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ABSTRACT 

Structural engineering is focused on the safe and efficient design of infrastructure. Projects can range in 

size and complexity, many requiring massive amounts of materials and expensive construction and opera-

tional costs. Therefore, one of the primary objectives for structural engineers is a cost-effective design. 

Incorporating optimality criteria into the design procedure introduces additional complexities that result in 

problems that are nonlinear, nonconvex, and have a discontinuous solution space. Population-based opti-

mization algorithms (known as metaheuristics) have been found to be very efficient approaches to these 

problems. Many researchers have developed and applied state-of-art metaheuristics to automate and opti-

mize the design of real-world civil engineering problems. While there is a large body of published papers 

in this area, there are few comprehensive reviews that list, summarize, and categorize metaheuristic opti-

mization in structural engineering. This paper provides an extensive survey of a wide range of metaheuristic 

techniques to structural engineering optimization problems. Also, information is provided on available 

structural engineering benchmark problems, the formulation of different objective functions, and the han-

dling of various types of constraints. The performance of different optimization techniques is compared for 

many benchmark problems. 
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1. INTRODUCTION  

Population-based approaches as a subcategory of artificial intelligence (AI)-based methods have proved 

to be as efficient alternatives to the conventional solvers for highly complex real-world problems. The most 

significant advantage of these intelligent techniques is that they do not require prior knowledge of the tack-

led problem. Population-based techniques can be utilized for different tasks, such as prediction and optimi-

zation.  

The most well-known population-based algorithm for prediction is genetic programming (GP). This 

algorithm was used in many challenging problems due to its effectiveness. For example Gandomi and 

Alavai (2012a, 2012b, 2013) utilized a multi-gene GP (MGGP) for material, structural, geotechnical and 

earthquake engineering problems (Gandomi, Alavi, Gandomi, & Kazemi, 2017; Gandomi, Alavi, Kazemi, 

& Gandomi, 2014) employed gene expression programming (GEP) to predict shear strength if slender RC 

beams with and without shear reinforcement, Gandomi et al. (Gandomi, Alavi, & Sahab, 2010) applied 

linear GP to develop formulation for compressive strength of carbon fiber reinforced plastic (CFRP) con-

fined concrete cylinders, Gandomi, Alavi, & Yun (2011) predicted shear strength of steel fiber-reinforced 

concrete beams using linear GP, Mousavi, Alavi, Gandomi, Esmaeili, & Gandomi (2010) developed a hy-

brid approach based on GP and simulated annealing algorithm to predict compressive strength of CFRP-

confined concrete cylinders, Gandomi, Mohammadzadeh, Pérez-Ordóñez, & Alavi (2014) utilized a linear 

GP for predicting shear strength of RC beams without stirrups, Gandomi, Tabatabaei, Moradian, Radfar, & 

Alavi (2011) introduced a model for predicting the load capacity of castellated steel beams using GEP, 

Gandomi, Alavi, Kazemi, & Alinia (2009) employed linear GP for behavior assessment of steel semi-rigid 

joints, Gandomi & Roke (2014) concentrated on the prediction seismic response of braced frames using 

GP, Gandomi, Roke, & Sett (2013) proposed GP-based model for predicting moment capacity of ferroce-

ment members, and Gandomi, Sajedi, Kiani, & Huang (2016) applied GP to acquire a formulation for con-

crete creep. 

Population-based metaheuristic algorithms perform a meaningful search within the solution space using 

a set of components that represent potential solutions for the tackled function. These algorithms mimic the 

intelligence behind natural phenomena to direct the search process. The fundamental assumption in all the 

metaheuristic techniques is getting close to the optimal solution as much as possible rather than finding the 

exact final solution. This attitude gives a phenomenal ability to this class of algorithms for handling non-

convex, non-smooth, and discontinuous functions. On the contrary, there is no guarantee that the final ob-

tained solution by the algorithm is the best possible choice. This fact has motivated many researchers in 

recent years to develop new algorithms (Abdel-Basset, Abdel-Fatah, & Sangaiah, 2018; Dokeroglu, Sevinc, 



Kucukyilmaz, & Cosar, 2019; X.-S. Yang, 2010b; Abualigah et al., 2021; Yang, Chen, Heidari, & Gan-

domi, 2021) or improve the existing method as much as possible ( Gandomi & Deb, 2020; Gandomi & 

Kashani, 2016, 2018b; Kashani, Chiong, Sandeep, & Gandomi, 2021; Gandomi & Yang, 2012; Gao, Zhang, 

Sadollah, & Su, 2017; Gupta, Deep, & Mirjalili, 2020; Ngo et al., 2017; Sadollah, Sayyaadi, Yoo, Lee, & 

Kim, 2018; Tubishat, Idris, Shuib, Abushariah, & Mirjalili, 2020). Metaheuristic techniques can be broadly 

classified into non-metaphor-based and metaphor-based algorithms, as shown in Figure 1. Metaphor-based 

algorithms are including bio-inspired (e.g., genetic algorithm (Holland, 1992) and particle swarm optimi-

zation (Kennedy & Eberhart, 1995)), art-inspired (e.g., harmony search (Geem, Kim, & Loganathan, 2001) 

and interior search algorithm ( Gandomi, 2014)), science-inspired (e.g., simulated annealing (van Laar-

hoven & Aarts, 1987) and gravitational search algorithm (Rashedi, Nezamabadi-pour, & Saryazdi, 2009)), 

social inspired (e.g., teaching-learning-based optimization (Rao, Savsani, & Vakharia, 2011) and school-

based optimization ( Farshchin, Maniat, Camp, & Pezeshk, 2018)).  

Optimization algorithms undertake the engineering problems based on two main standpoints: 1- analy-

sis, 2- design. The main effort in the former is finding the boundary condition where an equilibrium state 

of a given system is provided. The latter, though, deals with searching for the most optimal configuration 

of a system that satisfies all the functional requirements. Generally, engineering problems are complicated 

because of dealing with many design variables and limitations in the form of constraints. On the other hand, 

due to the stochastic nature of metaheuristics, their performances on different problems are usually variants. 

Thus, regardless of the problem type, handling them can be considerably challenging for the algorithms. 

Consequently, the strengths and weaknesses of various algorithms have been reflected in dealing with these 

challenging problems. Those problems have prone to attract much attention in engineering society and were 

subject to many sophisticated studies (Bozorg-Haddad, Solgi, & Loáiciga, 2017; Cuevas, Espejo, & 

Enríquez, 2019; Elshaer & Awad, 2020; Elsheikh & Abd Elaziz, 2019; Ganesan, Vasant, & Elamvazuthi, 

2016; Iliopoulou, Kepaptsoglou, & Vlahogianni, 2019; Kumar & Davim, 2019; Pattanaik, Basu, & Dash, 

2017; Ramos-Figueroa, Quiroz-Castellanos, Mezura-Montes, & Schütze, 2020; Shaheen, Spea, Farrag, & 

Abido, 2018; Singh, Tyagi, & Kumar, 2020; G.-G. Wang, Gandomi, Alavi, & Gong, 2019). 



 

Figure 1. Classification of metaheuristic algorithms. 

Civil engineering problems, because of dealing with a large number of decision variables and regula-

tions, are highly complex within their solution space. Optimization algorithms proposed very effective al-

ternatives to this sort of problem, either indirectly or directly. Indirect applications of metaheuristics have 

been their coupling with some other AI-based techniques such as artificial neural networks (Akhani, 

Kashani, Mousavi, & Gandomi, 2019; Khari, Armaghani, & Dehghanbanadaki, 2019; Gandomi et al., 

2021), genetic programming (Aminian, Javid, Asghari, Gandomi, & Esmaeili, 2011; Gandomi et al., 2008; 

Gandomi, Alavi, Mohammadzadeh Shadmehri, & Sahab, 2013; Yong et al., 2020), fuzzy logic (Zabihi-

Samani & Ghanooni-Bagha, 2019), support vector machine (Hoang & Pham, 2016), random forest (Zhang, 

Yin, Jin, & Chan, 2020), etc. However, optimization algorithms have been found to be very proficient to 

directly handle difficult civil engineering problems (Bekdaş, Nigdeli, Kayabekir, & Yang, 2019; Ali Kaveh, 

2017; X.-S. Yang, Bekdaş, & Nigdeli, 2016). In this way, the optimal design of a wide range of structures 

using metaheuristics was modeled mathematically in several efforts (Gandomi, Alavi, & Talatahari, 2013; 

Gandomi & Yang, 2011; Gandomi, Yang, & Alavi, 2013, 2011; Gandomi, Yang, Talatahari, & Alavi, 2013; 

Sahab, Toropov, & Gandomi, 2013; Wang, Wang, Xia, & Poh, 2018; Kashani, Akhani, Camp, & Gandomi, 

2021). Geotechnical engineering has also been the subject of many investigations ( Yang, Gandomi, 

Talatahari, & Alavi, 2012). For instance, slope stability analysis was examined through different optimiza-

tion algorithms for many years (Gandomi, Kashani, Mousavi, & Jalalvandi, 2017; Gandomi, Kashani, & 

Mousavi, 2015; Gandomi, Kashani, Mousavi, & Jalalvandi, 2015; Kashani, Gandomi, & Mousavi, 2016; 

Sanaeirad & Kashani, 2016); optimum design retaining structures was handled by many researchers to now 



( Camp & Akin, 2012; Gandomi, Kashani, & Zeighami, 2017; Gandomi & Kashani, 2018a; Gandomi, 

Kashani, Roke, & Mousavi, 2015, 2017; Kashani, Saneirad, & Gandomi, 2019; Khajehzadeh & Eslami, 

2012; Khajehzadeh, Taha, & Eslami, 2013; Khajehzadeh, Taha, El-Shafie, & Eslami, 2010); shallow foun-

dation optimization was also another important benchmark problem in this field (Assadollahi, 2016, 2017; 

Assadollahi & Camp, 2014; Camp & Assadollahi, 2013, 2015; Gandomi & Kashani, 2017; Kashani, Gan-

domi, Camp, & Gandomi, 2019; Khajehzadeh, Taha, El-Shafie, & Eslami, 2011). Many other researchers 

attempted to explore the efficiency of metaheuristics in handling some other sub-fields of civil engineering 

such as transportation engineering (Balakrishnan, 2016; Bayram, 2016; Caunhye, Nie, & Pokharel, 2012), 

water resource management (Jahandideh-Tehrani, Bozorg-Haddad, & Loáiciga, 2020; Oxley & Mays, 

2016; Shishegar, Duchesne, & Pelletier, 2018; Moeini, Shojaeizadeh, Geza, 2021), hydraulic engineering 

(Quaranta & Revelli, 2020; Zhang & Liu, 2018;  Azizi, Attari, & Moridi, 2017), and construction manage-

ment (Eid, Elbeltagi, & El-Adaway, 2018; Sahib & Hussein, 2019; Tavakolan & Nikoukar, 2019; Toğan & 

Eirgash, 2019).  

Recently, an extensive number of metaheuristic algorithms have been developed to address the deficien-

cies of previously introduced ones as much as possible. Thereupon, numerous investigations have been 

carried out in which the applications of those algorithms to real-world and benchmark engineering problems 

are explored. Among all of them, structural engineering related problems have been found to be challenging 

due to their complex nature. Therefore, they have attracted much attention in engineering optimization 

research society. However, there is a lack of comparative survey that highlighted the key features of avail-

able studies in this area. This research aims to provide a comprehensive review of the different applications 

of metaheuristics to structural engineering problems. It is worth noting that this review outlined the objec-

tive function, applied constraints, design variables, utilized optimization algorithms, and applied modifica-

tions just in case. Therefore, the main effort in this review paper can be characterized accordingly: 1- 

providing a complete list of references on the basis of structural engineering optimization; 2- taking a look 

at the most updated concerns in structural optimization and their evolution within the time; 3- giving a 

perspective on the way that new structural problems were defined and addressed using optimization algo-

rithms.  

2. SEARCH METHOD PROCEDURE 

The searching method of finding the relevant papers for doing the current survey is discussed in detail 

in this section. 

2.1. Search Method 



The underlying platform for finding the relevant works of literature was Google Scholar in this study. 

To do that, we used a software entitled Harzing's Publish or Perish that provides some options for the 

utilized database to search through. In this review paper, the structural optimization research area was ex-

plored based on three main sub-categories: 1- truss structures, 2- frame structures, and 3- miscellaneous. 

Three keywords were utilized to address these categories for our search within the database as “truss opti-

mization,” “frame optimization,” and “structural optimization.” The output of this software could be saved 

as a .csv file. The process of searching with those mentioned keywords resulted in a massive number of 

publications as this software saves every paper recognized with this keyword regardless of its category and 

field. Therefore, we filtered out all the irrelevant papers to civil engineering. Moreover, we ignored the 

article published in journals without indexing by Scopus and ISI. Additionally, the published review papers, 

book chapters, conference papers, and case studies have been excluded during the review. 

2.2. Other Reviews 

A search through Google Scholar revealed that there are very limited organized review papers in which 

all aspects of relevant research papers are discussed. Moreover, none of those review papers addressed the 

structural optimization in specific. Zavala, Nebro, Luna, & Coello Coello (2014) provided a review on the 

application of multi-objective optimization algorithms to structural optimization. The concepts of multi-

objective optimization and Pareto front were explained in this paper. An example of a four-element planar 

truss considering bi-objective optimization as minimum weight and nodal displacement was examined to 

clarify multi-objective and Pareto front concepts. Besides, a description of the definitions and classifica-

tions of metaheuristics, as well as the issues when solving multi-objective optimization problems, were 

presented. Along with that, four major attitudes in structural optimization were highlighted as area optimi-

zation, size optimization, shape optimization, and topological optimization of cross-sections.  

Hajihassani, Jahed Armaghani, & Kalatehjari (2018) explored the application of the PSO algorithm to 

geotechnical engineering problems. In this review, both direct applications of PSO to geotechnical engi-

neering problems and its application to enhance the performance of other AI-based methods were covered. 

Before going through the literature review on the geotechnical applications of PSO, different variations of 

PSO and strong recommendations for parameter settings were discussed. Slope stability analysis, pile and 

foundation design, rock mechanics, soil mechanics, and tunneling and underground space technology were 

the main categories of PSO application to geotechnical engineering problems. Furthermore, some geotech-

nical applications of PSO other than the mentioned major classes were also provided.  



Kashani, Chiong, Mirjalili, & Gandomi (2020) provided a comprehensive review and a comparative 

study on the application of PSO variants to geotechnical engineering problems. In this survey, the funda-

mental of the PSO algorithm and different tries for modifying and improving its efficiency were argued. In 

addition, seven main variations of PSO were applied to the benchmark geotechnical optimization problems 

accordingly: 1- comprehensive learning PSO, 2- heterogeneous comprehensive learning PSO, 3- extraordi-

nary PSO, 4- fractional-order Darwinian PSO, 5- improved random drift PSO, 6- improved PSO based on 

dynamic parameter setting, 7- autonomous particles groups for PSO. A survey on the available studies on 

slope stability analysis, retaining wall, reinforced soil, shallow foundation, pile foundations, tunnels, and 

miscellaneous applications was provided. A comparative study was also conducted on the application of 

the abovementioned PSO variants to the slope stability, retaining wall, and shallow foundation. Kashani, 

Gandomi, Camp, Rostamian, & Gandomi (2020) provided a comprehensive review of civil engineering 

optimization using metaheuristic algorithms in another effort. The general classification of metaheuristic 

algorithms was expressed in this study. After that, a review was accomplished on many available papers in 

the field of civil engineering, including structural, geotechnical, transportation, hydraulic and hydrology, 

and construction management engineering.  

3. METAHEURISTIC OPTIMIZATION ALGORITHMS 

Metaheuristics, as an integral part of modern optimization, are AI-based techniques proposed by Glover 

(1986). Despite heuristics, a very important and useful aspect of metaheuristic algorithms is their independ-

ence from the characteristics of the tackled problems. Metaheuristics search the solution space stochasti-

cally to get close to the optimal solution as much as possible using two main characteristics: 1- exploration, 

2- exploitation. In fact, exploration is part of the algorithm that is responsible for global search. This strategy 

broadens the search area for the algorithm that makes it capable of evading local minima. On this basis, 

metaheuristics would be applicable to discontinuous and non-differentiable functions easily. On the other 

hand, exploitation provides a strong local search by shrinking the search space to the area around the most 

promising up to time region. This phase would be helpful to prevent converging to premature solutions. An 

appropriate trade-off between those two features—exploration and exploitation—is necessary to reach an 

efficient performance of the algorithms. Many researchers tried to address this key factor by developing 

new algorithms mimicking natural phenomena such as sociology, physics, mathematics, art, politics, etc. 

To now, a wide range of categorizations has been proposed based on their common characteristics. For 

example, Osman (2003) proposed three clusters for these algorithms as local search, construction-based, 

and population-based. Gendreau & Potvin (2005) classified metaheuristic techniques into trajectory-based 



and population-based algorithms. Fister, Yang, Fister, Brest, & Fister (2013) considered two main catego-

ries as follows: 1- non-nature inspired, 2- nature-inspired. The following short descriptions are provided 

for the most well-known metaheuristics. 

A genetic algorithm (GA) is the basic evolutionary algorithm modeled the Darwinian theory of natural 

selection mathematically Holland (1992). The utilized strategy by GA to search the solution space has been 

a standpoint for developing modern evolutionary-based algorithms. Every potential solution made by de-

sign variables is represented by a chromosome of genes. In this way, GA generates a population of chro-

mosomes randomly and adjust those chromosomes’ genes through evolutionary operators (i.e., crossover, 

recombination, mutation, and selection) to improve their fitness. This adjustment would be resulted in pro-

ducing new generations. This process is repeated until satisfying the termination criteria.  

Particle swarm optimization (PSO) is one of the most well-known population-based algorithms that 

search the solution space by a swarm of particles (Kennedy & Eberhart, 1995). The social behavior of birds 

flocking for finding foods was the core strategy of the PSO algorithm for finding the optimal solutions. For 

that reason, every trial solution was equalized as a particle described by two qualities as follows: 1- position, 

2- velocity. PSO generates a population of random particles and moves them in the search space using the 

velocity in every iteration. This velocity term is related to the best-found solution and the best experience 

of every single particle. By repeating this procedure, more particles would gather around the promising 

search area to find better solutions. Some other particles, though, will search different sections of solution 

space to provide exploration. 

