacks of this approach are attributed to the discretization of the 

pavement condition and the inability to provide an M&R plan for each section 

individually. Furthermore, the uncertainties of the parameters regarding the IP approach 

have been addressed in a few previous studies. The gaps in the related literature are, 

firstly, the uncertainty in pavement deterioration has not been studied using stochastic 

models. Secondly, the previous studies have been considered the total value of the 

budget as a random variable. Whereas it could be more practical to incorporate the 

budget uncertainty in a new different manner. In this paper, the budget is divided into 

two parts, a certain part which is defined as the minimum available budget that can be 

guaranteed to happen and an uncertain remaining part which represents the budget 

uncertainty. Therefore, it is intended to fill the gap and consider the uncertainty of 

pavement performance and the budget using a novel approach in this research. 

3. Objective and Scope 

The main purpose of this study is to establish a network-level M&R plan considering 

budget and pavement deterioration uncertainty. To achieve this goal, the problem is 

formulated as a multistage stochastic mixed-integer programming model. The 

uncertainty of the parameters is described by a finite number of possible realizations. 

The multistage stochastic model seeks a solution that is feasible and optimal for all 

possible parameter choices. In other words, the model aims to find a solution that will 

perform well on average.  
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4. Methodology 

In this section, steps to establish the methodology are presented. Selecting the pavement 

condition indicator and identifying the required models to consider in optimisation is 

the first step. The next steps include developing and solving the pavement M&R 

mathematical programming model in case of deterministic and stochastic budget and 

pavement deterioration, respectively. The flowchart in Figure 5 describes 

the steps adopted for this research. The details of each step are explained in the 

following. Moreover, the sets, parameters, and variables used in the model are defined 

in section 3.1. 

4.1. Notations 

The sets, parameters, and variables used in the model are defined in Table 11. 

4.2. Pavement condition indicator and the required models for optimisation 

Selecting pavement condition indicator and identifying the required models such as 

pavement performance model, benefit effectiveness of pavement treatments and M&R 

treatment unit cost are considered as the prerequisites for the development of any 

pavement M&R optimisation model. Surface roughness is a key parameter in evaluating 

pavement deterioration level. Roughness is an important pavement characteristic that 

affects not only ride quality but also vehicle operating costs, fuel consumption, road 

safety, and maintenance costs. The International Roughness Index (IRI) is the most 

commonly employed pavement roughness index and used as the performance indicator 

in this research. It has been proved there is a good correlation between IRI and 

distresses (Sandra and Sarkar, 2013). 
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Several performance models have been proposed to predict IRI. A typical deterministic 

model for pavement M&R planning is the following model which is presented by 

Tsunokawa and Schofer (1994) (Tsunokawa and Schofer, 1994).  

 𝐼𝑅𝑖𝑡∗ = 𝐼𝑅𝑖𝑡0  exp (𝛽(𝑡∗ − 𝑡0) (1) 

In fact, the deterioration process is modeled as an exponential function of time. This 

model is widely used as the performance model in network and project level M&R 

optimisation (Tsunokawa and Schofer, 1994)(Li and Madanat, 2002)(Ouyang and 

Madanat, 2004)(Seyedshohadaie, Damnjanovic and Butenko, 2010). 

The application of each treatment leads to an increase in pavement condition. Treatment 

effectiveness in network-level planning mainly refers to the performance jump 

in pavement condition just upon treatment. Determining the precise degree of 

effectiveness is a complicated process due to various factors that influence it, such as 

pretreatment condition, the quality of performing M&R activities, etc. The performance 

jump can be indicated in average value and estimated through historical 

data, expert assessment, or as a function of treatment and other variables (Labi and 

Sinha, 2003).  

In addition, the unit cost incurred by the agency is calculated based on the sum of the 

operational costs of each treatment. 

4.3. Pavement M&R planning: deterministic case 

Consider a road network 𝑰 = {1,2,3, … , I} with I pavement sections. 𝑲 = {1,2,3, … , K} 

is defined as the set of M&R treatments, which treatment K is the most effective and 

expensive one. 𝑻 = {1,2,3, … , 𝑇} is referred to as the planning horizon as a discrete set 

of time periods. Pavement sections deteriorate continuously in time due to traffic 
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loading, climatic loading and aging and optimal M&R decisions are made at discrete 

time points. 

