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Abstract: In this paper, the discrete element method is used to simulate triaxial tests of unsaturated
soil under a tension–shear state. A relationship between water content and uniaxial tensile strength
with different void ratios is obtained, which is applied to uniaxial tensile discrete element simulations
to establish a relationship between grain-scale parameters and water content from back analysis.
A group of triaxial simulations for unsaturated soil under a tension–shear state is then conducted.
The discrete element method is used to obtain the relationship between deviatoric stress and axial
displacement with different water contents, and also to reveal the effects of water content on peak
strength and dilatancy phenomena with different confining pressures. The displacement fields
of numerical specimen are analyzed qualitatively, and the mechanism and process of failure are
discussed from the prospective of energy and dissipation.

Keywords: unsaturated soil; discrete element method; triaxial tensile–shear; tensile–shear strength

1. Introduction

Soil is a collection of various mineral particles. Generally speaking, the tensile strength
of soil is weak, but unsaturated soil has the ability to bear a certain tensile load. The
cracks in the core wall of earth dams and the uneven settlement of foundations are related
to the tensile failure of soil. Therefore, it is urgent to study the mechanical property of
unsaturated soil under a tension state for these problems. In the past, many scholars have
studied the tensile strength of soil [1–12]. In practical engineering, the failure of soil is
not only caused by tensile load, but also by the interaction of tension and shear. From
the microscopic point of view, the tensile strength of unsaturated soil is affected by the
indirect contact angle of particles, particle spacing, particle size, and so on. Therefore, it is
of great significance to study the tensile–shear failure of unsaturated soil to improve the
basic theory of unsaturated soil.

Compared with saturated soil, the existence of a gas phase leads to the complexity of
mechanical properties for unsaturated soil. Alonso et al. [13] established the first constitu-
tive model of unsaturated soil, i.e., the Barcelona basic model (BBM). Subsequently, in order
to accurately describe the coupling relationship between mechanics and water retention
behaviors of unsaturated soil, many scholars (e.g., Wheeler et al. [14], Gallipoli et al. [15],
Li [16], Sun et al. [17]) have proposed a series of elastoplastic coupled constitutive models.
With the development of computer technology, it has become a trend to study geotechnical
engineering by numerical methods. Many scholars have developed finite element pro-
grams to solve unsaturated soil problems, such as LAGAMINE [18], CODE-BRIGHT [19],
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THYMER3D [20], and U-DYSAC2 [21]. These studies pay more attention to the macro-
mechanical behavior of unsaturated soil.

The influence of microstructure on the properties of geotechnical materials is signifi-
cant. The discrete element numerical simulation technology was developed by Cundall [22]
and Cundall and Strack [23] for dry granular materials. For the discrete element simula-
tion of geotechnical materials, the determinations of the contact constitutive model and
relevant micro parameters are significant [24–36]. The discrete element method can be
used to study the rotation of particles, the arrangement of particles, the tangential contact
force between particles and particle breakage, and the mechanical behavior of geotechnical
materials [37,38].

In the field of unsaturated soil, the formulas of effective stress and shear strength
have been studied [39]. The multiphase particle system of unsaturated soil leads to its
complicated failure characteristics. Laboratory experiments and numerical simulations are
usually used to study the mechanical properties of geotechnical materials. In the aspect of
laboratory experiments, most of the existing uniaxial tensile experiments adopt the stress-
controlled loading mode; therefore, it is impossible to determine the softening stage of the
stress–strain curve. The triaxial tensile test instrument is usually refitted on the existing
conventional triaxial apparatus, whose axial connection stiffness is small. Therefore, it is
difficult to measure the whole tensile stress–strain curve. As a result, it is difficult to carry
out triaxial tension–shear tests of unsaturated soil by means of laboratory experiment.