Geem et al. (2001) developed a harmony search (HS) as a music-inspired algorithm. HS mimics the 

process of producing aesthetic harmony by the improvisation of musicians through variation. Three major 

strategies can be employed to achieve this improvisation: 1- play any famous piece of music (using a mem-

orized pitches); 2- play something similar to a known piece (adjusting the pitch slightly); or 3- compose a 

new note. HS provides both exploration and exploitation by imitating those three patterns for generating 

new solutions and solving the tackled problem. 

Numerous metaheuristic optimization algorithms have been developed during the past few years. The 

following list can be made based on the date order to mention some of the well-known algorithms: artificial 

bee colony (Karaboga, 2010), bees algorithm (Pham et al., 2006), glowworm swarm optimization (Krish-

nanand & Ghose, 2005); shuffled frog leaping algorithm ( Eusuff, Lansey, & Pasha, 2006), cat swarm 

optimization (Chu, Tsai, & Pan, 2006); imperialistic competitive algorithm (Atashpaz-Gargari & Lucas, 

2007), river formation dynamics (Rabanal, Rodríguez, & Rubio, 2009), intelligent water drops algorithm 

(Hosseini, 2009); gravitational search algorithm (Rashedi et al., 2009), cuckoo search (Yang & Suash Deb, 



2009); bat algorithm (Yang, 2010a); spiral optimization (Tamura & Yasuda, 2016); flower pollination al-

gorithm (Yang, 2012), krill herd algorithm ( Gandomi & Alavi, 2012c; Kashani, Camp, Tohidi, & Slowik, 

2021a; Kashani, Camp, Tohidi, & Slowik, 2021b); cuttlefish optimization algorithm (Eesa, Brifcani, & 

Orman, 2014), heterogeneous distributed bees algorithm (Tkach, Edan, Jevtic, & Nof, 2013); cooperative 

group optimization (Xie, Liu, & Wang, 2014), artificial swarm intelligence (Rosenberg, 2016), colliding 

bodies optimization (Kaveh & Mahdavi, 2014a); the ant lion optimizer (Mirjalili, 2015b), moth-flame op-

timization algorithm (Mirjalili, 2015a); duelist algorithm (Biyanto et al., 2016), killer whale algorithm(Bi-

yanto et al., 2017m; Kashani, Camp, Armanfar, Slowik, 2020; Kashani, Camp, Armanfar, Slowik, 2021); 

rain water algorithm ( Biyanto et al., 2016), hydrological cycle algorithm (Wedyan, Whalley, & Narayanan, 

2017), salp swarm algorithm (Mirjalili et al., 2017); mass and energy balances algorithm (Biyanto et al., 

2016); Harris hawks optimization (Heidari et al., 2019), emperor penguins colony (Harifi, Khalilian, Mo-

hammadzadeh, & Ebrahimnejad, 2019); shuffled shepherd optimization algorithm (Kaveh & Zaerreza, 

2020), a marine predators algorithm (Faramarzi, Heidarinejad, Mirjalili, & Gandomi, 2020). 

4. OVERVIEW ON THE NUMBER OF PUBLICATIONS ON STRUCTURAL ENGI-

NEERING OPTIMIZATION 

In the following, we tried to organize available publications on different structural engineering optimi-

zation problems. To this end, we used Harzing’s Publish or Perish software to do the search within Google 

Scholar and extract the literature on the targeted field. In the first step, we found a total of 1,961 publications 

by searching using a keyword as “civil engineering metaheuristic optimization,” “structural optimization,” 

and “geotechnical optimization.” The software considered all the publications with those keywords. Hence, 

irrelevant references were filtered by considering only civil-engineering related keywords (i.e., structural, 

earthquake, geotechnical, transportation, water resource management, hydraulic, and construction manage-

ment engineering) in their titles. We also excluded dissertations, books, review papers, reliability, and prob-

abilistic optimizations. This strategy resulted in a total of 902 cases from 1997 to 2020, as shown in Figure 

2. The observations based on the number of publications in every sub-field is demonstrated in Figure 3. 

The maximum number of papers in structural and earthquake, geotechnical, transportation, water resource 

management and hydraulic, and construction management were 77 in 2017, 25 in 2011, 5 in 2016 to 2018, 

11 in 2019, and 7 in 2014 and 2019, respectively. 



 

Figure 2. Total number of publications by searching the keywords. 

 

Figure 3. Number of publications in each sub-field by searching the keywords. 

The total numbers of publications in each filed were as follows: 507 in structures and earthquake engi-

neering, 273 in geotechnical engineering, 31 in transportation engineering, 39 in water resource manage-

ment and hydraulic engineering, and 52 in construction management engineering. In order to do the detailed 

review, we considered only structural engineering optimization papers. In this way, we only considered 

journals indexed by ISI and Scopus, and we excluded all the conference papers, review papers, books, book 
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chapters, dissertations, technical reports, etc. Therefore, from a total of 507 papers in structural and earth-

quake engineering, we reviewed 245 papers in three categories as follows: 1- truss optimization, 2- frame 

optimization, 3- dam optimization, and 4- miscellaneous. Figure 4 depicted the number of publications in 

each category in different years. 

 

Figure 4. The number of publications in structural optimization using metaheuristics. 

 

From the reviewed publication, we obtained the statistics of publication per journal, and results show 

the journals of Computer and Structure (35), Structural and Multidisciplinary Optimization (24), and Ap-

plied soft computing (22) has published more, among others. Figure 5 provides the data about the most 

active journals. 

 

1 1 1 1 1 1 1 1 1 1

3 3

5

4

3

8

10

14

13

9

11

14

9

2

1 1

3

2

3

1

3

4

2

1

2 2

7

6

8

6

8

6

8

5

4

3

11 1 1 1 1 1 1 1 1 1 1

2 2

1

2

5

4

1

2

3

4

3

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0

N
u

m
b

er
s 

o
f 

P
u

b
li

ca
ti

o
n

s

Years

"Truss"

"Frame"

"Miscellaneous"



 

Figure 5. Number of publications per journal 

 

Figure 6 depicts network visualization co-occurrence analysis, and Figure 7 shows the keyword trend in 

recent years.  Each node in the network displays a keyword and the link between the nodes illustrates the 

co-occurrence of the keywords. From Figure 6, structural optimization, optimization, truss structures, par-

ticle swarm optimization, genetic algorithm, frequency constraints, discrete optimization, size optimization, 

and steel frames among the top useful keywords.  
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Figure 6. Network visualization 

 

Figure 7. Network visualization trend 



Figure 8 shows the networks of total of 610 authors and connections among collaborating researchers. 

Each node in the network displays an author/ co-author, and the link between the nodes illustrates the co-

occurrence of knowledge channels. The networks highlight the scientific communities engaged in research 

on the entire body of research which was reviewed in the current study. 

 

Figure 8. Scientific community (co-author) and collaborations 



 

Figure 9. The most active authors in the field 

 

4.1. Truss optimization 

In the following review, the detailed explanation is devoted to truss optimization specifically by differ-

entiating between size, shape, and topology for classification. Therefore, we excluded the publications 

which targeted different engineering problems and solved only one simple truss problem. A general over-

view of the highlighted key points of the reviewed papers is collected in Table 1. In the following truss 

optimization related studies are divided into three subcategories based on the tackled objectives: size opti-

mization, size and shape optimization, and size, shape and topology optimization 

4.1.1 Size optimizationThe first paper that considered the optimality of truss structures was published in 

1976 (Dobbs & Nelson, 1976). Different criteria and optimization rules were proposed by researchers such 

as the minimum volume of steel (Khan, Willmert, & Thornton, 1979), minimum mass with constraints on 

fundamental natural frequency (Bellagamba & Yang, 1981; Grandhi & Venkayya, 1988), nonlinear analy-

sis with constraints on system stability (Khot, 1983), minimum weight with geometric nonlinear behavior 

(Khot & Kamat, 1985), etc. In 1990, Hajela, 1990 utilized a metaheuristic approach to handle truss struc-

tures optimization using GA. In this study, weight minimization was considered as the objective function 

given nodal displacements constraints. Capriles, Fonseca, Lemonge, & Barbosa (2005) applied five differ-

ent variations of ant colony optimization (ACO) to the minimum weight design of truss structures. The 

constraints were stress in each member and displacements in the nodes. Based on the results, the authors 

proposed a rank-based ant system (AS) as the best algorithm among all the utilized ACO variants. Serra & 

Venini (2006) studied the application of ACO algorithm to weight minimization of truss structures. The 
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design procedure took strength of elements into account as the constraints. An amplification factor was 

applied to the compressive elements to model the effect of buckling. 

Capriles, Fonseca, Barbosa, & Lemonge (2007) utilized a rank-based ant system (RBAS) for optimum 

design of truss structures. To this end, discrete design variables were selected for elements’ cross-sections. 

Three different variations of the RBAS algorithm were utilized to solve the tackled problem as follows: 1- 

RBAS with additive penalty; 2- RBAS with a local update and multiplicative penalization (RBASLU); 3- 

RBAS with a local update and two-level penalty method (RBASLU,2).  

Izui, Nishiwaki, & Yoshimura (2007) tackled the size optimization of truss structures using the PSO 

algorithm and a combined PSO with sequential linear programming (SLP). The tackled problem was opti-

mized for both single-objective and multi-objective. Three series of case studies were conducted to evaluate 

the proposed algorithms’ performances: 1- weight minimization of truss structures using continuous design 

variables; 2- weight minimization of truss structures using continuous design variables for the cross-section 

of elements and discrete design variables for the utilized material; 3- volume and displacement minimiza-

tion as two conflicting objectives. Gholizadeh, Salajegheh, & Torkzadeh (2007) applied a virtual sub-pop-

ulation (VSP) method (Salajegheh & Gholizadeh, 2005) for weight minimization of truss structures subject 

to multiple natural frequency constraints. In this study, to reduce the optimization process's computational 

time, the natural frequencies of structures were evaluated by applying properly trained radial basis function 

(RBF) and wavelet radial basis function (WRBF) neural networks. 

 

Rahami, Kaveh, & Gholipour, 2008) developed a method based on a combination of energy and force 

method with GA for truss weight minimization. In this study, the main objective was finding as to the most 

optimum size, geometry, and topology of the truss structures. In this way, the objective function was defined 

based on the total weight of the structure, complementary energy, and strain energy.  

Hasançebi, Çarbaş, Doğan, Erdal, & Saka (2009) concentrated on the optimum weight design of truss 

structures using seven optimization algorithms as follows: GA, SA, evolutionary strategy (ES), PSO, TS, 

ACO, and HS. Steel structure requirements defined by ASD-AISC (Allowable Stress Design Code of 

American Institute of Steel Institution) were supposed to control the design procedure. ES and SA were 

found to be more efficient than others, thanks to finding the best solutions in more cases. Kaveh & 

Talatahari (2009c) developed a hybrid big bang-big crunch (HBB-BC) algorithm to resolve the weight 

minimization of truss structures. Results from the simulation of several case studies revealed that HBB-BC 

outperformed the original big bang-big crunch (BB-BC) in finding better solutions. It was indicated that 



the hybrid algorithms with strong local search ability performed more efficiently than HBB-BC. Kaveh & 

Talatahari (2009a) developed a hybrid method based on a PSO with the passive congregation (PSOPC), 

ACO, and HS algorithm called discrete heuristic particle swarm ant colony optimization (DHPSACO) for 

handling truss optimization problem. Numbers of case studies were selected to evaluate the performance of 

DHPSACO in comparison with GA, HS, PSO, PSOPC, and HPSO. Results confirmed that DHPSACO 

resulted in better solutions with less computational time and higher convergence speed.  

Rajasekaran & Chitra (2009) utilized the ACO algorithm for the minimum weight design of truss struc-

tures under static and earthquake loading. The effect of the essential parameters of ACO on the final results 

was explored in this investigation. The efficiency of the algorithm is benchmarked through the comparison 

of the results with the ones resulted from GA with the immune system (GAIS). Kaveh & Talatahari (2009b) 

developed a hybrid approach based on HS, ACO, and PSOPC algorithms called heuristic particle swarm 

ant colony optimization (HPSACO) truss optimization. In this algorithm, the PSOPC algorithm did global 

optimization, and the ACO algorithm provided a local search for updating the position of particles. HS 

algorithm took care of bound constraint handling, and the fly-back method handled the constraints. More-

over, a termination criterion was proposed based on the amount of variation of the design variables to 

decrease the number of analyses. A comparison of HPSACO to other PSO-based algorithms showed that 

the proposed improvements improved the algorithm significantly. The impact of each modification on ex-

ploration and exploitation was explored and discussed in that study by detail. Salajegheh, Salajegheh, 

Seyedpoor, & Khatibinia (2009) solved truss structures’ optimization using a particle swam optimization  

(PSO) algorithm. Design variables were cross-sectional areas of the trusses, and their weights were taken 

as the objective function. In this study, to reduce the optimization process’s computational cost, an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) was applied instead of performing Finite Element Analysis (FEA) 

to approximate the nonlinear analysis of the structures. The applied ANFIS model was compared with a 

Back Propagation Neural Network (BPNN), and results showed that ANFIS produces better performance 

for structure design values evaluation. 

Kaveh & Talatahari (2010) utilized a charged system search (CSS) algorithm for the optimum design of 

skeletal structures. It was declared that CSS works based on nine rules. Five cases of CSS were proposed 

to explore the impact of some of those rules on the efficiency of CSS. The authors compared their solutions 

with numbers of previous efforts such as GA, PSO, HS, BB-BC, HBB-BC, PSOPC, PSACO, HPSACO, 

and improved ant colony system (IACS). Based on the numerical simulation, it was claimed that CSS was 

more efficient than the other algorithms. The ability of CSS to find the optimum solution with a smaller 

number of analyses than other algorithms was mentioned as an advantage of this algorithm. Kaveh & 

Talatahari (2010b) considered an imperialistic competitive algorithm (ICA) for optimum design of truss 



structures. The stress in the elements and their slenderness, together with the nodal displacement, governed 

the search direction. The efficiency of ICA was compared to GA, PSOPC, HPSO, and HPSACO through 

some case studies. The results confirmed an acceptable performance of ICA in dealing with truss problems. 

Aragón, Esquivel, & Coello (2010) applied a modified version of a T-cell algorithm for truss optimization 

problems. In fact, this proposed algorithm was basically an alternative for an artificial immune system (AIS) 

algorithm adapted to the constrained optimization problems. The results demonstrated that the proposed 

algorithm handled this problem successfully.  

Sonmez (2011b) solved the problem of truss structures’ optimization using an artificial bee colony 

(ABC) algorithm. Discrete design variables were considered in this study to represent the cross-section of 

structural elements. It was declared based on the numerical simulations that because of a very low difference 

between the best-found solution and the worst one, ABC was very efficient. Moreover, the execution speed 

of ABC was mentioned as another advantage of ABC. Sonmez (2011a) incorporated an adaptive penalty 

function approach to the ABC algorithm (ABC-AP) to handle the weight minimization of truss structures. 

Numbers of benchmark truss optimization problems were solved using the proposed algorithm and com-

pared to the previously recorded results. It was demonstrated that this algorithm was not the best solver in 

that comparison, though it dealt with the truss problem successfully. 

Sadollah, Bahreininejad, Eskandar, & Hamdi (2012) attempted to solve the weight minimization of truss 

structures using the mine blast algorithm (MBA). The achieved results compared to several algorithms 

available in other studies such as steady-state genetic algorithms (SSGA), HS, PSO, PSOPC, HPSO, and 

DHPSACO. The main advantages of an MBA over other algorithms are mentioned as being efficient in 

handling large scale problems, fast convergence rate, and low computational cost.  

Degertekin (2012) tackled the problem of the optimum size of truss structures using two improved HS 

called efficient HS (EHS) and self-adaptive HS (SAHS). Two different strategies were proposed for con-

straint handling. A sensitivity analysis was conducted to monitor the effect of pitch adjusting rate updating 

and constraint handling strategies. Numerical simulations revealed that both EHS and SAHS were in supe-

riority over the previously utilized algorithms. Besides, they outperformed the conventional HS in all the 

case studies. Talatahari, Kaveh, & Sheikholeslami (2012) concentrated on the optimum weight design of 

truss structures using a chaotic ICA algorithm (CICA). The authors proposed four different versions of 

CICA by using four following chaotic maps for generating random numbers: sinusoidal map, logistic map, 

zaslavskii map, and tent map. Those modified algorithms compared to the original ICA, orthogonal ICA 

(OICA), and some previous efforts. The results from two numerical examples approved that the sinusoidal 

map was more efficient for CICA. Therefore, as a further investigation, two large scale truss structures were 



analyzed only using this sinusoidal map-based CICA. For those larger structures, CICA performed better 

than ICA and OICA.  

 Kaveh & Talatahari (2012a) proposed a hybrid algorithm that combined CSS and PSO algorithms for 

the optimal design of truss structures. The proposed algorithm was in superiority in comparison with some 

other previous studies. Kaveh & Zolghadr (2012) tackled the optimum design of truss structures using a 

combined CSS, BB-BC, and trap recognition capability. The resulting algorithm was an improved CSS 

with a better exploration. To that end, the authors proposed a method based on recognizing trap conditions 

through a diversity index and two trap recognition criteria. The resulting BB-BC algorithm pushed the 

search away from local minima. Comparing the proposed hybrid algorithm with standard CSS and some 

other algorithms in other studies demonstrated its better performance and more effectiveness.  

Gandomi, Talatahari, Yang, & Deb (2013) utilized a cuckoo search (CS) algorithm for the minimum 

weight design of steel structures. A comparison of the results with previous records demonstrated that CS 

was more successful than other algorithms for handling tackled case studies. Talatahari, Kheirollahi, Farah-

mandpour, & Gandomi (2013) proposed a multi-stage PSO (MSPSO) algorithm for the minimum weight 

design of truss structures. In this MSPSO, two mechanisms were applied to the original PSO: dealing with 

violated constraints by resetting the velocity term to zero, and handling bound constraints using the content 

of the global best solution. Talatahari, Gandomi, & Yun (2014) tried FA for the optimum design of tower 

truss structures. A feasible-based combined with penalty function constraint handling approach was applied 

to the design procedure. 