The deterministic integer linear programming model for network-level pavement M&R 

planning is formulated as follows:  

 Minimise ∑ |IRiT − IRi
∗|I

i=1  (2) 

 ∑ ∑ 𝐴𝑖𝐶𝑖𝑘𝑡𝑥𝑖𝑘𝑡
𝐾
𝑘=1

𝐼
𝑖=1 ≤ 𝐵𝑡        ∀𝑡 ∈ 𝑻 (3) 

 𝐼𝑅𝑖𝑡 = 𝐼𝑅𝑖0 exp(𝛽𝑖𝑡) + ∑ ∑ 𝑥𝑖𝑘𝑡𝑒𝑖𝑘 exp(𝛽𝑖(𝑡 − 𝑗))𝐾−1
𝑘=1

𝑡
𝑗=1 + (𝐼𝑅𝑛𝑒𝑤 − 𝐼𝑅𝑖0 exp(𝛽𝑖𝑡))𝑥𝑖𝐾𝑡  ∀𝑖 ∈

𝑰, ∀𝑡 ∈ 𝑻 (4) 

  𝐼𝑅𝑖𝑡 ≥ 𝐼𝑅𝑚𝑖𝑛        ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻 (5) 

 𝐼𝑅𝑖𝑡 ≤ 𝐼𝑅𝑚𝑎𝑥        ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻 (6) 

 𝐼𝑅̅̅ ̅
𝑡 =

∑ 𝐼𝑅𝑖𝑡𝐴𝑖
𝐼
𝑖=1

∑ 𝐴𝑖
𝐼
𝑖=1

       ∀𝑡 ∈ 𝑻 (7) 

 𝐼𝑅̅̅ ̅
𝑡 ≤ 𝐼𝑅𝑡

𝑛𝑒𝑡𝑤𝑜𝑟𝑘  (8) 

 ∀𝑡 ∈ 𝑻 ∑ 𝑋𝑖𝑘𝑡
𝐾
𝑘=1 = 1       ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻 (9) 

 𝑋𝑖𝑘𝑡 ∈ {0,1}          ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻, ∀𝑘 ∈ 𝑲 (10) 

Eq. (2) indicates the objective function of pavement M&R planning, which is to 

minimise the deviations of the condition of each section at the end of the planning 

horizon from a defined ideal condition. Eq. (3) guarantees that the total costs of M&R 

activities in each time period do not exceed the available budget. Eq. (4) calculates the 

pavement condition of each section over time according to deterioration rate 𝛽𝑖 and 

performance jump 𝑒𝑖𝑘. The last term in Eq. (4) represents that in the case of 
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reconstruction, the pavement condition could be considered as a new pavement 

regardless of its previous condition. Eq. (5) presents the best possible condition of each 

of all sections in each time period. Eq. (6) ensures that the condition of each section in 

each time period satisfies a predefined maximum acceptable condition. Eq. (7) 

calculates the area-weighted average condition of all sections in the network and Eq. (8) 

states the maximum requirement on this value in each time period. Eq. (9) ensures that 

only one M&R treatment should be selected for each section in each time point. 

Equation (10) defines the binary decision variable 𝑋𝑖𝑘𝑡  of section i at time period t 

regarding treatment k, which takes the value one if the treatment selected and 0 

otherwise. 

4.4. Pavement M&R planning: a stochastic approach 

The model described in Eqs. (2)-(10) assumes that all parameters are deterministic and 

known, whereas, in this section, a new stochastic model is proposed to address decision-

making under uncertainties. In this paper, a multistage stochastic programming model is 

developed to deal with the uncertainty of pavement deterioration and budget. The 

uncertainty is described by a finite number of possible realizations, which is expressed 

by a scenario tree. Decisions are made at the nodes in a scenario tree, and the branches 

show realizations of the uncertain variables. Each scenario is a description of a 

sequence of events and is assigned to a path from the root to leaf in a scenario tree 

(Shapiro, Dentcheva and Ruszczyski, 2009). Suppose that the uncertainty of both 

pavement deterioration and budget each year is considered as two possible realizations 

with the same probability. Thus, the two-year scenario tree of the problem with a totally 

of 16 scenarios is presented in Figure 6. 

In the case of budget uncertainty, the total available budget has been expressed as a 

random variable in past studies. Practically, it is unclear that after how many months 
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from the beginning of the year, the absolute value of the budget is known because the 

budget allocation process is time-consuming. For example, suppose that the budget is 

allocated to a highway agency after the first four months of a year. As a result, it means 

that decision-makers have to wait for four months until the budget is known, and the 

optimal M&R treatments regarding the allocated budget and its scenario should be 

applied. To tackle the problem through a practical approach, the annual budget is 

divided into two certain and uncertain parts in this research. The certain part (𝐵𝑡
𝑚𝑖𝑛) is 

considered as the minimum available budget and a decision variable determines the 

optimal M&R treatments based on this part of the budget. In fact, the model selects 

M&R activities with a higher priority. The remaining part of the budget is considered 

under uncertainty and represented in terms of several scenarios (�̃�𝑡
𝑠). A decision 

variable aims to find the optimal M&R treatments based on the realization of different 

scenarios of this additional part. 

The uncertainty of pavement deterioration rate is characterised as a set of scenarios 

(𝛽𝑠). Consequently, different deterioration rates can be included in the model. For 

example, in a problem with T stages, if the additional budget and the deterioration rate 

in stage t respectively associated with 𝑀𝑡 and 𝑁𝑡 possible states, the total number of 

scenarios will be equal to ∏ 𝑀𝑡 × 𝑁𝑡
𝑇
𝑡=1 .  