According to the existing research results, when clay is dried, its macroscopic perfor-
mance is volume shrinkage, and tensile stress is generated inside the soil. When the tensile
stress exceeds the tensile strength, the soil is damaged and displays macroscopic cracks.
Moreover, during the drying process, the suction increases with the decreasing of water
content, and the mechanical properties of soil also change [40]. Therefore, considering the
tensile strength of unsaturated soil is very important to study the cracking behavior of soil.

The discrete element method can not only generate the specified sample according
to relevant conditions to ensure the reproducibility of the sample, but can also change the
boundary conditions and the shape of the sample, so as to realize the numerical test with
different loading modes. A recent study by Konrad et al. [41] showed that the discrete
element method has some advantages in simulating the large deformation and failure of
materials. Therefore, some scholars began to use the particle discrete element method
to simulate the soil shrinkage cracking. El Youssoufi et al. [42] established a discrete
element model of expanding and contracting particles, and simulated the phenomenon
of cracking for cemented granular materials. Peron et al. [43] used a two-dimensional
discrete element model to simulate the vertical cracking of long strip fine-grained soil, and
analyzed the influences of boundary conditions and water content distribution gradient
on the number and spacing of cracks. Based on the aggregate structure, Sima et al. [44]
preliminarily established a three-dimensional discrete element model for the shrinkage
of clay, considering the change of soil properties with water content, and simulated the
expansion process of surface cracks.

Therefore, based on the basic principle of the discrete element method, this paper
calibrates micro parameters, establishes a triaxial tension–shear model, carries out a triaxial
tensile–shear simulation of unsaturated soil with different confining pressures and water
contents, and analyzes the tensile–shear failure characteristics of unsaturated soil from the
microscopic point of view.

2. Selection of the Grain-Scale Contact Model

During numerical simulations by the discrete element method (DEM), a linear elastic
contact model is adopted. In other words, a specimen is composed of a series of elastic
elements (i.e., spheres) obeying Newton’s second law. Two elements are connected with
each other by a breakable spring, and forces appear at the contact point between adjacent
elements. The relationships between forces and displacements of the contact model in the
normal and tangential directions are shown in Figure 1.
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direction.

The normal force between elements, i.e., Fn, is defined by

Fn = Kn · Xn (1)

where Kn is the spring normal stiffness and Xn is the normal relative displacement. The
tensile force exists when elements are connected to each other. When Xn exceeds the
fracture displacement Xb, the connection is broken. Therefore, the maximum normal force
between elements Fnmax is

Fnmax = Kn · Xb (2)

When the connection is broken, the tensile normal force between elements no longer
exists. When the two elements return to the compressive contact state, the compressive
normal force is rebuilt:

Fn = Kn · Xn, Xn < 0 (3)

Additionally, the shear force Fs is also considered in the linear elastic contact model.
When two elements contact and slide against each other, the sliding friction force opposite
to the sliding direction is generated. The two elements are connected by a breakable spring
in the tangent direction, and the tangential spring force Fs is defined by

Fs = Ks · Xs (4)

where Ks is the shear stiffness and Xs is the tangential relative displacement. For a complete
element connection, the maximum shear force Fsmax is determined by the Coulomb criterion:

Fsmax = Fs0 − µp · Fn (5)

where Fs0 is the shear resistance in the tangential direction between elements, µp is the
friction coefficient between elements, and Fn is the normal force (compressive force is
negative). When an external force exceeds the maximum shear force Fsmax, the tangent
connection between elements is broken, and the shear resistance Fs0 disappears. In this
case, the tangential force Fs is less than or equal to the maximum shear force Fsmax, which is
defined by

Fsmax = −µp · Fn, when the connection is broken (6)
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In the case of connection fracture, elements slide when the external force exceeds
the maximum shear force Fsmax. When the two elements are separated from each other
(Xn > 0), the normal force and the tangential force between elements are zero.