Degertekin & Hayalioglu (2013) considered teaching-learning-based optimization (TLBO) for the min-

imum weight design of truss structures. The impact of two parameters settings—the population size (ps) 

and the number of solutions generated in the learning phase (ndlp)—were explored through four numerical 

simulations. The effectiveness of TLBO was proved by comparison with previous efforts in terms of finding 

more optimum solutions and better convergence capability. It was concluded that increasing ndlp resulted 

in a decrease in the number of structural analyses. Hasançebi, Teke, & Pekcan (2013) utilized a bat-inspired 

algorithm (BI) for minimum weight design of truss structures with discrete design variables subject to ASD-

AISC’s regulations for elemental stress and nodal displacements. Four numerical case studies were ana-

lyzed to validate the efficiency of the BI algorithm. Gandomi, Talatahari, Tadbiri, & Alavi (2013) tackled 

the weight minimization of truss structures using the krill herd (KH) optimization algorithm. The results 

compared to previously tried algorithms such as GA, SA, PSO, centers and force formulation (CP), aug-

mented Lagrangian methods (AL), and a genetic-Nelder mead simplex algorithm (GNMS) that demon-

strated better performance of the KH algorithm.  



Kaveh & Khayatazad (2013) applied ray optimization (RO) to size and shape optimization of truss struc-

tures. It was mentioned that the RO algorithm performed better than some other standard algorithms such 

as GA, ACO, PSO, and BB-BC, while it underperformed hybrid approaches like HPSACO.   

Lu, Jan, Hung, & Hung (2013) considered weight minimization of truss structures following ASD-AISC 

rules by enlisting an augmented PSO (AugPSO) based on applying two strategies: 1- boundary-shifting to 

move the bounds between feasible and infeasible regions, and 2- particle-position-resetting to apply a mu-

tation for increasing diversity. Faramarzi & Afshar (2014) applied a hybridized cellular automata and linear 

programming (CA-LP) to the minimum weight design of truss structures. A comparison of the obtained 

results with some other studies proved that CA-LP handled the tackled problem successfully.  

Kaveh & Mahdavi (2014c, 2014b) applied colliding bodies optimization (CBO) for optimum design 

truss structures based on continuous and discrete design variables. The analyses of some numerical exam-

ples proved a good performance of CBO in solving truss optimization problems for both continuous and 

discrete design variables. Kaveh & Zolghadr (2014a) provided a comprehensive comparison between the 

performance of nine algorithms—PSO, HS, BB-BC, FA, CSS, CS, enhanced RO (ERO), democratic PSO 

(DPSO), and hybridized PSO and RO algorithm (PSRO)—to handle size and shape optimization of truss 

structures with natural frequency considerations. The results from the monitoring diversity index proved 

that DPSO, PSRO, and BB-BC had a good balance between diversification and intensification that ended 

up to the higher quality of solutions.  

Pholdee & Bureerat (2014) conducted a comparative study on the optimum design of truss structures 

using several metaheuristic algorithms including GA, HS, PSO, stud GA (SGA), differential evolution 

(DE), ABC, real-code ACO (ACOR), CSS, league championship algorithm (LCA), SA, TLBO, BB-BC, 

FA, population-based incremental learning (BPBIL), CS, evolution strategy with covariance matrix adap-

tation (CMAES), continuous population-based incremental learning (CPBIL), continuous scatter search 

algorithm (CSSA), enhanced continuous tabu search (ETCS), evolution strategies (ES), evolutionary pro-

gramming (EP), fireworks algorithm (FWA), gravitational search algorithm (GSA), and bat-inspired algo-

rithm (BAT). The constraints were defined based on the natural frequency. Numerical simulations proved 

that CMAES was the best algorithm due to the lower Wilcoxon rank-sum test as well as finding the lowest 

mean and standard deviation values in most of the cases. A comparison of the convergence rate showed a 

better performance of the DE algorithm. Kaveh, Sheikholeslami, Talatahari, & Keshvari-Ilkhichi (2014) 

enlisted chaotic swarming of particles (CSP) for size optimization of truss structures. CSP utilized chaotic 

theory in two phases: 1- controlling the parameter values of the particle swarm optimization (CPVPSO), 2- 

doing a local search (CLSPSO).  



Hasançebi & Azad (2014) proposed a refined BB-BC (RBB-BC) algorithm for the design of truss struc-

tures based on ASD-AISC. The modified algorithms RBB-BC was capable of finding better solutions than 

the original BB-BC. Kaveh & Ilchi Ghazaan (2014) applied an enhanced CBO algorithm (ECBO) to the 

weight minimization of truss structures considering the design criteria defined by ASD-AISC. The original 

CBO was considered as the benchmark, and the results showed that the proposed modification decreased 

CBO’s sensitivity to the population size. ECBO handled the tackled problem more efficiently than the 

original CBO. Kazemzadeh Azad & Hasançebi (2014) used a refined self-adaptive step-size (SASS) algo-

rithm called elitist SASS (ESASS) for optimum design of truss structures. To that end, the randomness of 

the sampling step, an adaptive sampling scheme, and upper bound strategy were incorporated into the 

ESASS. These modifications were applied in order to increase the convergence accuracy and computational 

efficiency simultaneously. The results declared that the proposed algorithm satisfied those anticipations 

successfully.  

Khatibinia & Naseralavi (2014) applied an orthogonal multi-gravitational search algorithm (OMGSA) 

to the optimum shape and size design of truss structures with frequency constraints. In fact, OMSGA is 

proposed as a combined multi-GSA and orthogonal crossover (OC). Multi-GSA handled sub-population by 

the main procedure of improved GSA (IGSA). The constraints were handled using the feasibility-based 

method. Kaveh & Javadi (2014) hybridized HS, RO, and PSO algorithms for optimum size and shape de-

sign of truss structures. In the proposed hybrid algorithm (HRPSO), the main optimizer was PSO, while 

RO and HS handled the global search and local search, respectively. Kazemzadeh Azad, Hasançebi, & Saka 

(2014) used a guided stochastic search (GSS) technique for discrete optimization of truss structures. Load 

and Resistance Factor Design-American Institute of Steel Construction (1994) (LRFD-AISC) was consid-

ered to control the design criteria. The results indicated the satisfying performance of GSS in comparison 

to other previous efforts. Camp & Farshchin (2014) concentrated on the optimum weight design of truss 

structures using a modified TLBO (MTLBO) algorithm. MTLBO worked based on using a fitness-based 

weighted mean in the teaching phase and a refined student learning system.  

Kaveh & Zolghadr (2014b) solved the problem of shape and size optimization of truss structures using a 

democratic PSO (DPSO). DPSO involved all the valid solutions to update the velocity term and, conse-

quently, the positions of the particles. The proposed algorithm was claimed to be the best solver in handling 

the tackled problems and compared to other techniques. Oğuzhan Hasançebi & Azad (2015) presented the 

application of adaptive dimensional search (ADS) for discrete size optimization of truss structures. The 

ADS algorithm was assessed using two benchmark problems, and the results showed its capability to find 

a better solution with less computational efforts. Bekdaş, Nigdeli, & Yang (2015) used a flower pollination 

algorithm (FPA) for the optimum size design of truss structures. An iterative strategy for constraint handling 



was proposed to incorporate the stress and displacement limitations. The obtained results by FPA were 

comparative with other previous efforts. 

Sadollah, Eskandar, Bahreininejad, & Kim (2015) utilized the water cycle algorithm (WCA), MBA, and 

improved MBA (IMBA) for discrete optimization of truss structures. The design procedure was governed 

by ASD-AISC specifications for stress, slenderness, and nodal displacement. Kaveh & Mahdavi (2015b, 

2015c) used CBO and a modified version of the CBO algorithm called 2-dimensional CBO (2D-CBO) for 

the optimal weight of truss structures. Kaveh & Mahdavi (2015a) developed a hybrid approach based on 

CBO and PSO (CBO-PSO) to handle the same problem. Kaveh & Bakhshpoori (2015) enlisted a procedure 

called the subspace search mechanism (SSM) to improve the convergence time of the CS algorithm. SSM 

system tried to divide the search space into a number of sub-spaces by fixing some of the design variables 

in each subspace. This CS-SSM algorithm was evaluated through several numerical benchmark problems 

that proved its efficiency to reduce population size and convergence time. However, it was claimed that for 

complex problems, it might not be accurate enough.  

Li & Ma (2015) used a subset simulation optimization algorithm (SSO) for weight minimization of truss 

structures. The discrete design variables were considered in the simulation procedure using the theory of 

generating random variables. The effect of five different parameter setting was explored in the simulations. 

The obtained results by SSO were comparable to other previously utilized approaches. Cheng, Prayogo, 

Wu, & Lukito (2016) developed a hybrid HS algorithm (HHS) for discrete weight minimization of truss 

structures. In the HHS algorithm, the randomization function of the original HS was replaced with the 

global-best PSO search and neighborhood search. A comparative study with other utilized algorithms 

demonstrated the ability of HHS to find more optimum solutions with a better convergence rate. Bureerat 

& Pholdee (2016) applied an adaptive DE algorithm (ADEA) to the truss size optimization problem. Dif-

ferent variants of ADEA were formed by changing the functions for adaptation (i.e., linear and exponential) 

of optimization parameters, and the best combination was introduced. Numbers of constraint handling ap-

proaches were also examined during the numerical simulations. 

 Farshchin, Camp, & Maniat (2016) developed an extension on the TLBO algorithm based on a collab-

orative optimization strategy called school-based optimization (SBO). In this effort, SBO was selected for 

optimum size and shape design of truss structures considering the frequency constraints. A sensitivity anal-

ysis over the impact of effective parameters on the final results was conducted. Results declared the SBO 

overcame other techniques in terms of computational robustness and efficiency, especially for more com-

plex cases. Hosseinzadeh, Taghizadieh, & Jalili (2016) utilized a hybrid electromagnetism-like mechanism 

algorithm and migration strategy (EM–MS) for size and shape optimization of truss structures. EM-MS 



employed the modified electromagnetism-like mechanism algorithm to provide exploration and the migra-

tion strategy for exploitation. It was claimed that the proposed algorithm worked efficiently in terms of 

convergence speed, stability, and optimality of the solutions.  

 

 Kazemzadeh Azad (2017) enlisted six guided optimization algorithms—guided adaptive dimensional 

search (GADS), guided exponential big bang-big crunch (GEBB), guided modified big bang-big crunch 

(GMBB), guided adaptive dimensional search-exponential big bang-big crunch (GADS_EBB), guided 

adaptive dimensional search modified big bang-big crunch (GADS_MBB), and guided adaptive dimen-

sional search-exponential and modified big bang-big crunch (GADS_EBB_MBB)—for minimum weight 

design of truss structures based on LRFD-AISC requirements. The results compared to the original algo-

rithms (i.e., Adaptive dimensional search algorithm (ADS), exponential BB-BC (EBB), and modified BB-

BC (MBB)). Numerical simulations indicated that GADS_EBB was the best algorithm among the other 

utilized techniques in light of the ease of use, less computational time, and high-quality solutions.  

Baghlani, Makiabadi, & Maheri (2017) proposed a constraint handling approach based on mapping the 

search space to the boundaries of the feasible solution area. The TLBO-MS algorithm was developed by 

considering this constraint handling scheme and applied to the truss optimization problem. The effective-

ness of this method was compared to the penalty function (TLBO-PF) and fly-back (TLBO-FB). Numerical 

simulations demonstrated that TLBO-MS was better than both TLBO-PF and TLBO-FB. TLBO-MS and 

TLBO-FB converged to the optimal solutions without constraints violations while TLBO-PF ended up to 

slightly violated designs.  

Kaveh & Ilchi Ghazaan (2017) utilized a vibrating particle system algorithm (VPS) for weight minimi-

zation of truss structures based on natural frequency constraints. Jalili, Kashan, & Hosseinzadeh (2017) 

concentrated on the optimum design of truss structures using the league championship algorithm (LCA). 

Two different strategies based on the tie concept were proposed to enhance the LCA algorithm (LCA-tie-I 

and LCA-tie-II). LCA handled the truss problem successfully, and the mentioned modification was found 

to be effective in enhancing the LCA algorithm.  

Krempser, Bernardino, Barbosa, & Lemonge (2017) incorporated local surrogate models into the DE algo-

rithm (SMDE) to solve the truss optimization problem considering both continuous and discrete design 

variables. The utilized surrogated models were the nearest neighbors’ techniques, local linear regression, 

weighted local linear regression, and RBF Networks. A parameter F was defined to scaler the differences 

between components of candidate individuals at each surrogate model. Different settings of F values were 



examined. An adaptive penalty function was considered for combining the constraints into the design pro-

cedure. The proposed modifications found to be effective in improving the performance of DE, particularly 

by using r-nearest neighbors using r=0.001 and F=0.7. Duarte, Lemonge, & da Fonseca (2017) utilized a 

social spider algorithm (SSA) to weight minimization of truss structures considering stress and displace-

ment limitations. Several case studies were resolved by continuous and discrete design variables.   

Pholdee, & Bureerat (2017) tackled Six traditional truss sizing design problems with mass objective 

function subject to displacement and stress constraints. They considered eighteen self-adaptive meta-heu-

ristics MHs and compared the results in terms of convergence rate and consistency. They found for the 

problems without buckling constraints,  Success-History Based Adaptive Differential Evolution with Linear 

Population Size Reduction (L-SHADE) and Success-History Based Adaptive Differential Evolution 

(SHADE) were the top two optimizers. While for buckling constraints problems, LSHADE and L-SHADE 

with Eigenvector-Based Crossover and Successful-Parent-Selecting were better, respectively. 

Kazemzadeh Azad (2018) explored the effect of a modification called seeding the initial population 

(SIP) with feasible solutions on optimization algorithms’ performances. The effect of this enhancement was 

explored through three optimization algorithms, including ADS, modified BB-BC (MBB-BC), and expo-

nential BB-BC (EBB-BC) for optimum design truss structures. The feeding part was handled based on three 

different strategies to monitor its effect: 1- no feeding solution, 2- feeding a feasible solution with the largest 

available cross-sections, and 3- selecting the least violated solution from a pool of randomly generated 

designs. Moreover, the upper bound strategy (UBS) was applied to the mentioned algorithms to increase 

their efficiencies. The constraints were defined based on LRFD-AISC regulations. The effect of those mod-

ifications was explored and explained based on several numerical simulations. Aslani, Ghasemi, & Gan-

domi (2018) applied single-solution and population-based mean-variance mapping optimization (MVMO 

and MVMO-SH) to size minimization of truss structures. The nodal displacement and elemental stress were 

incorporated into the design procedure as inequality constraints. The adaptive quadratic exterior penalty 

function method was selected to handle the defined constraints. 

Kaveh & Zakian (2018) applied a grey wolf optimizer (GWO) and an improved GWO (IGWO) to the 

optimal design of truss structures. Beforehand, the impact of the proposed modifications on the GWO al-

gorithm was examined through eighteen mathematical benchmark problems. Results revealed that IGWO 

outperformed GWO in terms of efficiency, accuracy, stability, and convergence speed. Khatibinia & 

Yazdani (2018) applied an accelerated multi-gravitational search algorithm (AMGSA) to the optimum size 



design of truss structures. The AMGSA algorithm was developed based on combining the simplex crosso-

ver (SPX) and mutation operator used in breeder GA (BGA) with the GSA algorithm. A sensitivity analysis 

was conducted over the effect of hyperparameters on the performance of the AMGSA algorithm.  

Sonmez (2018) provided a comprehensive comparison between eight metaheuristics in handling truss 

optimization problem. The effect of the number of iterations in relation to the dimension of problems was 

compared for the utilized algorithms. The control parameters free algorithms (GWO and JA) and single-

parameter algorithm (ABC) performed better than other algorithms. Kaveh, Dadras, & Montazeran (2018) 

applied a chaotic ECBO (CECBO) algorithm to the optimum design of truss structures. In this CECBO 

algorithm, some chaotic maps (i.e., Chebyshev, Circle, Gaussian, Liebovitch, Logistic, Piecewise, Singer, 

Sinus, Sinusoidal, and Tent) were used to control random variables in three ways: 1- changing the proba-

bility of colliding bodies, 2- selecting candidate solutions, and 3- regenerating the selected variable by chaos 

signals.  

Cao, Qian, Zhou, & Yang (2018) resolved the truss optimization problem using a subspace HS (SHS) 

algorithm combined with an improved feasible-base constraint handling approach. A sensitivity analysis 

over different settings of harmony memory size (HMS) and subspace HMS (SHMS) was conducted. Fur-

thermore, the proposed constraint handling approach was applied to the HS and EHS to provide a more 

comprehensive comparison. The obtained results compared to the previously recorded results using differ-

ent optimization algorithms. Gandomi & Goldman (2018) tried the parameter-less population pyramid (P3) 

for truss optimization with discrete design variables. As P3 is a black-box evolutionary optimization algo-

rithm, the results were compared to some other well-known black-box algorithms, including random restart 

hill climbing (RRHC), parameter-less hierarchical Bayesian optimization algorithm (PHBOA), DE, and a 

modified GA. The results were sufficient in terms of convergence speed rather than finding the most opti-

mum solutions.  

Baykasoglu & Baykasoglu (2019, 2021)  utilized weighted superposition attraction (WSA) for the sizing 

optimization of truss structures. Jafari, Salajegheh, & Salajegheh (2019) proposed truss optimization using 

a hybrid approach based on elephant herding optimization (EHO) and cultural algorithm (CA), known as 

elephant herding optimization cultural (EHOC) algorithm. Degertekin, Lamberti, & Ugur (2019) concen-

trated on size, shape, and topology optimization of truss structures using an advanced JA algorithm. The 

proposed algorithm solved this problem using discrete design variables, so it was named after a discrete 

advanced JA (DAJA) algorithm. A comparison of the results of DAJA with other state-of-art algorithms 

proved its superiority and promising performance.  Jalili & Kashan (2019) tackled the truss optimization 

problem using optics inspired optimization (OIO). Pouriyanezhad, Rahami, & Mirhosseini (2020) explored 



the truss optimization problem using the eigenvectors of the covariance matrix (ECM) inspired by the co-

variance matrix adaptation evolution strategy (CMA-ES). In this algorithm, a dynamic penalty function 

was considered to incorporate the constraints into the design procedure. ECM was compared to some other 

algorithms (i.e., whale optimization algorithm (WOA), GSA, GWO, and PSO) in terms of final solutions 

optimality, stability, and convergence rate.  