The multistage stochastic mixed-integer programming model of network-level 

pavement M&R planning problem is formulated by equations (11)-(18). 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑝𝑠|𝐼𝑅𝑖5
𝑠 − 𝐼𝑅𝑖

∗|𝑆
𝑠=1

𝐼
𝑖=1  (11) 

 ∑ ∑ 𝐴𝑖𝐶𝑖𝑘𝑡(𝑥𝑖𝑘𝑡 + 𝑦𝑖𝑘𝑡
𝑠 )𝐾

𝑘=1
𝐼
𝑖=1 ≤ 𝐵𝑡

𝑚𝑖𝑛 + �̃�𝑡
𝑠       ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺 (12) 

 𝐼𝑅𝑖𝑡
𝑠 = 𝐼𝑅𝑖0 exp(𝛽𝑠𝑡) + ∑ ∑ (𝑥𝑖𝑘𝑡 + 𝑦𝑖𝑘𝑡

𝑠 )𝑒𝑖𝑘 exp(𝛽𝑠(𝑡 − 𝑗))𝐾−1
𝑘=1

𝑡
𝑗=1 + (𝐼𝑅𝑛𝑒𝑤 −

𝐼𝑅𝑖0 exp(𝛽𝑠𝑡))(𝑥𝑖𝐾𝑡 + 𝑦𝑖𝐾𝑡
𝑠 )    ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ (13) 
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 𝐼𝑅𝑖𝑡
𝑠 ≥ 𝐼𝑅𝑚𝑖𝑛        ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺 (14) 

 𝐼𝑅𝑖𝑡
𝑠 ≤ 𝐼𝑅𝑚𝑎𝑥        ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺 (15) 

 𝐼𝑅̅̅ ̅
𝑡
𝑠 =

∑ 𝐼𝑅𝑖𝑡
𝑠 𝐴𝑖

𝐼
𝑖=1

∑ 𝐴𝑖
𝐼
𝑖=1

       ∀𝑡 ∈ 𝑻, , ∀𝑠 ∈ 𝑺 (16) 

 𝐼𝑅̅̅ ̅
𝑡
𝑠 ≤ 𝐼𝑅𝑡

𝑛𝑒𝑡𝑤𝑜𝑟𝑘        ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺 (17) 

 ∑ (𝑥𝑖𝑘𝑡 + 𝑦𝑖𝑘𝑡
𝑠 )𝐾

𝑘=1 = 1       ∀𝑖 ∈ 𝑰, ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺 (18) 

 𝑥𝑖𝑘𝑡 ∈ {0,1} , 𝑦𝑖𝑘𝑡
𝑠 ∈ {0,1}         ∀𝑖 ∈ 𝑰, ∀𝑘 ∈ 𝑲, ∀𝑡 ∈ 𝑻, ∀𝑠 ∈ 𝑺  (19) 

 𝑦𝑖𝑘𝑡
𝑚 = 𝑦𝑖𝑘𝑡

𝑛       ∀𝑖 ∈ 𝑰, ∀𝑘 ∈ 𝑲, ∀𝑡 ∈ 𝑻, ∀𝑛 ∈ 𝑺, ∀𝑚 ∈ 𝑺, 1 ≤ 𝑚 < 𝑛 ≤ 𝑆, 𝜉𝑡
𝑚 = 𝜉𝑡

𝑛  (20) 

The objective function of the model is defined in Eq. (12) to minimise the expected 

deviations of the condition of each section at the end of the planning horizon from a 

defined ideal condition with regard to the overall space of possible scenarios. The 

Equations (13) to (19) are similarly developed as the Equations (3) to (10) except that 

they are defined for each scenario. The binary decision variables 𝑥𝑖𝑘𝑡 and 𝑦𝑖𝑘𝑡
𝑠  are 

defined regarding the deterministic and stochastic parts of the problem, respectively. 

Eq. (20) represent the nonanticipativity constraints, which reflect the fact that decisions 

made at tth stage need only depend on the information of realised uncertainties up to 

stage t. In other words, the scenarios that share the same history in each stage cannot be 

distinguished and should present the same results. Decisions for different scenarios are 

linked by nonanticipativity constraints. For example, in the scenario tree of Figure 6, it 

can be found that scenarios 1 to 4 are indistinguishable in the first year because the 

budget and the deterioration rate of these scenarios are the same in year 1 (𝜉1
1 = 𝜉1

2 =

𝜉1
3 = 𝜉1

4). Therefore, the nonanticipativity constraints will require the first four scenarios 

obtaining the same results in year 1. 
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5. Numerical Results 

To illustrate the methodology proposed and assess the effectiveness of the stochastic 

programming approach, the results of two pavement network case studies are presented 

in this section. The computational tasks are performed on a laptop with Intel Core 7 

CPU (2.50GHz) and 16.0 GB RAM with General Algebraic Modeling System (GAMS). 