3. Back Analysis of Grain-Scale Parameters
3.1. Determining Grain-Scale Parameters by Complex Uniaxial Tensile Test Simulation

MatDEM is a general discrete element software for geotechnical materials developed
by Nanjing University. Based on the MATLAB calculation method, it adopts the innovative
GPU matrix algorithm to realize the discrete element simulation of millions of particles.
Its calculating number of units and efficiency are more than dozens of times that of other
commercial software. On the basis of reaching the standard of hardware, it can complete
the large-scale three-dimensional discrete element numerical simulation in a few hours.
The software can realize the automatic modeling of discrete element materials and the
calculation of energy conservation for discrete element systems. The software integrates
pre-processing, calculation, post-processing, and powerful secondary development, pro-
vides a perfect function interface and efficient calculation engine, and completes complex
multi-field coupling simulation through secondary development. MatDEM 1.32 version is
adopted for this research.

For the convenience of discussion, hereafter the laboratory uniaxial tensile test is
called a complex uniaxial tensile test. There are two groups of parameters in MatDEM, i.e.,
material parameters and grain-scale contact parameters. The material parameters include
Young’s modulus (E)/GPa, Poisson’s ratio (ν), tensile strength (Tu)/MPa, compressive
strength (Cu)/MPa, and internal friction coefficient (µi). The tensile strength Tu refers to
the tensile force when connections are broken, which is different from the complex uniaxial
tensile strength. The grain-scale contact parameters include normal stiffness (Kn)/(MN/m),
tangential stiffness (Ks)/(MN/m), failure displacement (Xb), shear strength (Fs0)/N, and the
friction coefficient (µp). There is a clear relationship between the two groups of parameters
in MatDEM.

The water content is a key influencing factor for the tensile strength of unsaturated
soil. During a drying path, both the tensile stress and the tensile strength increase. When
the tensile stress exceeds the tensile strength, the soil is damaged and the cracks occur.
A relationship between tensile strength and water content could be obtained by compre-
hensive comparison between the results of complex uniaxial tensile tests and numerical
simulation tests. Capillary cementation is a kind of apparent cohesion, which is the same as
the cohesion contributing to the tensile strength Tu. Therefore, a relationship between water
content and microscopic tensile strength should be established according to simulations of
triaxial tests for unsaturated soils.

3.2. Impact Analysis of Material Parameters on the Discrete Element Simulation
3.2.1. Creating a MatDEM Model for the Complex Uniaxial Tensile Test

A numerical model was generated according to the complex uniaxial tensile test
of clay, and particles were also generated according to the particle size distribution and
the maximum dry density of clay used in the laboratory test. It is difficult to generate a
sample with a given void ratio due to particle equilibrium iterative cycles and compaction
processes by the discrete element software. Only the average radius of particles (BallR) and
the radius ratio of the maximum particle to the minimum particle (the distriRate parameter
in the software represents the particle diameter dispersion coefficient, and the ratio of the
maximum radius to the minimum radius is (1 + rate)2) are controlled. Considering that
particle grading and void ratio affect the mechanical behavior of soil, the discrete element
particle samples with specified particle grading and void ratio were generated by the Monte
Carlo method.

The laboratory complex uniaxial tensile experimental apparatus consists of two sym-
metrical wedges (80 mm long and 10 mm thick). In order to make the specimen fail in
the gap between the wedge-shaped molds, the neck width reduces from 40 to 20 mm in
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the middle part. One wedge is clamped to the press plate of the testing machine, and the
other wedge is connected with the end crossbeam through the load sensor. The numerical
wedges are generated by a filter and residual strength function, and the sample is generated
inside the wedges. The specific wedges and numerical model are shown in Figure 2.
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Figure 2. Schematic diagram of simulation model: (a) numerical wedges and (b) complex uniaxial
tensile numerical model.