4.1.2. Shape optimization 

Shape optimization of truss structures minimizes the weight by changing the elements’ sizes and nodal 

positions given a fixed number of elements and topology. Kaveh & Shahrouzi (2007) developed a hybrid 

algorithm based on ant strategy and a GA for size and layout optimization of truss structures. This hybrid 

approach aimed to adjust the GA population size in every single run to enhance its performance. Population 

tuning in this algorithm was handled using the indirect data share strategy of AS. The final objective func-

tion in this study was the total weight of structure given elemental stress and nodal displacement limitations. 

The results revealed that the population size increase was stopped after finding the global optimum solution. 

Moreover, using the proposed strategy resulted in less computation effort and better convergence rate to 

global optimum Another advantage of this hybrid method was mentioned as finding the global optimum 

solution in a single run. It was shown that the population size was related to the convexity of the problem 

on the one hand and other GA parameters, on the other hand. Therefore, this hybrid approach was helpful 

in eliminating the parameter setting step for GA.  

Kaveh & Talatahari (2011) developed an improved CCS algorithm using the concept of fields of forces 

(FOF). This algorithm was applied to the problem of shape and size optimization of truss structures. The 

original CSS algorithm was considered as a benchmark to evaluate the performance of the proposed algo-

rithm. This enhanced algorithm proved to be efficient in handling the selected problems.  Miguel & Miguel 

(2012) tackled truss size and shape optimization problems considering natural frequency constraints. HS 

and firefly algorithm (FA) automated the design procedure. A series of 2D and 3D truss structures were 

subjected to evaluate the effectiveness of the proposed algorithms compared with some earlier efforts. Alt-

hough the elapsed time for the HS algorithm to converge the optimal solution was less than FA, in all the 

cases, FA ended up with better solutions. 

Gholizadeh (2013) developed two combined approaches based on cellular automata (CA) and PSO for 

shape optimization of truss structures. The proposed hybrid approaches were a novel CA-based PSO 

scheme called CPSO and a sequential cellular PSO called SCPSO algorithm. Moreover, a cellular PSO 

(CPSO) was considered for simulations. The sensitivity of the essential parameters of this algorithm was 

examined through four case studies, and the best combination was proposed. Gholizadeh & Barzegar (2013) 



tackled shape and size optimization of truss structures based on frequency constraints using an enhanced 

HS (EHS) and sequential EHS (SHS) algorithms. A sensitivity analysis was performed on the different 

essential parameter settings of the algorithm. The numerical simulation results declared that EHS performed 

better than simple HS, and SHS was better than both HS and EHS. Shojaee, Arjomand, & Khatibinia (2013) 

applied a combination of improved discrete particle swarm optimization (IDPSO) and method of moving 

asymptotes (MMA) for size and layout optimization of the truss structures. The results showed that the 

hybrid of IDPSO and MMA could accelerate the convergence rate and reach the optimum design quickly. 

Dede & Ayvaz (2015) applied the TLBO algorithm for size and shape optimization of truss structures. 

The investigators of this study confirmed the ability of TLBO to handle the tackled problem effectively 

based on providing a comparative study with other algorithms. Kaveh & Ilchi Ghazaan (2015) applied two 

combined algorithms to an optimum size and shape design of truss structures considering frequency con-

straints as 1- hybrid PSO and aging leader and challengers (ALC-PSO), and 2- harmony search-based ALC-

PSO (HALC-PSO). Kaveh, Mirzaei, & Jafarvand (2015) tackled truss structure optimization using an im-

proved magnetic charged system (IMCSS) that hybridized an improved HS (HIS) and the magnetic charged 

system (MCSS). Ho-Huu, Nguyen-Thoi, Nguyen-Thoi, & Le-Anh (2015) applied an improved constrained 

DE (D-ICDE) for size and shape optimization of truss structures. Based on the results, D-ICDE handled the 

truss optimization problem effectively in terms of finding a more optimum solution with less computational 

effort.  

Pham (2016) applied an enhanced DE (ANDE) to the truss optimization problem. Basically, ANDE 

considered three major modifications as 1- using P-best strategy to balance global and local search, 2- 

applying directional mutation rule to improve the solution, and 3- using the nearest neighbor comparison 

method to ignore unpromising solutions beforehand. P-best strategy randomly selects an individual from 

the top P solutions for mutation. Success-History based Adaptive Differential Evolution (SHADE) with 

Linear decrease in population size (L-SHADE) was also utilized for handling the optimization procedure. 

ANDE evaluation through numerical simulations proved that it was comparable to other sophisticated al-

gorithms. Different settings for P-value were assessed in the numerical simulations. The results from sim-

ulations confirmed the satisfying performance of ANDE. Farshchin, Camp, & Maniat (2016) attempted to 

solve truss size and shape optimization using a multi-class TLBO algorithm (MC-TLBO). MC-TLBO 

worked based on two phases, including 1- search the solution space through parallel classes, and 2- the best 

solutions in the first phase were selected to initialize the population for a modified TLBO. The effect of the 

different number of classes was explored in the numerical simulations.  



Ho-Huu, Vo-Duy, Luu-Van, Le-Anh, & Nguyen-Thoi (2016) investigated the capability of an improved 

DE algorithm based on adaptive mutation (IDE) in handling truss structure optimization. The design pro-

cedure was planned based on weight and layout optimization given to natural frequency requirements. The 

improvements applied to IDE was imposing a new selection strategy to mutation operator. The performance 

of IDE was assessed through a comparison with DE and some other utilized techniques for handling nu-

merical simulations. Moreover, two other variations of DE called the elitist selection technique (eDE), and 

the DE with the proposed adaptive mutation strategy (aDE) were applied to one of the tackled problems to 

see the effect of applied modifications. The proposed IDE algorithm was able to find solutions similar to 

or better than DE with less computational efforts. 

Kaveh & Zolghadr (2017) applied the cyclical parthenogenesis algorithm (CPA) to the layout optimiza-

tion of truss structures based on dynamic considerations. A comprehensive study was conducted against 

different combinations of essential parameters of this algorithm. A comparison of the obtained results with 

some other algorithms confirmed that CPA handled the tackled problem satisfactorily. Cao, Qian, Chen, & 

Zhu (2017) took an enhanced PSO (EPSO) for optimum size and layout design of truss structures. The 

applied modification to the PSO algorithm was using a particle categorization strategy for the sake of de-

creasing the number of analyses and increasing computational efficiency. In this study, a parameter, R, was 

defined to count the number of trials that need to be checked for constraint violations. The results from 

numerical analyses were discussed based on statistical approaches, R, convergence rate, and computational 

time. The effect of hyperparameters was examined through the simulations. EPSO was found to be more 

efficient than PSO in terms of computational effort without affecting constraint violations. Kanarachos, 

Griffin, & Fitzpatrick (2017) optimized the size and layout of truss structures using a contrast-based fruit 

fly optimization algorithm (c-mFOA).  

Kazemzadeh Azad, Bybordiani, Azad, & Jawad (2018) employed the BB-BC algorithm for size and 

layout optimization of truss structures given different dynamic excitations. To that end, LRFD-AISC con-

siderations with discrete design variables were the basis of the design procedure. Periodic loadings with 

different periods as well as the finite rise time of non-periodic step force. Jalili & Hosseinzadeh (2018) 

developed a hybrid optimization algorithm based on DE and biogeography-based optimization (BBO) al-

gorithms (BBO-DE) for truss structure optimization. In this algorithm, DE took care of a mutation mecha-

nism to provide exploration. Moreover, a modified migration operator was applied to strengthen the local 

searchability. The performance of the BBO-DE algorithm was examined through several case studies and 

compared to the previously utilized algorithms as well as the original BBO and DE algorithms. Ho-Huu, 

Nguyen-Thoi, Truong-Khac, Le-Anh, & Vo-Duy (2018) developed an improved DE based on roulette 



wheel selection (ReDE) to deal with size and shape optimization of truss structures with frequency con-

straints. Two modifications were applied to ReDE as follows: 1- using roulette wheel selection for the 

mutation phase, and 2- using an elitist selection technique to improve the convergence speed. Lieu, Do, & 

Lee (2018) applied a combined algorithm based on FA and DE called novel adaptive hybrid evolutionary 

firefly algorithm (AHEFA) to truss optimization problems. An adaptive mutation operator is utilized ac-

cording to the difference between the best-found solution and the whole population at the previous genera-

tion. The proposed AHEFA improved considerably in terms of convergence speed compared to DE and 

FA. Carvalho, Lemonge, Carvalho, Hallak, & Bernardino (2018) studied the effectiveness of craziness-

based PSO (CRPSO) with an adaptive penalty method. Natural frequency constraints, as well as cardinal 

constraints for automatic member grouping, were considered in the design procedure. 

Tejani, Kumar, & Gandomi (2019) utilized a multi-objective HTS algorithm (MOHTS) for weight min-

imization and nodal displacement maximization for truss structures, simultaneously.  The results compared 

to some other methods like MOAS, MOACS, and MOSOS. Millan-Paramo & Filho (2019) tried to enhance 

the modified SA (MSAA) algorithm by combining it with the WWO algorithm. Kaveh & Mahjoubi (2019) 

applied a hypotrochoid spiral optimization approach (HSPO) for size and layout optimization of truss struc-

tures. The obtained results were compared to the original method spiral optimization algorithm (HSPO) to 

observe the effect of those modifications. Le, Bui, Ngo, Nguyen, & Nguyen-Xuan (2019) hybridized the 

electromagnetism-like mechanism (EM) and FA to introduce the EFA method for optimum design of truss 

structures. The feasible-based approach was utilized for incorporating the constraints that resulted from 

stress, buckling, and displacement. Liu, Zhu, Chen, & Cao (2020) combined an adaptive vision search 

strategy with a fruit fly optimization algorithm (FOA). The optimization procedure was based on weight 

and layout optimization considering natural frequency constraints. In order to apply constraints, an im-

proved, feasible-based constraint handling approach was considered in this study. The obtained results 

compared with previous efforts on similar case studies. 

4.1.3. Topology optimization 

The final strategy in optimal design of truss structures is deciding about the presence of elements in addition 

to the nodal position and elements’ sizes. Luh & Lin (2008) utilized an ant algorithm to handle optimum 

size, shape, and topology of truss structures. The proposed ant algorithm was based on a two-stage strategy 

combining AS and API (after “apicalis” in Pachycondyla apicalis) algorithms. In this way, AS took care of 

fining optimal topology while the API search for optimum size and shape. The optimization procedure 

proposed to be weight minimization given providing the following criteria: 1- user satisfaction, 2- kinematic 

stability, 3- elemental stress capacity, 4- nodal displacement. 



Kaveh & Zolghadr (2013) used the CSS algorithm for topology optimization of truss structures based 

on static and dynamic constraints. A comparison of the results obtained by CSS with PSO and previous 

efforts proved the better performance of CSS for handling the tackled problems. Miguel, Lopez, & Miguel 

(2013) explored the application of the firefly algorithm (FA) for size, shape, and topology of truss struc-

tures. Two phases were considered for the simulations as: with and without slenderness related constraints.  

Discrete design variables were considered for cross-section areas, while the nodal positions were defined 

by continuous variables. Gonçalves, Lopez, & Miguel (2015) used the search group (SG) algorithm for 

discrete size, shape, and topology optimization of truss structures. 

Savsani, Tejani, & Patel (2016) studied the topology optimization of truss structures using a modified 

subpopulation TLBO (MS-TLBO). In this study, both static and dynamic constraints were considered dur-

ing the design procedure—the presented modifications were found to be effective in enhancing the perfor-

mance of the TLBO algorithm. Mortazavi & Toğan (2016) proposed an integrated PSO (iPSO) for optimum 

size, shape, and topology design of truss structures. iPSO incorporated weighted particle definition and 

improved fly-back constraint handling scheme into the PSO algorithm. 

Savsani, Tejani, Patel, & Savsani (2017) explored the effect of using random mutation on the perfor-

mance of four metaheuristic algorithms (i.e., heat transfer search (HTS), water wave optimization (WWO), 

passing vehicle search (PVS), and TLBO) in truss topology optimization. These modified algorithms—

MHTS, MWWO, MPVS, and MTLBO—were evaluated through several benchmark problems, and MPVS 

was found to be the best algorithm among all the techniques. 

Tejani, Savsani, Bureerat, & Patel (2018) applied some modifications to the symbiotic organisms’ search 

(SOS) algorithm for the sake of increasing its efficiency in handling optimization of truss structures. To 

that end, an adaptive mutation was incorporated into this modified SOS (MSOS) algorithm. Degertekin, 

Lamberti, & Ugur (2018) applied the Jaya algorithm (JA) for size, shape, and topology optimization of 

truss structures. JA was applied to several benchmark problems and compared to a wide range of state-of-

art algorithms. The statistical analysis of the results showed its efficiency in handling the tackled problems. 
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4.2. Frame optimization 

Optimum design of frame structures, large-scale structures, in particular, is a challenging task in civil 

engineering because of dealing with a large number of design variables and constraints. Due to the massive 

amount of materials required for constructing a given frame, any effort in decreasing the steel weight may 

cause saving a considerable amount of budget in every project. Frame structures optimization was handled 

based on continuous, discrete, and mixed continuous-discrete design variables. Moreover, a wide range of 

constraints has been defined in the previous efforts to provide the essential strength to withstand the effec-

tive loads and provide serviceability. Satisfying optimality criterion given providing stability, strength, and 

serviceability is a very difficult task in large scale structures. Metaheuristics, as a perfect alternative, was 

considered in a wide range of studies with regard to frame structures, as discussed accordingly. In this 

section, a detailed review of frame structures optimization is provided accordingly. Moreover, Table 2 

summarized the highlights in the relevant literature. 

4.2.1. Steel frame 

In 1991, Balling (1991) utilized a SA algorithm for discrete optimization of 3D steel frames. In this 

study, the objective function was defined as the total weight minimization of an unsymmetrical six-story 

building. The tackled structure had a total of 156 members that classified into 11-member groups—seven-

column groups and four girder groups. The constraints were defined based on AISC regulations for inters-

story drift in each direction and combined stress constraints (i.e., combined tension and a combined com-

pression). In a similar effort, May & Balling (1992) applied a filtered SA (FiSA) strategy for discrete opti-

mization of the same frame as Balling (1991). The linearized branch and bound strategy (LB&B) was uti-

lized for discrete optimization. A sensitivity analysis was conducted on the effect of different neighborhood 

sizes on the performance of the LB&B strategy. Moreover, the effect of different settings of hyperparame-

ters of FiSA was examined through several case studies. In both studies (Balling, 1991; May & Balling, 

1992), 11 groups of structural elements for columns and girders were made from wide-flange (W) shape 

sections available in AISC. 

In 2000, Pezeshk, Camp, & Chen (2000) automated the non-linear optimum design of steel frame struc-

tures. The design procedure followed the defined requirements and available W-section elements by AISC-

LRFD. In this study, different combinations of linear and non-linear analysis with considering and ignoring 

P-∆ effects. The positive impacts of a proposed group selections mechanism, as well as using an adaptive 

cross-over operator, were confirmed. P-∆ effects on the final design were found to be negligible. It was 

mentioned that geometrically nonlinear analysis resulted in 4% heavier structures than other cases. Sarma 

& Adeli, 2000) studied a fuzzy discrete multicriteria optimization (FDMCO) of steel frames. To this end, 

the objective function was defined as total cost minimization given three simultaneous design criteria as 



follows: 1- minimum material cost, 2- minimum weight, and 3- a minimum number of different section 

types. Four different combinations of the effective parameters of FDMCO were examined to reach the best 

performance.  

In 2001, Toropov & Mahfouz (2001) utilized a modified GA (MGA) algorithm for discrete optimization 

of the total weight of steel frames. Two modifications were considered in this MGA as follows: (i) starting 

with a very large initial population, and (ii) the common features of the best individuals were extracted and 

applied to the rest of the population other than the elite. The design procedure, as well as the available 

sections for the structural elements, were defined in accordance with British standards. Hayalioglu (2001) 

employed a GA for weight minimization of moment-resisting frames based on both AISC-LRFD and AISC-

ASD requirements (stress and displacements). It was claimed that fitness scaling, as well as higher crosso-

ver probability, resulted in faster convergence. LRFD-based designs were found to be 28%, 12%, and 0.7% 

saving in the weight in comparison with ASD-based designs for the three tackled frames. From this pattern, 

it was inferred that for dominant stress cases, LRFD resulted in lighter designs then ASD, while for the 

dominant displacement case, there is no sensible difference between them. 

In 2002, Sarma & Adeli (2002) tackled life-cycle cost optimization of steel structures using fuzzy logic. 

Four fundamental objectives were followed during the design procedure: i- select available sections with 

the lowest cost, ii- select available sections with the lowest weight, iii- select the minimum number of 

different available sections, and iv- select available section with the minimum total perimeter length. The 

optimization procedure in this study was the same as Sarma & Adeli (2000). Lagaros, Papadrakakis, & 

Kokossalakis, (2002) enlisted several evolutionary algorithms—GA, micro GA (µGA), modified µGA 

(mµGA), ES, multi-membered ES (MMES), contemporary ES (CES), and adaptive ES (AES) algorithms—

for structural optimization. Moreover, the sequential quadratic programming (SQP) approach was incorpo-

rated into the GA (GA-SQP) and ES (ES-SQP) algorithms for the sake of improving their performances. 

Two approaches were proposed to handle the sensitivity analysis as a requirement of SQP as follows: 1- 

Global finite difference method, and 2- Semi-analytical method. To that end, after finishing the search 

process using the mentioned evolutionary algorithms, SQP started the second phase to improve the best-

found solution obtained in the first phase. The cross-section of each member was suggested to be I-shape 

defined using two design variables satisfying Eurocode 3 (1993) requirements. The performances of the 

following constraint handling schemes on the GA were examined through numerical simulations: static 

penalties, dynamic penalties (D-GA), Augmented Lagrangian method (AL-GA), and Segregated GA (S-

GA). Their performances were measured using two parameters: objective values and the average level of 

violation. 



