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Abstract 

3D bioprinting technology has emerged as a tool that promises to revolutionize the biomedical field, 
including tissue engineering and regeneration. Despite major technological advancements, several 
challenges remain to be solved before 3D bioprinted tissues could be fully translated from the bench to 
the bedside. As oxygen plays a key role in aerobic metabolism, which allows energy production in the 
mitochondria; as a consequence, the lack of tissue oxygenation is one of the main limitations of current 
bioprinted tissues and organs. In order to improve tissue oxygenation, recent approaches have been 
established for a broad range of clinical applications, with some already applied using 3D bioprinting 
technologies. Among them, the incorporation of photosynthetic microorganisms, such as microalgae and 
cyanobacteria, is a promising approach that has been recently explored to generate chimerical plant-
animal tissues where, upon light exposure, oxygen can be produced and released in a localized and 
controlled manner. This review will briefly summarize the state-of-the-art approaches to improve tissue 
oxygenation, as well as studies describing the use of photosynthetic microorganisms in 3D bioprinting 
technologies.  

1. Introduction 

3D bioprinting technology has emerged over the past 15 years as a cutting-edge approach to generate 
advanced bioengineered tissues and organs containing cells and hydrogels with pathophysiological 
features close to their in vivo counterparts [1–4]. For optimal cell survival and function, hydrogel 
compositions have been optimized to mimic the extracellular environment characteristic of the human 
body [3]. Bioprinted tissues are generated by formulating bioinks that are deposited within a 3D structure 
through the use of a 3D bioprinter to approximate the distribution and organization of cells found in the 
body [1,5–7]. A mixture of hydrogel and either cells in suspension (or as preformed microtissues) are 
extruded through the nozzle of a bioprinter in this process [8]. Hydrogel printability, durability, together 
with cell viability and function are commonly identified as key aspects for optimal bioprinting of tissues 
[9,10]. Due to their ability to integrate growth factors and cells within localized structures, 3D bioprinted 
tissues have been employed for both in vitro and in vivo applications. 3D printed tissues are currently 
studied for their potential use in organ transplantation, drug testing and disease modelling, including 
personalized approaches using patient-derived cells [11]. 
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Despite the recent advances in 3D bioprinting technologies, a major challenge is the engineering of the 
complex pathophysiology typical of tissues and organs, including the generation of a system for the 
delivery of appropriate oxygen concentrations to cells [1,12,13]. For instance, hypoxia-driven cell death 
within 3D tissues thicker than 100-200 μm in diameter compromises viability and functionality of the 
constructs as it also limits waste removal [6,14], while high oxygen concentrations (hyperoxia), leads to 
the production of reactive oxygen species (ROS), which are primarily responsible for apoptosis via 
cytochrome c [15] and reactive nitrogen specie (RNS) production [16]. Although low levels of ROS are 
required for tissue homeostasis, ROS concentrations are increased under hyperoxic conditions to toxic 
levels that promote oxidative tissue damage and inflammation [17]. Therefore, considerations around 
optimal oxygen delivery for 3D bioprinting technologies are critical for the engineering of tissues and 
organs.  

In this context, several approaches to provide oxygen within 3D bioprinted tissues have been 
explored. For instance, several studies have attempted to promote the formation of a 
physiological vascular network for optimal cell viability and function [5,9,18], as proper blood 
vessel formation in tissues is critical to allow cells to adapt to pathophysiological stimuli [9,19–
21]. The relevance of a properly functional vascular network within 3D bioprinted tissues is 
proportional to the thickness of the bioengineered structure [22–24], and it is predicted that pre-
vascularization of bioengineered tissues will facilitate their ability to maintain high viability and 
function while mimicking pathophysiological features typical of the in vivo tissue 
microenvironment. Major approaches to promote vascularization in bioengineered tissues 
include the use of growth factors [25], endothelial cells [26], and the development of microfluidics 
devices to mimic blood flow dynamics [27,28]. More recently, pre-vascularization in 3D organoids 
and/or bioprinted tissues has been demonstrated [10,29]. For instance, human cardiac spheroids 
generated from cardiac myocytes, endothelial cells, and fibroblasts have been employed as in 
vitro models for human heart pathophysiology and for the biofabrication of 3D bioprinted human 
heart tissues to regenerate damaged myocardium when used in bioinks containing 
alginate/gelatin hydrogels [30–32]. The presence of a hierarchical endothelial cell network within 
a cardiac spheroid has prevented the development of cell death in the center of the tissue, which 
correlates with improved viability and contractile function [2]. However, most approaches to date 
failed at fully recapitulating the required morphological, biochemical, cellular and extracellular 
features of the human vasculature. These include the typical hierarchical vascular network 
presenting small, medium and big caliber vessels, as well as cell-cell interactions favoured by in 
vivo cell ratios, the use of cells that have been cultured in vitro and their limitations, the absence 
of a functional lumen, multilayered endothelium versus monolayer endothelium found in vivo, 
followed by limited recapitulation of the extracellular matrix typical of blood vessels. 