5.1. Case study 1 

A pavement network of 4 sections with a total area of approximately 168000 m2 is used 

as the case study. The pavement distress data collection and analysis procedure was 

conducted using automated equipment. The required data for the case study were 

obtained from RMTO database (ORM (Office of Road Maintenance), 2019). The main 

specifications of the example network are as follows. 

5.1.1. Initial condition 

As discussed earlier in section 3.2, the International Roughness Index (IRI) is used as 

the performance indicator in this research. The area, number of lanes, and initial 

condition of each section are presented in Table 12. 

5.1.2. Planning horizon 

The optimisation model in this paper aims to develop pavement M&R planning over a 

medium-term planning horizon of 5 years. Each road section is assumed to receive only 

one M&R treatment in each year. 

5.1.3. Budget 

A budget of 2 billion Toman per year is planned to establish M&R strategies, where the 

mean decrease of 20% from the predicted value of budget was observed based on the 

historical data of RMTO database (ORM (Office of Road Maintenance), 2019). 
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Therefore, two possible realizations of the budget in each year are set to be 2 and 1.6 

billion Toman for the stochastic approach. Moreover, the minimum budget (𝐵𝑡
𝑚𝑖𝑛) is 

assumed to be 60% of the allocated budget and equal to 1.2 billion Toman. As a result, 

the minimum budget is estimated to be 1.2 billion Toman, and two possible additional 

cases of 0.4 and 0.8 billion Toman are considered as the stochastic states of budget. 

5.1.4. M&R treatments 

Generally, network-level M&R planning requires less detailed distress data than the 

project level. M&R treatments in this study are grouped into five categories: do nothing, 

preventive maintenance, rehabilitation type 1, rehabilitation type 2, reconstruction. Do 

nothing strategy consists of no maintenance works and means maintaining the current 

condition. The M&R actions attributed to the remaining four categories are as follows: 

• Preventive maintenance: Crack sealing, fog seal, chip seal, microsurfacing, slurry 

seal 

• Light rehabilitation: Surface milling, thin HMA overlay, stabilise base and seal, 4 

to 6 cm HMA overlay 

• Medium rehabilitation: Surface milling and thick HMA overlay, Cold recycling, 8 

to 12 cm HMA overlay 

• Reconstruction: Replacement of the entire existing pavement structure, 

reconstruction of the base and surface 

The average value of performance jump and the unit cost concerning the application of 

each M&R treatment are proposed in Table 13. The average value of the performance 

jump is estimated based on the works of Lu and Tulliver (Lu and Tolliver, 2012)and 

Paterson (Paterson, 1990). Pavement treatment effectiveness and the average reduction 

in IRI for preventive maintenance were investigated by Lu and Tulliver (Lu and 
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Tolliver, 2012). Paterson (Paterson, 1990) developed rehabilitation effectiveness under 

various pavement thicknesses. In addition, the unit cost of each treatment incurred by 

the agency was obtained from RMTO database (ORM (Office of Road Maintenance), 

2019). 

5.1.5. Pavement deterioration rate 

Pavement deterioration rate (𝛽) can be calculated from historical data. A constant rate 

has been often employed for all sections in network-level planning. 𝛽 in the 

performance model of equation (1) has been set as 0.05 in several previous studies (see 

(Li and Madanat, 2002),(Ouyang and Madanat, 2004) and (Seyedshohadaie, 

Damnjanovic and Butenko, 2010)). In this study, after discussions with RMTO experts, 

it was concluded that, due to the differences in weather conditions of the sample 

network in our country compared to the mentioned studies, two deterioration rates of 

0.05 and 20% higher than that equal to 0.06 are considered as the possible realizations 

in each year. 

5.1.6. Requirement limits on IRI  

The minimum and maximum of IRI in terms of pavement condition of each section in 

each year is considered 0 and 4, respectively. In addition, the ideal IRI correspond to 

RMTO objectives is set at 2.2 (RMTO, 2019). 

5.1.7. Stochastic programming results 

The total number of scenarios in a multistage stochastic programming model for four 

possible combinations of deterioration rate and budget in each year is equal to 45=1024. 

Assuming all scenarios with equal probability of occurrence, each scenario occurs with 

probability 9/77 × 10−4. The objective function value of the optimal solution found by 

the stochastic model is equal to 0.365. 
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The pavement M&R plan in cases of the minimum budget and the uncertainty scenarios 

of the additional budget and deterioration rate is proposed in Table 14 and Table 15, 

respectively. For the sake of brevity, the M&R treatment of categories 2 to 5 are listed 

in the following tables and the years with do-nothing strategy are not presented in the 

tables. 

Table 14 shows which plan is given priority concerning the minimum budget and the 

selected M&R plan should be applied regardless of the additional budget value. 

According to Table 14, preventive maintenance in the first year for sections 1 and 2, 

light rehabilitation in the first year for section 3, and preventive maintenance in the third 

year for section 4 are selected based on the minimum value of the budget. 