3.2.2. Loading Mode of the Numerical Model and the Calculation Rule of Tensile Strength

For a numerical tensile test, the loading plate moves outward with a constant displace-
ment rate of 0.5 mm/min. During the test, the axial load and displacement are obtained
continuously. The tensile stress σt is

σt = T/S (7)

where T is the axial tensile load and S is the cross-sectional area (20 × 10 mm2). The peak
tensile strength is the maximum tensile stress. The two wedges move in the opposite
direction until a continuous failure surface is formed. The average value of contact stress
along the tensile direction of two wedges at the failure state is taken as the tensile strength
of the specimen. The tensile failure surface is shown in Figure 3.
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3.2.3. Influences of Material Parameters on the Complex Uniaxial Tensile Strength

Material parameters affect the properties of geotechnical materials by the discrete
element method. Back analysis and a calibration method were used to determine the micro
material parameters by complex uniaxial tensile strength.

• Impact analysis of the tensile strength on the complex uniaxial tensile strength

If a tetrahedral element is used to study the mechanical properties of the model,
the element is composed of four identical particles. As the force and displacement are
very small, the analytical solution of tetrahedron deformation can be obtained. With the
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increasing of the tensile force (Fz) acting on the element, the relative displacement Xn1 of
the top particles increases. When Xn1 > Xb, the connection between particles breaks. If
Xn1 = Xb, the element tensile strength (Tu) is obtained:

Tu =
6
√

2Kn(Kn + Ks)

3Kn + Ks
· Xb

d2 (8)

According to the tensile strength expression of the tetrahedral element composed of
four elements, the tensile strength Tu is related to the spring normal stiffness Kn, tangential
stiffness Ks, and the critical fracture displacement Xb. The values of the material parameters
are shown in Table 1.

Table 1. Material parameters.

Average
Particle Radius

rave/m

Particle Diameter
Dispersion
Coefficient

Rate

Specific
Gravity

Gs

Young’s
Modulus

E/MPa

Poisson’s
Ratio

ν

Compressive
Strength
Cu/kPa

Internal Friction
Coefficient of

Material
µi

0.002 0.6 2.73 20 0.3 20 0.4

Through a large number of numerical tests with different tensile strengths Tu, it was
found that the critical fracture displacements Xb obtained by automatic material training
are different, and they also have a great influence on the tensile failure displacement of the
complex uniaxial tensile simulation. As a result, the complex uniaxial tensile strength of
the specimen increases with the increasing of tensile strength Tu. The simulation results are
shown in Table 2 and Figure 4.

Table 2. Complex uniaxial tensile strength with different tensile strengths Tu.

Variable Value

Tensile strength Tu/kPa 0.1 0.2 0.5 1 2 4 6 8

Tensile failure displacement /mm 0.230 0.306 0.349 0.470 0.449 0.570 0.669 0.749

Complex uniaxial tensile strength /kPa 8.081 13.872 18.182 26.263 33.401 48.754 62.896 77.979
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The mechanical properties of the model were also studied by the tetrahedral elements.
The vertical compression and lateral expansion of an element are generated by tensile force
Fz. When the relative displacement of the bottom particles exceeds the limit deformation
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(Xn2 > Xb), the horizontal connection breaks. Cu is the stress value in the vertical direction
when the connection is broken horizontally, which is obtained by

Cu =
6
√

2Kn(Kn + Ks)

Kn − Ks
· Xb

d2 (9)

By fixing the tensile strength Tu, it is found that Cu affects the simulation results, and
affects the spring normal and tangential stiffnesses.

• Impact analysis of Young’s modulus on the complex uniaxial tensile strength

The numerical simulation results by Boutt and Mcpherson [45] and Ergenzinger et al. [46]
showed that the Young’s modulus increases with the increasing of particle stiffness. The
complex uniaxial tensile numerical simulation was carried out by changing only the Young’s
modulus (i.e., 1.1 × 107, 2 × 107, 3 × 107, 4 × 107, 5 × 107, and 6 × 107 Pa). Figure 5 shows
the tensile stress–displacement curve with different Young’s moduli. It is shown that with
the increasing of the Young’s modulus, the tensile displacement decreases.