On the other hand, the use of photosynthetic microorganisms as an alternative approach for the 
controlled and continuous delivery of oxygen into tissues has gained increasing interest in the 
last decade [33,34]. This approach has been validated in several in vitro and in vivo hypoxia-
related models, such as wound healing and cancer therapies [35]. Moreover, a recently 
published clinical trial has shown for the first time the safety of implanting microalgae in human 
patients for the effective treatment of full thickness skin wounds [36]. Altogether, because of their 
biocompatibility and photosynthetic activity, these organisms offer a promising platform to 
overcome hypoxia in biomedical applications. 

In this review article, first we will provide insights around how oxygen delivery has been promoted via 
either direct or indirect oxygen release, highlighting typical features of each approach and their potential 
limitations for bioengineered tissue (section 2). Then, we will focus on the existing studies describing the 
use of photosynthetic microorganisms that have been used to improve tissue oxygenation (section 3) and 
how they have been combined with bioinks and cells for 3D bioprinting technologies (sections 4 and 5). 
Finally, we will provide insights around current challenges, future directions and potential approaches to 
develop oxygen-producing tissue constructs and their potential impact for direct translation from the 
bench to the bedside (section 6). 

2. Oxygen in 3D printed tissues and current approaches for its delivery 
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Considerations around mechanisms regulating oxygen homeostasis are critical for the bioengineering of 
bioprinted tissues to maintain and grow cells in 3D [26,37]. One of the major challenges is the hypoxic 
microenvironment commonly present at the center of 3D bioprinted structures, which is controlled by 
oxygen diffusion through the tissue, limiting cell viability in any tissue thicker than 200 μm [37,38]. Oxygen 
concentrations within tissues and organs play several major roles during development, homeostasis as 
well as under pathological conditions [14,24]. These include cell metabolism and function, as well as 
vascular network formation and wound healing processes via oxygen-dependent signaling pathways [39]. 
Moreover, during embryonic development oxygen concentrations change in response to tissue-specific 
stimuli, which may differ within the same tissue under homeostatic conditions [40]. Therefore, 
considerations around mechanisms regulating oxygen homeostasis and a thorough understanding of 
optimal oxygen concentrations during tissue formation are critical for the bioengineering of tissues and 
organs, regardless of their application [26,37]. 

From the molecular point of view, hypoxic conditions trigger hypoxia-inducible factor (HIF) activation of 
genes regulating cell viability and function, such as hypoxia-responsive element (HRE). HIF is a 
heterodimeric transcription factor, consisting of an oxygen-dependent α-subunit (HIF-1α, HIF-2α and HIF-
3α) and a constitutively expressed β-subunit [41]. At low oxygen concentrations (0.5-2%), HIF enables 
ATP production and inhibition of oxidative phosphorylation [41]. In an ischemic tissue, sustained depletion 
of ATP triggers cell death and necrosis [42]. Besides regulating apoptosis, HIF regulates gene expression 
controlling angiogenesis, erythropoiesis, extracellular matrix formation, cell proliferation, glycolysis and 
metabolism [41,43]. Under hypoxic conditions, HRE activates vascular endothelial growth factor (VEGF) 
signaling pathway via HIF-1α and HIF-1β [44]. A tight control of oxygen concentrations through the 
abovementioned molecular pathways is critical for optimal survival and growth of cells within 3D 
bioprinted tissues. 

In an attempt to control oxygen concentrations within tissues and to enhance oxygen transportation 
through biomaterials, three major approaches were identified: i) direct oxygen delivery, ii) oxygen carrying 
materials and iii) oxygen generating materials (Table 1).  

Hyperbaric oxygen therapy (HBO2) has been extensively explored for direct oxygen delivery. This 
approach has been used clinically and also in an attempt to increase cellular oxygen concentration within 
engineered structures for several applications, such as wound healing and bone grafting [16,37,45–47]. 
Uncontrolled oxygen delivery via HBO2 limits its use for tissue engineering purposes, together with the 
fact that does not allow for the self-renew of oxygen production and cannot be used to target a specific 
site [37]. Moreover, the use of HBO2 has been associated with pulmonary damage [16] and ROS-induced 
cytotoxicity driven by high oxygen concentrations achieved with this method, therefore alternative 
approaches to better control tissue oxygenation are required [48].  