The other M&R treatments concerning the uncertainty scenarios of the additional 

budget and deterioration rate are briefly presented in Table 15. Due to a large number of 

scenarios, the suggested M&R treatments for each section along with the percentage of 

occurrence among all scenarios are indicated in Table 15. That is, the values in this 

table represent the percentage of all scenarios that each M&R treatment is suggested. 

For example, preventive maintenance in 69% of the scenarios and medium 

rehabilitation in 31% of them are suggested for section 3 in the second year. The values 

in Table 15 can identify the importance and priority of the selected M&R treatments. If 

an M&R treatment in a year is selected regarding 100% of the scenarios, it can be 

considered equivalent to the selected treatments in Table 14 because it should be 

performed in all cases regardless of the occurrence of any scenarios. For example, 

Preventive maintenance for section 4 in the first year is actually required for all 

scenarios. 
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The average performance condition of each section over all 1024 scenarios during the 

planning period is depicted in Figure 7. For example, the average IRI of section 1 

decreases from 2.92 in the first year to 2.23 m/km in the last year. 

To compare the results of the stochastic with the deterministic solution, the problem is 

solved based on the expected value (EV) approach. All random parameters are replaced 

by their expected values in the EV approach, and a deterministic problem is solved. The 

objective function of the optimal solution of the EV model is 0.014. The solution of the 

EV model is better than the stochastic solution because the EV model solved the 

problem under a single scenario in comparison with 1024 scenarios of the stochastic 

model. 

The percent of each treatment assigned to the network sections over the planning 

horizon regarding the optimal solution of the deterministic and stochastic approach is 

presented in Table 16. As shown in Table 16, the stochastic model suggested a higher 

number of preventive maintenance to optimise the network condition fluctuations 

compared to the deterministic one. The stochastic model provides a solution each year 

which aims to compensate for any bad effects that might have been experienced as a 

result of the previous-years decisions. Accordingly, the stochastic model tries to 

distribute the annual budget to more pavement sections in order to reduce the adverse 

effects of the changes in the pavement deterioration rate and the budget.   

In the following section, the advantage of using the stochastic approach is investigated. 

5.1.8. The advantage of using the stochastic approach 

There are different methods for modeling multistage stochastic programming problems. 

The results that have so far been discussed in section 5.2. are corresponded to the so-

called here and now (HN) decision. The here-and-now method reflects the fact that 

decisions are made before perfect information is acquired. The solution to this method 
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(𝑧𝐻𝑁) is not optimal for any outcome, but it is the best for many outcomes considered 

altogether. The other methods, such as EV and wait-and-see (WS), generally seek to 

transform the stochastic problem into a deterministic one. 

It is mentioned that the EV model is expressed by replacing the random parameters by 

their expected values. Suppose that xEV is an optimal solution to the EV problem. To 

evaluate the performance of xEV for each scenario, it is needed to fix the values of the 

first stage decision variables of the EV problem in the HN problem. After solving the 

HN, the expected result of using the EV solution (EEV) will be estimated according to 

Eq. (21). 

 𝑧𝐸𝐸𝑉 = ∑ 𝑝𝑠𝑧(𝑥𝐸𝑉 , 𝑠)𝑠∈𝑆  (21) 

𝑧𝐸𝐸𝑉  investigates the solution of the next stages as a function of 𝑥𝐸𝑉  and each scenario. 

The value of 𝑧𝐸𝐸𝑉  for the case study is obtained 0.471. The value of a stochastic 

solution (VSS) is a measure that allows assessing the advantage of using a stochastic 

programming approach. It is calculated by Eq. (22): 

 𝑉𝑆𝑆 = 𝑧𝐸𝐸𝑉 − 𝑧𝐻𝑁  (22) 

The VSS indicates the cost associated with ignoring uncertainty in the problem and 

measures the expected gain from solving a stochastic model. A high amount of VSS 

shows that uncertainty is important for the optimal solution and 

utilising stochastic model is necessary. VSS is obtained as 𝑉𝑆𝑆 = 0.471 − 0.365 =

0.106 in the case study which is approximately 30% of 𝑧𝐻𝑁 and represents the benefit 

of using a stochastic model for the problem. 

In the WS approach, the decision-maker is allowed to make optimal decisions after 

observing the realization of random parameters. It can be calculated by solving the 
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optimisation problem for each scenario, one by one and taking the mean value of all the 

deterministic solutions. If the optimal solution of the model corresponding to the sth 

scenario is 𝑧∗𝑠, 𝑧𝑊𝑆 will be obtained according to Eq. (23): 

 𝑧𝑊𝑆 = ∑ 𝑝𝑠
𝑠∈𝑆 𝑧∗𝑠 (23) 

Another index for evaluating the advantage of stochastic modeling is the expected value 

of perfect information (EVPI). EVPI indicates that a decision-maker would be willing to 

spend in gaining full information about the future. It is calculated using Eq. (24): 

 𝐸𝑉𝑃𝐼 = 𝑧𝐻𝑁 − 𝑧𝑊𝑆 (24) 

The large EVPI represents the value of the information about the future and indicates 

that there is a risk of variability in the expected objective value without perfect 

information. For the case study, 𝑧𝑊𝑆  is obtained 0.061. As a result, EVPI is equal to 

0.365-0.061=0.304. It is approximately 85% of 𝑧𝐻𝑁 which demonstrates the high cost of 

ignoring the uncertainty. 