• Impact analysis of Poisson’s ratio on the complex uniaxial tensile strength
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Poisson’s ratio ν increases with the decreasing of the ratio of tangential stiffness to
normal stiffness. In the linear elastic model, Poisson’s ratio ν can be calculated by

ν = − εxx

εzz
=

Kn − Ks

5Kn + Ks
=

1− γ

5 + γ
(10)

where γ is the ratio of shear stiffness to normal stiffness. Equation (10) shows that ν
decreases with the increasing of γ. When γ > 1, the negative Poisson’s ratio material
can be obtained. The complex uniaxial tensile numerical simulation was carried out by
changing only the Poisson’s ratio (i.e., 0.35, 0.2, and 0.15). Figure 6 shows the tensile
stress–displacement curve with different Poisson’s ratios. The effect of Poisson’s ratio on
the grain-scale parameters of particles is not significant.

3.3. Relationship between Water Content and the Complex Uniaxial Tensile Strength of
Unsaturated Clay

Thirty-two tensile strength tests by Tang et al. [10] were simulated. The clay, which
was medium plastic clay, was from Nanjing, and the physical properties are shown in
Table 3. The specific gravity was 2.73, the proportion of sand, silt, and clay was 2:76:22, and
the elastic modulus was between 4 and 18 MPa. The initial dry densities were 1.5, 1.6, and
1.7 g/cm3, respectively, and the corresponding initial void ratios were 0.820, 0.706, and
0.606, respectively.
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Figure 6. Impact analysis of Poisson’s ratio on complex uniaxial tensile strength.

Table 3. Physical properties of clay.

Soil
Properties

Specific
Gravity

Consistency Limit
USCS

Classification

Compaction Characteristics Particle Size Analysis

Liquid
Limit
(%)

Plastic
Limit
(%)

Plasticity
Index
(%)

Optimum
Water

Content (%)

Maximum
Dry Density

(g/cm3)

Sand
(%)

Silt
(%)

Clay
(%)

Value 2.73 37 20 17 CL 16.5 1.7 2 76 22

The complex uniaxial tensile test results are shown in Figure 7. For a given dry density,
the uniaxial tensile strength σt significantly depends on the water content w. With the
increasing of w, σt increases rapidly, and reaches the maximum value at the critical water
content wc, corresponding to the peak value of uniaxial tensile strength. When the water
content exceeds a certain value, the change of σt is very small with the further increasing of
water content.
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The experimental results with different initial void ratios were fitted by a second-order
function.

(1) Dry side (0 < w < 11.5%)
σt = Ad + Bd · w + Cd · w2 (11)

where σt is the uniaxial tensile strength, w is the water content, and Ad, Bd, and Cd are
coefficients related to the initial void ratio under dry side. The values of Ad, Bd, and
Cd for specimens with different initial void ratios are shown in Table 4.

(2) Wet side (11.5% < w < 35%)

σt = Aw + Bw · w + Cw · w2 (12)
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where Aw, Bw, and Cw are coefficients under wet side. The values of Aw, Bw, and Cw
for specimens with different initial void ratios are shown in Table 5.

Table 4. Fitting parameters for dry side.

Initial Void Ratio e Ad Bd Cd Determination Factor

0.820 −3.14821 3.88897 −0.08224 0.99546

0.706 −12.37397 8.52281 −0.22218 0.98924

0.606 −29.40861 18.88517 −0.81092 0.99389

Table 5. Fitting parameters for wet side.