Another approach for the regulation of intracellular oxygen concentrations is based on the use of oxygen 
carrying materials, such as perfluorocarbons (PFCs) and hemoglobin-based oxygen carriers (HbOCs) 
[49–54]. Thanks to their biocompatibility, PFCs-supplemented culture media have shown promising 
results in terms of tissue growth, cell viability and proliferation [55–58]. For this reason, they have been 
used for tissue engineering purposes for bone [59,60], hepatic [61,62], pancreatic [63] and neural tissues 
[64,65]. However, the addition of PFCs to alginate hydrogels decreases their structural stability, which is 
associated with poor cell function [37]. To address this challenge, addition of surfactants has been 
explored [66], together with the development of hydrogels functionalized with PFCs [64,67,68] and with 
fluorinated zeolite microparticles [69]. While PFC emulsions containing surfactants have a negative effect 
on cell viability, PFC microparticles can be safely used as they are not cytotoxic [37]. Although PFCs-
containing biomaterials present higher oxygen diffusion rates compared to HbOCs in vivo, they are not 
able to support cellular oxygen demand longer than eight days in normoxia and three days in hypoxia, 
with a peak within the first 24 hours after cell seeding [37]. The use of HbOCs in vivo have shown to 
promote vascularization within three weeks [37,38]. However, despite these promising results, it use for 
clinical applications is limited by the development of oxidative stress-related side effects on blood 
pressure, pancreas, liver, kidney and brain [37,49]. 

A third approach to increase oxygen concentrations is based on peroxide-containing biomaterials, such 
as inorganic peroxide. These include calcium peroxide (CPO), sodium percarbonate (SPO), magnesium 
peroxides and liquid peroxides. Peroxide-containing biomaterials have been used in association with 
polycaprolactone (PCL) nanofibers, poly(lactic-co-glycolic acid) (PLGA) microsphere shell [70,71], 
polydimethylsiloxane (PDMS), as well as polyvinylpyrrolidone-hydrogen peroxide (PVP/H2O2) 
[26,37,38]. On the contrary to PFCs, peroxide-containing biomaterials can produce oxygen via the 
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decomposition of hydrogen peroxide without the need for an external source of oxygen. However, their 
sustained oxygen release can cause cytotoxic ROS production, but this does not seem to alter the 
structural integrity of bioengineered tissues [26,37,38].  

Given the limitations typical of the abovementioned approaches, photosynthetic microorganisms have 
recently emerged as an alternative, offering an advanced strategy to control local oxygen concentrations. 
The unique ability of photosynthetic microorganisms to hydrolyze water for a sustainable oxygen supply 
for biomedical applications will be described in the following section. 

 
3. Photosynthetic microorganisms used for biomedical applications 

Some animals have evolved mechanisms to incorporate photosynthetic cells in their body [33,72]. In 
these endosymbiotic relationships, photosynthetic microorganisms feed on inorganic compounds from 
the host to produce organic carbon metabolites through photosynthesis, which enables animals to survive 
for several months in the absence of food. Additionally, photosynthetic oxygen produced by the symbiont 
(microalgae) allows the host to be independent from an external oxygen supply. For example, marine 
mollusks such as the sea slug Elysia chlorotica, feed on the algae Vaucheria litorea and incorporate its 
chloroplasts in the epithelial cells of their digestive system, right beneath the epidermis. This way, these 
sea slugs are then able to capture light energy for oxygen production and autotrophic carbon dioxide 
fixation. As a result, the sea slug is able to sustain itself for at least eight months when provided with only 
light and a source of carbon dioxide [73–75]. Marine cnidarians have also evolved endosymbiotic 
behaviors in nature. A well-known example is Hydra viridissima, which incorporates a microalgae called 
Chlorella sp., acquiring tolerance to starvation [76]. This symbiotic relationship has been also observed 
and described in vertebrate animals: the salamander Ambystoma maculatum stably incorporated the alga 
Oophila amblystomatis inside its embryos, to increase oxygen in egg capsules and enhance embryonic 
growth and development [77–79]. 

As previously described, oxygen starvation in tissues triggers cell death, which represents a major issue 
in several medical and biomedical areas, including tissue engineering [38]. Based on the existing 
symbiotic relationships mentioned above, the use of photosynthetic organisms to overcome hypoxia in 
thick tissues by locally increasing oxygen tension has been proposed over the last decades, and applied 
to numerous medical fields such as organ transplantation, heart ischemia and wound healing [33,80]. 