5.2. Case study 2 

To explore the applicability of the proposed methodology more, another case study with 

21 pavement sections, a planning period of 4 years, and 5 M&R alternatives is adopted. 

It is worth mentioning that the computational complexity of the proposed stochastic 

MIP model increases exponentially with the number of pavement sections and 

scenarios. Direct methods are inadequate for large-scale networks with a large number 

of scenarios. Various decomposition methods have been applied in such problems to 

deal with this limitation, and it might be of interest in further research studies. 

The data for the case study was taken from RMTO like the first case study and it was 

collected with automatic equipment (ORM (Office of Road Maintenance), 2019).  
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5.2.1. Input data 

A network of 21 pavement sections of primary roads is taken into account. The 

minimum, maximum, and average value of the area and initial condition of the network 

sections are 11031, 195216 and 65485 m2 and 2.38, 5.09, and 3.61 m/km, respectively. 

The planning horizon is assumed to be 4 years. The estimated budget is approximately 7 

billion Toman per year, according to the RMTO database (ORM (Office of Road 

Maintenance), 2019). But, similar to the previous example, the budget is considered to 

be stochastic and will be 7 billion or 20% less than it (5.6 billion). The minimum budget 

(𝐵𝑡
𝑚𝑖𝑛) is assumed to be 60% of the total assigned budget and equal to 4.2 billion 

Toman. Ergo, the minimum budget is evaluated to be 4.2 billion Toman, and two 

possible additional cases of 1.4 and 2.8 billion Toman are the stochastic states of the 

budget. Other required data, including the types of M&R treatments, Pavement 

deterioration rate, and its possible states and the requirement limits on IRI are the same 

as described for the first case study.  

5.2.2. Stochastic programming results and the advantage of using the proposed method 

In this case study, it is assumed that there are four possible combinations of the budget 

and pavement deterioration each year, which yields a total of 44=256 scenarios with 

equal probabilities for this problem. The objective function value of the stochastic 

problem (HN) is equal to 5.561.  

Table 8 indicates a brief overview of the optimum M&R plan proposed by the 

stochastic model. The numbers in Table 8 indicate the percent of each M&R treatment 

selected for the network sections over all scenarios in each year during the planning 

period. For example, in the third year, the model assigned 33.3, 29, 32.9, and 4.8 

percent of all possible alternatives to do nothing, preventive maintenance, light 

rehabilitation, and medium rehabilitation, respectively. 
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The optimal value of the EV model for the second case study is equal to 2.75. Similar to 

the first case study, the objective function of the EV solution is much better than the HN 

one because the HN model considers all scenarios and contains the nonanticipativity 

constraints, whereas the EV model only considers the average values of the stochastic 

parameters. The percent of each M&R treatment planned for the network sections over 

all scenarios during the planning period concerning the deterministic (EV) and 

stochastic (HN) solution is shown in Table 9. The results presented in Table 9 are 

roughly consistent with the results in the previous case study that the stochastic model 

aims to distribute the annual budget to more pavement sections through selecting more 

preventive maintenance (41.7%) compared with the deterministic case (26.9%). The 

variation of average IRI of all pavement sections during the planning period for the 

deterministic and stochastic approach is illustrated in Figure 4. As shown in Figure 4, 

despite incorporating all uncertainty scenarios, the stochastic model could improve the 

average condition of the network efficiently toward the ideal condition. 

To investigate the advantage of using the stochastic model, the EEV and WS models are 

solved. The optimal solutions of the EEV and WS models are equal to 6.99 and 3.21, 

respectively. Therefore, VSS is equal to 6.99-5.56=1.43 which is 26% of 𝑧𝐻𝑁 and 

denotes that uncertainty significantly affects the optimal solution. Moreover, EVPI is 

equal to 5.56-3.21=2.35 that is 42% of 𝑧𝐻𝑁. The large value of EVPI indicates a high 

additional profit when perfect information is reached. 

Conclusion 

Developing an effective M&R strategy plays a significant role in modern PMS. There 

are various mathematical models for solving the pavement M&R planning problem. 

Most of the models deal with the deterministic situation. In fact, there are several 

uncertain parameters in the model, which could greatly affect the optimal strategy. But, 
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few stochastic versions of the models have been proposed to match a real-world 

situation. A multistage stochastic mixed-integer programming model for pavement 

M&R planning was established in this paper to address the uncertainty of pavement 

deterioration and the budget.  