In 2003, Liu, Burns, & Wen (2003) applied a multi-objective GA (MO-GA) to the discrete steel frame 

optimization. In this study, three different objectives were determined based on initial material costs, life-

time seismic damage (LSD) costs, and detailing/erection complexity as measured by a diversity index. 

Seismic design requirements were extracted from AISC-LRFD seismic provisions and NEHRP (Federal 

Emergency Management Agency. NEHRP Recommended Provisions for Seismic Regulations for New 

Buildings and Other Structures, 1998) provisions. Acceleration response spectra in three hazard levels were 

considered (i.e., 2%, 10%, and 50% PE in 50 years). Damage state was defined in seven different levels 

based on the drift (i.e., none, slight, light, moderate, heavy, major, and destroyed).  

In 2004, Hayalioglu & Degertekin (2004) employed a GA for the optimum design of semi-rigid connec-

tions steel frames. The best settings for different parameters of the GA, such as population size and cross-

over as well as fitness scaling, were proposed. Results confirmed that using semi-rigid connections ended 

up with a reduction of 24% at most in the final cost rather than rigid connections. However, semi-rigid 

connections increased the sway of the frame between 19% and 100%. In the case of using semi-rigid column 

bases, a reduction of 3-25% was observed. Greiner, Emperador, & Winter (2004) studied both discrete and 

continuous frame optimization using evolutionary algorithms. Rebirth and auto-adaptive rebirth operators 

were incorporated into the utilized algorithms. This research explored both single objective (considering 

weight minimization) and multi-objective (simultaneous minimization of total weight and number of dif-

ferent cross-section types) optimizations. 

In 2005, Camp, Bichon, & Stovall (2005) employed an ACO algorithm for the optimum design of steel 

frame based on AISC-LRFD regulations. A comparison of the results with a GA in previous studies implied 

that ACO was capable of finding a more optimum solution with less computational efforts. Hayalioglu & 

Degertekin (2005) attempted to solve the cost minimization of steel frames with semi-rigid connections and 

column bases using a GA. In this way, two different strategies were proposed for selecting design variables: 

(i) selecting columns and beams from smaller and larger height profiles, respectively; and (ii) selecting each 

of the columns and beams from two separate steel section lists. A comparison of the results obtained based 

on AISC-LRF with AISC-ASD ended up finding fewer costs using the former. The effect of stiffness of 

semi-rigid connections was explored through solving eight different semi-rigid connection types and semi-

rigid column bases.  

Yun & Kim (2005) cope with steel frame discrete optimization using a GA. To that end, second-order 

inelastic analysis—refined plastic hinge analysis in particular—was accounted for in the design procedure. 

In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability 



functions of beam-column members, and the material nonlinearity is considered by using the gradual stiff-

ness degradation model that includes the effects of residual stresses, moment redistributions by the occur-

rence of plastic hinges, and geometric imperfections of members. Three case studies were resolved using 

the proposed methodology, and the results compared to elastic-based design following the AISC-LRFD 

requirements, nonlinear geometric analysis, and plastic zone analysis methods. A comparison of the results 

indicated that elastic-based design did not show ductile behavior, while geometric nonlinear analysis and 

plastic zone analysis methods could carry ultimate loads and showed ductile behavior. 

In 2006, Gero, García, & del Coz Díaz (2006) compared the elitist GA (EGA) with classical optimization 

algorithms for handling 3D steel frames. Discrete design variables governed the optimization procedure 

based on the available sections in the Spanish Basic Building Code (NBE EA-95).  

In 2007, Degertekin (2007) compared GA and SA algorithms in dealing with geometrically nonlinear 

steel space frames. Stress capacity was defined based on AISC-ASD and AISC-LRFD. The numerical sim-

ulations showed that SA was successful in saving 2.3-5.6% of weights rather than GA based on the LRFD 

code. That was about 1.3-8% when ASD code was utilized. Moreover, the running time for GA was less 

than SA. In another study, Artar & Daloğlu (2018) utilized an HS algorithm for weight minimization of 

steel frame structures based on AISC-LRFD requirements and discrete design variables. A comparison of 

the results obtained by HS with GA and ACO proved the better performance of this algorithm. HS ended 

up to 2.7-5.0% lighter design than GA and 1.2-2.7% lighter than ACO. A low standard deviation of the 

results (about 3%) demonstrated the stability of the HS algorithm. 

In 2009, Ali, Sellami, Cutting-Decelle, & Mangin (2009) applied a GA to the multi-stage production 

cost of semi-rigid steel frames. In this effort, the total cost of different stages of production was minimized. 

In this way, structural members and joint detailing were taken into account in the final cost estimation. 

Material supply, fabrication, erection, and foundation stages were involved in computing the production 

cost of a steel building project. The obtained results from the simulations proved that the proposed meth-

odology decreased the final cost by around 10-25% compared to traditional designs. Moreover, it was stated 

that the cost of joints represented more than 20% of the optimal cost design.  

In 2010, Kaveh, Farahmand Azar, Hadidi, Rezazadeh Sorochi, & Talatahari (2010) proposed an ACO 

algorithm as a solver to handle performance-based seismic design of steel frames using discrete design 

variables. Four performance levels were considered in the nonlinear analysis of the structure based on the 

lateral drift (i.e., operational, immediate occupancy, life safety, and collapse prevention). Moreover, two 

different approaches for numerical modeling and analytical process were compared as follows: (i) the re-

fined plastic hinge analysis method, (ii) the plastic zone analysis method. The refined plastic hinge analysis 



method accounted for the geometric nonlinearity of a steel frame structure, the gradual plastification of 

member sections, and the geometric imperfection of column members. A push-over analysis was taken care 

of first-order elastic and second-order geometric stiffness properties. The seismic loadings were taken from 

four earthquake probability of 50%, 20%, 10%, and 2% in a 50-year period. The results obtained by ACO 

compared with a GA and confirmed the superiority of ACO over a GA.  

Kaveh & Talatahari (2010a) developed an improved ACO algorithm (IACO) for discrete optimum de-

sign of frame structures. Basically, IACO worked on two phases, including global and local searches. In 

the first phase, a sub-optimization mechanism (SOM) based on the finite element method was incorporated 

into the search procedure to reduce the time by shrinking the search space. The second phase tried to opti-

mize the solution obtained by the first phase by tweaking the design variables. Hasançebi, Erdal, & Saka 

(2010) utilized an adaptive HS algorithm (AdHS) to handle discrete optimization of steel frames. The ob-

tained results were compared to the original HS algorithm as well as other previously utilized algorithms 

in the same case study. It was stated that AdHS outperform the HS’s results significantly. Studying the 

effect of control parameters of AdHS revealed that it did not affect the accuracy, but the adaptation rate 

was changed.  

Hasançebi, Çarbaş, Doğan, Erdal, & Saka (2010) provided a comparative study over the performances 

of seven algorithms, including GA, SA, ES, PSO, TS, ACO, and HS algorithms for handling rigid steel 

frame optimization. The affected loads included dead, live, snow, and wind combined based on ASCE 7-

05 (ASCE 7-05. Minimum Design Loads for Building and Other Structures., 2005) recommendations. Issa 

& Mohammad (2010) made a modification on distributed GA (DGA) by enlisting twin analogy and elitism 

strategy in addition to using three mutation schemes (i.e., linear, quadratic, and exponential). The mutation 

was found to be effective in convergence speed and finding a more optimal solution. Although all the mu-

tation schemes were efficient in improving the performance of the presented algorithm, an exponential 

scheme was the most efficient strategy. Gholizadeh & Salajegheh (2010) developed an artificial intelli-

gence-based approach for the seismic design of structures. The proposed method was based on a hybridizing 

PSO algorithm with an adaptive virtual sub-population (AVSP) algorithm for weight minimization. The 

response of structure as a necessary part of the seismic design was predicted using a hybrid approach based 

on adaptive neuro-fuzzy inference system (ANFIS), wavelet transforms (WT), and radial basis function 

(RBF) neural networks called fuzzy wavelet radial basis function (FWRBF) neural network. This proposed 

approach facilitated evaluating the time history response. In this study Uniform Building Code (UBC) was 

utilized as seismic code to select and scale ground motion time history component. Stress and displacement 

were supposed to control the design procedure.  



Degertekin & Hayalioglu (2010) utilized the HS algorithm for steel frame optimization with semi-rigid 

connection and column bases. In order to evaluate the proposed model, the results were compared to rigid 

connection frames, and the GA was also considered for further examination. Three case studies were re-

solved in this study, considering eight different stiffnesses for the semi-rigid connections. HS was success-

ful in the finding of 4.4-29.6% lighter and 2-31.8% less cost than GA, with a lower number of analyses. 

Furthermore, HS performed more stable than GA, with a standard deviation of less than 3%. From the 

minimum-weight design viewpoint, a rigid connection resulted in better designs. However, considering the 

total cost, semi-rigid connections were more economical. 

In 2011, Liu (2011) investigated the minimum weight design of steel moment frames accounting for the 

progressive collapse. In this way, the alternate path method with three different analysis procedures—linear 

static, nonlinear static, and nonlinear dynamic—was considered according to the regulations provided by 

the United States Department of Defense United Facilities Criteria (UFC) Design of Buildings to Resist 

Progressive Collapse. Moreover, traditional seismic design without the effects of the progressive collapse 

was also considered as a benchmark. Four different combinations of dead, live, roof, snow loads in addition 

to the five-percent damped design spectral response acceleration parameter at short periods, and the effect 

of horizontal seismic forces. Two additional loading combinations resulted from the amplified seismic loads 

were considered for checking the column strength under a specific condition. Linear static design procedure 

resulted in the heaviest results. On the other hand, the more accurate nonlinear static and dynamic proce-

dures ended up more optimal solutions resistance to progressive collapse but more computational efforts.  

Kripakaran, Hall, & Gupta (2011) utilized a GA for the optimum design of moment-resisting steel 

frames. The cost of steel and connections were included in the final objective value. As the material and 

labor costs are location-dependent, the objective function was defined based on their ration to generalize 

its application. In this study, each joint could have either a fully-rigid or hinge connection. In addition to 

the cross-section of the elements, a binary decision making was conducted to determine connections’ types. 

The optimization procedure was based on two phases as 1- finding the least weight solution for only con-

sidering the rigid connections, and 2- finding a trade-off between a number of rigid and hinge connections 

using a GA. Based on the results, it was concluded that the total cost was optimum when only a few con-

nections were rigid. In the case of having fixed supports, a trade-off between the number of rigid connec-

tions and the total cost was observed, while for hinge supports, there not such a trade-off.  

Oskouei, Fard, & Aksogan (2012) took into account the weight optimization of steel frames with semi-

rigid connections using a GA. In this study, modal analysis, as well as linear and non-linear static analysis 



of the structures were considered. During the optimization procedure, a different level of rigidity of con-

nections was assessed to find the most optimum case. Nine different case studies from low rise to high rise 

frames were simulated during the design procedure. It was indicated that the weight of structure increased 

by decreasing the rigidity of connections for low rise with low periods, while for medium and high-rise 

buildings with long periods, it was reverse. Cost-effective designs were observed for medium and high-rise 

buildings in the case of using semi-rigid connections and non-linear analysis, while for short buildings using 

rigid connections and nonlinear analysis was the case. Kaveh & Bakhshpoori (2013) concentrated on the 

weight minimization of steel frames using a CS algorithm. A sensitivity analysis of the optimal settings of 

the essential parameters of CS was conducted based on different case studies. Results declared that the 

displacement was controlling the design as the height of the structure got higher. CS results were better 

than other algorithms in most of the cases.  

Kaveh & Farhoudi (2011) did a comprehensive survey on some metaheuristics (GA, PSO, ACO, and 

BB-BC) for layout optimization of steel frame structures. They evaluated the effect of necessary parameters 

of each algorithm on its performance based on a criterion called convergence factor as the average possi-

bility of the exemplars. The design procedure is considered to be based on controlling drift, deflection, 

compaction, strength, stability coefficient, irregularity, and slenderness based on available standard codes 

(AISC Committee. Specification for Structural Steel Buildings (ANSI/AISC 360-05). American Institute 

of Steel Construction, Chicago-Illinois., 2005; ANSI/AISC 341-05. Seismic Provisions for Structural Steel 

Buildings, American Institute of Steel Construction, Chicago, Illinois 60601-1802; March 9, 2005., 2005; 

ASCE/SEI 7-05. Minimum Design Loads for Buildings and Other Structures. American Society of Civil 

Engineers., 2009; International Building Code 2006. International Code Council, INC., 2006).  

 Hasançebi, Bahçecioğlu, Kurç, & Saka (2011) tackled the problem of high-rise steel building weight 

minimization using an ES integrated parallel algorithm. Based on the results, parallel computing was found 

to be a time-efficient method for large scale problems. Safari, Maheri, & Maheri (2011) developed an im-

proved multiple-deme GA (IMDGA) algorithm by proposing new crossover and mutation operators for 

optimum design of steel frames. The obtained results from the proposed algorithm were compared to the 

original GA and multiple-deme GA (MDGA) algorithms.  

Kaveh, Laknejadi, & Alinejad (2012) handled a performance-based multi-objective optimization of 

space frames using a modified non-dominated sorting genetic algorithm (NSGA-II) by applying the DE 

operator (NSGA-II-DE). In this algorithm, at every generation, a population of size N (Pt) was generated 

using the basic NSGA-II algorithm, and another population with the same size would be generated using 

three selected individuals form Pt through crossover and mutation operators. The best N individuals of the 



combined population would be directed to the next generation. This multi-objective approach tackled the 

initial and life-cycle costs as two separate objectives. The structural performance was estimated by per-

forming a push-over analysis for a structure affected by gravity and seismic loads. ASCE-7 (2009) and 

FEMA-273 (1997) were utilized to evaluate dead and live loads combinations. The lifecycle cost of a struc-

ture was evaluated based on lifetime seismic damage cost as a total of initial cost, the cost of damage or 

repair, loss of contents, injuries, and human fatality, and other economic loss caused by structural damage. 

The damage was defined as a percentage level of initial cost respect to the level of damage (none, slight, 

light, moderate, heavy, major, and destroyed). In order to decrease computational efforts, the response of 

structure was evaluated using a hybrid metamodel as a combination of the multi-layer perceptron and radial 

basis function (RBF) networks and the support vector machines. 

In 2012, Doğan & Saka (2012) utilized the PSO algorithm for the optimum design of unbraced steel 

frames based on LRFD-AISC specifications. Toğan (2012) considered a TLBO algorithm for the optimum 

design of steel-framed based on AISC-LRFD. Hasançebi & Kazemzadeh Azad (2012) proposed two refor-

mulations of the BB-BC algorithm as exponential (EBB-BC) and modified BB-BC (MBB-BC) for discrete 

optimum design of steel frames using W-shape sections. AISC-ASD was utilized to set the stress, displace-

ment, geometric constraints for beams and columns at joints for constructability. Aydoğdu & Saka (2012) 

utilized the ACO algorithm for the minimum weight design of regular and irregular steel space frames by 

including the warping effect. A sensitivity analysis was conducted over different features of the ACO algo-

rithm. Four case studies (two regulars and two irregulars) were solved using the proposed methodology 

with and without the warping effect. The results indicated that considering the warping effect causes a 

significant increase in the optimum designs of both symmetrical and asymmetrical space frames. Gholiza-

deh & Fattahi (2014) developed a modified PSO (MPSO) for the optimum design of tall steel buildings. 

This MPSO algorithm worked based on using PSO with a multi-stage strategy where the output of each 

stage would be the initial population for its next stage. Kaveh & Talatahari (2012b) utilized the CSS algo-

rithm for the optimum design of frame structures. The fundamental regulations of design procedure were 

compatible with AISC-LRFD specifications for stress and displacement.  

In 2013, Phan, Lim, Sha, Siew et al. (2013) concentrated on the weight minimization of cold-formed 

steel portal frames using a GA. The trial designs were constructed using three design variables as sections 

size, spacing, and pitch of the frames. Two different types of frames were studied as a rigid-jointed cold-

formed portal frame with and without knee braces. Constraints were defined for columns and rafters to 

check combined axial compression and bending, distortional buckling, and combined bending and shear. 



Knee braces were checked against compression and tension. Numerical simulations declared that consider-

ing topological variations during the optimization procedure resulted in more optimal solutions. Moreover, 

incorporating braces into the frames ended up decrease in the final cost.  

Kazemzadeh Azad, Hasançebi, & Kazemzadeh Azad (2013) utilized an upper bound strategy (UBS) for 

optimum design of steel frames by metaheuristic algorithms. To that end, they employed a BB-BC algo-

rithm and its two improved versions (MBB-BC and EBB-BC). The main objective of using this scheme is 

eliminating unnecessary analyses within the optimization process. Structural analyses were handled using 

SAP2000 software in conjunction with MATLAB. The proposed approach resulted in decreasing the struc-

tural analyses for 135-member structure by 94.97%, 89.75%, and 92.94% for the UBB–BC, UMBB–BC, 

and UEBB–BC algorithms, respectively. Moreover, those numbers for 1026-member were 95.72%, 94.1%, 

and 97.1%, respectively. Therefore, the proposed strategy was proved to be efficient in computationally 

expensive problems without affecting the exploration and exploitation of the optimization algorithms. 

Talatahari, Khalili, & Alavizadeh (2013) employed accelerated PSO (APSO) for optimum design of frame 

structures based on AISC-LRFD requirements. Yang, Bletzinger, Zhang, & Zhou (2013) developed a par-

allel modified guaranteed converged PSO algorithm (PMGCPSO) for size and topology optimization of 

frame structures. During the topology optimization procedure, the main objective was finding the best lay-

out for bracing. The obtained results by PMGCPSO were compared to the covariance matrix adaptation ES 

(CMA-ES) algorithm.  