Organs used for transplantation are typically deprived of oxygen, which leads to tissue damage, limiting 
its preservation time and clinical success [81]. As described above, the use of artificial oxygen carriers 
such as hemoglobin-based PFCs has been widely investigated; however, their stability and toxicity in 
humans is still an ongoing issue [82]. Alternatively, the use of photosynthetic microorganisms that can 
constantly and controllably deliver oxygen to harvested organs has been proposed by several groups 
[33,38]. Pancreatic islet transplantation has been used to replace and restore β-cell function in diabetic 
patients [83]. However, their vascular isolation when subjected to transplantation results in severe 
ischemia, hypoxia and dysfunction. To overcome this issue, co-encapsulated murine pancreatic islets 
with the microalgae Chlorella sorokiniana have been successfully achieved [84]. Upon illumination, islets 
increased insulin response to glucose, which was not observed in the control groups, supporting the 
importance of oxygen availability for optimal organ function. In another work, Yamaoka et al. [85], studied 
the preservation of harvested rat pancreatic tissues using a suspension of microalgae Chlorella vulgaris, 
which upon illumination delivered oxygen to the organ through a gas permeable pouch. In this study, only 
rats transplanted with photosynthetically-assisted organs survived for over a week, while other animals 
transplanted with traditional cold-preserved pancreas died within a few hours. Moreover, the first 
generation of perfusable photosynthetic solutions for organ preservation has been recently described, 
showing intravascular distribution in isolated pig kidneys, and supporting the metabolic oxygen 
requirements of zebrafish larvae and rat kidney slices [86]. In addition, recently published works 
described the ability of photosynthetic microorganisms to sustain brain functionality by either transcardial 
injection of tadpoles [87], or in isolated rat brain slices in suspension [88]. 

Photosynthetic microorganisms have also been recently used as oxygen-generating systems to decrease 
tumor hypoxia in mice, enhancing radiotherapy efficacy in the treatment of cancer. Photosynthetic cells 
such as C. vulgaris have been used for this therapeutic approach, and coated with erythrocyte membrane 
[89] or calcium phosphate [90] to form immunocompatible biomimetic systems. Coated C. vulgaris were 
delivered to the tumor site in mice and illuminated with red light to induce photosynthesis. Their 
photosynthesis increased local oxygen levels, which in combination with radiotherapy, effectively 
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prevented tumor growth in vivo. Another group combined C. vulgaris with a high-oxygen-solubility 
medium containing PFCs, to enrich oxygen concentration around the photosensitizer. With this approach, 
the photodynamic therapy was greatly increased both in vitro and in vivo [91]. Photodynamic therapy has 
also been proved to be successful in vivo with other photosynthetic organisms, such as cyanobacteria 
Synechococcus elongatus in combination with two-dimensional black phosphorus nanosheets [92] or 
photosynthetic bacteria (not specified strain) [93]. Moreover, this same cyanobacteria strain was recently 
used to create a biohybrid microorganism-based sonosensitizer in order to augment the therapeutic 
efficiency of sonodynamic tumor therapy, approach that was validated both in vitro and in vivo [94]. 

Photosynthetic therapies have also shown their potential in cardiac applications [80]. Cyanobacteria S. 
elongatus has been evaluated to protect the myocardium from acute ischemia through photosynthesis 
[95]. Intramyocardial injection of S. elongatus in ischemic hearts of immunocompetent rats was performed 
either under light exposure or in the dark. A control group received saline alone. Animals treated with S. 
elongatus under light exposure presented a nearly 25-fold increase in oxygenation levels after cardiac 
ischemia, rescuing the myocardium from acute ischemia. In an effort to generate a symbiotic relationship 
between cardiac mammalian cells and microalgae in in vitro conditions,  bioengineered 3D cardiac tissues 
have been created [96]. In this study, a symbiotic construct composed of rat cardiomyocytes and 
Chlorococcum littorale promoted oxygen delivery to mammalian cells, while these released metabolites 
and waste products which were reused by algae. This led to the generation of cardiac tissues of 
approximately 160 μm thickness.   

The incorporation of photosynthetic cells in 3D scaffolds has also been described in the field of tissue 
engineering and regeneration. Aiming to provide oxygen to the surrounding cells or tissues, 
photosynthetic biomaterials were first introduced by Hopfner et al. [97], who seeded microalgae 
Chlamydomona reinhardtii into commercially available collagen scaffolds, and demonstrated the ability 
to decrease tissue hypoxia by local photosynthesis in vitro. The same group went one step further and 
applied this novel approach to an in vivo model, by implanting photosynthetic scaffolds in athymic nude 
mice [98]. After illumination of the implanted scaffolds for up to five days to promote photosynthesis and 
therefore oxygen production, the defect area was highly vascularized. Moreover, these photosynthetic 
microorganisms have been demonstrated to be safe in vitro [97] and in immune competent murine models 
in vivo [99]. This approach was also used for the treatment of chronic diabetic wounds in vivo [100], where 
a patch containing S. elongatus cyanobacteria encapsulated in alginate beads was implanted in chronic 
diabetic mice wounds. Upon red light irradiation, oxygen penetration in wounds was much more efficient 
than commonly used topical gaseous oxygen treatment, which promoted wound healing and 
angiogenesis without triggering any inflammatory response in mice. Finally, Obaid et al. [36], have 
recently shown that the implantations of photosynthetic biomaterials, containing large numbers of 
microalga C. reinhardtii, is safe for human patients, allowing tissue regeneration in full-thickness skin 
wounds. 