The uncertainty of pavement deterioration was represented by a set of distinct 

realizations of the deterioration rate in the performance function. The budget was 

divided into two parts; one is associated with the minimum value of the budget, which 

is considered deterministic, and the M&R activities with the highest priority are selected 

based on this part. The other is the remaining part of the budget which is denoted as a 

number of possible realizations, and a decision variable finds the optimal M&R 

treatments according to the realization of different additional budget scenarios. The 

following conclusions could be drawn from the results of the present study: 

• Stochastic programming approach can be used to account for the uncertainty of 

pavement deterioration and budget and develop optimal pavement M&R plan for 

each section individually which could be highly useful for decision-makers 

• Two pavement network case studies with 4 and 21 sections are presented as an 

application of the proposed methodology. It is showed that the stochastic model 

selected more number of preventive maintenance, 40.55% of total M&R actions 

over the planning horizon compared to 30% regarding the deterministic model for 

the first case study and likewise, 41.71% versus 26.9% of total M&R treatments for 

the second case study. It seems that the stochastic model aims to divide the 

available budget between more pavement sections to mitigate the negative effects 

of the uncertainty in the parameters concerning future years. 

• The benefits of using a stochastic model compared to a deterministic approach 

investigated using VSS and EVPI indices. The VSS values for the two case studies 
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are 30% and 26% of zHN, respectively. Additionally, the EVPI values are 85% and 

42% of zHN for the first and second case studies, respectively. The relatively large 

values of the indices demonstrate that the solutions of the multistage stochastic 

programming model, instead of the underlying deterministic one, are useful. 

It is important to make the point that the high computational complexity of the mixed-

integer programming models hinders the practical application of the proposed stochastic 

pavement M&R planning model for large-scale networks. Some decomposition 

techniques have been proposed to cope with the computational complexity of the 

problems with a large-scale dimension. It would be valuable for future research to 

develop an algorithm to overcome this limitation so that the results would be more 

aligned with real networks with a large number of sections. 
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Table 10. A summary of the studies on pavement network and project-level M&R 

planning considering the uncertainty of important parameters 

Research 
Parameter of 

uncertainty 

The approach 

to deal with 

uncertainty 

MDP or 

IP based 

modeling 

level of 

maintenance 
case study 

Kuhn and 

Madanat (2005) 

(Kuhn and 

Madanat, 2005) 

Transition 

probabilities 
Robust 

Optimisation 
MDP Network 

A network 

of 8360 

square 

meters 

Gao and Zhang 

(2008) (Gao and 

Zhang, 2009) 

The variables in linear 

performance 

prediction and 

maintenance effect 

models 

Robust 

Optimisation 
IP Project - 

Wu and Flintsch 

(2009) (Wu and 

Flintsch, 2009) 

Budget 
probabilistic 

programming 
MDP Network 

A network 

of 16,000 

lane km 

Seyedshohadaie 

et al. (2010) 

(Seyedshohadaie, 

Damnjanovic 

and Butenko, 

2010) 

Pavement 

deterioration rate 

Optimisation 

under risk 

constraints 

MDP Network 

20 

pavement 

sections 

Ng et al. (2011) 

(Ng, Zhang and 

Travis Waller, 

2011) 

Pavement 

deterioration rate 

Robust 

Optimisation 
IP Project - 

Gao et al. (2011) 

(Gao, Guo and 

Zhang, 2011) 

Budget 
Stochastic 

programming 
MDP Network 

A network 

of 16,400 

lane km 

Al-Amin (2013) 

(Al-Amin, 2013) 
Budget 

Robust 

Optimisation 
IP Network 

10 

Pavement 

Sections 

Fan and Wang 

(2014) (Fan and 

Wang, 2014) 

Budget 
Stochastic 

programming 
IP Network 

10 

Pavement 

sections 
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Table 11. The sets, parameters and variables 

Sets/Indices 

𝑰 Set of pavement network sections, 𝑰 = {1,2,3, … , I} 

𝑻 Set of planning horizon, 𝑻 = {1,2,3, … , T} 

𝑲 Set of M&R treatments, 𝑲 = {1,2,3, … , K}, treatment K is the most effective and 

expensive  

𝑺 Set of scenarios, 𝑺 = {1,2,3, … , S} 

Parameters 

𝑰𝑹𝒊𝟎 Initial IRI of section i 

𝑰𝑹𝒊𝒕 IRI for section i at time period t 

𝑰𝑹𝒊𝑻 IRI of section i at the end of the planning horizon (Tth ear) 

𝑰𝑹𝒎𝒊𝒏 Minimum possible condition of each of all sections during each time period 

𝑰𝑹𝒎𝒂𝒙 Maximum acceptable condition of each of all sections during each time period 