Gong, Xue, & Xu (2013) delivered a multi-objective optimization of eccentrically braced steel frames 

(EBF) using a multi-objective GA (MOGA). The objective functions in this study were cost minimization, 

seismic input energy Ei to the seismic-force-resisting system (SFRS) minimization, and the hysteretic en-

ergy of fuse members maximization. The analyzing procedure was mainly based on nonlinear response 

history analysis (NRH) to capture both dynamic and inelastic behavior of a structure. The constraints de-

fined for checking the model validity were: 1- the plastic deformation on fuse members, 2- the plastic 

deformation constraints on non-fuse members, and 3- inter-story drift constraints. The proposed procedure 

was applied to the design of an EBF frame from a 3-story space office building with a symmetric plan 

located in Vancouver, British Columbia, Canada. In this three-bay three-story EBF frame, all the columns 

were pinned-supported. Three ground motions were adopted from PEER (2008) in this research to find 

average values of structural response. Kaveh & Zakian (2013) explored the application of two metaheuristic 

algorithms—CSS and improved HS (IHS)—for optimum design of steel frames under seismic loads. Struc-

tural analysis was conducted in two phases as follows: 1- performing a time history analysis with relative 

lateral displacement, and 2- performing a simultaneous dynamic–static analysis with relative displacement 



and stress constraints. The proposed methodology was evaluated through solving four frame structures af-

fected by three earthquake time-history records (i.e., El Centro (N-S component, 1940), Kobe (090 compo-

nent, 1995), and Tabas (LN component, 1978)). 

In 2014, Hasançebi & Carbas (2014) selected the BAT algorithm for discrete size optimization of steel 

frames based on AISC-ASD. The authors did extensive research on the parameter setting of the BAT algo-

rithm in this paper and indicated the impact of each parameter as well as the best parameter setting. A 

comparison of the results in this study with other previous efforts proved the efficiency of their tackled 

algorithm for handling frame optimization problem. Murren & Khandelwal (2014) tackled steel frame op-

timization using a design-driven HS (DDHS) algorithm. DDHS used a more intelligent mutation operator 

which considered available information from previous solutions as well as parameter-specific search to 

explore the solution space.  The optimization procedure was based on grouped discrete design variables 

selected from W-shape sections subject to stress and drift related constraints. DDHS was found to be effi-

cient in terms of accuracy, computational efforts, and optimality of the final solutions when it was compared 

to other solvers.  

Yassami & Ashtari (2015a) utilized a fuzzy GA (FGA) for weight optimization of steel frames with 

semi-rigid connections. Four types of semi-rigid connections based on different rotational stiffness values, 

in addition to a rigid connection, were analyzed using the proposed FGA and a simple GA. The proposed 

FGA was proved to be better than GA in finding more optimal solutions with faster convergence. Yassami 

& Ashtari (2015b) studied the weight minimization of steel frames with semi-rigid connections using the 

same strategy as Yassami & Ashtari (2015a) for design procedure. To that end, three optimization algo-

rithms we selected as simple GA, FGA, and ABC. Kaveh & Nasrollahi (2014) utilized the CSS algorithm 

for the performance-based seismic design of steel frames. In this study, the design procedure was based on 

a push-over analysis using a semi-rigid connection concept. Two moment frames affected by dead, live, 

and earthquake loads were optimized using CSS and compared to GA and ACO. For seismic analysis, 

spectral acceleration was evaluated based on four performance levels as operational, immediate occupancy, 

life safety, and collapse prevention based on the probability of an earthquake happening within 50 years. A 

comparison of the results obtained by the explored algorithms indicated that CSS outperformed GA and 

ACO by finding lower weights.  

Maheri & Narimani (2014) used an enhanced HS algorithm (EHS) based on altering the updating phase 

of the HS algorithm for the minimum weight design of steel moment frames. Saadat, Camp, & Pezeshk 

(2014)] concentrated on the performance-based optimization of structures based on a multi-objective ap-

proach. In this way, a MOGA was considered to minimize the combination of the present value of the total 



economic cost (𝑃𝐶𝑡
𝑇) and expected annual social loss (EASL). The design procedure was based on inelastic 

time history analysis considering different levels of earthquake hazard. The numerical simulations were 

conducted for two locations in the United States including, Memphis and Los Angeles. The constraints 

were defined considering two hazard levels for collapse prevention and immediate occupancy in addition 

to the AISC specifications for strong column-weak beam criteria. A FEMA-SAC structure was considered 

for numerical simulation and model validation (FEMA 355C, 2000). Discrete design variables were con-

sidered as two columns and three beams selected from W-shape sections. Kaveh, Bakhshpoori, & Azimi 

(2015) tried the CS algorithm for seismic weight minimization of space steel frames. Seismic analysis of 

the structures was conducted through two different approaches based on equivalent static and response 

spectral analyses for the first two cases and spectral response analysis for the third case. The obtained results 

using the proposed algorithm were compared to ES, SA, and TS algorithms. 

In 2015, Alberdi & Khandelwal (2015) did a comparative study on the performance of six metaheuristic 

techniques—ACO, GA, HS, PSO, SA, and TS—and their three modified versions—DDHS, AHS, and 

iSA—for weight minimization of steel frames. The efficiency of utilized algorithms was assessed in terms 

of convergence consistency regardless of the variable space and irrespective of the initial trials. Based on 

the results of simulations, DDHS and TS were the best solvers in this case study. Gholizadeh & Poorhoseini 

(2015) applied a modified dolphin echolocation optimization (MDEO) algorithm for the optimization of 

steel frames. This modified algorithm was based on using one-dimensional Gauss chaotic maps for deter-

mining the step locations. The performance of the proposed algorithm was examined through a comparison 

with the original dolphin echolocation (DEO) algorithm in addition to some other algorithms applied to the 

same examples previously. Moreover, a sensitivity analysis of an effective parameter in the MDEO algo-

rithm called power was conducted to reach its best performance. The results approved the better perfor-

mance of MDEO thanks to finding lighter designs. 

 Alberdi, Murren, & Khandelwal (2015) concentrated on topology optimization of connections in steel 

moment frames. In this way, four optimization algorithms—GA, HS, ACO, and TS—were considered to 

optimize both member section and connections rigidity. As a result of two available connections at two 

ends of each beam (pinned and moment-connected), four different types of beams were available based on 

the connections. The objective function was defined in terms of material cost, in addition to the connections 

derived costs. The first example was resolved under different assumptions, such as considering fixed and 

variable connection topology, along with solving the problem with and without constructability constraints.  

Kazemzadeh Azad & Hasançebi (2015) tackled the optimum design of steel frames with discrete design 

variables using a design-driven heuristic approach called the guided stochastic search (GSS) technique. The 



applied constraints into the design procedure were strength and displacement based on AISC-LRFD. Com-

parison of the results obtained by GSS with some other algorithms—upper bound strategy (UBS), UBS 

combined with BB-BC (UBB-BC), UBS combined with modified and exponential BB-BC (UMBB-BC and 

UEBB-BC), and UBS combined with PSO (UPSO)—indicated its promising performance thanks to finding 

more optimal solutions with less computational efforts.  

Hadidi & Rafiee (2015) hybridized HS and BB-BC algorithm (HS-BB-BC) to tackle the problem of 

frame weight minimization considering the optimal arrangement of semi-rigid connections types. In this 

way, eight different semi-rigid connections were proposed based on the rotational stiffness.  The objective 

function was defined as the total cost of materials in addition to the surcharge due to connection types. In 

this study, a non-linear structural analysis was accomplished based on the non-linear moment-rotation be-

havior of connections and P-∆ effects. Numerical simulations declared that the proposed HS-BB-BC was 

successful in finding better solutions than the original HS and BB-BC algorithms with a better convergence 

rate. Talatahari, Gandomi, Yang, & Deb (2015) studied the optimum design of frame structures using a 

two-stage optimization algorithm based on the eagle strategy and DE (ES-DE). The proposed ES-DE out-

performed the original DE, and its performance was comparable to other previously utilized algorithms.  

In 2016, Carbas (2016) proposed an enhanced FA (EFA) for steel frame optimization. The design pro-

cedure followed LRFD-AISC regulations using discrete design variables. In this way, several constraints 

were incorporated into the design process to check elements stress capacities, maximum displacement, ge-

ometrical constraints for beam-column connections, and columns related constraints to prevent soft story. 

Based on the results, EFA was successful in finding more optimal solutions than the FA. In another effort, 

Carbas (2017) utilized the BBO algorithm for the minimum weight design of frame structures with the same 

strategy as Carbas (2016). The proposed approach was applied to the optimum design of two real-size steel 

space frames. Comparison of BBO with some other algorithms which were tried previously in similar cases 

studies revealed its superiority and success to find better solutions. 

 Gholizadeh & Poorhoseini (2016) utilized an improved DEO (IDEO) algorithm for seismic perfor-

mance-based layout optimization of braced frames. The proposed improvement on the algorithm was using 

the chaos theory for modifying the accumulative fitness equation of standard DEO. To that end, three per-

formance levels (i.e., immediate occupancy, life safety, and collapse prevention) were considered for seis-

mic hazard analysis. Therefore, the basic seismic loading was represented by three earthquake level corre-

sponding to 20, 10, and 2% probability of exceeding in a 50-year period. In this study, cross-sections of 

structural elements as well as placement of the X-bracing in the frame were supposed to be design variables. 

The design procedure of the structure was conducted using nonlinear pushover analysis. In the former type, 



the design procedure was linear, and geometry constraints were ignored to be uniform with the original 

study. In the latter, the tackled frames were solved based on two strategies as (i) size optimization of frames 

wit fixed configuration of braces, and (ii) layout optimization of braces. During the design procedure, a 

sensitivity analysis over the variation of one of the most effective parameters of Ide named power was 

conducted to catch its best performance.  

Aydoğdu, Akın, & Saka (2016) concentrated on the optimization of steel space frames using an ABC 

algorithm with levy flight distribution (LFABC). The performance of the proposed algorithm was compared 

with ABC, ACO, and dynamic HS (DHS). Kaveh & BolandGerami (2017) proposed a cascade optimization 

method for the optimum design of large-scale space steel frames. To this end, the ECBO algorithm was 

utilized successively to handle every single case study. Papavasileiou & Charmpis (2016) utilized ES for 

optimum cost and braces topology design of earthquake-resisting multi-story steel-column composite struc-

tures. The design procedure was based on discrete optimization with I-shaped sections fully encased in 

concrete for the columns, I-shaped sections for beams, and L-shaped sections braces. The objective function 

was the total cost of steel and column that satisfied the requirements defined by Eurocodes 3 and 4. Non-

linear pushover and eigenvalue analyses were considered for structural analysis. The constraints were de-

fined to guarantee enough stress capacity, prevent unacceptable displacement due to earthquake, and pre-

venting undesirable long-period buildings.  

Carraro, Lopez, & Miguel (2017) utilized a search group algorithm (SGAO) for the minimum weight 

design of frame structures based on AISC-LRFD. Daloglu, Artar, Özgan, & Karakas (2016) considered the 

effect of soil-structure interaction in steel frame optimization. In this way, the minimum-weight design of 

frame structures located on elastic foundations was the subject of the study. The soil of the foundation was 

specified using three parameters (i.e., moduli of subgrade reaction, soil shear parameter, and vertical defor-

mation profile within subsoil). Prendes-Gero, Álvarez-Fernández, López-Gayarre, Drouet, & Junco (2016) 

utilized a GA developed from the Eugenics Evolutionary theory (GAET) for the cost minimization of steel 

frames. The final cost resulted from the cost elements and connections. During the design procedure, col-

umns were selected from HEB sections, and the beam was selected form I sections. Three case studies were 

proposed to examine the efficiency of the proposed algorithm. In these examples, the effects of different 

parameter settings of the algorithm, number of sub-beam-elements, and different optimization processes 

(elitist strategy, steady-state replacement, roulette wheel, tournament selection, and Eugenics theory) were 

examined. 

In 2017, Gholizadeh, Davoudi, & Fattahi (2017) utilized an enhanced MFO algorithm (EMFO) for the 

optimum design of steel frames. The applied modification was related to position updating using the best 



information obtained from the search agents during the optimization process. Moreover, a mutation opera-

tor was added to this algorithm. Kaveh, Ghafari, & Gholipour (2017b) studied seismic design optimization 

of steel moment frames with connection types arrangement considerations. To that end, in addition to the 

cross-section of elements, connection types (simple or rigid) were considered as the design variables. The 

objective function was defined in terms of material and connection costs. The optimization procedure was 

accomplished using the PSO and ECBO algorithms. An ANN-based approach was proposed to predict 

structural seismic response for seismic time-history analysis. ECBO was found to be much better than PSO 

in solving the tackled problem. Moreover, considering the connection types in the optimization procedure 

resulted in more efficient designs.  

Gholizadeh & Baghchevan (2017) tackled multi-objective optimization of the performance-based design 

of steel moment-resisting frames. To this end, a chaotic multi-objective firefly algorithm (CMOFA) was 

utilized to minimize the total weight of the structure, while inter-story drift was maximized subject to the 

serviceability and ultimate limit-state constraints. Three different steel frames were considered to endure 

dead, live, and earthquake loads considering three performance levels (i.e., immediate occupancy, life 

safety, and collapse prevention). Maheri, Shokrian, & Narimani (2017) employed an enhanced honey bee 

mating optimization (EHBMO) algorithm for the optimum design of steel frames. This modification de-

fined a distance factor that gave credence to less feasible solutions to broaden the search space. Kaveh, 

Ghafari, & Gholipour (2017a) tackled seismic optimization of 3D steel frames using nine different algo-

rithms as SA, PSO, ABC, WOA, GWO, HS, CBO, ECBO, and invasive weed optimization (IWO). Three 

different types of lateral resisting steel moment frames were studies according to the AISC-LRFD design 

criteria as follows: ordinary moment frame (OMF), intermediate moment frame (IMF), and special moment 

frame (SMF). The optimization procedure was based on the Response Spectrum Analysis (RSA) approach. 

Optimization results demonstrated that OMF resulted in lighter designs in most of the cases. On the other 

hand, IMF was not a good choice for structures with box shape columns. HS, PSO and CBO performed 

better than other techniques. 

In 2018, Gholizadeh & Ebadijalal (2018) utilized the center of mass optimization (CMO) algorithm for 

weight and topology optimization of steel braced frames. Topology optimization of the frames dealt with 

finding the best configuration of X- and diagonal-bracing system in a given steel frame. In this study, in 

addition to design variables for selection cross-section of the elements, four different options were defined 

for the brace configuration in each bay. The design procedure was based on nonlinear time history analysis 

considering three performance levels as immediate occupancy, life safety, and collapse prevention. 

Gholizadeh & Milany (2018) developed an improved firework algorithm (IFWA) for discrete optimization 



of steel structures. The obtained results were compared to the original algorithm (FWA) to assess the effi-

ciency of the proposed modifications. Results demonstrated that IFWA outperformed FWA, and its results 

were also competitive with other previously utilized algorithms.  Farshchin, Maniat, Camp, & Pezeshk,  

(2018) a school-based optimization (SBO) algorithm for optimum design of steel frames considering AISC-

LRFD regulations. Artar & Daloğlu (2018) studied the optimum weight design of steel space frames with 

semi-rigid connections using an HS algorithm and a GA. In addition to a rigid connection, six types of 

semi-rigid connections based on different rotational stiffness were considered within the design procedure.  

In 2019, Bybordiani & Kazemzadeh Azad (2019) investigated the optimum design of steel braced 

framed with dynamic soil-structure interaction. Typical steel frames were considered resting on a rigid base 

as well as half-space. A standard massless foundation was used to model the unbounded soil domain. The 

seismic time-history analysis was applied to the model based on two sets of ground motions. BB-BC algo-

rithm was selected to handle the optimization problem. Zakian (2019) tackled steel moment-resisting 

frames considering natural frequency constraints using five optimization algorithms as follows: PSO, CSS, 

TLBO, GWO, and improved GWO (IGWO). To this end, the natural frequency of structure was obtained 

using eigenvalue analysis. The results declared that TLBO, IGWO, and PSO were the best solvers. Has-

sanzadeh & Gholizadeh (2019) accounted for collapse-performance-aided optimization of steel concentri-

cally braced frame (SCBF) using the CMO algorithm. To this end, three major steps were proposed as 

follows: 1- size and topology optimization based on seismic performance-based analysis, 2- generating 

fragility curves for the optimal solutions using the incremental dynamic analysis, and 3- fixed and optimized 

braces configurations were compared in terms of minimum weight and collapse capacity. The performance-

based analysis was conducted based on three hazard levels—immediate occupancy, life safety, and collapse 

prevention. The design variables were defined as the cross-section and brace placement in the frame. Based 

on the results, it was found that the topology optimization resulted in more optimal solutions with consid-

erably better collapse safety.  

In 2020, Kaveh, Biabani Hamedani, Milad Hosseini, & Bakhshpoori (2020) utilized several optimization 

algorithms—ABC, BB-BC, cyclical parthenogenesis algorithm (CPA), CS, thermal exchange optimization 

(TEO), water evaporation Optimization algorithm (WEOA), and TLBO algorithms—to solve steel frame 

optimization problems. In terms of more fit solutions, WEO, CS, and TEO proved to be the best optimizer 

while the convergence speed was better for TEO, TLBO, and WEO. 

4.2.2. Concrete frame 



In 2008, Paya, Yepes, González‐Vidosa, & Hospitaler (2008) considered multi-objective optimization 

of concrete frames using a SA algorithm (MO-SA) based on four different objectives as follows: the eco-

nomic cost, the constructability, the environmental impact, and the overall safety of RC framed structures. 

The Spanish code NBE AE-88 (Fomento, 1988) for concrete structures governed the design procedure. The 

trade-off between all the objectives was explored through a sensitivity analysis. Paya-Zaforteza, Yepes, 

Hospitaler, & González-Vidosa (2009) utilized a SA algorithm for the optimization of a reinforcement 

concrete (RC) frame. To this end, SA dealt with minimizing CO2 emissions and economic costs. The design 

procedure was controlled using the Spanish code for concrete structures (Fomento, 1998). The effects of 

the number of design variables on the CPU time and the number of floors on CO2 emission was explored 

through a sensitivity analysis. Moreover, the tradeoff between CO2 and the final cost was observed.  Results 

declared that embedded emissions and costs are highly correlated. The lowest CO2 emission was only 

2.77% more expensive than the most optimum cost-based solution. On the other hand, the most cost-effec-

tive design caused a 3.8% increase in CO2 emissions. 