In order to release recombinant bioactive molecules in addition to oxygen, genetic modification of 
photosynthetic microorganisms such as cyanobacteria and microalgae have been also investigated and 
described for tissue engineering purposes [33]. When transgenic microalgae C. reinhardtii were seeded 
in collagen scaffolds, they were used to release oxygen and recombinant human vascular endothelial 
growth factor (VEGF) in vitro and in vivo [99]. More recently, in an effort to use photosynthetic 
microorganisms to promote lymphangiogenesis, the same research group used genetically engineered 
Synechococcus sp. to produce hyaluronic acid, aiming to create lymphangiogenic photosynthetic 
scaffolds for dermal regeneration in vitro under hypoxic conditions [101]. In the same line, Centeno-
Cerdas et al. [39], developed photosynthetic sutures with genetically modified microalgae C. reinhardtii 
for the potential local delivery of oxygen and human VEGF, b-FGF and SDF-1α in wounds after surgical 
closure. 

As described above, the concept of promoting oxygen delivery through the induction of a local symbiotic 
relationship with photosynthetic microorganisms represents a promising approach that could be applied 
in several medical fields, including the generation of complex 3D bioprinted tissue constructs.  

4. Methods for the bioprinting of 3D photosynthetic microorganisms 

3D bioprinting techniques are mainly classified in extrusion-based, inkjet-based, stereolithography and 
laser-assisted printing [102]. While inkjet and laser-assisted printing offer very high resolution, these 
methods have speed limitations and are less explored compared to extrusion-based bioprinting. 
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Stereolithography-based techniques require large volumes and therefore high cell numbers to achieve 
the desired cell density, and is furthermore only compatible with photo-crosslinkable materials. In 
extrusion-based printing, cells within bioinks are subject to mechanical stress. One of the major 
advantages of extrusion-based bioprinting is the ability to print at high cell densities, with shear thinning 
polymers preferred to protect cell viability during the extrusion process. Moreover, this technique is 
compatible with a wide range of materials, crosslinking methods, and allows the adaptation of different 
parameters, such as needle diameter, extrusion rate or temperature, depending on the mechanical 
properties of the bioink [103]. Not surprisingly, extrusion-based method has been more widely explored 
for the 3D bioprinting of photosynthetic materials. In the last decade, an increasing number of studies 
have focused on the 3D bioprinting of materials by combining extrudable bioinks and a wide range of 
photosynthetic microorganisms, including: i) microalgae, such as C. reinhardtii [23,104–106], Platymonas 
sp. [107], Chlorella sorokiniana [105,108], Symbiodinium sp. Marinichlorella kaistiae KAS60 [109], C. 
vulgaris [110], and Chlorella pyrenoidosa [111]; ii) cyanobacteria species, such as Synechocystis sp. 
[112]; or even plant cells, such as Ocimum basilicum [113] (Table 2). Because these photosynthetic 
microorganisms and cells require illumination for optimal light-stimulated photosynthesis, the bioinks used 
in these studies correspond to transparent materials, including alginate [23,104–107,111–113], gelatin 
[23,109,111] or agarose [113] among others. 

Moreover, depending on the material as well as the application, diverse nozzle sizes have been used 
(from 0.25 mm [105] to 3 mm [108]), as well as different pressures (from 0.8 bar [104] to 8 bar [108]) and 
printing speeds (from 1.5 mm/s [110] to 70 mm/s [23]). The preferred technique for the polymerization of 
the photosynthetic bioinks has been immersion in a crosslinking solution of calcium chloride (CaCl2), in 
order to minimize cell damage (see Table 2). The use of UV light (365 nm) has also been described by a 
couple of groups [23,111], however, only one of these studies assessed the effect of UV exposure on cell 
viability [23]. In this case, an alginate bioink containing microalgae was crosslinked by immersion in 
CaCl2, which was further embedded in gelatin methacryloyl (GelMA) and exposed to UV light for 
polymerization. The effect of the UV light on cell viability was assessed by applying different UV intensities 
for 40 seconds and further characterizing cell growth and chlorophyll content. Their results indicated that 
UV light used did not have adverse effects on cells, which could be explained by the fact that microalgae 
were protected within the alginate and the short exposure time. Another study combining a GelMA 
structure and a microalgae-containing bioink developed a photopolymerization system using 405 nm blue 
light to avoid UV damage to the algae [109], and, interestingly added yellow food colouring to limit the 
penetration of 405 nm light into the bioink.  