Initial Void Ratio e Aw Bw Cw Determination Factor

0.820 55.8452 −2.40208 0.03514 0.9753

0.706 132.56575 −8.20754 0.15516 0.9791

0.606 184.43806 −11.7487 0.24232 0.99729

3.4. Relation between the Tensile Strength Tu and Complex Uniaxial Tensile Strength σt

Based on the analysis results of the complex uniaxial tensile strength, it can be con-
cluded that the influence of tensile strength Tu on the complex tensile strength σt is signifi-
cant. Therefore, a series of numerical tests with different tensile strengths Tu was carried
out. The numerical simulation of complex uniaxial tensile strength can be divided into
three steps: (1) creating samples with the same particle size distribution as the laboratory
experiment; (2) cutting the model, giving the material parameters, and balancing the model;
and (3) applying the strain-controlled load by the user-defined function, and outputting
the calculation results.

Based on the Monte Carlo method and the secondary development function of Mat-
DEM, three groups of discrete element particle samples were generated with initial void
ratios of 0.820, 0.706, and 0.606, respectively. The percentages of sand, silt, and clay for
all of three groups were 2%, 76%, and 22%, respectively. If numerical particle sizes are
the same as the real ones, millions of particles will be generated in this model. Therefore,
considering the hardware limit, the radiuses of particles were uniformly reduced by a
certain multiple. The average radius of the sample particles (BallR) was 5 × 10−4 m, the
particle diameter dispersion coefficient (rate) was between 0 and 0.8, the minimum particle
radius was 1.25 × 10−4 m, the maximum particle radius was 7.31 × 10−4 m, and the total
number of particles was 65,139. The information of discrete element samples with specific
initial void ratios is shown in Table 6.

Table 6. Numerical samples with specific initial void ratios.

Initial Dry Density g/cm3 Particle Size Analysis
%

Initial Void Ratio
e

Total Number of
Particles

1.5
Laboratory test Sand/Silt/Clay 2/76/22 0.820

65,139
Numerical test Sand/Silt/Clay 1.3/74/24.7 0.872

1.6
Laboratory test Sand/Silt/Clay 2/76/22 0.706

65,338
Numerical test Sand/Silt/Clay 1.8/78/20.2 0.816

1.7
Laboratory test Sand/Silt/Clay 2/76/22 0.606

66,327
Numerical test Sand/Silt/Clay 2.2/76/21.8 0.762

Before numerical simulation, the particles of the model are piled up by gravity twice,
so that all the particles are stable, and a pre-equilibrium model is obtained. Then, the model
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is cut and assigned material parameters. The values of the material parameters except for
Tu are listed in Table 1.

After the model is established, the specimen is loaded by uniaxial tension. In order
to obtain the completed stress–strain curve of the specimen, the loading speed is as slow
as possible, and the change of stress is recorded after each displacement loading. It takes
about 400 min for each specimen to complete the simulation. During loading, the sample
is locked in the Y and Z directions. The model function d.mo.nfnx is used to monitor the
change of contact force in the X direction. The complex uniaxial tensile simulation results
of the samples with different tensile strengths Tu are shown in Table 7.

Table 7. Complex uniaxial tensile simulation results.

Initial Void Ratio for
Laboratory Test

e0

Initial Void Ratio for
Numerical Test

e0

Total Number of
Particles

Tensile Strength
Tu/kPa

Complex Uniaxial
Tensile Strength

/kPa

Complex Uniaxial
Tensile Failure

Displacement /mm

0.820 0.872 65,139

0.5 10.12 0.12

1 12.23 0.15

2 13.45 0.25

3 14.11 0.34

4 15.45 0.38

5 16.89 0.40

6 17.98 0.42

7 19.56 0.45

8 22.46 0.48

9 24.56 0.51

10 25.79 0.58

11 26.89 0.67

12 27.36 0.75

13 28.45 0.80

14 29.35 0.86

15 30.15 0.89

16 32.12 0.95

For the sample with an initial void ratio of 0.872, the numerical simulation results are
fitted by a polynomial function, and the fitting relationship between the tensile strength Tu
and complex uniaxial tensile strength σt is obtained by

σt = 9.48315 + 1.72723Tu − 0.02009T2
u (13)