Camp & Huq (2013) tackled CO2 and Cost optimization of RC frames using a BB-BC algorithm. The 

design procedure was based on the American Concrete Institute (ACI) specifications. Discrete optimization 

is based on the geometry of beams and columns defined by width and height along with steel rebars areas 

defined by the number and size of bars. Many constraints were defined to control beam elements' validity 

following stress, serviceability, and geometrical requirements. The sufficiency of the columns for with-

standing the combined effects of axial force and bending moments was checked through some constraints. 

Results declared that BB-BC was efficient in handling the tackled problems. A comparison of the results 

considering the cost and CO2 emission demonstrated that the best solution by CO2 minimization might be 

slightly more costly.  

Gharehbaghi & Fadaee (2012) proposed an automated procedure to design optimization of RC structures 

by optimizing a three-bay eighteen-story RC frame using particle swarm optimization (PSO) algorithm. 

The construction cost was considered the objective function, and constraints were conformed to the 

ACI318-08 code and standard 2800-code recommendations as primary allowable section conditions, ca-

pacity criteria, and seismic. The results showed that a design candidate could be achieved associated with 

the minimum construction cost that conforms to the standard code provisions by application of an auto-

mated design process. Khatibinia, Salajegheh, Salajegheh, & Fadaee (2012) applied a discrete gravitational 

search algorithm (DGSA) and a metamodelling framework for reliability-based design optimization 

(RBDO) of reinforced concrete frames. In this study, a metamodel based on a wavelet weighted least 

squares support vector machine (WWLS-SVM) and the standard GSA were considered to reduce the com-

putational effort. Furthermore, the kernel function of WLS-SVM is replaced with a cosine Gaussian Morlet 



wavelet function to improve the performance generality of WLS-SVM. Their results showed that the met-

amodel's prediction performance is influenced by selecting its kernel function and WWLS-SVM parame-

ters. The numerical results of training and testing the metamodel also showed that the metamodel's perfor-

mance generality is higher than that of WLS-SVM. Gharehbaghi & Khatibinia (2015) tackled RC structures' 

optimal seismic design by considering a hybrid particle swarm optimization algorithm and an intelligent 

regression model, subjected to several time-history earthquake loads. The proposed IRM consists of three 

components: SA, K-means clustering approach, and WWLS-SVM.  

In 2016, Yazdani, Khatibinia, Gharehbaghi, & Hatami (2016) used a modified discrete gravitational 

search algorithm (MDGSA) for the sum of construction and repair costs minimization of RC frames. The 

utilized algorithm's efficiency was assessed against the original GSA through a nine-story RC building's 

performance-based design subject to both probabilistic and deterministic constraints. The metamodel was 

used to predict the structure's seismic response based on the weighted least squares support vector machine. 

Annual probabilities of nonperformance were also selected as the probabilistic constraints. In addition, in 

the dynamic finite element analysis of the soil-structure system, nonlinear soil-structure interaction effects 

were taken into account. Gharehbaghi, Moustafa, & Salajegheh (2016) also applied Particle Swarm Opti-

mization (PSO) algorithm to minimize the construction cost of three low- to high-rise RC frame structures 

under earthquake loads with and without considering strong column-weak beam (SCWB) constraint.  In 

this study, an intelligent pre-processing method was considered using a Tree Classification Method (TCM) 

and a nonlinear optimization technique in which the TCM automatically creates sections database and as-

signs sections to structural members. 

Gharehbaghi (2017) minimized the construction cost of reinforced concrete frame structures by applying 

a PSO algorithm binary model. Due to earthquake excitations, a uniform damage distribution was consid-

ered over the structure's height in this study. The allowable degree of damage was defined based on the 

concept of the global collapse mechanism. They compared uniform damage-based optimum seismic design 

and the strength-based optimum seismic design. The results showed that the uniform damage-based method 

offers a design that will suffer less damage under severe earthquakes.  
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4.3. dam optimization 

Dams are among the most strategic structures for every country due to their economic and 

political role. Hence, any issue in their performance will end up catstrophic disasters due to the 

level of money and life loss. On the other hand, bulk materials of these monsters make the final 

cost considerable. Therefore, any effort in decreasing the final cost while preserving the service-

ability and safety at high level would be highly worthwhile. Those facts have made the optimum 

design of dams a hot debate in civil engineering. A detailed review of this sort of studies is 

presented in this section. 

Seyedpoor, Salajegheh, Salajegheh, & Gholizadeh (2009) explored the efficiency of a combination of 

particle swarm optimization, FIS, and neural network for shape optimization of under earthquake loading. 

In this way, two strategies were adopted to improve the optimization process. First,  they tried to antici-

pate the structural response of fewer dam design variables applying an adaptive neuro-fuzzy inference 

system. Second, the arch-dam response was predicted by an adequately trained wavelet radial basis func-

tion neural network employing. Seyedpoor, Salajegheh, Salajegheh, & Gholizadeh (2011) also examined 

a hybrid version of particle swarm optimization  (PSO)  with simultaneous perturbation stochastic ap-

proximation (SPSA) algorithm for shape optimization of arch dams subjected to earthquake loading. They 

compared the combination of SPSA–PSO those result of SPSA and PSO. Results showed that the SPSA–

PSO converges to a superior solution compared to the SPSA and PSO. 

Khatibinia & Khosravi (2013) tackled shape optimization of concrete gravity dams, including dam–

water–foundation rock interaction subjected to earthquake loading. They used a hybrid approach combi-

nation of improved gravitational search algorithm (IGSA) with orthogonal crossover(OC). They opti-

mized four benchmark problems using IGSA-OC and compared the results with the standard gravitational 

search algorithm (GSA)and the other modified GSA methods. Results showed that the proposed IGSA-

OC outperformed the standard GSA, IGSA, and PSO in weight minimization and convergence. Khati-

binia, Chiti, Akbarpour, & Naseri (2015) also explored the shape optimization of concrete gravity dams 

effects subjected to earthquake loading. The optimization was conducted using the integration of an im-

proved gravitational search algorithm (IGSA) and the orthogonal crossover (OC). In this study, the dam 

body was treated as a two-dimensional structure involving the geometry and material nonlinearity effects 

using the Drucker–Prager model, and weighted least squares support vector machine (WLS–SMV) re-

gression model was utilized to approximate the nonlinear dynamic analysis. 

Kaveh & Mahdavi (2013) examined the efficiency of three optimization algorithms (PSO, CSS, and 

CSS-PSO) for shape optimization of double-curvature arch dams under earthquake loading. In this way, 



the geometrical model of the tackled arc dam was formed by two different features: 1- the shape of the 

central vertical section and 2- the horizontal section's shape—both the curvature and the thickness change 

horizontal and vertical directions. The minimum cost or concrete volume design of the dam was the main 

objective of this study, considering the constraints defined by stress capacity and geometrical conditions. 

Model evaluation was conducted through two case studies as (i) concrete volume minimization of Mor-

row Point arch dam and (ii) cost minimization of a hypothetical well-known benchmark arc dam. A par-

ametric study was also established based on changing the depth of water and earthquake intensity. 

Mahani, Shojaee, Salajegheh, & Khatibinia (2014) explored the double arch concrete dams optimiza-

tion under earthquake loading. They integrated ant colony optimization(ACOR) and particle swarm op-

timization (PSO) in the optimization process. In this way, a preliminary optimization is accomplished 

using ACOR then PSO was applied using the optimal initial swarm of the ACOR. The numerical results 

showed that ACOR–PSO converges to better solutions and provides a faster convergence rate compared 

to the application of ACOR and PSO individually. 

Mirzaei, Akbarpour, Khatibinia, & Siuki (2015) tackled the shape optimization of homogeneous earth 

dams using particle swarm optimization (PSO) incorporated to weighted least squares support vector 

machine (WLS-SVM). The objective function was minimizing the seepage through the dam body and a 

homogeneous earth dam's weight. The design variables were considered the upstream and downstream 

slopes of the earth dam, the length of oblique and horizontal drains, and the drains' angle. The results 

showed that the seepage through the dam body as an objective function is more important than the earth 

dam's weight. Chiti, Khatibinia, Akbarpour, & Naseri (2016) also examined the shape optimization of 

concrete gravity dams subjected to earthquake load using a reliability-based design optimization 

(RBDO). In this way, subset simulation was integrated with a hybrid optimization method to solve the 

RBDO approach of concrete gravity dam. In this study, the concrete gravity dam was treated as a two–

dimensional structure involving the material nonlinearity effects and dam–reservoir–foundation interac-

tion.  

 

4.4. Miscellaneous 

 

In light of an optimization algorithm's robustness to solve difficult problems, a wide range of efforts 

have been conducted to find their civil engineering applications. In the following, the efficiency of those 

algorithms to deal with structural engineering problems is examined and discussed in detail. The initial 

efforts in handling civil engineering problems using heuristic approaches can be found in different studies 



accordingly. Changwen (1989) and Simões (2001) utilized the same approaches based on fuzzy optimiza-

tion following two phases to handle structural engineering problems. Changwen (1989) applied this method 

to a three-bar truss and corrugated bulkhead. Simões (2001) considered solving a prismatic beam, portal 

frame, and reinforced concrete slab. Jenkins (1991) applied a GA to minimize the total mass of different 

structures. In this study, the optimum design of a trussed-beam roof, 2D truss structures, and thin-walled 

cross-section.  

Grierson & Pak (1993) employed a GA for size, shape, and topology optimization of steel frameworks. 

Riche & Haftka (1993) tackled the optimization of laminate stacking sequence for buckling load maximi-

zation using a GA. Xie & Steven (1994) proposed an evolutionary approach to find optimal shape and 

topology of structures (i.e., L-shape plate and short beam) based on the natural frequency maximization or 

minimization. Liu, Haftka, & Akgun, (n.d.) utilized a GA to optimize composite wing structures. To this 

end, a two-level optimization approach was proposed with the following features: 1- wing-level optimiza-

tion dealing with weight minimization of the wing, and 2- panel-level optimization dealing with buckling 

load maximization based on a given amount of piles in each direction. Botello, Marroquin, Oñate, & Hore-

beek (1999) employed GA, SA, and a combined approach based on GA and SA algorithms (GSSA) for 

optimum design of some structural benchmark problems (i.e., planar bar structure, 10-bar truss structure, 

pedestrian bridge structure, electric tower, and a tridimensional structure with 2440 elements).  

In 2000, Liu, Haftka, & Akgün (2000) developed a two-level structural optimization procedure for de-

signing a composite wing. To this end, several constraints were applied based on strength and buckling 

constraints. The optimization procedure was conducted based on two main phases, including wing-level 

design and panel-level design. In the prior phase, the main objective was the minimization of the total 

weight of the structure as a function of thicknesses of upper and lower skin panels. In the latter phase, the 

main effort was finding the optimal stacking sequence for a given amount of piles that maximizes the buck-

ling load factor. The GA was responsible for automating the design procedure. The proposed model was 

validated through six-variable, eighteen-variable, and fifty-four-variable design problems. 

In 2002, Hansel, Treptow, Becker, & Freisleben (2002) developed two different topology optimization 

approaches to find the minimum weight of laminate structures. Those two approached were based on a 

heuristic optimization algorithm and a GA-based topology optimization. The heuristic approach considered 

numbers of laminate elements composed of four single layer elements and equal thicknesses. Numbers of 

strength constraints were applied to the design procedure to guarantee enough load-carrying capacity. In 

the GA-based approach, the material distribution and the local reinforcement directions were adapted to 



reach the optimum weight of structures. Both approaches were examined through a cantilever plate and an 

L-shaped cantilever. 

In 2004, Burczyński, Kuś, Długosz, & Orantek (2004) studied shape and topology optimization as well 

as defect identification using distributed evolutionary algorithms. In this way, the design variables were 

defined as shape, topology, and material parameters. The proposed evolutionary scheme was based on the 

coupling finite element method and the boundary element method to find the optimal design. Four different 

case studies were presented to examine the efficiency of the proposed model as follows: 1- identification 

of hole in an elastoplastic 3D structure, 2- evolutionary shape design of a thermomechanical structure, 3- 

identification of voids for a thermomechanical problem, and 4- dynamically loaded plate. In 2005, Wang 

& Tai (2005) selected a GA for topology optimization of structures using a bit-array representation method. 

In this study, the main effort was addressing the design connectivity issue by defining an equality constraint. 

The optimization process was a single objective function defined in two different ways as follows: 1- min-

imizing compliance with a constraint on the volume fraction, and 2- minimizing the weight with a constraint 

on the maximum displacement. Several case studies were explored using the proposed methodologies to 

examine their efficiencies in terms of finding the topologies with higher structural performance, less unus-

able material, and fewer separate objects in the design domain. 

In 2006, Bochenek & Foryś (2006) developed an improved PSO algorithm for structural optimization 

considering post-buckling behavior. Those modifications accounted for both the velocity updating and con-

straint handling. In this way, an additional term was embedded into the formula to represent the distance 

between the particle position and the position of the best particle among its neighbors. For inequality con-

straint handling, a method called “controlled reflection” was proposed where the violated particle will move 

on the boundary or reflected back to the feasible solution area. The objective function was defined as the 

sum of squared distances between the given equilibrium path and the reconstructed one. This modified 

algorithm was applied to several structural simple rigid–elastic, finite-degree-of-freedom models that catch 

the post-buckling behavior as follows: 1- a model of the column, 2- a model of the frame, 3- Koiter frame 

with additional support.  

In 2008, Liu, Yi, Li, & Shen (2008) explored the application of a GA to structural topology optimization. 

In this study, the optimality of the structures was defined as finding minimum weight or strain energy. The 

applied constraints for minimum weight design and minimum strain energy were based on prescribed max-

imum displacement and prescribed total weight, respectively. Three case studies were resolved using the 

proposed methodology with different settings for prescribed total weight and displacement. Kaveh, Has-

sani, Shojaee, & Tavakkoli (2008) tackled structural topology optimization using an ACO algorithm. The 



main objective of this study was to minimize the strain energy to reach the stiffest possible structure. Four 

case studies were explored using the proposed methodology (i.e., simple beam, cantilever beam, knee struc-

ture, and a 3D bridge). The obtained results by ACO-based procedure was compared to a topology optimi-

zation research code called TOPS (Topology Optimization of Structures). 

In 2009, Barakat & Altoubat (2009) studied the cost optimization of conical reinforced concrete water 

tanks. To that end, three evolutionary techniques were selected, including a shuffled complex evolution 

(SCE), a SA, and a GA. In order to describe the problem geometrically, a global cylindrical coordinate 

system was proposed. Thanks to axisymmetric shape, the problem was described independently of the ro-

tational angle. The analyzing process was handled using the finite element method. Six design variables 

including the thickness of the wall at the base and the top of the tank, the thickness of the base, the depth 

of the tank, the angle made by the inner wall surface with the axis of symmetry, and the concrete compres-

sive strength were proposed for describing the model. The utilized constraints for model qualification were 

applied to the design procedure was based on ACI requirements. Two methods of design, namely, working-

stress design and ultimate strength design, were utilized. Numerical simulations were conducted to examine 

the effects of different optimization methods, the design methods, reinforcing bar size, water tank wall 

inclination, and material unit cost. The superiority of the SCE algorithm was indicated through several 

numerical case studies.  

Luh & Lin (2009) utilized an ACO algorithm for structural topology optimization. To this end, a given 

continuum structure was discretized into several small square elements. For each element, two choices of 

either presence or absence were available for the material. The objective function was defined as the stiff-

ness-to-weight ratio, where stiffness was inverse of topology’s maximum displacement. The constraints 

were defined based on allowable stress. A cantilever plate was designed using the proposed methodology 

under four different loading cases where a downward point load was affected by different locations of the 

plate. In 2011, Luh, Lin, & Lin (2011) applied a binary PSO (BPSO) algorithm to the same problem and 

using the same strategy as Luh & Lin (2009). The obtained results were compared to the one recorded by 

ACO that indicated the better performance of BPSO in dealing with ACO.  

In 2012, Muc & Muc-Wierzgoń (2012) utilized the ES algorithm for topology optimization of multi-

layered idealized thin cylindrical shell structures. It was assumed that every given structure was constituted 

by stacking sequences of the individual layers in the laminate with prescribed fiber orientation. Therefore, 

in addition to the mentioned features for describing a trial structure’s model, a finite number of key points 

on a curve for characterizing the external boundary of the structure were defined as the design variables. 

Two numerical examples were discussed in this study to assess the efficiency of the proposed method as 



follows: 1- stacking sequence optimization subjected to buckling and the First-Ply-Failure constraints, and 

2- optimization of laminate configuration and shell thickness.  

Kaveh & Ahangaran (2012) explored the discrete optimization of composite floor systems using social 

harmony search (SHS) algorithms. The objective function was defined as the total cost of the floor based 

on the costs of concrete, steel I beam, and shear studs. Six design variables were proposed to describe the 

trial models, namely, concrete compressive strength, concrete slab thickness, steel section shape, steel beam 

spacing, shear stud diameter, and the number of shear studs for one beam. The analyzing procedure was 

based on AISC-LRFD specifications and plastic design concepts. In this way, several constraints were ap-

plied to the design procedure based on flexural strength constraints, deflection constraints, shear, and spac-

ing constraints. Numerical simulations were conducted for one span floor constructed with and without 

shores. The obtained results using the proposed algorithm states its more efficiency compared with ACO, 

HS, IHS, and highly reliable harmony search (HRHS) algorithms. 

In 2013, Kociecki & Adeli (2013) explored the weight minimization of free-form steel space-frame roof 

structures using a two-phase GA. In this study, a discrete optimization was conducted using hollow struc-

tural sections (HSS). The design procedure was based on the AISC-LRFD code and ASCE-10 for dead, 

snow, wind, and seismic loading. The main objective was weight minimization of the structure as a function 

of the wall thickness of members in the roof, the wall thickness of members in the column group, width, 

height, and thickness of the roof and column members. Two free-form steel space-frame roof structures 

were resolved using the proposed methodology: (i) 224 ft (68.27 m) long, 75 ft (22.86 m) wide, and 27 ft 

(8.23 m) tall, with 278 structural members in the roof plus ten inclined columns, and (ii) 203 ft (61.874 m) 

long, 67 ft (20.422 m) wide, and 55 ft (16.764 m) tall, with 306 roof members and 34 inclined columns.  