 
5. Photosynthetic materials for 3D bioprinting and their in vitro, in vivo and other non-

biomedical applications  

The concept of “green bioprinting” was introduced for the first time by Krujatz et al. [105]. In this study, 
growth and viability of C. reinhardtii and C. sorokiniana were evaluated in 3D printed alginate structures 
in order to study the optimal culture conditions for immobilized microalgae, showing that cell viability was 
directly influenced by length of exposure to light. Additionally, immobilized microalgae within the 3D 
scaffolds presented the highest viability and most stable metabolic activity compared to suspension 
cultures, even under non optimal temperatures [105]. Further, using a two-channel plotting method, the 
same research group went one step further and bioprinted and co-cultured alginate scaffolds containing 
C. reinhardtii and human sarcoma cells, showing viability of both cell types for 24 hours [104]. This study 
represented a substantial step in the bioprinting of symbiotic tissues, where the coculture of 
photosynthetic cells with human cells could potentially enable a controlled delivery of oxygen without the 
need of external supply in a single 3D structure.  

Based on this work and on the already mentioned study described by Haraguchi et al. [22], where thicker 
3D constructs could be fabricated by combining mammalian cells and microalgae, Maharjan et al. [23], 
described the 3D fabrication of perfusable vascularized tissue constructs using C. reinhardtii. In this work, 
microalgae were used as a sustainable bionic oxygen generator to enhance the function of bioengineered 
tissue constructs in vitro [23] (Figure 2). Microalgae were encapsulated in a temporary cellulose-based 
bioink with predesigned geometries, which after printing were embedded in a GelMA-based hydrogel 
construct harbouring hepatic cells. Photosynthesis of the microalgae significantly improved the viability 
and functionality of human cells, while also reducing hypoxia-driven response, as measured by the 
expression of HIF-1α. Taking the study one step further, microalgae in cellulose constructs were then 
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enzymatically dissolved to create interconnected microchannels, which were subsequently 
endothelialized, generating biologically relevant vascularized tissues. This study describes the 
development of a temporary bioink containing photosynthetic microorganisms to allow oxygenation of 3D 
constructs, which after enzymatic degradation formed a vascularized construct, representing an 
unprecedented progress in the successful 3D bioengineering of viable and functional tissues [23]. 

Recently, a study described the in situ 3D bioprinting of photosynthetic material for the treatment of 
wounds [143]. Microalgae-laden hollow fibers were created by combining an outer bioink phase with an 
inner CaCl2 phase. The bioink consisted of GelMA and alginate containing microalgae C. pyrenoidosa. 
Alginate crosslinked in the extrusion process, and GelMA polymerization was subsequently induced by 
UV irradiation. This construct allowed microalgae growth for at least seven days, and reduced cell hypoxia 
and accelerated wound closure in vitro. Moreover, these photosynthetic materials were 3D bioprinted in 
situ in a diabetic wound mouse model, in order to study the in vivo wound healing potential. Constructs 
were illuminated for only two hours every three days, during 15 days total, and compared to control groups 
including non-illumination of the material. An increase in angiogenesis, collagen synthesis and wound 
closure was observed 15 days after the application when compared to the control groups. As 
photosynthetic cells produce oxygen under illumination, but consume it in the dark, further discussion 
could be done to explain how dark conditions did not result in a wound healing impairment considering 
hypoxia being one of its main causes, at least compared to the control group without photosynthetic cells.   

Besides tissue engineering applications, other studies have described the 3D bioprinting of 
photosynthetic constructs for environmental or industrial applications [109, 112, 113]. However, all of 
these studies are highlighted in this section because they may have great importance in the translation 
of 3D bioprinting of photosynthetic materials, as they unlock technical details such printing parameters, 
materials and crosslinking methods which are biocompatible with photosynthetic microorganisms. 

In terms of industrial applications, 3D bioprinting of symbiotic photosynthetic relationships was 
implemented to fabricate bionic coral tissues, describing an optimized photon augmentation system to 
enhance microalgal light absorption and growth, which could have important implications for bioenergy 
production, as well as other metabolic bioproducts [109]. For the fabrication of these constructs, 
photopolymerizable gelatin-methacrylate hydrogel, cellulose derived nanocrystals and microalgae 
Symbiodinium sp. were used, while parameters such as printability, cell survival and optical performance 
were optimized to support cell growth and photosynthetic activity. This research group was able to mimic 
both functional and structural parameters of the coral-algae symbiosis, and demonstrated that reached 
microalgae densities were significantly higher in the coral structures than in standard liquid growth culture. 
Another study demonstrated the fabrication of plant-cell laden hydrogel construct, a concept that had not 
been previously described. Here, isolated basil cells were embedded and extruded in a hydrogel blend 
composed of alginate, agarose and methylcellulose, presenting high viability and metabolic activity after 
extrusion and crosslinking [113]. Generation of bioenergy or sustainable energy has been described by 
Liu et al. [112], where a biological photovoltaic device was created by 3D printing a biofilm of 
Synechocystis sp over a layer of heterotrophic bacteria. Cyanobacteria were encapsulated in an alginate 
hydrogel and further crosslinked by immersion in CaCl2. This device was able to continuously generate 
electricity from the symbiosis of both microorganisms: heterotrophic bacterial respiration supplied by the 
cyanobacterial photosynthesis was used for power generation.  