The value range of Tu is 0 to 20 kPa, and the correction determination coefficient is
0.98722. Figure 8 is the simulation result with a tensile strength Tu of 4 kPa.
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3.5. Relationship between MatDEM Material Parameters and the Water Content w of Unsaturated
Clay

The complex uniaxial tensile strength expression of compacted clay with different dry
densities and water contents is obtained according to the laboratory test results, and the
relationship between the material parameter Tu and the complex uniaxial tensile strength
with a given initial void ratio is obtained by numerical simulation. In the following, the
relationship between the tensile strength Tu and water content w with a given initial void
ratio is obtained through the intermediate value of complex uniaxial tensile strength.

According to the fitting results, when the initial void ratio e is 0.820, the fitting relation-
ship between the material parameter tensile strength Tu and the complex uniaxial tensile
strength σt is

σt = 9.48315 + 1.72723Tu − 0.02009T2
u (0 < Tu < 20kPa) (14)

(1) For the dry side (0 < w < 11.5%),

σt = −3.14821 + 3.88897 · w− 0.08224 · w2 (15)

Substituting Equation (15) into Equation (14) obtains

Tu =
1.7272−

√
0.0066 · w2 − 0.3125 · w + 3.9980

0.0402
(16)

(2) For the wet side (11.5% < w < 35%),

σt = 55.8452− 2.40208 · w + 0.03514 · w2 (17)

Substituting Equation (17) into Equation (14) obtains

Tu =
1.7272−

√
−0.0028 · w2 + 0.1930 · w− 0.7423)

0.0402
(18)

Then, the material parameter Tu is obtained with different water contents. In order
to verify the applicability of the fitting formula, the complex uniaxial tensile numerical
simulation was carried out for unsaturated compacted clay with an initial void ratio of
0.706 and 0.606, respectively. According to the fitting results, numerical simulations for
samples with different water contents were carried out, and the simulation results of the
relationship between tensile strength and water content for the sample with an initial void
ratio of 0.706 are shown in Figure 9. Figure 10 is the simulation result of the sample with an
initial void ratio of 0.816 and water content of 20%.
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Figure 10. Simulated result of sample with initial void ratio of 0.816 and water content of 20%:
(a) stress field and (b) displacement field.

For the sample with an initial void ratio of 0.606, the simulation results of the rela-
tionship between tensile strength and water content are shown in Figure 11. Figure 12 is
the simulation result of the sample with an initial void ratio of 0.762 and water content
of 15%. The fitting results show that the relationship between the material parameter
tensile strength Tu and the water content w is suitable for simulating the tensile strength of
unsaturated clay. According to this relationship, the discrete element numerical simulation
of the triaxial tension–shear test for unsaturated soil will be carried out as the follows.
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4. Simulation of Triaxial Tests for Unsaturated Soils under a Tension–Shear State

In this part, a group of triaxial test simulations for unsaturated soils under a tension–
shear state is carried out. The stress path of triaxial test simulations is shown as follows: the
sample is consolidated by confining pressure, then the axial stress gradually decreases. At
the beginning of unloading, the specimen is elongated axially until the axial stress σ3 < 0.
Finally, the specimen undergoes tensile failure. According to the results of numerical simu-
lation, the variation of tensile–shear strength for unsaturated soil with confining pressures
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and water contents is revealed, and the triaxial tensile failure modes of unsaturated soil
are analyzed.

4.1. Simulation Steps

The steps of the numerical test are introduced as follows. (1) The Monte Carlo method
is used to generate discrete element particle samples close to the specified particle size
gradation and void ratio. (2) According to the relationship between the water content
w and tensile strength Tu, materials are trained automatically, and the trained materials
are given to the model. (3) The stress is applied by the upper and lower pressure plates
with the water confining pressure σ1. (4) The upper and lower pressure plates move to
the opposite direction with a constant speed until the sample is damaged or a continuous
failure surface is formed.