Kamyab Moghadas, Garakani, & Kalantarzadeh (2013) employed a FA for minimum weight design of 

double-layer scallop domes for static loading considering linear and non-linear behaviors. Nonlinear opti-

mization dealt with geometrical nonlinearity effects. The analysis of every trial structure was conducted 

using ANSYS (2006) commercial software. AISC-ASD was selected to define the constraints based on the 

displacement of the joints and the stress of the members' limitations. Three case studies were presented and 

solved using the proposed procedure as three double-layer scallop domes with 6, 8, and 10 segments. The 

results indicated that the final design of the nonlinear structure was significantly less than that of the linear 

one. Nonlinear analysis reached to the final solution in a smaller number of generations than that linear. 

Increasing number of segments was resulted in decreasing the weight of linear and nonlinear structures.  

Finotto, da Silva, Valášek, & Štemberk (2013) optimized topology and size of cabled-truss structures 

using a hybrid fuzzy-genetic system. The cross-sectional areas of the members and pre-stress levels in the 



cables were considered as the design variables to deal with sizing optimization. Topology optimization was 

concern about the distribution of the elements. The applied constraints to the design procedure were related 

to allowable stress and displacement. A nonlinear finite element approach was considered for structural 

analysis. 10-element and 15-element ground structures were resolved using the proposed methodology. The 

obtained results were compared to the truss structures with the same topology and bar elements. Cabled-

trusses were found to be a significantly improved alternative for bar-trusses in terms of minimal weights. 

Amini & Ghaderi (2013) developed a hybrid optimization algorithm for optimal locating the structural 

dampers. Three different structures were tackled using the proposed methodology. The first case was a 

shear building with 16 stories subjected to El-Centro ground acceleration. The main objective was finding 

the best configuration of Magneto-Rheological (MR) dampers within six floors of a 16-story defined as 

minimizing the maximum shear base over the period of ground acceleration. In the second case, the optimal 

layout of eight viscous dampers was found for a two-dimensional truss structure. The objective function 

was defined as the minimization of the maximum infinity-norm of the displacement vector at the time t. A 

planar 3-span 10-story braced frame was selected as the third case study. In this case, the objective function 

was defined as minimizing the maximum shear forces in the columns of the ground floor over the period 

of ground acceleration.  

In 2014, Sharafi, Hadi, & Teh (2014) considered an ACO algorithm for topology and layout optimization 

of reinforced concrete beams for dynamic responses. In this way, the final cost was determined based on 

the costs of concrete, longitudinal steel, shear steel, and formwork. Flexure, shear, and displacement of a 

multi-span continuous beam constituted by assembling numbers of uniform Euler-Bernoulli beam segments 

were evaluated based on its dynamic response to a time-dependent external force. The proposed concept 

was applied to a beam under two loading cases as 1- static uniformly distributed load (UDL), and 2- a 

moving point load along the beam. Bertagnoli, Giordano, & Mancini (2014) studied reinforcements’ direc-

tions optimization in concrete shells using a GA. The finite element analysis was considered during the 

design procedure. In this way, a reinforced concrete shell was described by a sandwich element with two 

external layers and one internal layer. The objective function of this study was the minimization of steel 

reinforcement volume. The obtained results proved the effectiveness of the proposed method in handling 

the tackled problem.  

Sadollah, Eskandar, & Kim (2014) utilized an MBA algorithm for geometry optimization of a cylindrical 

fin heat sink. To that end, the minimization of three different responses of electromagnetic emitted radia-

tions, thermal resistance, and mass of the heat sink was defined as the main objectives. The design variables 

were the width of the heat sink, number of fins, fin height, and fin diameter. In addition to handling every 

objective independently, an additional objective function was defined as an error function as a weighted 



combination of the three aforementioned objectives. A benchmark problem was selected for numerical 

simulations and compared to the previous efforts (i.e., GA, Taguchi-based gray relational analysis, epsilon 

constraint method, Taguchi-based epsilon constraint method). The superiority of the MBA was proved 

based on its more optimal results. A parameter sensitivity analysis was also conducted to determine the 

effect of each variable on the objective values, while all the other parameters were kept fixed.  

Gholizadeh & Shahrezaei (2015) utilized the BA algorithm for optimal placement of steel plate shear 

walls. Flexural and axial forces in the beams and columns as well as tension in the web plate were calculated 

using the finite element method through ANSYS software. The orthotropic membrane model proposed in 

AISC was used to distribute the forces between the wall members. Two different frame structures were 

subject to size optimization as a three-bay, five-story, and a three-bay, 10-story steel frame. Those structures 

were subjected to a uniform distributed gravity load and earthquake concentrated loads. The optimization 

procedure was conducted based on fixed shear walls layouts and compared with an optimized configuration 

of the walls. The total weight of the structure was minimized subject to strength and displacement con-

straints defined based upon AIS-LRFD specifications. The proposed methodology for optimizing the layout 

of shear walls resulted in a considerable decrease in final designs rather than a fixed layout. Furthermore, 

a comparison of the results with GA and PSO demonstrated the superiority of BA in handling the tackled 

problem. 

In 2016, Kaveh, Talaei, & Nasrollahi (2016) tackled the problem of large-span prestressed concrete slabs 

optimization using a probabilistic PSO (PPSO) algorithm. A probabilistic approach was incorporated into 

the velocity updating rules of the original PSO. The objective function was defined as the final cost as a 

result of the cost of concrete and tendon. Every trial model was developed using the following design var-

iables: the thickness of the slab, number of tendons in X-direction, number of tendons in Y-direction, the 

diameter of tendons in the X-direction, the diameter of tendons in Y-direction, tendon eccentricity at one 

end of the slab, tendon eccentricity at the other end of the slab, tendon eccentricity at the middle of the slab, 

the allowable tensile stress of tendons. The effective constraints to reach a valid design are defined based 

on Canadian standard association (CSA) requirements, including stress in concrete, the stress in tendons, 

ultimate bending moment, minimum factored resistance, punching shear, and maximum/minimum eccen-

tricity. SAP2000 was utilized to handle the analyzing procedure. The efficiency of PPSO was examined by 

considering a prestressed concrete slab and compared to the PSO and HS algorithms. Moreover, a sensitiv-

ity analysis was conducted on two probability terms in the PPSO algorithm to find their best configurations.  

Kaveh, Maniat, & Arab Naeini (2016) tackled the cost optimization of post-tensioned concrete bridges 

using an MCBO algorithm. The objective function was defined as the final cost minimization of the bridge 



superstructure as a result of material and construction costs of concrete, prestressing steel, reinforcement, 

and formwork. Seventeen following design variables were defined to describe the model: concrete strength, 

girder depth, top slab thickness, bottom slab thickness, web thickness, length of cantilever, end thickness 

of cantilever, initial thickness of cantilever, length of haunch, width of haunch, number of strands per ten-

don, number of tendons in each web, number of anchorages in each row, lowest anchorage position, pre-

stressing force, top slab reinforcement ratio, and cantilever slab reinforcement ratio. The applied constraints 

to the design procedure were determined in accordance with AASHTO (2002) standard regulations as fol-

lows: 1- flexural working stress, 2- allowable stress in prestressing steel, 3- ultimate flexural strength, 4- 

ductility, 5- ultimate shear strength, 6- deflection, 7- slabs design, and 8- cantilever slab deflection. A typ-

ical prestressed box girder bridge was resolved using the proposed methodology and compared with the 

results of PSO and CBO. The effect of different parameters on the final cost variations was examined 

through a sensitivity analysis. 

In 2017, Toklu, Bekdaş, & Temur (2017) utilized an HS algorithm for analyzing cable structures through 

energy minimization. In this way, a structural system was found to be in an equilibrium state only if the 

total potential energy is minimum. Total potential energy was defined as a function of nodal displacements 

in all three dimensions for every free node. Six numerical cases were analyzed using the proposed method-

ology as follows: 1- Flat cable net 1×1, 2- Flat cable net 2×1, 3- Flat cable net 2×2, 4- Hyperbolic paraboloid 

net, 5- Spatial cable network, and 6- Dual cable. The proposed optimization algorithm outperformed other 

previous methods. Pedro, Demarche, Miguel, & Lopez (2017) developed a two-stage optimization approach 

for the optimum design of steel-concrete composite I-girder bridges. In the first step, a simplified structural 

model developed by a designer was selected as the starting point for global optimization. The utilized al-

gorithm at this stage was BSA, FA, GA, ICA, and SGA. The second step was devoted to refining the 

solution from the first step through a local search using an SGA combined with a finite element method to 

reach the global optimal solution. In this study the main objective was total cost of bridge as a function of 

four groups of design variables: 1- Geometric values, 2- Material characteristics, 3- Reinforcement, and 4- 

The number of the beams used in the bridge. Structural constraints were defined based on the AASHTOO 

(2002) standard recommendations for reinforcement, shear stress, and maximum deflection in the slab, 

allowable stress and maximum deflection in the girders, and shear connector, support stiffener, transversal 

stiffener, longitudinal stiffener, and diaphragm of accessories. Based on the results, it was stated that the 

structural cost was decreased by 7.43% in the first step and up to 9.17% at the end of the optimization 

procedure.  

Talaei, Nasrollahi, & Ghayekhloo (2017) utilized a hybrid PSO and HS algorithm, so-called PSOHS, 

for optimum cost design of prestressed concrete slabs. The objective function was defined as the final cost 



of structure as a result of concrete and tendons costs. The design variables for describing a trial model were 

the slab’s thickness, the number of tendons in the x-direction, the number of tendons in the y-direction, the 

diameter of tendons in the x-direction, the diameter of tendons in the y-direction, the tendon eccentricity at 

one end of the slab, the tendon eccentricity at the other end of the slab, the tendon eccentricity at the middle 

of the slab, and the allowable tensile stress of tendons. Canadian standard association requirements were 

considered to form the following applied constraints to the design procedure: 1- stress in concrete, 2- stress 

in concrete, 3- stress in tendons, 4- ultimate bending moment, 5- minimum factored resistance, 6- punching 

shear, and 7- maximum/minimum eccentricity. The SAP2000 software was utilized to analyze the struc-

tures. The proposed modified algorithm was compared to the original PSO by solving a large-scale slab. 

The results indicated that the PSOHS was better than the original PSO due to slightly better solutions and 

being less sensitive to the hyperparameters setting.  

Kaveh & Ghazaan (2018) tackled the weight optimization of large-scale dome structures subject to nat-

ural frequency constraints using a hybrid meta-heuristic algorithm. This hybrid approach, named MDVC-

UVPS method, combined the vibrating particles system (VPS), multi-design variable configuration (Multi-

DVC) cascade optimization, and an upper bound strategy (UBS). Four numerical case studies were selected 

to evaluate the effectiveness of the proposed algorithm as follows: 120-bar dome truss, 600-bar single layer 

dome truss, 1180-bar dome truss, and 1410-bar double-layer dome truss. The final results were compared 

with DPSO, ECBO, ECBO with cascade optimization, and VPS. The results revealed that MDVC-UVPS 

outperformed other mentioned algorithms in handling this tackled problem. 

In 2018, Kaveh & Mahjoubi (2018) employed a lion pride optimization algorithm (LPOA) to handle the 

optimum weight design of double-layer barrel vaults. The design procedure was formed based on AISC-

ASD regulations for stress, slenderness, and displacement. The efficiency of the LPOA was examined 

through a comparison with PSO, CS, and ABC algorithms in handling three large-scale benchmark optimi-

zation problems. Moreover, the final results were compared with previous findings using a wide variety of 

methods, such as GA, ACO, HS, BB-BC, MBB-BC, MCSS, IMCSS, ADS, CBO, and ECBO algorithms 

as well as engineering designs. Seo, Kim, & Kwon (2018) utilized an ACO algorithm to find the optimal 

number and locations of seismically retrofitted RC columns for a school building. Nonlinear time history 

analysis coupled with finite element method was conducted using LS-DYNA commercial software for seis-

mic structural analysis. Glass fiber-reinforced polymer (GFRP) was utilized for retrofitting the columns. 

The objective function was defined in a way that minimized the total number of retrofitted columns as a 

function of retrofitted columns distribution. The design procedure was governed by several constraints for 

allowable strains of retrofitted and non-retrofitted column members and inter-story displacement. Model 

evaluation was triggered for a three-story RC structure consisting of 62 columns on each floor, which was 



designed originally for non-seismic loading. The optimization procedure proposed retrofitting 60.2% of the 

columns would help to endure peak ground acceleration of 0.2g.  

Kaveh & Rezaei (2018) considered the problem of shape and size optimization of domes using the 

ECBO algorithm. In this way, geometrically nonlinear analysis of large-scale double-layer domes and sus-

pend-domes with rigid and pinned connections were conducted during the volume minimization procedure. 

The design variables for describing the tackled problems were the length of the strut, the cable initial strain, 

the cross-sectional areas of the cables and steel elements, and the height of domes. Stress, the slenderness 

of the elements, and nodal displacements were the applied constraint to the optimization procedure based 

on AISC-LRFD. Two numerical case studies were explored as follows: 1- Lamella suspend-dome with pin-

jointed and rigid-jointed connections, and 2- double-layer Lamella domes. 

In 2019, Kaveh & Ghafari (2019) applied nine optimization algorithms to size and shape optimization 

of steel pitched roof frames with tapered fabricated members. In this study, the total weight of the structure 

was related to seven design variables that determined flange width and thickness as well as web height and 

thickness at three sections of the frame. Beams and columns were tapered I-shaped members fabricated by 

steel plates. A finite element method that considered P-∆ effects was selected to handle the analyzing pro-

cedure using SAP2000 software. Nine following metaheuristic algorithms were examined through two nu-

merical case studies, including CBO, GWO, HS, ABC, ECBO, IWO, PSO, SAO, and WOA. Seven load 

combinations were applied to the structures resulted from dead, live, earthquake, wind, snow, and roof live 

loads. Strength design criteria and allowable vertical and horizontal displacements were assigned to the 

constraints, according to AISC360-10 (2010) and AISC341-10 (2010). A sensitivity analysis was also con-

ducted over the variation of different roof angles, height, and tapered length ratios.  

Kaveh & Javadi (2019) explored the efficiency of chaos-based FA for minimum weight design of large-

scale braced steel domes subject to natural frequency constraints. Two chaotic maps (Logistic and Gaussian 

maps) were substituted for attractiveness and light absorption coefficients to improve the FA’s performance 

by decreasing its randomness. Three numerical simulations were solved using those proposed algorithms 

as follows: (i) fifty-two-bar dome truss, (ii) 600-bar single-layer dome, and (iii) 1410-bar double layer dome 

truss. Those two chaotic FAs (CLFA and CGFA) compared to other previous optimization algorithms (i.e., 

PSO, DPSO, FA, CPA, ReDE, HRPSO, AHEFA, ANDE, ECBO-Cascade, BB-BC, HS, and CPA) to ex-

amine their effectiveness. 

5. CONCLUSION 



This study presents a comprehensive survey on the application of metaheuristic algorithms to optimiza-

tion problems in civil and structural engineering Reliability, and probabilistic based optimization research 

are not considered in this review. Moreover, only the journal papers published in the Scopus and ISI indexed 

journals have been included in this work. The selected structural optimization papers are categorized into 

three main subfields as truss optimization, frame optimization, and miscellaneous applications. In all the 

problems, optimization algorithms have been utilized to find the optimal design and minimize some meas-

ure of cost (such as the amount of material, operational cost, labor cost, or environmental impact). Based 

on the reviewed papers, truss design typically is focused on size, shape, or topology optimization, either 

considered independently or simultaneously. Frame optimization is focused on determining the optimal 

size of each element in the structure. There are a few studies that focused on the topology optimization of 

braces in frames. The miscellaneous optimization category includes the optimum design of steel, concrete, 

and composite structures. In all the structural optimization problems, several constraints were applied to 

the design procedure to provide adequate strength, stability, and serviceability.  

As a whole, the number of publications on civil engineering optimization has increased over the last few 

decades, with the majority of the research focused on problems in structural and geotechnical engineering. 

In most cases, the design and analysis of these systems must satisfy guidelines and specifications defined 

by local building codes. It can be seen that in the initial studies, much simpler cases with a lot of simplifi-

cations were studied. In early studies, only limited or simplified conditions from building codes were in-

corporated into design procedures. However, in the course of time, as more robust state-of-art algorithms 

were developed, studies included more complex cases with more realistic, code-based constraints. Trends 

in current research have focused on updating benchmark problems, applying new algorithms, and improv-

ing computational efficiencies through different strategies such as applying various constraint handling 

approaches and strengthening the local and global searches by hybridization. 

In general, most studies used basic statistical measures, including minimum, maximum, mean, median, 

and standard deviation when evaluating the performance of algorithms. In some cases, convergence rate 

history and diversity metric were utilized as additional features to measure the efficiency of some algo-

rithms. All of these indicators are used to measure the robustness and computational efficiency of optimi-

zation algorithms.  

One characteristic of real-world problems from the engineering perspective is that most projects have 

several different conflicting goals. It is vitally important to reach a balance and trade-off between different 

objectives to develop the best possible design. These problems could be addressed through bi- and multi-

objective optimization.  



Based on the work presented in this review, the following are research areas that may be addressed in 

future studies to close existing gaps:  

(1) Developing benchmark problems that incorporating realistic conditions and limitations 

from building codes and consider any concerns of practising engineers  

(2) Automating the design of large-scale structures that currently available in the literature  

(3) Find the best possible formulation of an engineering problem to be optimized more effec-

tively. One example could be using a semi-independent variable, introduced in Gandomi, Deb, 

Averill, Rahnamayan, & Omidvar (2019).   

(4) Embedding engineering knowledge into population-based algorithms in order to narrow 

down the search space and boosting the optimization process. 

(5) Informing constraint handling methods with engineering and domain knowledge to handle 

mechanical and geometrical constraints more efficiently.  

(6) Since finding a feasible solution could be challenging in engineering practice, adopting 

engineering problems with constraint handling to more efficiently searching the feasible solution 

would be very beneficial (Gandomi & Deb, 2020) 

(7) Application of hybridization methods that are very efficient in boosting the performance 

of optimization algorithms for certain categories of problems 

(8) Development of more sophisticated metrics for optimization algorithm performance 

(9) Continuing work on bi- and multi-objective optimization problems that provide more real-

world designs. 
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