To date, most of the published studies around 3D printed photosynthetic microorganisms have reported 
their viability and durability for at most one month. In the line of environmental applications, Zhao et al. 
[107] designed a silk protein-based hydrogel for long-term hosting of living microalgae. In this work they 
were able to observe photosynthetic activity by means of oxygen measurements for at least 90 days, 
demonstrating the stability and long-term functionality of the construct, proposing potential environmental 
applications. Moreover, a study recently described the use of extruded algae-laden hydrogels for large 
scale environmental applications including bioremediation [108]. Eight different alginate-based hydrogel 
samples with varying polymers and water percentages containing C. sorokiniana were pneumatically 
extruded and characterized. Rheology studies were performed to establish material printability and 
compatibility for large scale printing, and viability of microalgae were studied in all hydrogel sets for up to 
21 days. In another work, a cost-effective bioprinting approach for the fabrication of a resilient 
photosynthetic living material was described [106]. Alginate hydrogels containing C. reinhardtii were 
bioprinted onto a cellulose substrate, which conferred mechanical robustness against physical distortion. 
The photosynthetic cells were able to grow for at least four weeks within the material, with potential 
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applications such as for the generation of artificial leaves, bio-garments, or adhesive labels [106]. 
Similarly, another study has also used microalgae C. vulgaris to create eco-friendly 3D printing ink that 
was processable under ambient conditions in the form of an emulsion [110]. 

Altogether, several studies have recently shown the feasibility of bioprinting photosynthetic 
microorganisms for different applications. However, there are still several important challenges to 
overcome before the implementation of this concept as a successful approach in 3D bioprinted tissues. 

 
6. Challenges and perspectives 

 

The term holobiont means “whole unit of life”, which addresses the concept that the host and its 
associated microorganisms exist as an integral unit, where both contribute to its final phenotype [114]. A 
similar concept could be explored to develop alternative strategies towards the biofabrication of functional 
tissues, integrating photosynthetic microorganisms and human cells. In this context, a better 
understanding of the already established photosynthetic capabilities in symbiotic animals could help to 
address this challenge, especially in issues concerning biocompatibility, as well as molecular strategies 
to further reach a state of metabolic coupling. Amongst the vast array of holobionts, corals may represent 
an excellent research model, as they are well studied, highly diverse, and rather simple compared to 
other symbiotic animals [115]. Moreover, corals form a close association with a wide range of diverse 
microorganisms, including photosynthetic microalgae. This species-specific relationship suggests the 
existence of recognition and tolerance mechanisms, as well as an already optimized microenvironment 
that could potentially be mimicked and implemented for 3D bioprinting approaches, hence supporting 
photosynthesis together with cell growth and function of the host.  

As shown in Table 2, only few photosynthetic species have been described for 3D printed biomedical 
approaches. Therefore, a critical challenge in this field is the need to explore the immense biodiversity 
that is present among cyanobacteriae and microalgae, to ensure the best possible fit for the optimal 
conditions to build and grow different 3D bioprinted constructs, which varies depending on the tissue of 
choice and their applications. It is also important to consider that having a functional vasculature not only 
serves to provide oxygen and nutrients to tissues, but also removes metabolic waste and other toxic 
molecules, which is critical in a 3D bioprinted construct [2,14]. Thus, another important challenge in this 
field is to generate alternative strategies where metabolic byproducts could be metabolized by each other. 
In fact, the most plausible of these metabolic couplings may be related to the accumulation of carbon 
dioxide released as byproduct of the mitochondrial respiration, which could be removed from the tissue 
microenvironment by its reduction in the Calvin cycle that is present in photosynthetic organisms. 

As indicated by its name, photons are the energy that power the photosynthetic machinery, as 
consequence, the development of photosynthetic therapies requires the establishment of alternative and 
reliable illumination technologies to optimize the wavelength, powering, and heat release from the 
illumination source. In the context of 3D printing, the design of transparent biocompatible inks is a crucial 
issue to allow light penetration into the printed construct. Interestingly, some commonly used biomaterials 
already fulfill this important requirement. For instance, alginate is a widely used transparent and 
biocompatible hydrogel, and has been already explored to print photosynthetic microorganisms 
[104,105]. Similarly, collagen and gelatin also allows light penetration, being widely used for 3D 
bioprinting applications and have been modified for the generation of photoactivated polymers [116]. In 
particular, both ColMA and GelMa have been used to 3D bioprint tissue using light activation [135]. This 
is based on the use of photoactivated polymers (e.g., ColMA, GelMA, PEGDA) together with 
photoinitiatiors (e.g., Irgacure and LAP) which use either a 350 (UV light) or a 405 (blue light) nm light 
source. However, exposure to an additional light source for the activation of photosynthetic cells may 
interfere with the photoactivation of bioinks containing GelMA and ColMa hydrogels, which would require 
additional optimization of protocols used. UV light can potentially decrease cell viability, whereas 405 
blue light source could be used, but it does activate the photosynthesis, which may require further 
considerations in case a temporal and localized oxygen delivery is required. Therefore, before its clinical 
success, the development of novel illumination devices and the optimization of transparent printable 
materials are required.  