4.2. Simulation Results
4.2.1. The Relationship between Deviatoric Stress and Axial Displacement

During the triaxial tensile simulation, the confining pressure is the large principal
stress σ1, and the axial stress is the small principal stress σ3. The deviatoric stress is defined
by σ1–σ3. Figure 13 shows the discrete element numerical simulation results of samples
with an initial void ratio of 0.872 with different confining pressures and water contents.
For a given water content, the initial slopes of the deviatoric stress–axial displacement
curve with different confining pressures are basically the same; however, the peak and
residual strengths with different confining pressures are different. When the confining
pressure is small (0 < σ1 < 200 kPa), the peak strength appears early, and the peak value
is larger than the confining pressure σ1, which means that the axial stress σ3 reaches a
tensile state. The deviatoric stress drops fast after the peak strength. Finally, the sample
undergoes tensile failure, and the axial stress goes to 0. When the confining pressure is large
(200 < σ1 < 500 kPa), the peak deviatoric stress increases with the increasing of confining
pressure. The peak deviatoric stresses are basically less than or equal to the confining
pressure σ1, which indicates that the axial stress σ3 is greater than 0. It should be noted that
the water content affects the peak deviatoric stress and the hardening/softening charac-
teristic. The strength increases with the decreasing of water content and the increasing of
confining pressure. Moreover, the dilatancy phenomena is obvious for the samples with a
low confining pressure and water content.

4.2.2. Displacement Field

Figure 14 shows the displacement field of specimens with different confining pressures.
The particle color represents the displacement field. A brighter color means a larger
displacement. The simulated results illustrate that the confining pressure affects the failure
form of a specimen. When the confining pressure is small (σ1 = 100 kPa), the axial stress
σ3 gradually changes from a compressive state to a tensile state. The fracture surface for
tensile failure is basically horizontal.

When the confining pressure is in the middle range (σ1 = 200, 300 kPa), the failure
modes of shear elongation and tensile fracture occur simultaneously. At the initial stage
of loading, the four sides of the specimen remain straight. Then, a local inclined shear
plane on the surrounding side of specimen appears when a threshold of tensile axial
displacement is achieved. However, the shear plane does not develop to the interior of the
specimen. Finally, the specimen fractures with the continuous increasing of the tensile axial
displacement. According to the displacement field, the middle part of the fracture surface
is basically horizontal, and local shear zones generate around the specimen.

When the confining pressure is large (σ1 = 400 kPa), the axial stress σ3 of specimen
is always in the compressive state under the tensile loading path. With the increasing of
tensile displacement, pure shear failure occurs; however, axial tensile stress does not appear.
According to the displacement field, a shear band generates inside the specimen.
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4.2.3. Heat and Energy Field

The simulation results of the heat field for samples with an 11% water content and
different confining pressures are shown in Figure 15. The generated heat increases with
the increasing of confining pressure. Based on the law of energy conservation, the total
energy of the isolation system is constant. When the sample deforms under external forces,
the increment of energy must be equal to the work done by the external force. For the
same axial displacement, the mechanical energy of a sample with a high confining pressure
is larger than that with a low confining pressure. The mechanical energy required for
specimen failure increases with the increasing of confining pressure.
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5. Conclusions

In this paper, a relationship between tensile strength and water content was obtained
by comprehensive comparison between the results of complex uniaxial tensile tests and
numerical simulation tests. Moreover, the discrete element simulation of triaxial tension–
shear tests for unsaturated soils was carried out. The simulation results demonstrate the
following:

• The water content affects the peak deviatoric stress, dilatancy behavior, and failure mode.
• The strength increases with the decreasing of water content and the increasing of

confining pressure.
• The dilatancy phenomena is obvious for the specimens with a low confining pressure

range and water content.
• The specimens undergo pure tensile failure under a small confining pressure condition,

shear elongation and tensile failure under a middle confining pressure condition, and
shear failure under a large confining pressure condition.
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