𝑰𝑹𝒏𝒆𝒘 condition of pavement after reconstruction 

𝑰𝑹𝒊
∗ Ideal condition at the end of the planning horizon 

𝑰𝑹̅̅̅̅
𝒕 Average condition of the network at time period t 

𝑰𝑹𝒕
𝒏𝒆𝒕𝒘𝒐𝒓𝒌 Maximum possible average condition of the network sections 

𝑨𝒊 Area of section i 

𝜷𝒊 Deterioration rate of section i 

𝜷𝒊
𝒔 Deterioration rate of section I for scenario s 

𝒕∗ Discrete time, taken to be a year, 𝒕∗ = 1,2,3, … , 𝑇 

𝒕𝟎 The beginning of the planning horizon 

𝑩𝒕 Budget at time period t 

𝑩𝒕
𝒎𝒊𝒏 The minimum available budget at time period t 

𝑩𝒕
𝒔 The realization of the additional part of the budget at time period t for scenario s 

𝒑𝒔 The probability of occurrence of scenario s, ∑ 𝑝𝑠
𝑠∈𝑆 = 1 

𝝃𝒕
𝒔 The realizations of the stochastic process until time period t for scenario s 

𝑪𝒊𝒌𝒕 Average maintenance unit cost of applying treatment k to section i at time period t 

𝒆𝒊𝒌 Performance jump of section i because of applying treatment k 

𝑵𝒊𝒌 Maximum allowable number of treatment k can be applied to section i during the 

planning horizon 

Variables 

𝒙𝒊𝒌𝒕 The binary decision variable of section i at time period t regarding treatment k, valued 

at 1 if selected, 0 otherwise; 

𝒚𝒊𝒌𝒕
𝒔  The binary decision variable of section i at time period t regarding treatment k for 

scenario s, valued at 1 if selected and 0 otherwise. 
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Table 12. Initial IRI of pavement sections 

Pavement 

section 
Number of lanes Area (m2) Initial IRI (m/km) 

1 3 38771 3.55 

2 3 48759 2.41 

3 3 75360 4.32 

4 3 43305 2.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

Table 13. Performance jump and the unit cost of each M&R treatment 

Maintenance and 

rehabilitation treatment 
Cost (Toman/m2) Performance jump (m/km) 

1 0 0 

2 5000 0.3 

3 15000 1.2 

4 32000 2 

5 65000 
Restore pavement condition 

to its original condition, IRInew = 1.5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

Table 14. M&R plan in case of the minimum budget for the first case study (𝑥𝑖𝑘𝑡) 

Section.Year 
M&R treatment 

2 3 

1.1 1 0 

2.1 1 0 

3.1 0 1 

4.3 1 0 
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Table 15. The percent of selected M&R treatments in case of the uncertainty scenarios 

for the first case study (𝑦𝑖𝑡𝑘
𝑠 ) 

Section 1 Section 2 Section 3 Section 4 

Year.M&R 
Percent of 

senarios 
Year.M&R 

Percent of 

senarios 
Year.M&R 

Percent 

of 

senarios 

Year.M&R 

Percent 

of 

senarios 

2.3 50 2.2 63 2.2 69 1.2 100 

3.2 14 3.2 31 2.4 31 2.2 75 

3.3 23 4.2 61 3.2 17 4.2 26 

4.2 3 5.2 39 3.3 3 5.2 6 

4.3 14   3.4 39   

5.2 1   4.2 5   

5.3 13   4.3 4   

    4.4 15   

    5.2 1   

    5.3 6   

    5.4 8   
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Table 16. The percent of each treatment assigned to the network sections over 

the planning horizon 

Treatment Deterministic Stochastic 

Do nothing 50 44.15 

Preventive maintenance 30 40.55 

Light rehabilitation 15 10.65 

Medium rehabilitation 5 4.65 

Reconstruction 0 0 
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Table 17. The percent of each M&R treatment selected for the network sections over all 

scenarios in each year 

Year Do nothing 
Preventive 

maintenance 

Light 

rehabilitation 

Medium 

rehabilitation 
Reconstruction 

1 33.3 29.0 32.9 4.8 0 

2 39.6 47.0 13.4 0 0 

3 36.2 43.7 19.6 0.5 0 

4 40.2 47.1 11.8 0.9 0 
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Table 18. The percent of each M&R treatment during the planning period concerning 

the deterministic and stochastic solution 

Treatment Deterministic Stochastic 

Do nothing 48.33 37.31 

Preventive maintenance 26.90 41.71 

Light rehabilitation 21.90 19.44 

Medium rehabilitation 2.86 1.54 

Reconstruction 0.00 0.00 
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Figure 1. The steps adopted for this research 

Figure 2. Two-year scenario tree under the uncertainty of pavement deterioration and 

budget 
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deterministic and stochastic approach 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

Figure 5. The steps adopted for this research 
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Figure 6. Two-year scenario tree under the uncertainty of pavement deterioration and 

budget 
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Figure 7. The average IRI of each section over all 1024 scenarios during the planning 

period 
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Figure 8. The average IRI of all pavement sections during the planning period for the 

deterministic and stochastic approach 
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