Overall, the use of photosynthetic microorganisms presents the unique opportunity to better control 
oxygen delivery, similar to the tight regulation occurring in embryonic development. Throughout the 
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review article we highlighted three major ways to do this via the use of photosynthetic microorganisms: i) 
by controling the light conditions/exposure; ii) by distributing within bioprinted tissues somatic cells and 
algae according to a specific desired pattern; iii) by developing and using GMOs that promote oxygen 
delivery on demand.  

Within the illumination context, as most human cells are located in dark areas within the body, there is a 
chance that a potential phototoxic effect would arise as a side effect of the established illumination 
protocols. This would require more research to better understand how dark-living human cells could 
handle intense illumination settings for photosynthetic stimulation. In contrast, it is clear that 
photosynthetic organisms are equipped with several molecular tools for ROS protection. In fact, it is well 
described that enzymatic and non-enzymatic mechanisms allow plants to handle extreme oxidative loads, 
especially under high illumination conditions [117], which is something that could be mimicked, induced 
or implemented for dark-living cells but, in case it is needed, the optimal photo-protective mechanisms 
required for bioprinted tissues remain to be identified.  

On the other hand, the required light access for algae within internal tissues remains a  
challenge. Although photosynthetic microorganisms cultivated in photobioreactors represent a 
promising approach to generating bio-based products, excessive cell density prevents light 
access within dense cell suspensions decreasing biomass production. Thus, genetic mutations 
of microalgae to minimise light absorption have shown encouraging results [33]. 

As previously described in this review, the use of gene modified photosynthetic cells represent a 
promising approach to promote regeneration and tissue formation. For instance, in addition to oxygen, 
genetically modified microorganisms could release other bioactive molecules in a local and controlled 
manner, representing several advantages compared to other similar approaches. The use of bioactive 
molecules has several drawbacks including short half-life of the molecules in situ, difficulties for local 
delivery, especially in the absence of vascular supply, and potentially high costs for massive 
implementation. Gene modified human cells could also provide such fresh bioactive molecules in situ. 
However, despite important advances in gene therapy, several issues need to be addressed before its 
therapeutic implementation [118], most of them also relevant issue to be solved in the context of 
photosynthetic therapies.  

As summarized in Figure 1, some of the challenges described above should be considered as  potential 
advantages compared to current oxygen delivering materials, providing a biocompatible platform for the 
controlled and localised oxygen production and recombinant bioactive molecules release. Hence, having 
a potential impact on the bioengineering of advanced in vitro models, where the lack of appropriate 
oxygenation represents a major drawback [5]. In addition, by overcoming the limit in oxygen diffusion in 
the middle of tissue constructs [9], photosynthetic bio-printing could contribute by generating larger 
tissues for transplantation and promote survival in vivo after transplantation. However, such highly 
relevant issue has not yet been described and remain to be elucidated in further research.  

Other critical considerations should focus on challenges for the clinical translation of green bioprinting to 
from the bench to the bedside. Among them, considerations around regulatory bodies (e.g., FDA, EU, 
etc.,) are crucial, as the implantation of microalgae and cyanobacteria as potential therapeutic agents 
have not been fully validated yet. Due to the novelty of this concept, there is a lack of existing clinical data 
describing potential long term effects of this approach, including triggering certain allergic reactions or 
even the transfer of novel pathogens. However, it is predicted that following preclinical and clinical 
validations,  green bioprinting might represent an opportunity for clinical application. To date, there are 
first reports about the first transplantation of photosynthetic cells in patients [36]. Additional considerations 
are required in case of using of genetically modified photosynthetic microorganisms, which may help to 
further control the oxygen delivery and additional bioactive recombinant proteins or peptides in situ 
required for the specific application.  

Finally, it is important to highlight that a key challenge for the future success of bioprinting approaches 
using photosynthetic cells will fully rely on our ability to foster interdisciplinary knowledge, bringing 
together different fields of knowledge with the common goal to establish human photosynthesis as a 
novel therapeutic approach for tissue engineering and regeneration, as well as for other 
physiopathological conditions where the lack of appropriate oxygenation plays a fundamental role.  
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